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Abstract—1In the contemporary landscape, the escalating
deployment of drones across diverse industries has ushered
in a consequential concern, including ensuring the security
of drone operations. This concern extends to a spectrum of
challenges, encompassing collisions with stationary and mobile
obstacles and encounters with other drones. Moreover, the
inherent limitations of drones, namely constraints on energy con-
sumption, data storage capacity, and processing power, present
formidable obstacles in developing collision avoidance algorithms.
This review paper explores the challenges of ensuring safe
drone operations, focusing on collision avoidance. We explore
collision avoidance methods for UAVs from various perspectives,
categorizing them into four main groups: obstacle detection and
avoidance, collision avoidance algorithms, drone swarm, and
path optimization. Additionally, our analysis delves into machine
learning techniques, discusses metrics and simulation tools to
validate collision avoidance systems, and delineates local and
global algorithmic perspectives. Our evaluation reveals significant
challenges in current drone collision prevention algorithms.
Despite advancements, critical UAV network and communi-
cation challenges are often overlooked, prompting a reliance
on simulation-based research due to cost and safety concerns.
Challenges encompass precise detection of small and moving
obstacles, minimizing path deviations at minimal cost, high
machine learning and automation expenses, prohibitive costs of
real testbeds, limited environmental comprehension, and security
apprehensions. By addressing these key areas, future research can
advance the field of drone collision avoidance and pave the way
for safer and more efficient UAV operations.

Index Terms— Unmanned aerial vehicles (UAV), drone colli-
sion, collision avoidance, UAV navigation, drone swarm.
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I. INTRODUCTION

HE worldwide market for commercial and civil

Unmanned Aircraft Systems (UAS) is anticipated to
expand significantly. According to Single European Sky Air
Traffic Management Research (SESAR), the European drone
market will surpass 10 billion yearly by 2035 and 15 billion
by 2050 [1], [2]. Moreover, based on the characteristics of the
missions and application fields, small UAS and very low-level
airspace operations would provide the most incredible market
value. The expanding tendency will accompany a rise in traffic
congestion and additional safety, reliability, and efficiency-
related problems. Therefore, developing and deploying conflict
management systems are prerequisites for UAS integration in
civil airspace. Specifically, the National Aeronautics and Space
Administration (NASA) in the United States (US) intends to
develop a UAS Traffic Management (UTM) system that will
let multiple UAS fly at low altitudes alongside other airspace
users [2], [3].

According to the Federal Aviation Administration (FAA),
there will be 2.4 million small hobbyist drones in the US
by 2022, and the incidence of drone accidents is sharply
rising along with the popularity and deployment of Unmanned
Aerial Vehicles (UAVs) for consumer applications [4]. The
FAA obtains over 100 monthly complaints of illegal and pos-
sibly dangerous UAV activity from pilots, residents, and law
enforcement [4]. These kinds of accidents highlight the neces-
sity for drone pilot education and training programs, as well
as tighter regulations for offenders. FAA also highlights the
significance of a collision-free route creation and navigation
system for UAVs. It is just as essential to guarantee safe and
risk-free UAV flying while using it inside. As a result, keeping
UAVs stable in flight is becoming a significant priority means
that the UAVs can identify and avoid stationary and relocating
objects. Examples of static impediments include buildings and
trees, whereas dynamic obstacles include birds [5].

One of the challenges is how to safely integrate drones into
the airspace structure with other aircraft in an urban area. Tech-
nical, operational, and regulatory issues are involved. A few
years ago, the European Union started an endeavor to adopt
more airspace regulations [6]. The European Commission
modified the UTM concept for Europe, added a framework of
services and capabilities, and termed the outcome U-space [7].
Since then, the SESAR Joint Undertaking (SESAR JU) of the
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European Commission has funded various European research
projects [7]. Some research projects concentrate on techniques
and regulations that let drones fly in crowded areas without
threatening other airspace users. For example, this includes
U-space Separation in Europe (USEPE) projects, which inves-
tigate management and safe separation technology. The project
uses geo-vectoring, high-speed corridors, and density-based
management [8]. NASA’s project called UAS Integration in
the National Airspace System (NAS) intends to create collision
avoidance technology [9]. Note that flight safety concerns avi-
ation authorities like European Union Aviation Safety Agency
(EASA) in Europe [10].

UAVs must have onboard collision avoidance systems due
to their autonomy and ability to fly without base stations or
humans. Adding cognitive decision-making tools to the autopi-
lot system, like obstacle recognition and planning of paths, can
increase autonomy and boost safety. There is an increasing
need for dependable collision avoidance systems for public
safety as UAV use increases, particularly in public spaces.
Moreover, UAVs can travel to dangerous and inaccessible
locations without jeopardizing people’s lives. This emphasizes
the significance of developing completely autonomous UAVs
via basic research [11]. A group of UAVs can do powerful
tasks that a single UAV cannot. Note that a fleet or swarm of
UAVs may be used for larger and more complex applications
and operations. Without preventing UAVs from colliding with
one another, stationary and moving obstructions in the flight
zone, a safe operation cannot be guaranteed under such
circumstances. By creating an online motion route planning,
coordination, and navigation system with collision prediction
and avoidance, UAV swarm motion safety may be ensured [5].

The principle behind UAV path planning is that further
distant cues are used to make broad judgments about the
course to travel. Meanwhile, nearby ones are used to make
fast choices about collision avoidance. The agent obtains high-
level information about everything on the map via the global
planner, a condensed representation of the entire environment
map focused on the agent’s position. Since the local planner
is neither compressed nor scaled out, the local map provides
detailed information about the region surrounding the UAV
agent [12]. According to a recent study, location data is primar-
ily used by UAVs to detect flight conflicts. There are several
ways to locate a UAV, including satellite-based positioning,
Automated Dependent Surveillance-Broadcast (ADS-B), Traf-
fic Collision Avoidance System (TCAS), inertial navigation,
and radar detection [13]. Nonetheless, unsolved concerns still
prevent UAVs from being utilized on a big scale in urban
areas. First, UAVs pose safety concerns to bystanders in
populated areas, including the potential for injury to persons
and damage to vital facilities [14], [15], [16]. The potential
for a confrontation during flight is another significant obstacle.
Since there are seasonal fluctuations in the need for air travel
(for food delivery [17] and passenger transport), all UAV
users must operate simultaneously in the same airspace [16],
[18], [19]. These raise the risks for other UAVs collisions and
unsafety.

Drones have revolutionized various sectors with their versa-
tile applications, creating a pressing need for effective collision
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TABLE I

UAV COLLISION AVOIDANCE CHALLENGES

Level of algorithm
view
Autonomy

Diversity of obstacles

Unknown
environments :

UAV limitations

Environment and
weather changes

Local view or global view.

Al computation costs

Static, dynamic, airplane or UAV, animals/
birds/ Human

Crowded city (High dense) or sparsely
populated village (Low dense).

High altitude or low altitude (inside jungle
among trees/ inside city among budlings).
Battery, data storage, computational power
Fly indoors (inside buildings) or outdoors (city,
mountains, desert), wind intensity and
direction, foggy, rainy, and snowy weather,

daylight or dark night.

Energy consumption, flight time, collision rate,
Jerk, Velocity, Latency, communication and
computational cost, distance to obstacle, wind
speed and direction.

Metrics for algorithm
justification

Suitable simulator or testbed to cover all
concerns and significant metrics

Simulation tool or
Testbed for algorithm
justification
Destination reaching and collision avoidance
actions expenses: Amount of deviation from
original route, flight time, energy consumption

Mission completion in
suitable time

avoidance systems. These systems have given rise to numerous
algorithms and strategies, yet current research predominantly
focuses on stationary or limit obstacles. Unfortunately, many
of these algorithms may not be suitable for drones with limited
computational resources, and they often need to account for
environmental factors such as wind, rain, and changing light
conditions. The main UAV collision avoidance algorithms
challenges are summarized in Table I.

Recent studies highlight the persistent hurdles in this
field, underscoring the need for a comprehensive review to
analyze existing research, methodologies, and achievements.
For our literature study of UAV collision avoidance algo-
rithms, we conducted a thorough search of databases such
as IEEE Xplore, Scopus, and Google Scholar using pre-
cise keywords. We included recent, peer-reviewed articles
and important works that matched very specific criteria.
This guaranteed a thorough and up-to-date survey of UAV
collision avoidance technologies and trends. This paper thor-
oughly examines collision avoidance techniques designed
for Unmanned Aerial Vehicles (UAVs) to address obstacles
hindering safe drone operations. We carefully examine the
technologies and techniques used in each area, highlighting
their distinct contributions and results. We explore incor-
porating machine learning methods, metrics, and simulation
tools for verifying collision avoidance systems. Our study
aims to highlight the key limitations of existing research
and advances in drone collision avoidance technology by
identifying critical areas for improvement and outlining future
research directions to enhance the safety and effectiveness of
UAV operations. The main contributions of this article are as
follows:



REZAEE et al.: COMPREHENSIVE REVIEW OF DRONES COLLISION AVOIDANCE SCHEMES

1. We analyze various algorithm types, the utilization of
Machine Learning (ML) mechanisms, the UAV com-
munication network, and the challenges and limitations
encountered in collision avoidance approaches.

2. We explore the metrics and simulation tools used and
examine whether the proposed algorithms function as local
or global planners.

3. We delve into algorithm capabilities, encompassing obsta-
cle identification (both stationary and moving), the quantity
and characteristics of obstacles, and features such as pre-
dictive abilities and reaching predefined destinations.

4. Lastly, we illuminate open challenges and future research
directions in the field of drone collision avoidance.

The subsequent sections of the paper are structured as
follows: The second part delves into the current state of the
art concerning drone obstacle detection, collision avoidance,
UAV swarm, and path optimization. The third part entails the
evaluation and classification of the reviewed algorithms. In the
fourth part, challenges and significant issues in collision avoid-
ance approaches are discussed, while the fifth part presents
lessons learned. Additionally, the sixth part addresses the
future direction and open challenges of the research. Finally,
the conclusion summarizes and concludes the paper.

II. RELATED WORKS

One remarkable technology that has spread from the mil-
itary to civilian commercial industries is the drone or UAV.
Many technologies, such as Artificial Intelligence (AI), com-
puter vision, obstacle avoidance, and others, allow it to
function as a pilotless aircraft [20]. UAVs’ usage in civil appli-
cations is still growing, although airspace regulations have
already been established. However, each country has its regu-
lations, including weather conditions, maximum and minimum
flying height, restricted flight zones, as well as mandatory
usage of onboard sense and avoid systems [21]. Depending
on various aerospace applications, UAVs are either remotely
piloted vehicles, fixed-wing drones, hybrid fixed/rotary wing
drones, robot planes, or pilotless aircraft. This ranges in size
from tiny toys to enormous military aircraft. Furthermore, their
payloads directly affect UAVs’ size, battery life, and flight
length. It can be anywhere from a few grams to several hun-
dred kilos and contain communication equipment, cameras,
radars, and sensors [22].

Drones that are tiny may take off and land practically
anyplace that has UTM services [18]. The drone collects
high-resolution footage of public traffic occurrences or testing
scenarios from a bird’s eye view and creates data. Other
than that, the positions and motions of all visible road users
may be retrieved with high precision from video recordings
using semantic segmentation and tracking techniques. Due
to the drone’s perspective, the entire traffic scene may be
photographed without cars being obscured by other vehicles.
Moreover, measurements taken with a drone are incredibly
efficient due to the simultaneous capture of all road users
within the range of vision [23].

The regulatory structure for autonomous cars places a strong
emphasis on four vital safety factors [24]: 1) deciding if a
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safety driver has to be in the car or whether the remote
control is acceptable, 2) creating safety management plans
or comparable standards, 3) requiring data collecting and
reporting, and 4) outlining regulations regarding responsibility
in the case of accidents or collisions.

A collision or conflict in the context of Air Traffic Manage-
ment (ATM) refers to a situation where two or more(manned)
aircraft suffer a loss of minimum separation.

Aviation organizations like the International Civil Avia-
tion Organization (ICAO) determine the minimum distance
between two planes [21], [26]. No minimum separation
requirement is set for multi-UAV systems, despite the pos-
sibility of special legislation defining one and the assumption
of work-specific values in certain studies [21], [27]. Drone
separation criteria are defined by distance, time, or a mix
of both. The distance-based technique establishes a drone
safety area. However, it does not account for the intruder’s
speed, making it inappropriate for integrated operations. The
time-based technique calculates relative speed by calculating
the time to reach the Closest Point of Approach (CPA).
Nevertheless, it is hard to visualize. Mix time and distance
based are now employed to determine drone safety separa-
tion [27]. Conflict detection determines when to take action,
while conflict resolution specifies how or what action should
be taken [28], [29].

UAS improves production and reduces risk in several
sectors. Hence, meeting flight regulations and expanding
authorized flying zones is necessary to enable commer-
cial services and incorporate UAS into airspace. Collision
avoidance systems and clever trajectory planning further
ensure UAS safety. Note that UAS collisions in dense traffic
airspace is another concern. UAS must adjust their see-and-
avoid capacity to identify and avoid other aircraft. Other
than that, UTM requires intelligent collision-free trajectory
planning [10]. A collision avoidance system involves three
important parts [9]:

1. Sensing: Collects information about obstacles.

2. Detection: Foresees collision probabilities based on existing
data.

3. Avoidance:
maneuvers.

Chooses and performs the right evasive

A network with flying nodes necessitates synergistic inter-
play across the four design-principal dimensions: control
system, network and communication, information exchange,
and situational awareness [45] has been detailed in Fig. 1. Two
critical aspects of the multi-UAV system should be consid-
ered: coupling and networking. Networking characterizes the
communication state of UAVs and the methods by which data
are sent across the system. Meanwhile, coupling considers the
interaction between UAVs [25], [46]. Centralized UTMs can
see the entire system. However, delays in making judgements
could make collisions more likely. Each UAS makes a local
decision on how to prevent a collision, but UAS works together
with other UAS in the same area. Therefore, distributed deci-
sion systems installed on UASs can resolve the issue locally,
albeit local processing may cause an additional delay [10].
This section reviews recent surveys and ongoing research for
addressing the issue of drone collisions and swarms.
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Fig. 1. The foundation of a network of multiple UAVs [25].

A. Related Surveys

The primary focus of some related research is solely on
vision-based obstacle avoidance during route design, apart
from other collision issues that are discussed in this work.
An overview of the planning issue in the context of UAV
graphics applications is present in [38]. Different visual
localization and mapping systems used for UAV navigation
are discussed in [40]. In [39], the author highlighted cur-
rent progress in utilizing UAVs for geoscience and remote
sensing objectives. It detailed the development and optimal
use of onboard sensors, flight planning, navigation issues,
data processing, and analysis. Other than that, it also dis-
cussed vision-based and other sensors for collision avoidance.
In [30] taxonomy of drone navigation algorithms is based
on the level and features of autonomy provided. In review-
ing the approaches for UAV route planning, [36] divides
them into three categories: representational, cooperative, and
non-cooperative.

Analysis and description of collision-avoidance processes
and functions such as state sensing, conflict identification,
and conflict resolution provided by [28]. Authors of [11]
investigate various methods of collision avoidance and provide
a comparison of their relative efficacy in a variety of situations.
Additionally, multiple sensor types and their applications
for UAV collision avoidance are discussed. Reference [42]
reviews the sensors and detection methods used in anti- colli-
sion systems. Classification, control applications, and future
industry and research interest areas for UAVs are present
in [32]. Research [41] provides a review for advancing UAV
collision avoidance approaches based on consolidating current
legislation and standards concerning UAV collision avoidance.
To avoid non-cooperative obstacles, article [43] thoroughly
analyzes perception sensors, methods, and hardware designs
for autonomous low-altitude UAVs. Nevertheless, these studies
don’t address the subjects of metrics, simulation tools and
artificial intelligence in collision avoidance algorithms.
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A thorough analysis of the principles of Deep Learning
(DL) used in UAV-based photography and mapping is provided
by [37]. An in-depth analysis of how ML may be used in
networks with UAVs is provided in [22]. Research [34] con-
centrates on ML techniques to manage UAV flocks. It tackles
UAV flock creation, management and coordination, UAV-
based wireless communication networks, and ML applications
to UAV-related difficulties. In [31], difficulties like control,
navigation, and route planning are discussed. It reviews Rein-
forcement Learning (RL) techniques used in UAVs and how
learning performs. There is a lack of thorough and precise
examination and comparison of artificial intelligence algo-
rithms used for drone collision prevention among existing
studies.

In [33], an overview of drone applications in Software-
Defined Networks (SDN)-enabled drone base stations, surveil-
lance monitoring, and emergency networks are provided.
A survey about topology controlling algorithms for drone
swarms was prepared by [35]. The communication network
among drones has yet to be thoroughly discussed to improve
coordination and prevent collisions.

Most of the mentioned research does not discuss drone
collisions and their algorithms in a deep and concentrated
manner, or they have investigated the algorithms from a
single dimension, such as a vision base. However, the themes
of machine learning, metrics, simulation environment, UAV
communication network, and the general strategy of local
or global algorithms have not been accurately compared or
evaluated. Given the rapid growth and development of drones
as well as the extensive development of various collision
avoidance plans in today’s research, and the fact that the
majority of the reviewed articles do not cover the most recent
algorithms and significant factors mentioned, we discuss the
most recent algorithms in this field. Table II summarizes the
theme and significant aspects of previous review papers it this
area.

B. UAVs Collision Avoidance Algorithms

There is a plethora of literature on drone collision avoid-
ance, and these articles approach the topic from various
perspectives. We classify recent algorithms and methods based
on the overall approach to handling collision and examine
merits and limitations. The following are the critical parts that
have dealt with avoiding collisions in drone navigation and
guidance (Fig. 2.):

1. Obstacle detection and avoidance: Detecting stationary and
moving obstacles and avoiding colliding.

2. Collision avoidance algorithms: Algorithms focusing on
forecasting and detecting collisions with obstacles and other
drones.

3. Drone swarm: Algorithms involved in drone swarm for-
mation and management while considering preventing
collisions.

4. Path optimization: Considering barriers while optimizing
the UAV flight route.

1) Obstacle Detection and Avoidance: The obstacle-
detecting and avoidance skills of UAVs play an essential
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TABLE II
SUMMARY OF RECENT SURVEYS ON UAV NAVIGATION

c
< w H 2 &2 13
$ 8, § £ : £ st s
2 2 = o
Remarks 8 = ] ;6‘ = 2 "'; -
EE" z = § £ 8% §
o ” =) E: 7 & a
o
Taxonomy of drone -Focus on UAV autonomation features and navigation parts.
[30] 2021 P ) - ; v \ v
navigation autonomy -Just mentioned research that refers to collision avoidance.
(221 2019 UAV-basgd ) »Stuqy the applchatlon of ML approaches |‘n UAV-based communications. v v v
communications -Review related issues to swarm communication.
-Issues of control, navigation, and flight planning for UAVs were discussed.
[31] 2021 Using Al and RL in drones -Look over employing RL for UAV navigation, including using RL in collision v v v v
avoidance and swarm.
32] 2021 Drone type (?Ias?lflcatlon, -Drone control ISS}{E? dlscussefl.. ) v v
control applications -Have a short definition of collision avoidance and swarm.
[33] 2020 Drone st.ructure and -Focus on drones’ network, communication, and security. v
networking
-ML usages and techniques in drone flocking and management.
134] 2021 UAV flocks - usage: iques in 8 8 v v v oo
-Did not discuss metrics and just named them.
-Topology control algorithms used in UAV swarms were discussed. v v v
[35] 2022 UAV swarm topology -Did not discuss metrics and just mentioned them.
36] 2020 Path planning methods for - UAV path planning approaches are classified and explored. v v
UAVs -Discussed path planning algorithm by considering collision issues.
[37] 2021 Deep Learning application -Deep learning algorithms and methods used in UAV imagery and mapping. v
in remote sensing by UAVs -Discussed ML algorithms that are used for remote sensing.
38] 2020 Path and view planning for —PI-an-nlng issue in the Fontext of pAV graphics e!ppllcatlons. v v v
UAVs - Limit to obstacle avoidance during path planning.
. -Comparison of drone sensor and camera types and data collection
o Uy i S
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. -Discussed vision-based object detection/avoidance and path planning for
[40] 2018 ::\x ‘gtsi';’:'base" UAV navigation. v v v
8 -Limited to vision-based techniques and methods.
Collision avoidance -Collision avoidance hardware and modules were defined.
[11] 2020 . -Collision avoidance algorithms were categorized based on the type of v v v v
strategies and modules N h
algorithm and discussed.
-Collision avoidance functions described.
[28] 2022 UAVs collision avoidance -Summary of sensing technologies, conflict identification, and resolution v v v v
advances was given.
[81] 2023 Rule based approach for - Summary of current rules and regulations pertaining to avoiding UAV v
avoiding collisions collisions
[42] 2023 Anti-collision sensors -Reviews obstacle detecting techniques. 4 v
[43] 2024 Perception sensors -Review perception sensors, algorithms and hardware of UAVs v v
[44] 2023 UAV Obstacle avoidance -—Concentrate on modules of sensors frequently employed for detection in v v v v
indoors UAV environment.
This UAVs collision avoidance -D.eep oyerV|ew of coII!S|on avou:lancle issues and problems. v v v v v v v v
Survey -Discussion on Al solutions and metrics and drone swarm.
Detected Obstacle 1
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Fig. 2. UAV collision avoidance related algorithms.

role. Since UAVs operate in unfamiliar dynamic environments
with several fixed or moving impediments, recognizing, and
avoiding obstacles is critical [47]. There may be three distinct

parts to the 3D navigation problem: recognizing obstacles,
avoiding them, and finally arriving at the desired destina-
tion. In order to scan and find things around UAVs, many
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sensors have been used. For locating moving and stationary
impediments in the vicinity of UAVs, several systems employ
cameras. However, video camera data must undergo extensive
processing in order to be converted into information that may
be used to operate UAVs [48], [49]. Obstacle Detection and
Avoidance algorithms may be classified according to many
parameters, including the sensor type, obstacle type, avoidance
technique, and environment type:

a) Sensor types: Obstacle Detection and Avoidance algo-
rithms may use various sensors, including cameras, lidars,
radars, sonars, or a combination of them, to identify obstacles
based on the sensor type. Various algorithms have been
developed to detect objects using cameras or other sensors
and avoid collisions. In the meanwhile, several of these studies
have concentrated on fixed objects. In [50] by RGB-D camera
provides an environment-aware trajectory prediction approach
based on the Markov chain and the states of monitored
dynamic obstacles. This method suffers from high failure rates.
To improve the UAV’s collision detection system, a model
with distributed spatial-temporal synaptic interactions is devel-
oped [51]. The model is motivated by locusts’ ability to avoid
collisions using a motion-based visual neuron called lobula
giant movement detector. Nevertheless, the proposed method
needs more sensitivity to small objects like wires and leaves.
This is because it relies primarily on discriminating looming
objects based on their image angular velocity and size.

This study [52] uses obstacle contour detection to estimate
barriers’ location coordinates and shape by analyzing the
image attributes of unknown obstacles. Based on the combined
colliding cone and alert criteria, a collision detection and alert-
ing theory is presented out in [53]. A 3D vision cone model
in [47] proposes for the obstacle detection issue. A Sliding-
Mode Controller (SMC) is used to avoid obstacles and reach
the objective. More boundaries enhance optimal motion direc-
tion but increase the algorithm’s computing load. However,
UAVs’ eyesight is limited to one side, and covering different
sides or directions requires more computational resources. The
restrictions on the obstacle-detecting sensors include their area
of view, precision, resolution, noise level, and sensitivity to
interference from outside elements. For instance, lidars may
be expensive and need much power, cameras may not see well
in dim or foggy circumstances, and radars may need better
resolution and angular precision [54].

b) Avoidance techniques: One straightforward collision-
avoidance technique is the deterministic Model Predictive
Control (MPC) with a no-entry region. Based on the observed
data, the control target’s distance from obstacles may be
determined. MPC leverages the dynamics of UAVs to forecast
and optimize upcoming control inputs, assuring viable tra-
jectories with collision avoidance requirements and reducing
the possibility of deadlocks brought on by many obstacles.
Even when the UAV travels along a collision-free route,
several obstacles might result in a condition known as a
deadlock, in which the control target cannot reach the target
point [55]. Authors of [56] used Nonlinear Model Predictive
Control (NMPC) for motion planning and control integration
to safely operate UAVs in a workspace loaded with fixed or
moving obstructions. The use of NMPC in high-speed UAVs
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may be hampered by its well-known high computing cost.
However, because of the mutual interference of regions in a
noisy environment, deterministic MPC is prone to oscillations
and collisions. Chance Constraints Model Predictive Con-
trol(CCMPC) with position chance constraints offers smoother
motion planning than MPC [57] but position chance con-
straints alone are inadequate to maintain a safe distance from
dynamic barriers. The fact that CCMPC requires more process-
ing than deterministic MPC shows that it is computationally
expensive. Nevertheless, chance constraints based on obstacle
velocity can perform early collision avoidance and provide the
most effective control input [55].

Recently, several studies have attempted to use machine
learning techniques for obstacle detection and avoidance. Deep
Neural Networks (DNNs) in computer vision and their appli-
cation to vehicular autonomy have directly created navigation
systems. This enables considerable automation of drone oper-
ation, a clear ambition [30]. A real-time obstacle avoidance
system based on a regression CNN proposes to calculate
distance-to-collision from a UAV camera [58]. The research
employs a two-stream CNN to predict UAV collision distance
in several directions. A trained CNN combines a unique local
motion planning technique to turn distance estimations into
velocity commands. If UAVs move among the mass of fixed
impediments, as in the study of [59] in forests, suffer from
obstruction due to limited local visibility.

c) Obstacle types: Obstacle Detection and Avoidance
algorithms may handle several obstacles, including static or
dynamic, regular or irregular, known or unknown, based on
the type of obstacle. Research [55] focuses on developing
and integrating obstacle velocity-based chance constraints
with positional chance constraints to effectively handle both
position and velocity uncertainties, particularly in noisy envi-
ronments with high-velocity obstacles. This study’s primary
flaw is its assumption that the computation for the optimization
will be finished within the control period and just tested in a
2D setting with two moving obstacles (velocity = 0.5 and
0.3 m/s) or three obstacles (Velocity =3.0 m/s) moving in the
same direction. Additionally, it is presumed that the UAV can
determine the precise position and speed of all obstacles and
UAVs.

To avoid collisions involving a moving object, such as a
tossed ball, [60] proposes an approach that employs Neural
Network Pipeline (NNP) to forecast crashes and an Object
Trajectory Estimation (OTE) technique that leverages optical
flow. The biggest issue in related research is the drone’s poor
speed. In [61], Pixel Model Predictive Control controls the
drone for high-speed racing while maintaining its distance
from visibility gates. It employs Deep Optical Flow (DOF)
learning, a self- supervised learning approach that does not
need operator labelling. Autonomous racing and visual object
tracking are the main objectives of the work. It predicts
pixel model dynamics and future state trajectory to select the
optimal control sequence.

In [62], the authors provide a technique for identifying
drones using a DL strategy, particularly CNN. It relies on
radio frequency signals sent by the UAV and its controller
during real-time data transfer to function. The method might
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detect moving boundaries in space, such as drones, robots,
and other electronic objects that can control. Nonetheless, the
computing cost of implementing these approaches within a
drone are substantial.

d) Environment types: Obstacle Detection and Avoidance
algorithms may function in many situations, such as indoor or
outdoor, urban or rural, congested or sparse, depending on the
kind of environment.

Obstacle avoidance algorithm for the drone in building
environment based on simplified geometry presented in [63].
It used 3D sensor data to locate and identify impediments
like people or UAVs. The proposed technique combines a
preregistered 3D room model with sensor data. Note that
the proposed design includes Light Detection and Ranging
(LiDAR) or stereoscopic cameras in a UAV for interior nav-
igation. Other essential metrics like energy consumption and
jerk were not considered for performance measuring of the
proposed algorithm.

A rapid UAV navigation strategy for identifying and avoid-
ing trees in the forest using visual perception has been
proposed [59]. Neural Networks (NN) were used with DL
approaches like nonlinear regression to explore drone system
dynamics. Other than that, a deep Convolutional Neural Net-
work (CNN) algorithm was employed for visual perception
in the forest by detecting trees as boundaries. Due to high
processing costs, all training and computations are offline and
in flight, the trained model is employed.

When it comes to safety, smaller drones outperform bigger
ones in intricate interior situations. Indoors, standard-sized
quadrotors are considered dangerous, while nano-UAVs, with
their small onboard computer, have dependability advan-
tages, including decreased latency and less bandwidth needed.
However, accomplishing autonomous navigation with nano-
UAVs requires overcoming obstacles in trajectory planning
and obstacle avoidance while maintaining energy efficiency;
computing power must be a small portion of the total energy
envelope to metric sustain flight length. Processing should
only occupy a small portion, i.e., 10% of the total energy
envelope, in order to allow onboard choices depending on
the nano-UAV surroundings. For example, the highest com-
puting power required for nano-UAV platforms such as the
Crazyflie 2.1, where the entire power consumption, including
the motors, is around 10 W, must be in the range of hundreds
of megawatts in order to not significantly impact the flying
duration [64], [65].

The challenges of obstacle detection and avoidance vary
across different environments [66], encompassing congested or
sparse areas, indoors or outdoors, cities or forests. For exam-
ple, while walls, ceilings, doors, and furniture pose barriers in
indoor settings, outdoor environments present unpredictable
dynamics such as wind, birds, and other UAVs.

Nevertheless, existing algorithms often developed from the
2D situation of planar vehicles, which necessitates setting the
UAV’s height while avoiding obstacles. Other than that, 2D
algorithms significantly decrease the UAV’s trip efficiency.
It will not look for a route around the closely spaced obstruc-
tions, leading to UAV crashes or tracking in a particular 3D
environment [47].
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Limitations in sensors and environmental factors like illu-
mination and weather may cause a perception system failure.
Another aspect is occlusion, which makes an object partially
or entirely invisible. Comparing a truck to a dog suggest that
objects may differ substantially in size and distance from the
subject. The sensors’ results vary greatly depending on the
object’s scale [67]. In a crowded space, the local vision and
approach of the algorithms simply by avoiding obstructions
regardless of the primary path and target may bring the drone
to a dead end or trap.

Multiple constraints make using analytical tools and DL
algorithms in indoor spaces difficult. The utility of NNs is
also severely limited by a lack of training data and avoid-
ance methods. Moving obstacles, such as people, provides
another issue. The avoidance algorithm must forecast the
movements of obstacles to select the safest and most efficient
route [63]. While predictive approaches may be more resilient
and dependable but need more computation and knowledge,
reactive methods may be quicker and more straightforward.
However, they may not provide global optimality or safety
[68]. Because of the local approach and limited visibility,
the bulk of the algorithms in this group face the difficulty
of real-time reactions without considering the primary route
and eventual goal. These deviations may take the drone to
a closed or dead-end site without a path to the final goal.
On the other hand, aimless deviations lengthen the flight path,
increase flight duration, energy consumption, and decrease
efficiency. At the same time, deviations without adjusting the
acceleration and speed and taking the jerk metric into account
may result in catastrophic harm to the drone or the cargo it
transports. Table III presents a summary of related works on
obstacle detection and avoidance.

2) Collision Avoidance: The term “collision avoidance”
refers to the capability of UAVs to detect collisions and evade
them without suffering any physical harm [36]. Scheduling,
speed adjustment, and spatial dimension changing or rerouting
are standard methods for collision resolution strategies. Note
that pre-flight disputes may be avoided with proper scheduling.
Preventing or resolving conflicts or congestion is possible
by rearranging the departure time. Modify the flight’s speed,
which modifies the estimated arrival time for the flight’s future
waypoints. In addition, changing the estimated arrival time
value may alter the time gap between two aircraft passing a
waypoint. By adjusting the 3D geometric trajectory, spatial
conflicts may be handled [16].

Collision avoidance for multiple UAS can address pre-
plan, collaborative, and autonomous. The pre-plan technique
entails centralizing information and preparing flights to avoid
collisions. However, it limits scalability and flexibility. The
collaborative approach entails UAS discussing their status
and plans to resolve problems via transponders and systems
such as ADS-B or Flight Alarm (FLARM) in Europe. Each
UAS makes decisions based on its sensors, such as cam-
eras, LiIDAR, sonar, or radar, under the autonomous strategy.
Numerous studies have applied various technologies to non-
collaborative systems [10], [21]. ADS-B is a surveillance
technology that combines Automatic Dependent Surveillance
(ADS) and TCAS. ADS-B transmits critical aircraft data like
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TABLE III

SUMMARY OF RELATED WORKS ON OBSTACLE DETECTION AND AVOIDANCE

Obstacle detection in forest and . . . . Supervised Deep CNN and Nonlinear
[59] X High computational costs Height, velocity, thrust R .
take off dynamics learning regression
[62] Drone detection using radio Relatively high computational Accuracy, precision, recall and F1 Supervised CNN
frequency cost score. learning
Collision avoidance with fixed Low UAV speed and used
[63] and moving obstacles inside LiDAR sensors for obstacle Time of computation on UAV - Simplified geometry
building detection
. In dark or rainy weather, the L . Self- Pixel Model Predictive
Predict movement of relevant . . Variation of roll, pitch, yaw angles, . K
[61] X . performance of vision will R supervised Control and deep optical flow
pixels in robot planned rout success rate, lap time . .
decrease learning learning
Vision-based obstacle detection V|5|on. limit to orTe S'd.e and Minimum distance to an obstacle, . .
[47] . covering more directions need . - Kinematic model
and avoidance K . time step
high computational resources
Model predictive control in 3D . . . . . . i
P . . NMPC is well recognized for Distance to obstacles, inverse time Nonlinear model predictive
561 among a variety of moving being computationally costl to collision ) control
objects to trajectory tracking 3 P v Y
Root mean squared error, time, Supervised
[58] Obstacle avoidance system High computational expense . 4 .. P . CNN
distance to collision learning
Vision-based collision avoidance . . . .
. . . High computational cost and Loss, accuracy, processing time, Supervised L
[60] with dynamic objects to R . Neural Network Pipeline
R . processing hardware cost performance learning
trajectory prediction
Vision-based collision detection High computational cost and Output MP (Magnitude of .
51 . . . . Presynaptic Neural Network
;511 in agile flights cannot detects small objects Preference), attenuation ynap
50] Vision-based collision avoidance High failure rate in complex Obstacle detection errors in Markov chain-based
with dynamic and static objects environments- position and velocity prediction
Dynamic obstacle avoidance Limit to 2D environment
[55] cgnsiderin velocity and position .Presumes UAV is able to Computational load, noise gain, Chance Constraints Model
s ¥ P assess the location and speed prediction time Predictive Control (CCMPC)
of obstacle
of all obstacle and UAVs.
. In a common and untested Flight speed, distance travelled,
Obstacle avoidance of nano . . s " Lo .
[64] indoor setting, 100% reliability ~ time spent in air, perceptual Model-free decision tree

drone

at 0.5 m/s

artifacts, delay

position, altitude, speed, and transponder code, aiding in the
forecast of UAV flight conflicts [13], [69]. The flight route
of the UAV predicts based on the UAV position information
in the ADS-B data field and collision resolution using speed
adjustment, heading adjustment, and compound of them.

a) Pre-plan approaches: A collision avoidance algorithm
that considers several no-fly zones is proposed in the [70]
study. The plan is to utilize differential geometry to determine
how to steer around polygonal obstacles with the minimum
potential change in heading direction. A fixed-wing UAV’s
ability to change speed is restricted, using more energy than
changing angle. In [71], a feasible solution to the above-
mentioned issue is presented for real-time collision avoidance
between numerous UAVs with uncertain acceleration. This
technique combines the miss distance and mixed 3-D geo-
metric approaches.

The computing burden of numerical optimization techniques
is more significant than the rule-based or artificial Potential
Field (PF) approaches compared with those in the article.
According to the results, the method’s flight time and com-
puting time are longer than the comparative algorithm.

A paradigm for adaptive decision-making to optimize con-
flict resolution options for various conflict types utilizing
explicable reasons suggest in [16]. However, meta-heuristic
approaches are often built for static optimization issues and
may fail to react swiftly to changing conditions and evolving

threats in a dynamic UAV airspace environment, potentially
resulting in collision risk.

A framework with centralized and distributed techniques
using vertical motion to avoid drone collisions is given in [72].
The research results based on the A* Search algorithm indicate
that, compared to a decentralized method, the centralized one
mostly achieves the most optimal results. Due to the proposed
algorithm’s search and queuing nature, the method has high
computational and running time for many UAVs.

An intelligent healthcare system based on UAVs was pro-
vided in [73] for monitoring, disinfecting, isolating gathering
data, evaluating data, and providing statistics to manage
the COVID-19 pandemic. However, the collision avoidance
technique for UAVs relies on preset scope, layer, and route
and demands greater movement adaptability. A drone flock
topology develops in [74] for traffic surveillance. The study
aims to employ the internet of vehicles and the SDN to
decrease drone communication, load processing, and energy
consumption costs. However, the proposed approaches need
more mobility to deploy drones flexibly in multiple zones,
and migrating drones from one region to another consumes
substantial time and energy.

b) Collaborative approaches: In [75], it demonstrates
how UAVs might collaborate to prevent collisions. The
selective velocity obstacle approach allows UAVs to avoid col-
lisions while conforming to airspace laws. The methodology
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broadens the usage of the velocity obstacle method and
allows UAVs to choose one of three avoidance modes: avoid,
maintain, or restore. The research focuses on small and slow
UAVs that travel from 8 to 13 (m/s). Note that uncertainties
of sensors in the sphere of avoidance with radii with a time
1.5 seconds before collision and solutions to cope with them
were not considered.

In [21], the authors offers the Bounding Box algorithm
based on a streamlined velocity obstacle-based method for
preventing collisions between multi-UAVs. These algorithms
change routes in real-time as required. Furthermore, the
algorithm should depend on local observations to avoid
information sharing amongst UAVs in the vicinity. It avoids
conflicts by causing the UAVs to veer from their ideal path.

The study [10] describes distributed and automated collision
avoidance systems for UAS. It employs a knowledge-based
method to make intelligent decisions and avoid collisions by
collecting data from local sensors, collaborative elements and
coordinating with other UASs. It customizes aerial vehicles’
maneuvers based on their flight plans, vehicle types, and
collision scenarios. The PF technique establishes collision
avoidance pathways, while the computationally efficient Con-
stant Bearing Decreasing Range (CBDR) method predicts
collisions. It is a cost-effective alternative to particle and
Kalman filters, requiring regular sampling and essential data.

The technique described in reference [81] is a distributed
collision avoidance strategy that relies on the elastic collision
principle. It makes use of UAV-to-UAV information exchange
in order to avoid collisions between UAVs. Nevertheless, it is
limited in regulating speed to avoid conflicts and suffer from
prolonged arrival times.

Research [76] examines air-to-ground ultra-reliable and
low-latency communication for a moving ground user while
operating many UAVs. Conflicting aircraft can communicate
and establish cooperative approaches. Reference [2] proposes
the idea of compound conflicts to define a multi-UAV conflict
based on Multi-Agent Reinforcement Learning (MARL), con-
sidering conflicts with tight geographical and temporal bounds.

c) Autonomous approaches: The EuroDRONE UTM
architecture comprises a geometry-based collision avoidance
algorithm in drone-mounted transponders and a cloud-based
software named DroNav [77]. EuroDRONE is a highly
automated ATM system intended primarily for micro-UAVs
operating at low altitudes. It also has several redundancies
and fail-safe algorithms for conflict prevention/resolution [85]
and asset management. Note that special hardware modules
must be placed on drones to implement the plan. Consequently,
given the plan’s complexity, the multiplicity of layers, and the
high cost, implementing the plan in smaller drone networks
is not viable. In contrast, the Particle Swarm Optimization
(PSO) technique has shorter flight periods while remaining
near obstacles.

In [83], An RL collision avoidance system for fixed-wing
UAVs uses geometric logic to represent conflicts and trains
agents to prevent mid-air collisions with non-cooperative
invaders. In [79], a DRL method based on CNN and LSTM
network integration addresses avoiding multi-UAV collisions
in complex scenarios. However, it does not consider the
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hardware and environmental interference aspects of UAVs.
Furthermore, adopting LSTM networks could require more
computer power and lengthy training periods. This method’s
fundamental components are offline training and online
execution.

Conventional collision avoidance algorithms operate in dis-
crete state and action spaces, limiting UAVs adaptability.
Addressing this, [80] presents a two-layer resolution frame-
work employing DRL for UAVs, enabling continuous action
space and enhancing decision-making capabilities to provide
adaptive avoidance strategies. In [86] RL contributions enable
a drone to incorporate the time-related limitations of the 4D
trajectory predetermined in the strategic phase. According
to the DRL approach by [84], features that describe colli-
sions between agents are explicitly represented as edges in
a dynamic agents’ social graph, and agents are encouraged
to share observations in their neighborhood in an intrinsically
partially observable environment.

Case study [87] investigates how traffic density affects
the performance of an RL approach in dispute resolution
tasks. The findings show that although conventional analytical
approaches work better at first at lower traffic densities,
RL becomes more effective as densities increase. Notably,
training at a density greater than testing improves perfor-
mance. This shows that training with more complicated
situations yields denser reward signals and varied state tran-
sitions, improving efficacy. However, the key drawbacks are
single-agent interactions, unanticipated performance declines
in high-density training, and the need for more extensive
domain investigation to draw generalizations about environ-
ment complexity for RL approaches.

The collaborative strategy, which makes use of technology
like ADS-B, performs well for collision avoidance, but it
is restricted by the reliance on external systems and the
need for standardized communication protocols. Furthermore,
the autonomous strategy, which depends on sensors for
decision-making, provides flexibility but may face challenges
in maintaining coordinated actions across several UAV in
complicated airspace situations. Furthermore, both systems
may be hampered by potential sensor accuracy and data
latency restrictions, which can reduce the efficiency of col-
lision avoidance measures.

To communicate and collaborate drones with other drones
to prevent a collision in [74] SDN, [73] and [78] Internet of
Drones (IoD), [10] Micro air vehicle link (MAVLink) and [77]
LTE/4AG networks are employed. In contrast, other researchers
have ignored the difficulty of communicating with drones to
share information to prevent collisions. Table IV summarizes
references focusing on UAV collision avoidance, including
the type of algorithms hired, metrics, drone communication
network, and limitations.

3) Drones Swarm: Recent studies have suggested collab-
orative ways to improve drone activities toward reaching
objectives beyond individual capabilities. This is because
drones’ skills still need improvement to manage complex
events and appropriately handle growing volumes of data.
Aside from employing a limited number of UAVs, a swarm of
UAVs may also work together to perform complicated tasks
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in much larger regions [88]. Several solutions have addressed
cooperative surveillance, rescue missions, and patrolling and
tracking. Other strategies have concentrated on collaborative

Controlling several UAVs while
avoiding inter-UAV collisions to
tracking moving ground users.

Collision avoidance between

UAV with cooperative
approaches.
Adaptive decision-making

framework to optimize conflict
resolution strategies.

Monitor road traffic using
drones, considering avoiding
collisions.

Using drones for
monitoring.

UAV cooperative autonomous
collision avoidance.

CovID-19

Drones’ architecture for
conflict resolution and asset
management.

Collision avoidance algorithm
that considers several no-fly
zones.

UAV’s location privacy and
collision avoidance.

Centralized and decentralized
collision avoidance approach.

UAV collision avoidance.

UAS collision avoidance in a
dense traffic scenario.
Multi UAVs
avoidance.

Multi UAVs collision avoidance
with static/dynamic obstacles

collision

Passing through a small gap

Distributed Multi UAV collision
avoidance algorithm

Avoiding Collisions with
Multiple UAVs in Urban
Settings

Multi UAV collision avoidance

Collision avoidance for fixed-
wing UAV

Handle tactical collisions for air
traffic controllers.
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TABLE IV

SUMMARY OF ARTICLES ON UAVS COLLISION AVOIDANCE

Focus on UAVs air to ground communication
and ignore drone-to-drone communication and
latency.

Small action space (turn left or right) and did
not consider the altitude, speed changes and
energy consumption of drones.

Replanned routes were not suitable for real-
time or undefined accidents.

Movement and trajectories are fixed and
predefined, and high time and energy expenses
for changing zone.

UAVs have static and predefined routes for
collision avoidance and have no flexibility.

UAV speed is 8 to 13 m/s and didn’t consider
sensor uncertainties in 1.5-sec of avoid sphere.
Need special module and redundancy of
multilayer construction. PSO requires less fly
time while maintaining proximity to obstacles.
The flight time and computing time of the
method are slightly longer than the
comparative algorithms.

Spiral movements lessen drone collisions but
cannot prevent them. The strategy will not
work in crowded areas.

High Algorithm computational and time costs
for a large number of UAVs.

Ignores the discussion of a network as a
foundation for data collecting.

Does not consider weather conditions or other
external factors.

High flight distance and flight time.

Limit to short paths with low speed (1 m/s)
UAVs and 2D movements.

Limit to passing through narrow gap in wall
and didn’t consider static or moving obstacles

Limit to velocity adjustment to avoid collision

Assumed barriers like UAVs and buildings are
all elliptical and cylindrical forms and max UAV
speed is 6 m/s

Supposing UAVs' location and speed are known

Limit to max 3 fixed wing UAVs with 1 conflict

Taught models may acquire novel knowledge
from novel scenarios but cannot retain
knowledge from past cases.

planning, a refinement process wherein collaborating organi-

zations might alter current plans following intentions. Obstacle
avoidance, route overlap avoidance, scheduling trajectories,
and other challenges are studied in this context [89]. It is
important to note that deploying several UAVs as opposed to
one has a variety of benefits, which summarize below [25]:

1. Several concurrent intermediations

2. Lower detectability
3. Greater precision
4. High scalability

Latency, Error Rate

Loss time steps, compound conflict
episodes, separation losses,
cumulative reward evolution

Operating  cost, number  of

collisions, flight delays

Energy consumption, delay, litter,

computational Load, execution
time
Time, area, execution time,

simulation time

Violation probability

Total flying time to waypoint,
minimum intruder/obstacle
distance

Distance to an obstacle, flight time,
the computational cost

Coverage rate, trajectory matching
accuracy, intermediary  airway
competition rate

Path cost

Latitude error, longitude error, and
comprehensive error

Conflict avoidance rate

Distance travelled, conflicts
produced, flying time
Average minimum path, average

path , average time, success rate
Success rate, reward

Arrival Time in second, Intrusion
Distance in m

Success rate, computational time,
flight distance,

Distance among UAVs, velocity ,
turning rate, computational cost
Distance at closest point of
approach ,heading changes,
reward, steps

length of resolution activities,
additional nautical miles, collisions
solved , number of resolving
actions, and reward

5. More effectiveness
6. Low price
7. Team member complementarities

Multiagent DRL and
graph attention
exchange network
Graph Convolutional
Reinforcement
Learning
Meta-heuristic
stochastic
search

fractal

Selective
obstacle

velocity

Differential geometry
concept

Differential geometry
concept

Mix zone location
privacy protection

A" Search Algorithm

ADS-B

CBDR and Potential
Field

Bounding Box

Deep reinforcement
learning
Reinforcement
learning

Elastic collisions
between spheres
DRL (deep
deterministic policy
gradient (DDPG))
Geometric and miss
distance method

RL with Geometric-
based logic

Graph convolutional
reinforcement
learning

LTE/AG

loD

MAV-
Link

D2D

Usage scenarios for UAV swarms that may use in both urban
and rural settings depict in Fig. 3 [88].

When considering the problems of piloting a swarm of
drones, two significant concerns are the creation and main-
tenance of the swarm and collision avoidance [90], [91], [92].
The primary focus of collision avoidance is on the capacity
of individual drones to plan their paths such that they do not

collide with other drones or with environmental barriers [91].
Despite formation, algorithms determine where one drone
is concerning the others [92], [93]. A formation in swarm
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Fig. 3. Usage scenarios for UAV swarms [88] (©2018 IEEE).

robotics is a preferred configuration of the robots in a swarm,
a particular configuration or shape of places that the many
robots attempt to maintain for one another [92]. In swarm
formation flight, UAVs perform a variety of maneuvers like
accelerating, decelerating, coordinated motions, and turning in
different directions. Other than that, each formation member
must maintain a minimum distance from other members to
avoid collisions with other nodes in the swarm and external
barriers [92], [94]. Three general approaches can be utilized to
classify UAVs formation control algorithms [92], [95], [96]:

« Structure-based technique: navigates all the drones in the
swarm formation as though drones were one large drone
and follows the same course.

« Leader-follower approach: each drone functions indepen-
dently and autonomously by following the leader and
maintaining its position.

« Behavior-based method: drone chooses one of several
behaviors per a predetermined plan [92].

To solve the leader-follower flocking problem of UAV
swarm distributed angle test rule employed in [97]. It enables
each UAV to establish its adjacent set using locally sensed
information, lowering the communication overhead of the
whole swarm. A leader-follower-based strategy for formation-
collision co-awareness by utilizing the thin-plate splines
algorithm to reduce collisions and maintain swarm formation
suggest in [92]. However, it assumed that all obstacles were
fixed, and no information was lost in the communication
channel. The [98] project attempts to discover realistic routes
without collision for UAV fleets based on weather-dependent
energy consumption limitations to decrease UAV load. Note
that UAVs fly following forecasted weather pathways by focus-
ing on wind direction and speed. Nevertheless, the method will
only work in predictable weather since drone flights are set
based on weather expectations.

An online approach for finding safe pathways for swarms of
UAVs to fly together without colliding provides in [5] utilizing
geographical locations and Complex Event Processing (CEP).
Each UAV is assigned a random, greedy choice to predict
collisions and find the optimal routes to avoid them. The
method requires a lot of data, energy, and time to follow other
drones’ positions and paths and cannot precisely update their
movements. Apart from that, incomplete Global Positioning
System (GPS) data might cause UAVs to crash into one other
or fixed or moving obstacles. It may withdraw or reverse UAVs
to analyze safer trajectories. In a busy flying zone, it may not
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be possible to compute a bypass route for all drones, therefore
putting some drones in hovering mode.

A self-organized collision avoidance model for actual
drones that combines a bio-inspired Reward-modulated Spik-
ing Neural Network (RSNN) is proposed in [99]. The concept
allows for decentralized decision-making and allows individual
drones to learn effectively and autonomously from their local
observations, resulting in the creation of swarm intelligence.
While individual drones learning from local observations is
helpful, it may hinder the system’s ability to adapt to global
changes or situations that demand coordinated actions. On the
other hand, [93] suggests a graph-theory-based formation
control technique for UAV swarms with implicit leaders. The
method may struggle to adapt to situations where explicit
leader selection or change is necessary. The federated learning
method is used in [100] to develop the NN-based Mean Field
Game (MFQG) theory. It exchanges NN model parameters with
drones. Other than that, powerful CPUs are required to acquire
the control rules at different UAVs. Due to the constraint, the
MEFG framework cannot be utilized for real-time applications
like massive UAV control. The MFG framework reduces the
substantial communications required to control many UAVs.

The authors in [89] suggests a five-step approach based
on software agent interactions to manage a swarm of drones
collectively. The study uses a methodology inspired by fire-
flies’ ability to attract prey to persuade drones to cooperate
and handle current events. A swarm cooperative formation
control algorithm based on consensus theory joined improved
artificial PF to avoid collision among UAVs and other fixed or
moving obstacles presented in [101]. Yang [26] invented the
biomimetic firefly algorithm to solve nonlinear optimization
problems. However, this method may take longer than others
to defuse ongoing incidents. It is related to unpredictable event
distribution, which may require agents to negotiate before
acting.

The distributed TCA introduced by [102] used discrete
PSO-based articulation points. To reduce signals and simplify
scattered administration, it identifies articulation points to split
the network. Each UAV learns its topology and adjusts trans-
mission power to have lower communication overhead and
minimize power usage. It employs the “swarm intelligence”
of its many members. In the field of Al, swarm intelligence is
a field that focuses on group dynamics in multi-agent systems.
The swarm intelligence concept is founded on the idea that,
rather than a complex controller governing the system’s global
behavior, it is more effective for the system’s constituent
agents to work together to demonstrate the intended behav-
ior [103]. A kind of swarm intelligence, the PSO algorithm
allows each UAV to decide its following iteration location
based on individual and collective experiences.

In order to create a control framework for guiding a swarm
of drones to achieve position-specified locations while avoid-
ing collision with objects and other drones, [104] uses control
barrier functions and quadratic programming. Research [105]
examines the mission and flight planning problems of a diver-
sified fleet of fixed-winged and fuel-driven UAVs. The study
adds waypoint assignment and flying trajectory calculation to
its benchmark [106]. A swarm of unmanned aerial aircraft to
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supplement vehicles in tracking traffic is proposed by [107].
However, these investigations focused on communication and
computing among UAVs and neglected to precisely address
the crucial issue of collision in drone swarm.

Using existing deep reinforcement learning, teaching mul-
tiple UAVs flocking and obstacle avoidance is challenging
due to complex environments, limited perception, and lengthy
training. The speed and efficiency of learning may be
greatly increased by using curricular learning [80], [112],
[114], [115]. Curriculum learning, breaking the task into
progressively harder subtasks, offers promise, but adapting
it to multiagent scenarios remains an open question. For
a huge-scale fixed-wing drone flock, [113] developed an
attention-based embedded module to address swarming and
collision avoidance issues. Reference [112] introduces a task-
specific curriculum to teach decentralized collision-avoidance
flocking to multiple UAVs in obstacle-rich settings, with a
multiagent actor-critic approach and knowledge transfer mech-
anisms for efficient learning. However, the leader flies alone
on the predetermined path, disregarding environmental barriers
and the method limits to 2D environment and fixed obstacles.
Using many UAVs as mobile edge clouds for many users
was proposed in [109]. Meanwhile, UAVs should maintain a
particular distance from one another to avoid a collision.

Using the MDP, the computing offloading problem with
dynamic UAV mobility and UAV failure over multi-UAV
mobile edge computing investigate in [110]. In [108], the
authors suggest a framework for coordinating video analytics
across a fleet of drones. Reference [111] focuses on UAV-to-
device communication and locations without considering how
UAVs maneuver.

The drawbacks of the investigated solutions for UAV swarm
collision avoidance include processing requirements that limit
real-time applicability. Furthermore, decentralized learning
from local observations may impede adaptability to global
changes or coordinated activities, offering a problem. Fur-
thermore, applying curriculum learning to multiagent settings
for flocking and obstacle avoidance is problematic. Some
deep reinforcement learning algorithms for multi-agents are
limited to 2D environments with defined barriers, restricting
their application. Finally, structure-based techniques may be
rigid and inflexible, making them less responsive in changing
situations. Single points of failure and communication delays
make leader-follower approaches prone to collisions. In col-
lision avoidance, behaviour-based techniques may lack global
coordination, exhibit unpredictable emergent behaviours, and
introduce response time delays. Combining these strategies
may be required to overcome collision avoidance constraints
in swarm systems. Table V summarizes reviewed research in
drone swarms, considering factors such as application domain,
algorithm type, network architecture, and metrics used in
justification and evaluation.

The coupling between swarm formation control and col-
lision avoidance is crucial since collision avoidance must
be addressed to maintain the formation. Similarly, swarm
formation must be considered to prevent collisions [92].
The UAVs should be able cooperatively to execute vari-
ous tasks in a swarm. Hence, UAVs must return to their
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planned configuration after avoiding obstacles and safely
reach their destination by consensus on their location and
speed.

Since drones may be employed in flocks in many missions
today, more studies must be conducted on controlling and
directing drones in swarms during missions. Note that most
studies have been done on a single or small number of drones
or swarm formations without considering a real mission.
Research [102], [107], [109], and [110] established that drone
swarms have ignored the problem of drones colliding with
one another. Other than that, some sources like [73] and
[74] have offered algorithms that restrict drones’ freedom of
movement to a predetermined route or restricted region. The
collision avoidance procedure while maintaining the swarm
formation comprises two significant aspects. Reorganizing the
swarm to avoid a collision as it approaches an obstruction
and restarting the formation after it has passed the barrier.
Most existing works still need to closely integrate dynamic
formation maintenance and collision avoidance techniques
since they focus on either maintaining the formation or
preventing collisions [92].

4) Path Optimization: Path optimization is a method
for determining a viable, optimal or near-optimal, shortest,
smoothest, and least-expensive route between the initial loca-
tion and a destination of choice point while considering certain
operational restrictions [116], [117]. Significant challenges
to UAV optimal path planning include collision avoidance,
route length, time efficiency, cost efficiency, energy effi-
ciency, and completeness [36]. The classical motion planning
framework comprises front-end path searching and back-end
path generation. Note that front-end path searching involves
three categories: search-based, sampling-based, and learning-
based methods. Search-based methods like Dijkstra and Ax
search for safe paths in a graph representation. Meanwhile,
sampling-based methods like Probabilistic Roadmaps (PRM)
and Rapidly Exploring Random Tree (RRT) obtain possible
paths through random sampling. DL and RL have also been
applied in path planning. However, current methods face paths
too close to obstacles and lack smoothness, necessitating
trajectory generation to optimize the path and ensure smooth
execution for UAVs and robots [118].

Third-party risk concerns arise when UAVs crash into
persons and cars. In addition, UAVs may cause infrastruc-
ture damage and noise pollution. Path planning reduces
hazards by avoiding high-risk regions before the flight, but
most approaches concentrate on flying distance or energy
cost metrics without considering risk cost. In [119], the
author provides a flight route optimization approach based
on a cost-based Dijkstra algorithm. This includes mortal-
ity risk, property damage risk, and noise effect, expanding
third-party risk modeling and assessment indicators. How-
ever, compared to the distance-based Dijkstra algorithm, the
average flight distance of the route rose by nearly 20%,
resulting in a significant rise in energy consumption. Ref-
erence [116] employs the Dijkstra algorithm to locate short
pathways with minimum deviation from obstacles. However,
the system just addresses predetermined rectangular-shaped
obstacles.
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Research [118] improved the trajectory generation approach
based on B-spline curves and Ax search. Note that the method
entails defining an optimization function with control points to
solve an optimization issue and achieve the optimal trajectory.
The approach improves accuracy over previous methods [120]
by calculating a security threshold based on the upper-bound
principle of B-spline error. The authors of [121] suggest a
hierarchical visual control strategy for quadcopters to fol-
low visual pathways inside, incorporating collision avoidance,

Collision among UAVs
in the presence of wind
dynamics

Drone swarm collision
avoidance

Collaborative planning
for managing events

Swarm task offloading
and communications:

Using swarm as mobile
edge clouds

UAVs swarm as mobile
edge computing device

Multi-UAV  downlink
communication

Routing for UAV fleets
that avoid collisions

Topology Control
algorithm  for  UAV
swarm

Swarm formation and
collision avoidance

Swarm cooperative
formation control &
collision avoidance
Swarm formation
Control

Trajectory planning of
inhomogeneous swarm

Leader-follower Swarm
obstacles avoidance
Flocking collision
avoidance

Real-time collision-free
placement of multi
UAV

TABLE V

STATE OF THE ARTS ON DRONES SWARM

-Collecting  information  from
neighbours’ UAVs causes
communication overhead.
-Information limited to UAV
neighbours.

Tracking positions and

movements of other drones have
a high cost.

Need more processing time to

neutralize current events in
certain circumstances.

Just focus on drone
communication and did not

discuss collision issues

Drones must maintain a
minimum distance to prevent
collisions without offering any
strategy.

Did not refer to UAVs'
communication and navigation
issues.

Focus on UAV-to-device
communication and location
without addressing how UAVs
shift location.

Separate paths and destinations
devise to avoid collisions in the
same group leading to
inefficiency in intense scenarios.
Limited to network  and
communication issues in drone
swarm

Assumed that all obstacles are
fixed and no information lost in
the communication channel.

Altitude
disregarded.

management is

Every follower only detects
followers within the sensing
range, which is impacted by
weather and other obstacles.

Complex instances take longer
due to computational
complexity.

Limit to fix obstacles and fixed-
wing UAVs

Don’t consider other static and
dynamic obstacles

UAVs have extremely low speed.

Motion energy, communications
payload, velocity alignment,
number of collisions, velocity,
distance travelled

Average Route Length, length of
the longest route, number of
Collisions, computation time
Processing time, total reward,
energy usage, approaching event
locations without warning

Accuracy, latency, and energy

The average number of completed

tasks, deviation, success rate,
energy consumption

Convergence rate, energy
consumption, task failure rate,

average processing time

Transmission rate

Energy consumption, wind speed
and direction

Link robustness, network

connectivity, link length

Velocity, relative separation among
drones, temperature variation and
energy

Relative height and distance among
UAVs

The velocity of vehicles, trajectories
of vehicles

Computation time, fuel
consumption, solution time,
number of UAVs velocity, altitude,
wind velocity

Average reward, average distance.
,collision rate.

Average reward, distance and
heading difference, collision rate

Position error, the separation
between agents, and the distance
to barriers, position, speed, angular
speed, and thrust

Federated
learning

Supervise
d learning
and RL

Distribute
d DRL

Unsupervi
sed
learning

Multi
Agent DRL

Multi
Agent DRL

Mean-field game &
Federated learning

Complex event
processing
Firefly  Algorithm &

MAS-based solution

MDP

Greedy algorithm

MDP

Graph neural networks

Approximate
calculation techniques

Discrete particle swarm
optimization

Thin-plate
algorithm

splines

Artificial Potential Field

Graph theory

Mixed-integer nonlinear
programming

MDP, Recurrent
attention multi- agent
actor—critic

MDP, deep
deterministic policy
gradient

Quadratic programming
mixed control barrier
functions
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Wireless

Ad hoc

Ad hoc

Wireless

UHF/VHF

Pixhawk2
via
MavlLink3

Wireless

visibility, and visual tasks. The method employs a single
monocular red, green, and blue (RGB) camera for 2D infor-
mation, allowing for real-time reactive route following without
needing 3D reconstruction or motion planning. To direct the
quadrotor [122] introduces a perching trajectory-generating
system that computes perception-aware, collision-free, and
dynamically feasible moves. The method solely considers
stationary impediments such as powerlines, other moving
obstacles, and environmental restrictions not considered.
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The Artificial Potential Field (APF) algorithm leads an agent
using scalar potential field gradients, like electric charges in
an electric field. Agent and obstacles are comparable charges,
while agent and objective are opposite charges. APF helps
the UAV avoid obstacles and reach its destination with an
additional rotational force to prevent it from getting stuck.
Simplicity and efficiency make the APF Approach a viable
collision avoidance technology. However, it cannot guarantee
an optimal path and often confines the agent in local minima,
especially in complicated or crowded settings or head-on
collisions.

Approaches like Particle Swarm Optimization [137] and
ant colony swarm optimization [138] have been introduced to
address these issues. Rotational vector fields around obstacles
have also been employed to prevent local minima during
head-on collisions [131], [132]. Reference [132] employed
the rotating component of the repulsive force to resolve
local minima. The study [134] introduces an enhanced APF
algorithm that incorporates the Fibonacci Sphere technique for
route planning of UAVs. This integration allows for accurate
obstacle avoidance and effective evasion of local minima
in three-dimensional settings. In [131], a repulsive potential
field is proposed to avoid local minima during head-on col-
lisions using a rotational component and an eccentric Region
of Influence (ROI) around obstacles. This approach ensures
smoother obstacle avoidance while minimizing acceleration.
Nevertheless, it limits multirotor UAVs with speeds up to
10m/s, and the quality and precision of obstacle detection and
localization sensors may affect its efficacy.

Making the neural perception module output compatible
with quick and precise model-based trajectory planners and
trackers will enable high-speed, agile flying [123]. Authors
in [123] addresses the issue of a quadrotor’s stable, agile flying
in a dynamic environment. Here, perception and control are
the two subsystems used in the strategy. From a single image
captured by a forward-facing camera, the perception system
employs a CNN to forecast a destination direction in local
image coordinates, along with the required navigation speed.

The control system creates a minimum-jerk trajectory mon-
itored by a low-level controller using the navigation target
generated by the perception system. In [124], a time-optimal
quadrotor trajectory is modeled using a multi-fidelity Bayesian
optimization framework based on numerical simulation, real-
world flying experiments, and analytical approximation. Using
a black-box Gaussian process model, the study classifies
possible trajectories as viable or impractical. The method can
shorten the trajectory durations for assessed trajectories. How-
ever, the optimized trajectory has a nearly four-fold increase
in snap and yaw acceleration.

Based on NN, a trajectory prediction algorithm has been
presented in [125]. It identifies the trajectory and avoids barri-
ers amongst the trees in a dense forest, as well as in demanding
urban situations and emergency events. Nevertheless, the suc-
cess rate rapidly reduces to under 60% when the forward
speed hits 10 (m/s), demonstrating that the algorithm performs
poorly at high speeds. An integer programming formulation
mix with a column-generating technique was developed for
drone routing problems [127]. Note that the work focuses on
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reducing how much time drones spend flying and charging
overall.

In [49], UAV at each time step, gathers information from
several sensors to recognize the existence of the objects in
its immediate area. It employed a partly visible state that
focuses primarily on the UAV’s immediate surroundings rather
than the whole deployment region, which results in a slow
UAV and substantial computing costs. UAV track planning
approach based on Graph Attention Network and Deep Q
Network to solve the problem of mission failure caused
by erroneous data acquired from UAV during flight present
by [128]. It uses the camera to capture photographs and then
runs them through a ResNet that has previously been trained
to recognize and classify different items within those pictures.
Moreover, it employs a Graph Attention Network to connect
sensor-measured flight state data to real flight state data to
construct a flight-state optimization model.

Based on Q-Learning, [126] proposes an application
paradigm in which a UAV collects user tasks at close range
and offloads them to edge servers through predetermined
pathways. This includes carefully selecting the flight routes
with the shortest flying distance without considering collisions
with objects and other UAVs. Reference [130] suggests a
MARL technique. It considers variables like the number of
UAVs, charging capacity, and collision avoidance to tackle the
challenging route planning issue.

Coverage path planning aims to maximize target area cov-
erage within the available flight time. On the other hand,
path planning for wireless data harvesting aims to acquire
information from stationary Internet of Things (IoT) devices
scattered across a vast geographical area [12]. Local and
global map data fusion is crucial for autonomous UAV
path planning, especially when utilizing Deep Reinforcement
Learning (DRL) techniques such as Double Deep Q-networks
(DDQNs) introduced by [139]. This approach enables effec-
tive integration of both local and global map information,
optimizing the path planning process for UAVs. However,
it increases the computational complexity, especially as the
network size grows. Reference [86] presents a technique for
resolving tactical conflicts using deep reinforcement learning
with non-cooperative UAVs according to a time reward set
with an estimated arrival time. This approach introduces a
reward criterion based on the estimated time to reach the next
pre-defined waypoint. The goal is simultaneously avoiding
collisions and arriving at the following 4D waypoint on time,
minimizing the likelihood of subsequent conflicts.

The method described in [135] utilizes Euclidean Geometry
to estimate intercepting points by using a specified safe
perimeter in the form of a square area. Research [133] incor-
porated a sliding-mode-based reactive control algorithm and
a dynamic programming-based global path planning system
to operate UAVs in 3D environments. Nevertheless, it suffers
from high computational complexity and is dependent on
cloud computing resources for processing.

UAVs play crucial roles in time-sensitive missions requiring
cooperation, such as simultaneous strikes, formation flying,
and cooperative surveillance. All the UAVs in the group
must arrive at their locations simultaneously or within a
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predetermined window. By including an accurate time dimen-
sion to the traditional three spatial ones, four-dimensional
(4D) trajectories may reduce trajectory uncertainty and boost
mission success rates [129]. In [129], the author blends
the bio-inspired general tau theory of harmonic motion to
develop a set of collision-free 4D trajectories that can direct
multi-UAVs from any starting point to their endpoints at the
moment of arrival. Nevertheless, the algorithm’s complexity
and computing intensity, combined with the necessity for
precise sensor data, may limit its real-time usability and
scalability in dynamic multi-UAV situations.

The path optimization methods for UAV collision avoidance
have limits, such as issues with path smoothness, which
frequently result in trajectories that are too close to obstacles.
In addition, most of the approaches suffer from low UAV
speed, ignoring moving obstacles, flight time, and energy
consumption, and limited and localized perception and the risk
of occlusion in vision-based algorithms. While search-based
and sampling-based methods can be computationally intensive,
deep learning (DL) and reinforcement learning (RL) methods
for path planning can also be demanding in terms of com-
putational resources. This limitation can affect the real-time
performance of the algorithm, especially for UAVs operating
in dynamic environments, and striking a balance between
collision-free and smooth trajectories remains a challenge that
necessitates careful optimization. Table VI depicts the kinds
of algorithms, measurements, and limitations discovered in
previous research on UAV path optimization.

III. EVALUATION AND CLASSIFICATION

In light of those mentioned earlier, we classify and evaluate
the research concerning intelligent navigation and collision
management issues in drones.

A. Local and Global Planning

Various algorithms are confined to preventing collisions
without taking the primary route and mission of the drone
into account. The algorithm will fail throughout the mission
due to the drone’s battery size restrictions and flying lifetime.
Subsequently, algorithms may be classified into three types
based on their application:

1. Local Planner Algorithms: Due to more precise and
complete awareness of the environment [12], these algo-
rithms may be applied in interior settings or complicated
metropolitan situations outside buildings.

2. Global Planar Algorithms: These algorithms perceive the
environment and depend on geographic position [12] and
can only be employed in wide situations with a great
distance between obstacles.

3. Combined Global and Local Planner Algorithms [130]: The
algorithm accurately covers the environment. As a result,
it may be utilized in indoor and congested urban situations
when approaches are not committed to GPS.

Given the nature of local and global algorithms, it is realistic
to claim that most suggested algorithms concentrate on one
of these two categories, with just a few studies focusing on
combining both.
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Generally, navigation techniques may be categorized into
two diverse groups. The first category consists of map-level
global planners that can calculate the quickest or most viable
route between two points on a map. Dijkstra and RRT are
traditional algorithms in the field. The second approach is the
local planner, which aims to provide a viable, collision-free
path for steering the UAV away from obstacles [47]. In visual
and laser Simultaneous Localization and Mapping (SLAM),
UAVs may navigate without a Global Navigation Satellite
System (GNSS). It uses sensors by utilizing monocular or
stereo photos in real-time to map the surroundings and locate
the camera [140], [141], [142]. Feature-based and direct visual
SLAM algorithms cannot recognize tiny objects, requiring
time of flight, infrared, or ultrasonic sensors to improve colli-
sion avoidance close to objects (typically 2 m) [39]. Table VII
provides whether an algorithm is executed on a global or local
planner level. Most algorithms for avoiding collisions, swarm,
and optimizing routes are global. This means they may be
unable to detect all stationary or moving objects.

Table VII provides a broad overview of current studies on
drone navigation and safety in collisions with other objects
and drones, as well as a general comparison of the suggested
algorithms, their nature, and their testing environment.

According to Table VII, the proposed algorithms can be
classified into the following types of obstacles:

a) Collision with fixed obstacles

b) Collision with moving obstacles

¢) Collision with multiple obstacles (Crowd Space)

d) Collision with other drones

Table VII indicates that some frameworks have concentrated
on just one of the scenarios. Some algorithms have investigated
two or more of the above barriers. However, each of them faces
the limitations of needing a prior map of the environment or
complex and expensive infrastructure.

One of the areas that have gotten less attention in the
studied algorithms is collision prediction. Most algorithms are
accomplished with approaches like analyzing the route before
moving or viewing the obstacle using sensors and cameras
Most of the above collision avoidance strategies assume. bar-
riers are circular or elliptical. No-fly zones are frequently vast
and specified as 4D polygons. Thus, the assumption may need
to be more feasible and efficient. Approximating a big zone
as a cylinder might lead to excessive flight plan modification,
increasing battery danger. In metropolitan areas, there may
be no passage between the cylindrical structures. Considering
irregularly shaped barriers and tactical deconfliction is crucial
for UAV operations in challenging areas [77].

B. Algorithm’s Type

Several notable contributions propose aviation dispute res-
olution strategies. Geometric [135], [143], force field [131],
[132], optimum trajectory [119], and Markov Decision
Process (MDP) [108], [110] approaches are the most
used [144]. Numerous suggested algorithms using mathemat-
ical approaches [5], [72], [89], [105], [129] and ML [100],
[128] need a strong processor and memory space, which
cannot accommodate most UAVs operating in the real world.
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TABLE VI
SUMMARY OF UAVS PATH OPTIMIZATION ALGORITHMS
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environment
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Route optimization and
[136] collision avoidance in UAV  Low success rate (66%)

control
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most dangerous UAV with others motion
Cost, flight distance, computational Extension of the Dijkstra
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DRL DDQN
landed
Errors of the visual task, velocities - Homography-based visual
servo control
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collisions.

replay

On the other hand, owing to the delay and time necessary for
setting up and training these algorithms, their implementation
in real-time is not anticipated, and the present latency may
result in operation failure or drone collisions.

Rule-based [97], [100] and geometry-based [70], [77]
methodologies, artificial PF [101] algorithms as well as numer-
ical optimization [118], [120] methods are used to prevent
UAV collisions. They are easy to implement, but each platform

and use case needs distinct rules. Artificial PF approaches
are also susceptible to the narrow channel problem. When
there are several obstacles, minimal separation is not ensured.
Hence, rule-based and artificial PF techniques need less com-
putation than numerical optimization. Numerical optimization
may minimize separation and optimize energy or time [77].
Most studies optimize swarm [5], [73] behavior globally
to optimize collective decision-making. NN-based collision
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TABLE VII
SUMMARY OF ALGORITHMS CAPABILITIES, COLLISION TYPE, ML METHOD, AND SIMULATION TOOLS
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Obstacle Type Method ML Type Demonstration Method
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[63] v v v v v v v v v Local v Testbed
[123] v v v Global and Local v v Gazebo and testbed
[61] v v v v v v Local v Flight Goggles
[76] v v v Global v Python 3.6 and Pytorch
[100] v v Global v Simulator not mentioned
[59] v 4 Global v ROS-gazebo
[124] v Global 4 v Multicopter simulation and testbed
[125] v v v Global and Local v v Tensorflow in Python and C++, and testbed
[47] v v Local v Matlab
[56] v v Local v ROS Kinetic framework and V-REP
[5] v v v v Global v Developed a software simulator
[74] v Global v AnyLogic
[89] v 4 v v v Global v GAMA agent-based simulation framework
[62] v v Global \ Python script and open-source Keras API
[108] v 4 v 4 Global v Testbed
[126] Global v Simulator not mentioned
obal ava and Python
[127] v Global v J d Pyth,
[73] v Global and Local v v AnyLogic and JaamSim simulators and Testbed
[2] v v v v v Global v Air Traffic Simulator BlueSky
oca estbes
[58] v v v v Local Testbed
obal eal-world urban environment
[16] v v Global Real-world urb i
oca eal quadrotor
[122] v v v v Local Real quad
[75] v Global v Matlab
obal umerical simulation and testbe
771 v v 4 Global v v N ical simulati d testbed
[98] v v Global v IBM ILOG programming environment
obal umerical simulation
[70] v v v v v v Global v N ical simulati
obal Matla
[129] v v v Global v lab
obal imulator not mentione:
[119] v v v Global v Simul ioned
obal and Local ython
[12] v v v Global and Local v Pyth
obal oDSim integrated wit eT++
[78] v v v Global v IoDSim i d with OMNeT-
oca warmLab and Python
[92] v v v v 4 Local v S Lab and Pyth
[72] v v v Global v Developed a simulator
obal umerical simulation
[101] v v v 4 Global v N ical simulati
Loca imulator not mentioned, and testbe
[60] v v v | v v Simul joned, and testbed
obal umerical simulation
[93] v v v Global v N ical simulati
oca Testbe
[121] v v v v Local bed
oca estbe
[51] Local Testbed
obal atla
[13] o v v v Global v Matlab
[130] v v v Global and Local v Monte Carlo simulation
[105] v 4 Global v Numerical (GUROBI)
[118] 4 v v v Local v v Matlab and testbed
[10] v v 4 Global v SIMUdrone and HIL simulation
[21] v 4 Global v Simulator not mentioned
[49] v v v v v Local v OpenAl Gym
[116] v v v Local v MATLAB’s UAV Toolbox
[50] v v v v Local v v C++ with ROS/Gazebo
[55] v v v Local v Matlab(Numerical simulation)
[131] v v v v Local \ Ardupilot SITL (Software-in-the-loop)
[132] v v v 4 Local v v Gazebo
[79] v v v v v v v Local v ROS-STAGE platform
[112] v v v 4 v v v Global v Numerical simulations and high-fidelity HITL simulation
[80] v v v v Local v v PX4 firmware in Gazebo
[113] v v v v v Global v Numerical simulation and semi-physical simulations
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TABLE VII

(Continued.) SUMMARY OF ALGORITHMS CAPABILITIES, COLLISION TYPE, ML METHOD, AND SIMULATION TOOLS
[81] v v v v Global v Matlab
[133] v v v Local and Global v Matlab
[134] v v v Local v Matlab
[83] \ v \ \ Global \ OpenAl Gym
[71] v v v v Global v Numerical simulation(Matlab)
[82] v 4 v v 4 4 Local v Simulator not mentioned
[86] v v v v Global v Numerical simulation
[135] v v v v Global v Matlab
[104] v v v v Local v v Crazyflie
[84] v v v Global v simulated real-world operational conditions
[136] v v 4 v v Local v Simulator not mentioned
[64] v v 4 v Local v Crazyflie

avoidance [100], [111], [125] requires plenty of training data
for actual drones. Mathematical optimization approaches dis-
covered the optimum route for all agents in the environment
but did not allow for independent learning.

Evolutionary algorithms concurrently evolved the swarm’s
collective behaviors to find all agents’ ideal parameters. Apart

from that, offline pre-training and global optimization usu-
ally require much time. and extensive calculations, making
them difficult to implement in real-world, online decision-
making settings [99].

C. Automation and Artificial Intelligence

The complexity, variety, and technological advancements of
modern UAV missions drive their pursuit of greater autonomy
and flying stability [136]. As a result, autonomous UAVs with
pre-programmed routes, identification, and avoiding obstacles
algorithms on computers have been developed [135], [145],
[146]. In the bulk of the reviewed algorithms, supervised
learning methods are used to identify and avoid obstacles.
In supervised learning, algorithms employ input and output
data sets. It can only be used with adequate labeled data like
object detection and avoidance algorithms. Other than that,
unsupervised learning techniques need training data without
labeled output. In unsupervised learning, data is clustered,
or patterns are discovered [22]. Given the agent’s interaction
with the environment, RL algorithms are suitable for collision
avoidance and swarm algorithms. The taxonomy of UAV
navigational problems according to the ML techniques used
in the surveyed literature is presented in Fig. 4.

Despite recent attention, few publications use DL
approaches for semantic scene interpretation of UAV pho-
tos [37], owing to the high spatial resolution and 3D data
collection capacity. DL papers concentrate on image classi-
fication, semantic segmentation, and object recognition [39].
Although CNN is the most popular architecture for UAV
remote sensing and picture applications, CNN, Long Short-
Term Memory (LSTM), and Generative Adversarial Networks
(GAN) are gaining traction as viable alternatives for future
UAV remote sensing efforts.

RL is learning to optimize a numerical reward signal by
mapping the environment to actions [147]. The core of RL

is a clever, interactive agent with a definite goal. Hence,
policy, reward, value, and environment models are critical
components of RL. The policy specifies the agent’s course
of action. Rewards are delivered to an agent by the environ-
ment in response to an action. Meanwhile, the environment
model reflects the ambient behavior that aids the algorithm’s
efficiency by enabling it to comprehend its environment.
RL algorithms may use agents to explore their environ-
ment [31], [148]. When RL is paired with deep learning’s
superior comprehending capabilities, RL is more efficient at
generating decisions than humans in practically unlimited state
space [82]. Apart from that, it may train for many cycles
without context knowledge and yet learn to make the most
effective choices. Therefore, RL is more crucial than other
ML algorithms in avoiding UAV collisions.

Reinforcement learning has already been suggested, along
with other approaches, for automating the conflict detection
and resolution function in ATM [149]. In summary, the pro-
posals currently have limitations in handling complex traffic
conditions. They only consider decisions for individual agent
in situations where there are conflicting pairs of agents. Addi-
tionally, they rely on an all-knowing agent to resolve conflicts
in specific areas, and this agent has a limited range of actions
to resolve conflicts. The suggested methods have not under-
gone training, testing, and validation in real-life scenarios.
Consequently, they do not provide insights into the advantages
and constraints of reinforcement learning techniques in actual
operational environments [84]. Collision resolution methods
that rely on multi-agent reinforcement learning face challenges
in achieving high success rates, particularly in scenarios with
high agent density [2], [76], [79]. This is primarily due
to the inherent non-stationarity in multi-agent reinforcement
learning, which makes it difficult for an agent to accurately
predict the actions of other agents, as well as the dynamic
nature of the environment [150].

Reinforcement Learning (RL) has the benefit of rapid
processing speed. Applying reinforcement learning (RL)
techniques to solve Constraint Satisfaction Problems (CSR)
involves two primary stages. The first phase entails training the
neural network implemented on an agent inside a specifically
designed reinforcement learning environment to obtain an
effective policy (training process). Subsequently, the agents
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Fig. 4. Machine learning algorithm types used for drone collision avoidance and swarm.

equipped with the taught neural network are deployed to
a cognitive radio instance to resolve the problem (solving
process). While the training process is often characterized by
its time-consuming nature, the solution procedure is typically
executed swiftly. After training the neural network, the solu-
tion process becomes rapid and effective, especially in intricate
and densely populated situations. Reinforcement learning (RL)
approaches provide a substantial portion of computational
resources to the training phase, enabling them to promptly
adapt to environmental changes by making real-time updates
to decision-making [150].

Safe Reinforcement Learning (SRL) is a specialized area
under RL that focuses on training agents to develop policies
that optimize anticipated returns in situations when it is
crucial to maintain acceptable system performance and safety
throughout the learning and deployment stages [151].

Smoothness actions in controllers based on reinforcement
learning are crucial for practical use, and current approaches
focus on manipulating rewards. However, there are diffi-
culties in adjusting parameters and ensuring the correct
behavior [152].

Many current studies in the reinforcement learning topic
concentrate on a few agents, ignoring the importance of
agent collaboration in decision-making or focusing entirely
on individual agent choices. The simultaneous execution of
actions by independent agents results in a non-stationary envi-
ronment since each agent’s activities cannot wholly explain
environmental changes. This brings diversity into the learning
process. Furthermore, some techniques only examine a subset
of dispute resolution behaviors [84].

Deep reinforcement learning (DRL) emerges as a promising
solution. In particular, Soft Actor-Critic, an off-policy DRL
algorithm that optimizes stochastic policy within a maximum
entropy framework, stands out as a promising solution. It has
advantages over its predecessors, such as a deep deterministic
policy gradient, in handling large states and action spaces with
superior robustness and exploration. Nevertheless, because
of the maximum entropy character of the framework, Soft
Actor-Critic ’s effectiveness may decrease throughout the
steady-state period. In order to improve learning outcomes

even without goal achievement, Hindsight Experience Replay
enhances DRL algorithms such as DDPG by allowing learning
from successes and failures comparable to human learning
processes. Though Hindsight Experience Replay can handle
huge state and action spaces, its reactivity to hyperparameters
makes it unstable [136].

Imitation learning for vehicle collision avoidance [153]
improves some challenges of RL training in the preliminary
stages. It may also be efficient for UAV collision control
algorithms. Various Al and ML training methods need servers
with substantial processing power and data storage and cannot
be trained and implemented on drones directly. Therefore,
implementing drones and providing hardware is a significant
challenge. A further challenge is possibly having a communi-
cation network with the appropriate bandwidth to collect the
required training data from other parts of the drone networks.

D. Metrics

Tactical conflict resolution techniques disregard the time
limits of the predefined strategic trajectories, which may cause
drones to miss their next trajectory points during tactical
conflict resolution. This might exacerbate secondary con-
flicts and even cause a “domino effect” [86], [154]. Existing
empirical studies have supported the extensive use of Al in
drone algorithms. However, algorithms have yet to be done
without considering the primary constraints of drones, such
as their high energy consumption or limited capacity for
data processing. Most metrics utilized in collision prevention
algorithms depend on the proposed algorithm’s collision rate.
Other than that, lack of metric consistency is the case regard-
less of the amount of energy consumption, computational
capability, or data storage the suggested algorithms have.
Providing intelligent algorithms or collision avoidance that
is practical for the conditions and limitations of UAVs is
one of the fundamentals that cannot be disregarded. It is
especially important when considering the constraints that
currently exist in UAVs. The lack of homogeneity in the
domain’s measurements is one problem to draw attention to it.
Some studies use measurements particular to the environment
to assess their methodology [9].
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Fig. 5. Summary of metrics used for validation. Energy Consumption (EC),
Flight Time (FT), Collision Rate (CR), Jerk (J), Velocity (V), Delay/Latency
(DL), Communication Cost (CM), Computational Cost (CP), Distance to
Obstacle (DO), Processing Time (PT), Flight Distance (FD), Wind Speed
and Direction (W).

We examined the important metrics used in the reviewed
collision avoidance articles. Fig. 5 depicts the ratio of using
different metrics to evaluate the effectiveness of reviewed UAV
collision avoidance algorithms. The Tables III, IV, V, VI and
Fig. 5 demonstrate great diversity and heterogeneity using
investigation metrics. Many studies need to pay more attention
to crucial elements like energy consumption, velocity, and
flight time. They represent a severe problem in completing
missions due to drone energy limits. The failure to address
speed and flight length is partly due to a need for more
understanding of mission planning and scheduling. Most
research has focused on the cost of calculations, which will be
significant given the constraints of the processing capability of
drones.

Perceptual latency is the time it takes to take in information
from the environment, process it, and utilize it to make deci-
sions [155], [156], [157]. It is a crucial measure to consider
when developing algorithms to prevent accidents. Perception
delay becomes increasingly important when the UAV and
object travel at greater relative speeds [60]. Jerk [123], wind
speed [98], and direction [105] are seldom used metrics, which
may

make using the offered solutions in real-world scenarios
problematic. Furthermore, drones may experience extreme
shaking and unexpected movements due to the lack of consid-
eration of jerk measurement, which may negatively influence
the drone’s performance and increase the energy used. More-
over, inadequate consideration for wind intensity may cause
drones to deviate from their planned direction, mishaps, and
accidents with barriers and other nearby objects.

One of the main elements disregarded or bypassed in many
algorithms is the energy consumption of collision avoidance
algorithms. Algorithms move away from the barrier by mod-
ifying the angle of movement to avoid collision, change their
direction, or raise or reduce the speed or altitude, all of
which substantially impact the UAV’s energy consumption.
The more significant deviation from the main path causes
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more time and distance for the drone travel and more energy
spent. Meanwhile, some collision prevention algorithms have
attempted to cut energy consumption by shortening the dis-
tance between the drone and the barrier [92], [158], lowering
deviation from the primary path [49], and minimizing motion
energy [100]. In [100] goal is to minimize the remaining trip
distance by maximizing the speed towards the destination, and
minimizing the anticipated speed in the opposite direction of
the destination. It also reduces kinetic energy and acceleration
control energy by minimizing the proxy terms speed and
acceleration. The restricted speed change and higher energy
consumption of a fixed-wing UAV are evident compared to
its angle-changing counterpart [71]. However, most research
has no priority list for avoidance activities to conserve more
energy.

E. Validation and Simulation Methods

Simulations of drone traffic demonstrate a variety of traffic
densities, from 0.001 to 22.37 flights per square kilometer.
Simultaneous drone flights per square kilometer can be a suit-
able metric for comparing simulations with different settings
and traffic structures. Free flying requires densities greater than
1.0 simultaneous flights per square kilometer [8], [159]. Given
the high expense and inherent danger of conducting actual
collision tests with several drones in a swarm, most researchers
have instead relied on simulation to demonstrate the efficacy of
their approach, as illustrated in Fig. 6. The described methods
have been tried and assessed on various simulators based on
Table VII. Many algorithms need the necessary capabilities
due to the absence of comprehensive simulators with high
capabilities. However, most suggested algorithms have only
been evaluated via simulation since building algorithms in the
real world is expensive. As a result, these algorithms may
encounter significant difficulties in the actual world owing
to the restrictions in the simulation environment. Algorithms
need adaptability for environmental and meteorological issues
like wind and rain.

Simulating have shown their value as a beneficial tool for
training and testing in autonomous drones. Nevertheless, they
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demonstrate constraints compared to actual experiments con-
ducted in the real world. In case study [125], the efficacy of the
acquired strategy diminishes considerably at high velocities,
namely when reaching or above 10 m/s. Furthermore, there is
a significant disparity between the simulated and actual drones
regarding dynamics and perception. Many reasons, such as
aerodynamic effects, motor delays, and the decline in battery
voltage, may explain this discrepancy. Perception delay is a
significant concern that is more noticeable while traveling fast.
Notwithstanding these difficulties, simulations continue to be
an essential intermediary in advancing high-speed autonomous
systems.

The case study [160] emphasizes the limits of simulations
in contrast to genuine testing, particularly when compar-
ing experiments and simulations. Although the findings are
generally consistent, variations become apparent, especially
in situations when there is a loss of communication pack-
ets. This loss substantially influences collision avoidance
approaches and the time it takes to respond. Packet loss,
particularly noticeable at increased relative velocities, hinders
the starting point of collision avoidance maneuvers, restricting
both the distance and speed of response. Nevertheless, the col-
lision avoidance algorithm somewhat reduces these impacts,
guaranteeing collision avoidance even in the presence of a
10% loss of packets. Another notable difference is seen in
speed patterns at large magnitudes when actual UAVs have
difficulties attaining and sustaining their maximum speeds
owing to battery constraints.

Consequently, the simulated tests exhibit reduced minimum
relative distances compared to the actual trials. Furthermore,
disparities emerge due to variations in acceleration between
models, where unmanned aerial vehicles (UAVs) accelerate
evenly, and actual tests, when external elements such as wind
affect acceleration. Finally, discrepancies in GPS measure-
ments during experiments result in asymmetrical outcomes
compared to simulations. This impacts the goals’ initial place-
ments and accuracy, exacerbating the differences between the
experimental and simulated results.

Fig. 7. in the case study [160] provides a compelling
visual representation, emphasizing the disparities in paths,
speeds, and closest proximity between the simulation and
actual experimental results. The graphic depiction highlights
the constraints of simulations in contrast to real-life testing.

F. UAVs Communication Network

Researchers must focus on networked communication due
to the multi-UAV systems’ explosive expansion and grow-
ing relevance. Network communication differs from typical
wireless networks regarding mobility, networking models, and
communication requirements [25]. UAV communications are
crucial in 5G and future networks, especially for control
linkages. However, getting precise Channel State Information
(CSI) is challenging due to the dynamic wireless environ-
ment brought on by high-speed UAV movement. Accurate
prediction models for non-stationary channels are required
to overcome the difficulty and provide trustworthy CSI for
efficient UAV control [161]. UAV swarms need dependable
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control signal transmission. UAV swarms use a mobile ad hoc
network (MANET) or a vehicular ad hoc network (VANET)
for low-speed mobile terminals in a two-dimensional space.
The existing communications protocol stack also ignores UAV-
specific communications models and quality of service issues.
As more UAVs join a network, wireless connection breaks,
and end-to-end latency rises [88].

In most studies on collision avoidance [2], [16], [70],
[75], [76] and drone swarm [5], [98], [107], [109], [110],
[111], drone-to-drone networks and communication should be
discussed in detail and addressed. In some cases where drone
networks and communication linkages have been studied,
the fundamental problems, such as inclement weather like
snow and rain, wind and lightning, and uneven terrain like
mountains, have either been overlooked or not considered
in the frameworks. Some research, like [73], [74], and [77],
proposed frameworks for collision avoidance using centralized
networks. Other researchers [89], [100], and [108] in drone
swarms offer peer-to-peer networks for a drone to drone com-
munications. Scalability concerns plague VANETSs’ designs
since deploying services in a large-scale, dense, dynamic
topology is challenging. These designs are stiff, difficult to
manage, and need more control, flexibility, and adaptability.
Other than that, these limitations hamper system functionality
and hinder creativity, often leading to the underutilization of
network resources [162]. In some proposed systems, drones
communicate with their neighbors to avoid collisions. Lack
of awareness about other UAVs approaching drones from afar
poses a substantial issue in preventing collisions.

To optimize inter-swarm communication, a study distributed
UAV swarm networks in various forms without centralized
control. ML approaches that cluster UAVs by location, sensor
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type, and data type are essential for multi-UAV cooperative
data transfer [22]. SDN may provide flexibility, scalabil-
ity, and programmability to UAVs ad hoc networks using
existing network resources more efficiently and introducing
new services [74], [162]. Nevertheless, the vast majority of
SDN-based systems presented are infrastructure-based and
centralized [162]. The dynamics of the drone network provide
communication and reliability problems for centralized and
ad hoc networks. Building a centralized network platform,
including ground or air stations for centralized networks, will
cost significantly. Nevertheless, it will be expensive for the
drone in ad hoc networks since each drone must separately
gather and process the data of other drones to prevent a colli-
sion. Moreover, drones’ limited capacity to keep and analyze
data and energy limitations have posed various concerns while
utilizing an ad hoc network. On the one hand, the need for
safer and more reliable communication and failure to consider
environmental problems will make it difficult and dangerous
to develop and use most of the suggested algorithms for drone
collision avoidance in the real world.

IV. DISCUSSION

Since ATM and UTM differ in size, platform, and non-
segregated operating airspace, the algorithms created for ATM
may not provide enough safety and efficiency for UTM.
Collision avoidance algorithms, which direct each UAV to
maintain a safe distance from vehicles and no-fly zones while
in flight, are one of the essential services that need further
development and validation for UTM [77].

Drone automation has been investigated, by several solu-
tions for drone automation have been created. Note that
changes in the weather and environment provide considerable
obstacles. There is a broad spectrum of drone activity and
application in many sectors and diverse types of drone action
based on operational missions. Other than that, takeoff to attain
the desired height, selecting and altering path, reducing, and
increasing velocity and altitude, and avoiding collisions with
fixed and moving objects and other drones are all included.
UAVs need sophisticated solutions, algorithms, and frame-
works. Due to drones’ capabilities, restrictions, and expanding
utilization in various industries, new challenges are emerging.

A. UAVs Security

One crucial concern that still needs to be addressed in the
evaluated studies is the security of the UAV network and data.
It may threaten both the security and data processing of the
UAV and the overall efficiency of the proposed framework.
Safe UAV-to-UAV communication links are critical to protect-
ing UAV collision avoidance systems from attackers.

One significant difficulty is ensuring the security of sensitive
data from drones or UAVs, such as position and location. Note
that UAVs lack encryption and are vulnerable to hijacking.
Hacking and cyber liability are serious concerns while utilizing
UAVs. UAVs are prone to data leakage concerns during mili-
tary operations. Hackers may seize entire control of a UAV to
steal data, invade privacy, or engage in illicit activities such as
smuggling [163]. In many presented studies, drones exchange
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their precise position and flight time with neighboring drones
or other equipment in other areas to avoid a collision. Aside
from privacy concerns, it may seriously endanger the drone.
Safe drone-to-drone communications using blockchain, pro-
posed in [164], would increase the computational burden [78].
The location privacy protection technique applies to the IoDs
and integrates with other network environments and heteroge-
neous applications vulnerable to location assaults. For the IoD,
[165] proposed a scheme for drones’ anonymity and untraced
ability. However, none of these security methods hired in
mentioned collisions avoidances systems except in [166].

To guard against a location assault, a mechanism called
MixDrones [78] was developed, where drones may modify
their in-flight airways in a mix zone. UAVs confront security
difficulties like hijacking, denial-of-service attacks, and GPS
signal spoofing. These assaults may result in a loss of con-
trol, an interruption in communication, network congestion,
and unreachability issues. Meanwhile, there are countermea-
sures for single UAV networks, with the multi-UAV systems
needing algorithm development. Current simulation test beds
and emulators are inadequate, necessitating the development
of customized tools [167]. Security evaluations often ignore
UAV software and hardware variances, necessitating uniform
security solutions applicable to all kinds. Other than that, data
leakage and compromised commands are two ground control
systems vulnerabilities that may be prevented using authenti-
cation. Various attacks use weaknesses such as misdirection,
eavesdropping, manipulation, and interception [163].

The safety of UAVs and UAV operations is highly stressed
in the present in effect UAV-specific legislation. However,
the discussion of safety is often technical (weight or height
of flight), focuses on vehicle registration, and emphasizes
user certification. Privacy often comes second regarding UAV-
specific law. Nevertheless, the General Data Protection Law
(GDPR) offers a foundation for data collection and processing
privacy [24].

B. Ethical Implications of Drone Collision Avoidance

The development of drone collision avoidance systems is
both a technological and an ethical problem [41]. Drone
usage for humanitarian and commercial purposes presents
several moral conundrums and issues, including privacy, secu-
rity, accountability, transparency, and trust. Drone collision
avoidance technology, for instance, needs to safeguard the
dignity and privacy of individuals. Additionally, it needs to
guarantee the security and dependability of the drones’ info.
Furthermore, it must make clear who is accountable and liable
for any dangers or damages brought on by drone collision
prevention technologies. It should also be responsible to the
public and stakeholders and transparent. Lastly, drone users
and beneficiaries need to promote acceptance and confidence.
In line with humanitarian ideals and values, these ethical con-
cerns must be considered throughout drone collision avoidance
technology’s design, development, and implementation [168].

The rapid advancement of drone technology has provided
numerous advantages across diverse domains, including but
not limited to package transportation, surveillance, and search
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and rescue operations and humanitarian. Nevertheless, similar
to any novel technology, ethical considerations necessitate
meticulous deliberation. A primary ethical issue associated
with drone collision avoidance technology is the possibility of
infringing upon individuals’ privacy. Uncrewed aerial vehicles
equipped with cameras and other sensors can gather vast data,
encompassing visual images and recordings of individuals
and their actions. This data can be utilized for monitoring
objectives, potentially encroaching upon individuals’ private
rights.

Another ethical concern arises from the possibility of unin-
tended harm to non-targeted individuals or entities, commonly
called collateral damage. Drones have the potential to inflict
unintentional damage to individuals and assets in the event
of malfunction or wrong usage. This can give rise to legal
and ethical quandaries, particularly in circumstances where the
application of physical coercion is implicated. Unfortunately,
most related research does not refer to or oversee ethical
problems.

C. Destination Reaching

Many studies and suggested algorithms concentrate on
avoiding obstacles by deviating from the path without assess-
ing the cost of deviation from the mission path during the
entire drone flight until it reaches its target. The cost of devi-
ating from the path increases flight time, energy consumption,
and the computational load of alternative route processing. It is
vital to include reaching its destination as well as the time
and energy required to complete the flight. This is to provide
a more realistic comparison of the suggested algorithm and
avoid risks during the flight in actual missions.

D. Real-Time Reaction

When UAVs struggle to capture moving scenes, they must
monitor a moving target in real-time, estimate target and
environment updates, design a plausible trajectory, fly along
the trajectory, avoid obstacles, complete the firing mission,
and manage crises [38], [169]. Adding more sensors would
increase the amount of data to be analyzed, thereby requiring
more processing resources [64] and processing time.

More commercial platforms (fixed-wing and rotor) have
developed autonomous takeoff, landing, and advanced flight
acquisition capabilities during the last five to ten years [39],
[170], [171]. These systems rely on pre-planned flights and
GNSS. Only some modern models can recognize and avoid
obstacles. However, more recent commercial platforms include
extra sensors (cameras and distance sensors) to identify signif-
icant barriers. They also prevent collisions by forbidding them
from flying too close to objects or stopping them before the
crash [39].

Most suggested algorithms, like [119], are pre-planned and
lack the necessary responsiveness in emergency maneuvers
and real-time situations to avoid collisions and hazards. As a
result, more usage of Al to forecast real-time occurrences
will be a fundamental need to avoid collisions and disasters.
Drones will need vast information to analyze in real-time to
provide a broad and real-time perspective of the surrounding
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area. Furthermore, while pre-planning plans to optimize the
path and avoid collisions, it cannot identify and avoid moving
impediments, particularly other drones, making the execution
of these plans’ real-time response a severe issue.

E. Scalability

Efficiency is critical for conflict resolution in crowded
airspace, requiring real-time decision-making to guarantee
safety. However, scalability necessitates that the algorithm
manages different aircraft counts, mainly as UAS often
includes many UAVs. The algorithm must also be robust to
adjust to shifting conditions and uncooperative aircraft. Due
to their training in settings with a constant number of invaders
and subsequent retraining for situations with varying intruder
counts, many current reinforcement learning systems need to
improve on scaling issues, leading to increasing computing
complexity. Reference [152] suggested deep reinforcement
learning method for dispute resolution is image-based to
address this difficulty. By describing aircraft as pictures rather
than discrete states, this technique enhances scalability and
can handle any number of aircraft. Furthermore, the suggested
approach combines accurate observation data with hypotheti-
cal data based on past physics knowledge to improve conflict
identification and resolution.

In large Multi-Agent Systems, agents often need more
global environmental knowledge, restricting their capacity to
make intelligent judgments. Furthermore, as the number of
agents increases, maximizing activities collectively becomes
difficult due to the vast range of alternative states and actions.
As a result, traditional MARL experiences scaling problems,
particularly with exponential agent increments. To address this
constraint, current research has focused on addressing scaling
issues in MARL by adding mean field theory [172].

The capacity to handle many controlled flights and trans-
parency in operations are essential concerns for any Al
technology used in collision detection and resolution oper-
ational situations. Scalability is essential for maintaining
high-quality solutions in environments with higher levels of
traffic without compromising the safety and efficiency of
flights. Operational transparency has not been sufficiently
addressed in a collision avoidance environment nor verified
for any of the current Al-based methods [84].

F. Adaptability to Different Environments

Heuristic-based search approaches are dependable and effi-
cient for accomplishing collision avoidance and resolving
conflicts among small numbers of UAVs—the most typical
situation in reality today. Nevertheless, collision avoidance
pathways developed by this technique may suffer from sec-
ondary conflict difficulties, making it less appropriate for UAV
conflicts, particularly in congested airspace. The goal of opti-
mal control techniques is to minimize the time delay between
UAVs; however, due to their relatively sophisticated theories,
which might increase processing and impair anti-interference
capabilities, these approaches cannot match real-time require-
ments [82].
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Geometric algorithms, optimum control theories, and
heuristic algorithms are some of the most often used tech-
niques for dispute resolution. However, there is a need for
more commonly acknowledged dispute-resolution methods.
This is largely due to conflicts that often arise in dynamic con-
texts, resulting in uncertainty. Traditional approaches depend
on deterministic models, necessitating unique models for each
situation, which may be difficult if the environment changes
during computing. While certain optimum control approaches
show promise in dealing with uncertainty, they need extra
operations, such as defining flight priority or predicting trajec-
tory for multi-aircraft conflicts. Furthermore, these approaches
often use complicated models that fail to match the computing
requirements of real-time situations. As a result, there is a
critical need for a real-time multi conflict resolution approach
that can effectively adapt to changing situations [150].

The agent may be continuously controlled in its move-
ments according to the excellent execution efficiency of DRL
methods like the deep deterministic policy gradient (DDPG).
Nonetheless, the DDPG takes too long to train agents, which
makes it challenging to act fast when the urban environment
changes significantly, and the agent has to be retrained [82].
Adapting to various unknown surroundings with diverse types
of static and dynamic impediments remains a significant
challenge for UAV collision systems, demanding further study.

G. Real-World Applicability

Many techniques have yet to be trained and tested on actual
surveillance data, instead relying on flight plans and synthetic
datasets. The suggested approaches do not include real-world
training, testing, or validation. Therefore, they must provide
insight into the benefits and drawbacks of reinforcement learn-
ing techniques in operational situations [84]. Most previously
stated collision avoidance strategies assume constant speed
for moving obstacles. However, in reality, varying speeds
of objects in uncharted areas pose a significant challenge,
highlighting the crucial need for real-time collision avoidance
in dynamic airspace for safe UAV operation.

Due to sensor limitations, computational complexity, com-
munication constraints, and ethical and legal considerations,
existing collision avoidance algorithms for UAVs face chal-
lenges in practical implementation. To address these con-
straints, it is crucial to evaluate and compare the effectiveness
of various collision avoidance techniques in practical, stan-
dardized benchmarks and testbeds. A significant obstacle in
this regard is the lack of standard datasets and metrics covering
different elements of collision avoidance. Moreover, current
experimental configurations and simulation platforms may not
accurately replicate the environmental factors influencing UAV
flight dynamics and sensor accuracy. Therefore, there is a
need to provide more authentic datasets, metrics, and sophisti-
cated simulation platforms to support UAV collision avoidance
research and ensure secure and dependable operation in real-
world situations.

V. LESSON LEARNED

Several valuable learned lessons from the issues mentioned
above can be summarized as follows:
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When considering collision methods, a comprehensive
approach is required. Note that combining different algorithms
to cover different collisions can be costly and inefficient.

Relying solely on a global planner algorithm to ensure UAV
safety is insufficient. Small obstacles that can endanger UAVs
may go unnoticed without a local real-time plan. Conversely,
the local planner algorithms rely on global strategies, particu-
larly during high-speed maneuvers. Since most local planner
algorithms are vision-based, their limited vision range may
cause them to collide with moving obstacles or other UAVs
approaching them.

Local obstacle detection frameworks, such as obstacle
detection algorithms, lack an accurate grasp of the larger
environment, including other objects and drones. Furthermore,
global algorithms, like swarm and routing algorithms, need
a better understanding of the specifics of barriers and minor
impediments. Composite frameworks that detect remote and
close obstacles, tiny or gigantic, may be a viable option. Other
than that, the algorithms may consider drone limits and the
actual geometry of barriers rather than simplifying them to
cylinders and spheres. Hence, it will lessen the risks of a
collision, the amount the drone diverges from its intended
course, and the amount of energy it needs to operate.

Sudden and abrupt movements on a steep slope in delivery
drones may cause cargo damage or render the drone inop-
erable. It may cause the target to lose control of activities
such as target pursuit. As illustrated in Fig. 5, most proposed
algorithms ignored the jerk measures. As a result, metrics like
jerk should be considered in the algorithms to avoid damage
to the drones or cargo by providing smooth trajectories and
motions. Furthermore, collision avoidance maneuvers should
be confined to reasonable deviation angles and speed variations
to minimize such issues.

VI. FUTURE RESEARCH DIRECTION AND OPEN ISSUES

After thoroughly examining existing research, we identified
some unresolved challenges in drone collision avoidance that
can help advance the field in the future:

o UAV collision algorithms have a substantial problem in
adapting to unknown surroundings with fixed and moving
impediments, especially in dense environments, requiring
additional investigation.

o Further studies will need to focus on finding methods to
detect and anticipate the location and velocity of unknown
moving obstacles and high-speed UAVs in real time.

« Future studies should focus on enhancing the low success
rate (66%) [136] and decreasing the lengthy training
period of Deep Reinforcement Learning (DRL) models.

o Limited recent research has addressed the critical con-
cerns of high-speed flying and nimble maneuvering in
urban environments.

o Uncertainties in sensor and camera performance, par-
ticularly during weather changes and at night, may be
addressed and resolved in future investigations.

« Network and communication challenges faced by cooper-
ating agents, especially in multi-agent learning systems,
are particularly significant in inclement weather condi-
tions such as rain and snow.
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« Enhancing the smoothness of actions [152] and prioritiz-
ing action space of agents in RL are important aspects
for future exploration.

« Future research may focus on conducting thorough exam-
inations of scalable ML and RL techniques to address
conflicts involving a large number of UAVs with high
density and wide area.

« Developing integrated global and local planner algorithms
like [12] may improve the accuracy and efficiency of
global algorithms for identifying tiny and moving objects.

o After detecting a collision, the reviewed frameworks
resort to various movement strategies for preventing
collision, such as horizontal deviation, velocity adjust-
ments, vertical maneuvers and rerouting. In the future,
researchers can combine more movements mentioned
above depending on priority, condition, and kind of drone,
the cost of energy spent, and the flying duration till
returning to the main path.

o One of the significant issues in the drone network is the
need for more appropriate information about other drones
and the restrictions on their communication which may
lead to collisions. As a result, one of the fundamental
criteria for preventing collisions is the development of
an ideal algorithm or communication structure between
drones, which has received little attention in recent
research and might be one of the subjects for future
studies.

o A few researchers, like [98] and [100], have studied the
influence of wind and changing weather conditions in
their study work, which might be one of the aims of
future research owing to the sensitivity of UAVs and the
risk of more accidents in adverse weather.

« The effectiveness of ML algorithms for UAV automation
may be investigated regarding computing efficiency and
UAV hardware design.

o Important metrics such as energy usage, flight duration,
speed, jerk, computation, and communication cost may be
addressed while comparing and evaluating the algorithms.

o With a deeper understanding of the environment and
the impacts of weather conditions, more comprehensive
simulators and tools can be employed.

In the future, we will concentrate on drone communications
and networks and the autonomous collision avoidance using
ML.

VII. CONCLUSION

This study thoroughly reviewed drone collision avoid-
ance algorithms, considering criteria such as algorithm type,
obstacle characteristics, metrics, and applications. Despite con-
tinued progress, drone collisions remain a challenge. Several
critical characteristics must be addressed to anticipate drone
collisions accurately. These include:

Since most local algorithms suffer from issues like
becoming trapped in congested locations, they require a com-
prehensive understanding of the overall route and destination.
Integration with global algorithms can help overcome these
challenges. However, global algorithms often need a thorough
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TABLE VIII
ABBREVIATIONS AND NOTATIONS

UAV Unmanned Aerial Vehicles
UAS Unmanned Aircraft/Aerial Systems
ML Machine Learning
UT™M UAS Traffic Management
CNN Convolutional Neural Network
RL Reinforcement Learning
DRL Deep Reinforcement Learning
ADS-B Automated Dependent Surveillance-Broadcast
loD Internet of Drones
TCAS Traffic Collision Avoidance System
GNSS Global Navigation Satellite System
NN Neural Network
PSO Particle Swarm Optimization
FAA Federal Aviation Administration
NASA National Aeronautics and Space Administration
GPS Global Positioning System
SESAR Single European Sky Air Traffic Management Research
ATM Air Traffic Management
us United State
SDN Software-Defined Network
LiDAR Light Detection and Ranging
NMPC Nonlinear Model Predictive Control
MARL Multi-Agent Reinforcement Learning
m/s Metre per Second
PF Potential Field
MFG Mean Field Game
RRT Rapidly Exploring Random Tree
DDQN Double Deep Q-networks
SLAM Simultaneous Localization and Mapping
MDP Markov Decision Process

understanding of barriers, particularly small ones that could
cause collisions or result in significant deviations from original
routes. Integration with local algorithms presents a viable
solution to this issue.

Given the potential and expanding applications of artificial
intelligence, further research and testing in real-world settings
are necessary to ensure that these technologies adhere to
drones’ structural constraints, including capacity, processing
speed, and energy efficiency. However, utilizing multiple
machine learning algorithms in real-world settings remains
challenging due to their poor success rates, especially in rein-
forcement learning. Enhancing machine learning algorithms’
capabilities and integrating them with other existing algorithms
is essential to improve outcomes and instill trust.

While algorithms for identifying and locating obstacles have
advanced significantly, particularly with the use of deep learn-
ing, challenges persist in agile maneuvers, such as detecting
small, fast-moving objects and adapting to various environ-
mental factors. These factors include variations in snow and
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rain, day and nighttime lighting conditions, densely populated
cities, mountains, and wooded areas.

Comprehensive simulators are still needed to integrate all
relevant metrics and simulate the unique circumstances nec-
essary for testing drone algorithms. Therefore, creating more
sophisticated simulators that accurately replicate natural-world
scenarios and testing and assessing suggested algorithms in
actual test beds are crucial steps to ensuring effectiveness and
establishing credibility.

APPENDIX

The utilized Abbreviations and Notations are detailed in
Table VIII.
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