
2046 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Embodied Footprints: A Safety-Guaranteed
Collision-Avoidance Model for Numerical
Optimization-Based Trajectory Planning

Bai Li , Youmin Zhang , Fellow, IEEE, Tantan Zhang , Tankut Acarman , Yakun Ouyang ,
Li Li , Fellow, IEEE, Hairong Dong , and Dongpu Cao

Abstract— Optimization-based methods are commonly applied
in autonomous driving trajectory planners, which transform
the continuous-time trajectory planning problem into a finite
nonlinear program with constraints imposed at finite collocation
points. However, potential violations between adjacent collocation
points can occur. To address this issue thoroughly, we propose a
safety-guaranteed collision-avoidance model to mitigate collision
risks within optimization-based trajectory planners. This model
introduces an “embodied footprint”, an enlarged representation
of the vehicle’s nominal footprint. If the embodied footprints do
not collide with obstacles at finite collocation points, then the ego
vehicle’s nominal footprint is guaranteed to be collision-free at
any of the infinite moments between adjacent collocation points.
According to our theoretical analysis, we define the geometric
size of an embodied footprint as a simple function of vehicle
velocity and curvature. Particularly, we propose a trajectory
optimizer with the embodied footprints that can theoretically
set an appropriate number of collocation points prior to the
optimization process. We conduct this research to enhance the
foundation of optimization-based planners in robotics. Compara-
tive simulations and field tests validate the completeness, solution
speed, and solution quality of our proposal.

Index Terms— Embodied footprint, numerical optimal control,
collision avoidance, trajectory planning, motion planning.

Manuscript received 9 February 2023; revised 22 July 2023 and 9 September
2023; accepted 13 September 2023. Date of publication 25 October 2023;
date of current version 2 February 2024. This work was supported in part
by the National Natural Science Foundation of China under Grant 62103139;
in part by the National Key Research and Development Program of China
under Grant 2022YFB2502905; in part by the Hejian Youth Talent Program of
Hunan Province, China, under Grant 2023RC3115; in part by the Fundamental
Research Funds for the Central Universities under Grant 531118010509; and
in part by the Natural Sciences and Engineering Research Council of Canada
under Grant RGPIN-2023-05661. The Associate Editor for this article was
Z. Ma. (Corresponding author: Li Li.)

Bai Li, Tantan Zhang, and Yakun Ouyang are with the College of Mechan-
ical and Vehicle Engineering, Hunan University, Changsha 410082, China
(e-mail: libai@zju.edu.cn; zhangtantan@hnu.edu.cn; yakun@hnu.edu.cn).

Youmin Zhang is with the Department of Mechanical, Industrial, and
Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8,
Canada (e-mail: ymzhang@encs.concordia.ca).

Tankut Acarman is with the Department of Computer Engineer-
ing, Galatasaray University, 34349 Istanbul, Turkey (e-mail: tacarman@
gsu.edu.tr).

Li Li is with the Department of Automation, BNRist, Tsinghua University,
Beijing 100084, China (e-mail: li-li@tsinghua.edu.cn).

Hairong Dong is with the School of Electronics and Information Engineer-
ing, Beihang University, Beijing 100191, China (e-mail: hrdong@bjtu.edu.cn).

Dongpu Cao is with the School of Vehicle and Mobility, Tsinghua Univer-
sity, Beijing 100084, China (e-mail: dongpu.cao@uwaterloo.ca).

Digital Object Identifier 10.1109/TITS.2023.3316175

I. INTRODUCTION

TRAJECTORY planning, a core module in an autonomous
driving system, is designated to generate spatio-temporal

curves that are kinematically feasible, collision-free,
passenger-friendly, and energy/time efficient [1], [2]. The
existing trajectory planners for autonomous vehicles are
broadly classified into search-based, sampling-based, and
numerical optimal control-based methods [3], [4], [5], [6].
Search-/sampling-based planners seek a globally optimal
path, while numerical optimal control-based planners aim
for local optimality. This paper concentrates on numerical
optimal control-based planning.

A numerical optimal control-based planner describes a nom-
inal trajectory planning scheme as an optimal control problem
(OCP). The OCP is discretized into a nonlinear program
(NLP) problem before the NLP is solved by a gradient-based
NLP solver [7]. This converts the continuous-time OCP into
a problem with finite variables and constraints [8]. How-
ever, this conversion is imperfect because the time-continuous
constraints in the original OCP are only enforced on finite
collocation points, ignoring constraint satisfaction between
adjacent collocation points. Increasing the density of colloca-
tion points can help, but it does not entirely solve the problem
and results in high-dimensional NLPs that require extensive
runtime. This constraint ignorance issue has been a common
and silent drawback of numerical optimal control-based plan-
ners, particularly when constraints are highly non-convex [9],
[10], [11].

Collision-avoidance constraints are widely acknowledged
as the most complex type of constraint in a trajectory plan-
ning problem [12]. As depicted in Fig. 1, ignorance of
collision-avoidance constraints between adjacent collocation
points easily fails a planned trajectory [13]. This study aims
to propose a constraint formulation method that theoretically
guarantees safety between adjacent collocation points in an
optimal control-based trajectory planner.

A. Related Works

This subsection reviews the previous studies that explored
the violations of collision-avoidance constraints between
adjacent collocation points or waypoints. For brevity, we refer

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8966-8992
https://orcid.org/0000-0002-9731-5943
https://orcid.org/0000-0001-7515-7561
https://orcid.org/0000-0003-4169-1189
https://orcid.org/0000-0002-2581-0451
https://orcid.org/0000-0002-9428-1960
https://orcid.org/0000-0003-4369-3401
https://orcid.org/0000-0001-7929-4336

LI et al.: EMBODIED FOOTPRINTS: A SAFETY-GUARANTEED COLLISION-AVOIDANCE MODEL 2047

Fig. 1. Schematics on violations of collision-avoidance constraints between
adjacent collocation points. Two discretized footprints are collision-free while
collisions do occur between them.

Fig. 2. Schematics on the usage of a convex hull to cover non-collocation
point footprints. The edges of the convex hull are colored blue, which does
not fully cover the swept-by region.

to this violation as a non-collocation error throughout this
paper.

Most prior works silently assume that non-collocation errors
don’t occur if 1) collocation points are sufficiently dense [14],
[15], 2) each polygonal obstacle is sufficiently dilated to form
a buffer [16], [17], or 3) a cost function with sufficiently large
penalty weights is designed to keep the planned trajectory
away from obstacles [18]. However, these assumptions lack
a quantitative analysis of sufficiency, preventing them from
becoming standardized knowledge.

The use of a convex hull to encompass the area swept by
the vehicle footprint between two adjacent points has been
considered [19], [20]. Nevertheless, a convex hull does not
guarantee full coverage of the swept region (Fig. 2). Schulman
et al. [21] suggested expanding the convex hull, but the
implementation was not detailed. They proposed a repulsive
penalty in the cost function as a solution to non-collocation
errors, but this does not fully eliminate collision risks. Scheuer
and Fraichard [22] proposed a motion polygon to cover the
swept-by region between adjacent collocation points, but part
of the swept-by region is still out of the motion polygon
(Fig. 3a). Additionally, their motion polygon cannot handle
instances where adjacent poses overlap. Ghita and Kloetzer
[23] proposed a polygonal over-approximation method, which
is about building an expanded polygon with the intersection
of two tangents to the swept-by region (Fig. 3b). However,
that method is still too complex for a gradient-based NLP
solver because the vertexes of the swept-by region are not
easy to present. As seen from Fig. 3, the swept-by region
is over-approximated in [22] or [23], leading to overcautious
trajectories or even solution failures. To summarize, modeling
the swept-by region as a compact polygon is inapplicable.

Contrary to compact polygon approaches, Li et al. [24]
employed multiple polygons to cover the swept-by region.

Fig. 3. Schematics on the usage of a polygonal region to cover the swept-by
region between two adjacent vehicle footprints: (a) motion polygon proposed
in [22]; (b) polygonal over-approximation method proposed in [23].

Fig. 4. Schematics on the usage of virtual protection frames to cover
the swept-by region. Notably, the entire swept-by region is covered by two
rectangles (i.e., the blue dashed boxes), which are derived by expanding the
ego vehicle’s footprints laterally.

This strategy entails the interpolation of equidistant waypoints
between two adjacent collocation points and the imposition of
a collision-avoidance constraint at each interpolated waypoint.
However, this strategy is still incomplete due to lingering
minor collision risks. Zhang et al. [25] proposed a virtual
protection frame (VPF) method, which covers the swept-by
region by laterally expanded rectangles at each collocation
point (Fig. 4). Unlike the compact polygon models, the VPF
method ensures that the OCP dimension remains unchanged
after addressing the non-collocation error. Nevertheless, the
size of each expanded rectangle is established through trial
and error, necessitating repeated iterations of the OCP solution
process and consuming excessive runtime. More critically,
determining the expanded rectangle’s size via trial-and-error
risks failure of the iterative solution process, particularly in a
tiny environment (this is demonstrated through comparative
simulations in Section V). Similar to VPF, methods like
the adaptive mesh refinement by Yershov and Frazzoli [26],
and the moving finite element method by Chen et al. [27]
also exist. In [26], the trajectory resolution is enhanced by
continually adjusting the discretized mesh grids, while [27]
persistently shifts the non-uniform collocation points until
the non-collocation error is minimized. However, both [26]
and [27] operate on a trial-and-error basis, making them
challenging for quick execution.

In summary, no previous study has satisfactorily addressed
the non-collocation error issue considering both completeness
and solution speed.

B. Motivations and Contributions

Upon reviewing previous studies, we noted that 1) increas-
ing the density of collocation points would not com-
pletely address the issue of concern, and 2) the compact
polygon-based methods are excessively complex. The VPF
method is promising because it addresses the non-collocation

2048 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

error issue by operating only on collocation points. However,
the VPF method is imperfect because it calls for an iterative
planning process to determine the expansion buffers, which
consumes runtime and easily makes the planner incomplete.
In response to the limitations of the VPF method, this work
aims to theoretically define expansion buffers, eliminating the
need for time-consuming iterative computation.

The contribution of this work lies in the theoretical devel-
opment of a collision-avoidance constraint model, referred
to as the embodied footprint model, which ensures complete
safety between adjacent collocation points in using a numer-
ical optimal control-based planner. Specifically, the vehicle
footprint at each collocation point is expanded longitudinally
and laterally by buffers that fully cover the swept-by region
between adjacent collocation points. These buffers, directly
related to vehicle speed and curvature, are treated as decision
variables along with other state/control variables within the
OCP. This gives a numerical optimal control-based planner
enough flexibility to find a safe trajectory without resorting to
iterative computation.

C. Organization

In the rest of this paper, Section II states the con-
cerned problem in a generic trajectory planning background.
Section III proposes a safe collision-avoidance constraint
modeling method. Section IV introduces a trajectory planner
embedded with the modeling method introduced in Section III.
Section V presents and discusses the simulation and experi-
mental results. Finally, Section VI concludes the paper.

II. TRAJECTORY PLANNING PROBLEM STATEMENT

This section outlines the trajectory planning problem.
A generic formulation of a trajectory planning task is provided
in the form of an OCP, which is then discretized into an NLP
problem.

A. OCP Formulation

A trajectory planning task is cast into the following OCP:

minimize
z(t),u(t), T

J,

s.t., ż(t) = f (z(t), u(t)) , t ∈ [0, T];

z ≤ z(t) ≤ z̄, u ≤ u(t) ≤ ū, t ∈ [0, T];

z(0) = zinit, u(0) = uinit;

z(T) = zend, u(T) = uend;

f p(z(t)) ⊂ ϒFREE, t ∈ [0, T]. (1)

In this formulation, z ∈ Rnz represents the vehicle state
profiles, u ∈ Rnu denotes the control profiles, and T represents
the unfixed planning horizon length.

We assume that the single-track bicycle model [7] is able
to describe the kinematic constraints ż(t) = f (z(t), u(t)):

d
dt


x(t)
y(t)
v(t)
φ(t)
θ(t)

 =


v(t) · cos θ(t)
v(t) · sin θ(t)

a(t)
ω(t)

v(t) · tan φ(t)
/

LW

 , t ∈ [0, T]. (2)

Fig. 5. Schematics on vehicle kinematics and geometrics.

Herein, (x , y) represents the coordinate value of the midpoint
along the rear-wheel axle of the ego vehicle (Fig. 5), θ refers
to the orientation angle, v is the vehicle velocity, φ represents
the steering angle, a is the acceleration, ω denotes the angular
velocity of the steering angle, and LW is the wheelbase.
The other geometric parameters marked in Fig. 5 include LF
(front hang length plus wheelbase), LR(rear hang length), and
LB(width).
[z, z̄] and [u, ū] denote the allowable intervals for z(t) and

u(t), respectively, that is,
amin

0
−�max
−8max

 ≤


a(t)
v(t)
ω(t)
φ(t)

 ≤


amax
vmax
�max
8max

 , t ∈ [0, T]. (3)

Here, v(t) ≥ 0 assumes that backward maneuvers are ignored
in this present work. amin, amax, vmax, �max, and 8max are
boundary parameters.

zinit and uinit denote the initial-moment values of z(t)
and u(t). zend and uend denote their terminal-moment values,
respectively.

f p(·) : Rnz → R2 is a mapping from the vehicle’s state
profile z(t) to the footprint. Thus, ϒFREE denotes the free space
in the 2D environment while f p(z(t)) ⊂ ϒFREE represents
the collision-avoidance constraints. This work assumes that
ϒFREE is static, i.e., no moving obstacles are considered. For
future usage, let us define the four vertexes of the ego vehicle’s
footprint as A = (xA, yA), B = (xB, yB), C = (xC , yC), and
D = (xD, yD) (Fig. 5):

xA(t) = x(t)+ LF · cos θ(t)− 0.5LB · sin θ(t),

yA(t) = y(t)+ LF · sin θ(t)+ 0.5LB · cos θ(t),

xB(t) = x(t)+ LF · cos θ(t)+ 0.5LB · sin θ(t),

yB(t) = y(t)+ LF · sin θ(t)− 0.5LB · cos θ(t),

xC (t) = x(t)− LR · cos θ(t)+ 0.5LB · sin θ(t),

yC (t) = y(t)− LR · sin θ(t)− 0.5LB · cos θ(t),

xD(t) = x(t)− LR · cos θ(t)− 0.5LB · sin θ(t),

yD(t) = y(t)− LR · sin θ(t)+ 0.5LB · cos θ(t), t ∈ [0, T].
(4)

The concrete expression of f p(z(t)) ⊂ ϒFREE is presented
later in Section III-E.

LI et al.: EMBODIED FOOTPRINTS: A SAFETY-GUARANTEED COLLISION-AVOIDANCE MODEL 2049

B. NLP Formulation

The previous subsection casts the trajectory planning
scheme as an OCP. This subsection briefly outlines the prin-
ciple for discretizing it into an NLP. For simplicity, the OCP
constructed in the previous subsection is abstracted as

minimize
z(t),u(t), T

J,

s.t.,g (z(t), ż(t), u(t)) ≤ 0, t ∈ [0, T]. (5)

Herein, g ≤ 0 represents all the constraints in inequality and
equality forms.

Discretizing (5) into an NLP is about sampling finite
moments along the time dimension t ∈ [0, T] such that each
z(t) or u(t) could be represented by finite collocation points.
In this manner, the constraints g ≤ 0 apply only to finite
collocation points rather than the entire time domain [0, T].
Suppose that (Nfe + 1) moments are sampled from 0 to T ,
which are collected in a set {ti |i = 0, . . . , Nfe } with

0 = t0 < t1 < t2 < . . . < tNfe = T . (6)

Each z(t) is represented by (Nfe + 1) collocation points,
which are denoted by {zi |i = 0, . . . , Nfe } . These colloca-
tion points are used to construct an infinite-dimensional
variable z(t), which might be a piecewise constant, linear,
or polynomial function. Similarly, u(t) is represented by
{ui |i = 0, . . . , Nfe } . Thus, the original OCP is discretized
into the following NLP:

minimize
zi ,ui ,ti

J (zi , ui , ti) ,

s.t., g (zi , ui , ti) ≤ 0, i = 0, . . . , Nfe. (7)

III. EMBODIED FOOTPRINT-BASED COLLISION
AVOIDANCE

Nominally, one uses an NLP solver to solve (7), thereby
deriving a numerical solution to the original OCP (5). How-
ever, the derived trajectory is not guaranteed to be safe
because collision-avoidance constraints are only imposed at
finite moments {ti }. To resolve this issue thoroughly, we con-
tinue to impose the collision-avoidance constraints only on
finite collocation points, but we expect each of them to be
“responsible”, ensuring the entire time horizon t ∈ [0, T] is
completely safe. This necessitates changes in the collision-
avoidance constraints.

This section introduces how to model safe
collision-avoidance constraints in the NLP formulation
(7). As a basic step, the modeling task is identified in
Section III-A before details are provided in the next few
subsections.

A. Collision-Avoidance Constraint Modeling Task Statement

This subsection states the safety-oriented collision-
avoidance constraint modeling. Since the collision-avoidance
constraints are used in the formulated NLP, we have to impose
a finite number of collision-avoidance constraints, but we
expect that each collision-avoidance constraint is modeled in a
way that ensures the ego vehicle is safe within a time interval.

Fig. 6. Schematics on embodied box A’B’C’D’ that covers the swept-by
region from tk to tk+1.

Fig. 7. A normalized angle of review of Fig. 6 to facilitate theoretical
analysis.

Specifically, we expand the ego vehicle’s footprint laterally and
longitudinally to define an “embodied box” and require that
the swept-by region from tk to tk+1 is fully covered by an
embodied box over the ego vehicle’s footprint at tk . As shown
in Fig. 6, each embodied box is aligned with the vehicle foot-
print, and the geometric size is determined by four variables
at tk , which are denoted as eleft(tk), eright(tk), eup(tk), and
edown(tk). The central challenge in this section is defining
the four variables at tk in a way that thoroughly eliminates
collision risks between adjacent collocation points tk and tk+1.

Without loss of generality, we rotate the ego vehicle in Fig. 6
to an axially aligned pose (see Fig. 7) for the convenience of
analysis, i.e.,

[
x(tk), y(tk), θ(tk)

]
=

[
0, 0, π/2

]
. Owing to this

rotation, the four variables can be easily presented as

eleft(tk) = −
LB

2
− xmin,

eright(tk) = xmax −
LB

2
,

eup(tk) = ymax − LF,

edown(tk) = −LR − ymin, (8)

where xmin, xmax, ymin, and ymax denote the lower/upper
bounds of the swept-by region, respectively. The determina-
tions of xmin, xmax, ymin, and ymax naturally decide eleft(tk),
eright(tk), eup(tk), and edown(tk). Therefore, the core problem

2050 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

in modeling the safe collision-avoidance constraints is how to
determine xmin, xmax, ymin, and ymax. Our proposed idea is
presented in Sections III-B and III-C.

B. Determination of ymin

This subsection introduces how to identify ymin(tk), which
denotes the minimal coordinate value of the swept-by region
from tk to tk+1. For brevity, we will refer to ymin(tk) as ymin.

Nominally, the shape of the swept-by region is determined
by control variables u(t) during the time interval [tk , tk+1].
If u(t) is not constant during [tk , tk+1], then the swept-by
region would be too complicated to analyze. We assume that
the state variables z(t) are constant during [tk , tk+1]:

Assumption 1: Any a z(t) or u(t) in the concerned OCP
(1) is a piecewise constant function.

If u(t) is assumed to be piecewise constant on a time
interval, then z(t) may not be piecewise constant on that inter-
val. Assuming both z(t) and u(t) are piecewise constant may
violate the kinematic constraints (2) in the concerned OCP.
Despite this, Assumption 1 is a common practice in numerical
optimization that causes minor errors if the collocation points
are set densely. Discretizing OCP (1) with this assumption
is known as the explicit first-order Runge–Kutta method.
We must uphold this assumption, as without it, analyzing the
shape of a swept-by region is extremely difficult.

Assumption 1 yields that the steering angle variable φ(t)
remains constant during t ∈ [tk, tk+1], thus the path segment of
the rear-axle midpoint located at (x(t), y(t)) is circular during
t ∈ [tk, tk+1]. Similarly, the velocity variable v(t) is constant
during t ∈ [tk, tk+1]. For simplicity, let us rewrite the constant
steering angle as φk and the constant velocity as vk . According
to (2) and the Newton–Leibniz formula, the orientation angle
θ(t) is determined as

θ(t) = θ(tk)+
∫ t

τ=tk

v(τ) · tan φ(τ)

LW
dτ

=
π

2
+

vk · tan φk

LW
· (t − tk), t ∈ [tk, tk+1]. (9)

To further simplify the presentation, let us introduce a cur-
vature variable κ(t) ≡ tan φ(t)/LW and set that tk = 0 and
tk+1 = 1T , then we have

θ(t) =
π

2
+ vk · κk · t, t ∈ [0, 1T], (10a)

where κk = tan φk/LW. Similarly, x(t) and y(t) are defined
as

x(t) =
cos(vk · κk · t)− 1

κk
, t ∈ [0, 1T], (10b)

and

y(t) =
sin(vk · κk · t)

κk
, t ∈ [0, 1T]. (10c)

Substituting (10) into (4) yields the trajectories of the ego
vehicle’s four vertex points:

xA(t) =
cos(vk · κk · t)− 1

κk
− LF · sin(vk · κk · t)

−
LB

2
· cos(vk · κk · t),

yA(t) =
sin(vk · κk · t)

κk
+ LF · cos(vk · κk · t)

−
LB

2
· sin(vk · κk · t),

xB(t) =
cos(vk · κk · t)− 1

κk
− LF · sin(vk · κk · t)

+
LB

2
· cos(vk · κk · t),

yB(t) =
sin(vk · κk · t)

κk
+ LF · cos(vk · κk · t)

+
LB

2
· sin(vk · κk · t),

xC (t) =
cos(vk · κk · t)− 1

κk
+ LR · sin(vk · κk · t)

+
LB

2
· cos(vk · κk · t),

yC (t) =
sin(vk · κk · t)

κk
− LR · cos(vk · κk · t)

+
LB

2
· sin(vk · κk · t),

xD(t) =
cos(vk · κk · t)− 1

κk
+ LR · sin(vk · κk · t)

−
LB

2
· cos(vk · κk · t),

yD(t) =
sin(vk · κk · t)

κk
− LR · cos(vk · κk · t)

−
LB

2
· sin(vk · κk · t), t ∈ [0, 1T]. (11)

Connecting the four vertexes A, B, C , and D forms a
rectangular footprint, which moves throughout t ∈ [0, 1T]
to create a swept-by region. Obviously, the boundaries of the
swept-by region are determined by vertices rather than edges
of the footprint, thus

xmin = min {xA(t), xB(t), xC (t), xD(t),∀t ∈ [0, 1T]} ,
(12a)

xmax = max {xA(t), xB(t), xC (t), xD(t),∀t ∈ [0, 1T]} ,
(12b)

ymin = min {yA(t), yB(t), yC (t), yD(t),∀t ∈ [0, 1T]} ,
(12c)

ymax = max {yA(t), yB(t), yC (t), yD(t),∀t ∈ [0, 1T]} .
(12d)

According to the definitions of yA(t), yB(t), yC (t), and
yD(t) in (11), one can safely state that yA(t) ≥ yD(t) and
yB(t) ≥ yC (t) for any t provided that

|vk · κk · t | ≤
π

2
,∀t ∈ [0, 1T]. (13)

LI et al.: EMBODIED FOOTPRINTS: A SAFETY-GUARANTEED COLLISION-AVOIDANCE MODEL 2051

Given that (13) should be satisfied for any t ∈ [0, 1T], then

|vk · κk ·1T | ≤
π

2
. (14)

Assumption 2: vk , κk , and 1T satisfy the inequality (14).
Assumption 2 ensures that yA(t) ≥ yD(t) and yB(t) ≥

yC (t) for any t within [0, 1T]. Therefore, ymin would be
the smaller one between min {yC (t)} and min {yD(t)} for
∀t ∈ [0, 1T]. If Assumption 2 is not held, one needs to also
consider the complex case in which ymin involves vertex A or
B.

Recall that negative velocity is not considered in this present
work, thus we state the following:

Assumption 3: vk ≥ 0.

With Assumption 3 at hand, the subsequent analyses are
divided into two branches as per the sign of κk .

Condition 1: κk ≥ 0
When κk is non-negative, one has yD(t) ≤ yC (t). Thus,

ymin is the extremum of yD(t) on t ∈ [0, 1T]. Let us rewrite
yD(t) in the following form:

yD(t) = (
1
κk
−

LB

2
) · sin(vk · κk · t)− LR · cos(vk · κk · t)

= M · sin(vk · κk · t)− N · cos(vk · κk · t)

=

√
M2 + N2 · sin(vk · κk · t − α), (15)

where M ≡ 1
κk
−

LB
2 , N ≡ LR, and

α = arccos(
M√

M2 + N2
). (16)

Herein, N is positive while the sign of M is pending. Let us
discuss the sign of M.

If M < 0, then M
/√

M2 + N2 is negative, thus (16) yields
that α ∈ [π/2, π]. Let us analyze the monotonicity of yD(t)
via its derivative y′D(t) :

y′D(t) = vk · κk ·
√

M2 + N2 · cos(vk · κk · t − α).

Given that vk ·κk ·
√

M2 + N2 > 0, the sign of y′D(t) would be
determined by cos(vk ·κk · t−α). Obviously, y′D(0) ≤ 0, which
means yD(t) has a descending trend at t = 0+. We expect that
the entire domain [0, 1T] is a monotonic decreasing interval.
If so, the minimal extremum value is yD(1T). The reason
why we expect [0, 1T] to be monotonic is given as follows.
If [0, 1T] is not a monotonic decreasing interval, then the
extremum is achieved at some t∗ ∈ [0, 1T] that satisfies

sin(vk · κk · t∗ − α) = −1,

which renders the following side effects: 1) the extremum is
unrelated to vk, thus making ymin overcautious; and 2) the
extremum is a rather complex function of κk .

To make [0, 1T] a monotonic decreasing interval, one
needs to ensure that cos(vk · κk · t − α) remains negative
throughout [0, 1T], which yields cos(vk · κk ·1T − α) ≤ 0,

i.e.,

vk · κk ·1T − α ≤ −
π

2
. (17)

This inequality is further described as

0 < vk · κk ·1T ≤ arctan(−

1
κk
−

LB
2

LR
). (18)

If (18) holds, then the extremum of yD(t) is

yD(1T) = (
1
κk
−

LB

2
) · sin(vk · κk ·1T)

− LR · cos(vk · κk ·1T). (19)

Nominally, one can state ymin = yD(1T), but (19) is still not
showing a simple enough relationship among ymin, vk , and κk .
Therefore, we simplify (19) further via inequality amplification
skills in mathematics. According to the McLaughlin formula,
one has

sin(vk · κk ·1T) ≤ vk · κk ·1T, (20a)

and

cos(vk · κk ·1T) ≤ 1. (20b)

Then, we can provide a simplified lower bound for yD(1T):

(
1
κk
−

LB

2
) · vk · κk ·1T − LR ≤ yD(1T). (21)

Accordingly, one has

ymin =
LB

2
· κk · sk − sk − LR, (22)

wherein sk ≡ vk ·1T is deployed to simplify the presentation.
The aforementioned analysis assumes that M < 0. Symmet-

rically, if M ≥ 0, then α ∈ [0, π/2] and [0, 1T] is definitely a
monotonic increasing interval. Therefore, the extremum value
is yD(0), i.e., ymin = −LR.

Condition 2: κk < 0
In dealing with κk < 0, we introduce a temporary variable

κ∗k = −κk . Since κ∗k > 0, the analysis in Condition 1 could be
repeated. The concrete details are similar, thus we omit them.

Summarizing the analyses for κk ≥ 0 and κk < 0 yields
that

1◦ When 1
|κk |
−

LB
2 ≤ 0,

ymin =
LB

2
· |κk | · sk − sk − LR, (23a)

which is associated with prerequisite

|κk | · sk ≤ arctan(−

1
|κk |
−

LB
2

LR
). (23b)

2◦ When 1
|κk |
−

LB
2 > 0,

ymin = −LR, (23c)

which is associated with prerequisite

|κk | · sk ≤
π

2
. (23d)

Assumption 4: 2LW > LB · tan φmax.
Empirically, Assumption 4 holds for a passenger vehicle,

which means
1
|κk |
−

LB

2
=

∣∣∣∣ LW

tan φk

∣∣∣∣− LB

2
≥

LW

tan φmax
−

LB

2
> 0. (24)

2052 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Therefore, the branch under 1/ |κk | − LB/2 ≤ 0 is discarded
under Assumption 4. The cases that involve 1/ |κk | −LB/2 ≤
0 will not be considered in the remainder of this section either.

The final conclusion of this subsection is that ymin = −LR
under Assumptions 1–4.

C. Determinations of ymax, xmin, and xmax

This subsection introduces the definitions of ymax, xmin,
and xmax. The analyses are similar to those in Section III-B,
thus details are omitted.

ymax is written as

ymax = sk +
LB

2
· |κk | · sk + LF, (25a)

together with the following prerequisite:

sk · |κk | ≤ arctan(

1
|κk |
+

LB
2

LF
). (25b)

xmin is written as

xmin = −
LB

2
−max

{
−LR · κk · sk, (LF +

sk

2
) · κk · sk

}
,

(26a)

together with

sk · |κk | ≤ arctan(
LR

1
|κk |
+

LB
2

). (26b)

xmax is written as

xmax =
LB

2
+max

{
LR · κk · sk,−(LF +

sk

2
) · κk · sk

}
,

(27a)

together with

sk · |κk | ≤ arctan(
LR

1
|κk |
+

LB
2

). (27b)

D. Definition of an Embodied Box

Sections III-B and III-C have defined ymin, ymax, xmin, and
xmax. This subsection further forms an embodied box based
on the aforementioned definitions. Eq. (8) yields that

(−xmin)− eleft(tk) =
LB

2
,

xmax − eright(tk) =
LB

2
,

(−ymin)− edown(tk) = LR,

ymax − eup(tk) = LF. (28)

Eq. (28), Section III-B, and III-C yield that

eleft(tk) = max
{
−LR · κk · sk, (LF +

sk

2
) · κk · sk

}
,

eright(tk) = max
{

LR · κk · sk,−(LF +
sk

2
) · κk · sk

}
,

eup(tk) = sk +
LB

2
· |κk | · sk,

edown(tk) = 0, (29)

subject to the intersection of prerequisites (23d), (25b), (26b),
and (27b). Since (26b) and (27b) are identical, one only needs
to consider (23d), (25b), and (26b).

Eq. (25b) is rewritten as

tan (sk · |κk |) ≤

1
|κk |
+

LB
2

LF
, (30a)

that is,

|κk | · LF · tan (sk · |κk |) ≤ 1+
LB

2
· |κk | . (30b)

Similarly, (26b) is rewritten as(
1+

LB

2
· |κk |

)
· tan (sk · |κk |) ≤ LR · |κk | . (31)

Based on the aforementioned analyses, the four vertexes
of the ego vehicle at time instance tk are expanded as the
rectangle A′B ′C ′D′ shown in Fig. 6, where eleft(tk), eright(tk),
eup(tk), and edown(tk) are defined in (29). Simultaneously,
prerequisites (23d), (30b), and (31) should hold.

According to (29), the embodied box becomes large when
|κk | and/or sk are large, which is intuitively reasonable.
Prerequisites (23d), (30b), and (31) are inherently setting an
upper bound for (tk+1−tk), i.e., the duration between adjacent
collocation points.

E. Formulation of Safe Collision-Avoidance Constraints

This subsection presents the safety-oriented collision-
avoidance constraints with the defined embodied box at the
collocation point tk .

The four vertices of the embodied box are defined as
A′ =

(
⌢x A,

⌢y A

)
, B ′ =

(
⌢x B,

⌢y B

)
, C ′ =

(
⌢xC ,

⌢yC

)
, and

D′ =
(

⌢x D,
⌢y D

)
:

⌢x A(tk) = x(tk)+
(
LF + eup(tk)

)
· cos θ(tk)−

(
LB

2
+ eleft(tk)

)
· sin θ(tk),

⌢y A(tk) = y(tk)+
(
LF + eup(tk)

)
· sin θ(tk)+

(
LB

2
+ eleft(tk)

)
· cos θ(tk),

⌢x B(tk) = x(tk)+
(
LF + eup(tk)

)
· cos θ(tk)+

(
LB

2
+ eright(tk)

)
· sin θ(tk),

⌢y B(tk) = y(tk)+
(
LF + eup(tk)

)
· sin θ(tk)−

(
LB

2
+ eright(tk)

)
· cos θ(tk),

⌢xC (tk) = x(tk)− (LR + edown(tk))

· cos θ(tk)+
(

LB

2
+ eright(tk)

)
· sin θ(tk),

⌢yC (tk) = y(tk)− (LR + edown(tk))

· sin θ(tk)−
(

LB

2
+ eright(tk)

)
· cos θ(tk),

⌢x D(tk) = x(tk)− (LR + edown(tk))

LI et al.: EMBODIED FOOTPRINTS: A SAFETY-GUARANTEED COLLISION-AVOIDANCE MODEL 2053

· cos θ(tk)−
(

LB

2
+ eleft(tk)

)
· sin θ(tk),

⌢y D(tk) = y(tk)− (LR + edown(tk))

· sin θ(tk)+
(

LB

2
+ eleft(tk)

)
· cos θ(tk). (32)

It is required that the embodied box A′B ′C ′D′

does not overlap with obstacles at (Nfe–1) moments
{tk |k = 1, . . . , Nfe − 1 } . Before ending this section,
we briefly present the principle to describe f p(z(t)) ⊂ ϒFREE
as algebraic inequalities via a triangle-area criterion introduced
in [7].

A collision between the rectangular embodied box
A′B ′C ′D′ and each obstacle should be avoided at
the (Nfe–1) collocation points. Without loss of generality,
the collision-avoidance constraint between the j th obstacle
and the embodied box A′B ′C ′D′ at tk is examined. If the
j th obstacle has N j vertices denoted as V j1, . . . , V jN j ,
a collision begins when a vertex of the obstacle hits the ego
vehicle’s embodied box A′B ′C ′D′ or vice versa, a vertex of
the embodied box hits in the obstacle. Hence, collisions will
not occur if 1) vertexes A′, B ′, C ′, and D′ are always located
out of the j th obstacle, and 2) each V jk (k = 1, . . . , N j)

always locate out of A′B ′C ′D′.
The generic constraint that a point Q = (xQ, yQ) locates

outside a convex polygon W1W2. . . Wm can be expressed as
an analytical inequality via the triangle-area criterion [7]:

S1QWmW1 +

m−1∑
l=1

S1QWl Wl+1 > S□W1W2. . . Wm , (33)

where S1 denotes the triangle area, and S□ denotes the area
of polygon W1W2. . . Wm. Suppose that the coordinate of Wl
is (xWl , yWl), each S1 is computed according to

S1QWl Wl+1 = 0.5 ·
∣∣xQ yWl + xWl yWl+1 + xWl+1 yQ

−xQ yWl+1 − xWl yQ − xWl+1 yWl
∣∣ . (34)

S□W1W2. . . Wm is a constant calculated by summing up multiple
triangle areas offline. The aforementioned conditions 1) and 2)
are summarized into the following inequalities using (34):

S1QV jN j V j1 +

N j−1∑
l=1

S1QV jl V j (l+1)
> S□V j1V j2. . . V jN j

,

∀Q ∈
{

A′, B ′, C ′, D′
}
. (35a)

S1QA′B′ + S1QB′C ′ + S1QC ′D′ + S1QD′A′ > S□A′B′C ′D′ ,

∀Q ∈
{

V j1, V j2, . . . , V jN j

}
. (35b)

In (35b), S□A′B′C ′D′ denotes the area of the embodied box,
thus

S□A′B′C ′D′ =
(
eup(tk)+ edown(tk)+ LR + LF

)
×

(
eleft(tk)+ eright(tk)+ LB

)
. (35c)

Applying (35) to all k = 1, . . . , Nfe − 1 and j = 1, . . . , Nobs
yields the complete collision-avoidance constraints. By enforc-
ing the ego vehicle’s (Nfe–1) embodied footprints to be
collision-free, the ego vehicle’s actual footprint will definitely
be safe at any a moment throughout t ∈ [0, T].

For brevity, the collision-avoidance constraints between
the embodied footprint A′B ′C ′D′ at tk and environmental
obstacles are abstracted as EmbodiedFootprints(tk) ≤ 0.

IV. TRAJECTORY PLANNING WITH EMBODIED
FOOTPRINTS

This section introduces a trajectory planner based on numer-
ical optimal control, embedded with the embodied footprints
proposed in the preceding section. We begin with an overall
algorithm architecture in Section IV-A before entering into the
detailed functions.

A. Overall Framework

The steps in the proposed trajectory planner are summarized
in the following pseudo-code.

Algorithm 1 Optimization-Based Trajectory Planning With
Embodied Footprints
Function tra j ← PlanT rajectory(task, map)

1. pathcoarse ← PlanCoarsePath(task, map);

2. [tra jcoarse, Nfe] ← AttachVelocity(pathcoarse);

3. ig← ConvertTrajToInitialGuess(tra jcoarse, Nfe);

4. N L P ← BuildNLP(task, map, Nfe);

5. sol ← SolveNLP(N L P, ig);

6. tra j ← ConvertSolutionToTraj(sol);
7. return;

In Line 1 of Alg. 1, the function PlanCoarsePath() is used
to search a coarse path that connects the initial and goal poses.
The inputs of PlanCoarsePath() include task and map: task
refers to the initial and goal configurations while map presents
the environmental layout and obstacle location information.
The output of PlanCoarsePath() is a coarse path pathcoarse
presented by a sequence of waypoints.

In Line 2 of Alg. 1, AttachVelocity() attaches a time course
along pathcoarse to build a coarse trajectory tra jcoarse. It is
worth emphasizing that AttachVelocity() also decides Nfe,
i.e. the number of collocation points. This is a significant
highlight and innovation of this study because our method
provides a quantitative estimation of the collocation point scale
before solving the NLP problem, which means we resolve
the non-collocation error issue without any need to deploy
a trial-and-error strategy. Concrete principle of the function
AttachVelocity() is introduced in Section IV-B.

In Line 3, the coarse trajectory is converted to an initial
guess ig, which contains all state and control variables in their
discretized forms.

An NLP is built via BuildNLP() in Line 4 of Alg. 1.
The detailed principles of this function will be introduced in
Section IV-B.

After solving the formulated NLP via a gradient-based
optimizer in Line 5, we convert the derived solution sol to
an optimized trajectory traj, which is the final output of
Alg. 1.

2054 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

B. Velocity Generation in Initial Guess

This subsection presents the principle of AttachVelocity
In the first step, we assign a kinematically feasible and
time-optimal velocity profile to the coarse path. This is
achieved by solving a one-dimensional OCP via Pontryagin’s
Maximum Principle. Using this method, we obtain a coarse
trajectory preliminarily.

The second step starts from resampling along the derived
coarse trajectory densely. The values of state and control
profiles, together with the time stamp, are recorded in each
densely resampled waypoint. The first waypoint wp0 refers
to the one at t = 0, i.e., wp0.t = 0. Thereafter, one checks
if the second waypoint wp1 satisfies a relaxed version of the
prerequisites (23d), (30b), and (31) with

κk = wp0.κ,

sk = wp0.v ·
(
wp1.t− wp0.t

)
. (36)

Herein, the prerequisites (23d), (30b), and (31) are relaxed via
a user-specified slack variable 0 < λ < 1:

|κk | · sk ≤ λ ·
π

2
, (37a)

|κk | · LF · tan (sk · |κk |) ≤ λ ·

(
1+

LB

2
· |κk |

)
,

(37b)(
1+

LB

2
· |κk |

)
· tan (sk · |κk |) ≤ λ · (LR · |κk |) . (37c)

The usage of λ serves to relax the right sides of inequalities
(23d), (30b), and (31). As a result, (37) becomes a stricter
version of these prerequisites (the reason to use λ is explained
later).

Since the waypoints are densely resampled, wp1 may not
violate the prerequisites (37). If so, one continues to check
wp2, wp3, etc. until a violating waypoint wpm is found, which
means wpk−1 is the last valid one (m > 1). Let us discard
the intermediate waypoints between wp0 and wpm−1. After
that, we treat wpm−1 like wp0 and repeat the aforementioned
operations until the last resampled waypoint is reached. The
waypoints that survive from the discard operation are no
longer equidistant along the time dimension, but they do form
a coarse trajectory tra jcoarse. The number of waypoints in
tra jcoarse is regarded as the number of collocation points (Nfe
+1).

Before the end of this subsection, the reason for intro-
ducing λ in (37) is presented. Recall that the criterion to
discard resampled waypoints in AttachVelocity() influences
the setting of Nfe. If one uses the nominal criterion (23d),
(30b), and (31), then each (tk+1− tk) is close to its maximum
allowable value. This results in the gross waypoint number of
the initial guess being nearly minimized. If one sets Nfe to
such a low value, then the flexibility in the NLP would be
insufficient. More specifically, every change made in κ or v

during the optimization process may need a smaller bound on
(tk+1− tk), which requires a sufficiently large Nfe. Therefore,
setting Nfe too small easily causes an NLP solution failure.
The introduction of λ ∈ (0,1) in (37) sets a stricter condition

than the nominal one, which makes Nfe larger and thus brings
more flexibility to the NLP solution process.

C. NLP Formulation

This subsection presents the NLP formulation, which is
comprised of a cost function J and the discretized state and
control variables located on (Nfe + 1) collocation points. The
NLP problem is written in the following form:

minimize
zi ,ui ,ti

J (zi , ui , ti) ,

s.t., vehicle kinematic constraints;
two-point boundary value constraints;
embodied-footprint constraints. (38)

Herein, the vehicle kinematic constraints refer to the dis-
cretized version of the differential equations (2) together
with bounding constraints (3). For example, the differential
equations in (2) are discretized in the following form:

zi = f (zi−1, ui−1, ti−1) , i = 1, . . . , Nfe. (39)

The two-point boundary-value constraints are imposed on the
first and last collocation points for the state/control profiles.
The remainder of this subsection elaborates on the embodied-
footprint constraints, which are used to replace the nominal
collision-avoidance constraints f p(zi) ⊂ ϒFREE.

The embodied-footprint constraints are only applied to the
collocation points indexed from 1 to (Nfe–1). This is because
the collocation points indexed 0 and Nfe correspond to the
initial and final positions, which are assumed to be free from
collisions. It is worth noting that the collocation points are not
forced to be equidistant along [0, T] in our formulated NLP.
Instead, one only requires the collocation points to be ordered:

t0 = 0, tNfe = T, (40a)
tk−1 ≤ tk, k = 1, . . . , Nfe. (40b)

Additional decision variables tk, κk, sk, eleftk, erightk, eupk,

edownk,
⌢x Ak,

⌢x Bk,
⌢xCk,

⌢x Dk,
⌢y Ak,. . . , ⌢y Dk are introduced in the

NLP together with constraints (29), (23d), (30b), (31),

κk = 1/LW · tan φk, (40c)
sk = vk · (tk+1 − tk), (40d)

and

EmbodiedFootprints(tk) ≤ 0. (40e)

In summary, the embodied-footprint constraints consist of
(23d), (30b), (29), (31), and (40), which enable our method to
plan safe trajectories. It is worth noting that the prerequisites
(23d), (30b), and (31) must be satisfied, as our definition of
embodied footprints would otherwise be incorrect. However,
these prerequisites, which we actively incorporate as con-
straints in the NLP to ensure they are met, should not be
viewed as a deficiency in our planner. In other words, the NLP
solver will automatically adjust the decision variables to meet
these prerequisites, so users need not verify their fulfillment

LI et al.: EMBODIED FOOTPRINTS: A SAFETY-GUARANTEED COLLISION-AVOIDANCE MODEL 2055

Fig. 8. Footprints associated with optimized trajectories derived by our proposed trajectory planner: (a) Case 1 with Nfe = 117; (b) Case 2 with Nfe = 124;
(c) Case 3 with Nfe = 105.

prior to utilizing our planner. In fact, the efficiency of our
proposed trajectory planner only hinges on three assumptions:

1) In discretizing the OCP into an NLP, the state and control
variables are piecewise constant.

2) The ego vehicle does not go backward during the driving
process.

3) The geometrics and kinematics of the ego vehicle satisfy
2LW > LB · tan φmax.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

Simulations and field tests were conducted to validate the
completeness, solution optimality, solution speed, application
scope, and closed-loop tracking performance of our proposed
trajectory planner.

A. Simulation Setup

Simulations were performed in MATLAB (R2023a) and
executed on an i9-9900 CPU that runs at 2 × 3.10GHz.
IPOPT [29] is applied in the MATLAB+AMPL environ-
ment [30] as the NLP solver. The linear solver embedded
in IPOPT is chosen as MA27 from the Harwell Subrou-
tine Library (HSL) [31]. Hybrid A∗ search algorithm [4] is
adopted as the sampling-based path planner in the function
PlanCoarsePath() of Alg. 1.

The OCP’s cost function is defined as the completion
time of the driving process. Typically, one might define the
cost function as a weighted sum of both time efficiency
and trajectory smoothness. However, by focusing purely on
time optimality in the OCP, planned trajectories move closer
to barriers and/or vertices of obstacles, providing a better
demonstration of our proposal’s collision-avoidance ability.
In seeking time optimality, an intuitive idea is to define the cost
function as J = T , but such a definition makes the Hessian
matrix of the cost function too sparse because T is only related
to tNfe . As a remedy for this issue, we define J quadratically
so that it optimizes the gross time while also minimizing the
differences between adjacent collocation points:

J =
∑Nfe−1

k=0
(tk+1 − tk)2. (41)

A 30m×30m virtual workspace filled with static polygonal
obstacles was constructed. Parametric settings are outlined in

TABLE I
PARAMETRIC SETTINGS FOR SIMULATIONS

Table I. Notably, the basic assumption 2LW > LB · tan φmax
holds, thereby justifying the use of our proposed planner in
this context.

B. Simulation Results and Discussions

Three distinct simulation cases were established, each char-
acterized by environmental obstacles with sharp vertices.
These cases were designed specifically to probe the ability
of our planner to successfully avoid obstacles throughout
the driving process. Fig. 8 depicts the optimized trajectories
together with the footprints. These footprints, densely resam-
pled between adjacent collocation points, do not overlap with
the environmental obstacles, validating the efficacy of our
proposed trajectory planner.

Within Fig. 8, the collocation points are marked as red dots
along the optimized trajectory. Notably, these points are not
equally spaced in the time horizon. Concentrating on Case 3,
we provide a further depiction of the optimized 1tk ≡ tk+1−tk
alongside their initially guessed values in Fig. 9. As can
be seen from this figure, our trajectory planner generates
collocation points that are not uniformly distributed along
the time dimension. Additionally, the trends observed for the
optimized 1tk and their initially guessed values are similar,
suggesting the effectiveness of AttachVelocity Additionally,
the optimized {1tk} exhibits better uniformity, showing the
effectiveness of the employed cost function (41).

2056 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

TABLE II
COMPARATIVE SIMULATION RESULTS AMONG FOUR PLANNERS

Fig. 9. Comparison between initially guessed and optimized time subinterval
durations

{
1tk

∣∣1tk ≡ tk+1 − tk
}

in Case 3.

Case 2 serves as an example in our examination of how
the user-specified parameter λ influences trajectory planning
performance. Fig. 10 displays the optimized T values under
various λ ranging from 0.65 to 1.00. As we observe, T
generally increases with λ . The rationale for this trend is
as follows. Recall that λ is utilized in AttachVelocity() to
estimate the distribution of collocation points [refer to (37) in
Section IV-B] and Nfe is also determined then. Consequently,
a larger λ results in a smaller Nfe, and vice versa. When
Nfe is larger, 1tk is generally smaller, bringing the size of
the embodied footprint closer to the actual footprint. This
makes the proposed planner less conservative and enhances
time optimality, which explains why a descending trend is
observed in the optimized T as λ decreases.

Our proposed trajectory planner is evaluated alongside
existing optimization-based trajectory planners, including the
naive NLP method [7], the Lightweight Iterative Optimization
Method (LIOM) [1], and VPF [25]. The naïve NLP method is
identical to our approach except that the embodied footprint
constraints in the NLP (38) are replaced with the nomi-
nal collision-avoidance constraints applied to the collocation
points. LIOM employs multiple discs to cover the rectangular
vehicle body, thus creating buffers to mitigate non-collocation
errors. The VPF method was mentioned in Section I-A. When
implementing VPF, we strictly follow the pseudo codes and
parametric settings in [25]. To ensure fairness in comparison,
the number of collocation points in the naïve NLP method,
LIOM, or VPF is set to match the value identified by our
proposed planner in each case. Thus, the collocation point
number remains identical throughout all four planners for each
trajectory planning case.

The results of the comparative simulations are summa-
rized in Table II. Here, “completeness” refers to whether a
planned trajectory can successfully mitigate non-collocation
errors. As shown in the table, the naïve NLP method fails
to achieve completeness in two cases. Using Case 2 as an

Fig. 10. Migration of optimized T with user-specified slack multiplier λ in
Case 2.

Fig. 11. Footprints associated with an optimized trajectory that is derived by
naïve NLP planner in Case 2. Note that collocation points distribute uniformly
along time horizon.

example, Fig. 11 highlights minor collisions between adja-
cent collocation points, thus showing the limitation of the
naïve NLP method and reaffirming our motivation for this
research. Although LIOM operates swiftly, it produces overly
conservative trajectories, as reflected by the optimized T in
each case. VPF is less conservative because its optimized T
closely matches that of the naïve NLP method. However, VPF
runs slowly as it seeks to determine a valid enlarged box
around the ego vehicle’s actual footprint in a trial-and-error

LI et al.: EMBODIED FOOTPRINTS: A SAFETY-GUARANTEED COLLISION-AVOIDANCE MODEL 2057

Fig. 12. Comparison among trajectories optimized by four planners.

mode by solving intermediate NLPs iteratively. We showcase
the trajectories optimized by the four planners in Fig. 12
using Cases 2 and 3 as examples, which are in line with our
aforementioned analysis.

Upon examining Fig. 12, some readers might argue that
VPF offers better solution optimality than our planner because
VPF is less conservative. To respond to this concern, we define
a new case by adding several static obstacles to Case 3, thus
making the environment tighter. Fig. 13a shows the optimized
trajectory along with the densely resampled footprints from
our proposed planner, whereas VPF, LIOM, and the naïve NLP
method fail in that case. Recall that LIOM deploys multiple
discs to model the ego vehicle’s rectangular footprint. This
would render a too large buffer region around the ego vehicle
to hinder a narrow passage traverse. That is why LIOM did
not work in tiny scenarios. Conversely, the naïve NLP method
exits with an optimal trajectory successfully, but the derived
trajectory is found to be invalid because it involves non-
collocation errors. The failure of VPF is explained as follows.
VPF employs a trial-and-error strategy, which starts with
solving the naïve NLP problem. If the derived trajectory leads
to collisions between adjacent collocation points, then the ego
vehicle’s footprint is laterally expanded quantitatively in hopes
of reducing collisions in the next iteration with this enhanced
buffer. In VPF, a variable αgcf ≥ 1.0 is deployed to describe
the quotient of the laterally expanded width divided by the
nominal width. According to the monotony policy listed in
[25], VPF exits once the calculated αgcf is found to be smaller
than that derived in a preceding cycle. In our simulation, αgcf
used to be 1.0016 and later got updated to 1.0012, which made
VPF exited with a derived optimal solution. However, we find
that the derived trajectory involves non-collocation errors, thus
the output of VPF is invalid (Fig. 13b). Even without such a
monotony policy, VPF is still inefficient to deal with narrow
passages when a passage width happens to be smaller than
the laterally expanded buffer. At this point, VPF lacks enough
flexibility to fight against non-collocation errors. By contrast,
our planner does not suffer from such a limitation.

Fig. 13a plots the distribution of collocation points along the
optimized trajectory, indicating that the collocation points are

Fig. 13. Comparison between this work and VPF in an enhanced version of
Case 3. Note that the black obstacles are newly added to make this new case
distinct from Case 3. (a) Footprints associated with an optimized trajectory
derived by our proposed planner; (b) Footprints associated with an output
trajectory (invalid) derived by VPF.

densely packed near the bottleneck regions. This is not deter-
mined by users but by the NLP solution process itself. In other
words, our planner knows how to distribute collocation points
to navigate narrow passages safely. If the passages are really
tiny, the NLP solution process knows to slow down with slim
steering angles there so as to make the embodied footprints
close to the actual footprints there. This unique advantage of
our proposed planner clearly demonstrates that tackling narrow
passages in a trial-and-error mode is not a complete solution.

2058 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Fig. 14. Workspace layout and indoor localization solution for field tests.

Fig. 15. Snapshots of closed-loop control performance when the ego vehicle
is tracking a planned open-loop trajectory, which is derived by a trajectory
planner with safe collision-avoidance constraints.

Fig. 16. Comparison between open-loop and closed-loop trajectories in field
test.

The results of the simulation cases dis-
cussed in this subsection can be found at
bilibili.com/video/BV1J94y1W7JY/. In these simulations, the
ego vehicle is bordered in green and the embodied footprint
is marked in red.

TABLE III
PARAMETRIC SETTINGS FOR FIELD TESTS

C. Field Test Setup, Results, and Discussions

Field tests were conducted on a small-sized autonomous
vehicle platform within a 1.75m × 1.20m indoor workspace,
as shown in Fig. 14. For the purpose of obstacle detection and
localization, six infrared sensors were deployed. Specifically,
reflective markers were affixed to the vertices of each polyg-
onal obstacle as well as the top of the self-driving vehicle.
The procedure involves infrared light sources emitting beams,
which are then captured by the infrared sensors after reflection
from the markers. This setup allows for the precise localization
of each marker [32].

The indoor infrared solution, provided by NOKOV®, was
implemented in this study. The infrared sensors from this
solution operated at a frequency of 60Hz. The data collected
for perception and localization was processed on a desktop
computer. This is where the trajectory planning codes, written
in C++, were compiled and executed. The trajectory planning
module ran once to generate an offline trajectory before the ego
vehicle initiated its movement. The precalculated trajectory,
along with the localization information, was transmitted from
the computer to the autonomous vehicle platform via ZigBee.
In regards to onboard tracking control, a Proportional-Integral-
Derivative controller was employed for longitudinal tracking,
while a Pure Pursuit controller was used for lateral tracking.
Each controller was set to a frequency of 10 Hz.

Parameters relevant to the vehicle’s kinematics and geome-
try are detailed in Table III. These parameters satisfy 2LW >

LB · tan φmax, thus confirming the suitability of the proposed
planner for the field tests.

Representative results of the field tests can be accessed via
the video link provided in Section V-B. Fig. 15 showcases
snapshots of the closed-loop tracking performance, signifying
that the planned open-loop trajectory is safe and easily track-
able, as further illustrated in Fig. 16.

VI. CONCLUSION

This paper has proposed a theoretical model for
safe collision-avoidance constraints for numerical optimal
control-based trajectory planners. We have named the pro-
posed model embodied footprint, drawing inspiration from the
emerging concept embodied intelligence from the AI research
field. We aim to capture the idea that the footprint model
of the ego vehicle proactively knows how to flexibly and

LI et al.: EMBODIED FOOTPRINTS: A SAFETY-GUARANTEED COLLISION-AVOIDANCE MODEL 2059

autonomously set its buffer scale rather than reactively making
adjustments in a feedback or trial-and-error manner.

The proposed method can be further extended to deal
with precision-aware motion planning problems in other
robotics-related fields other than autonomous driving. The
proposed modeling method may also work as a fast collision
checker that only needs to examine a small number of way-
points along a to-be-checked path or trajectory.

Our future work is to further extend the current study so
that reverse driving conditions are enabled, which are simply
symmetric to the analyses in this paper, though.

REFERENCES

[1] B. Li, Y. Ouyang, L. Li, and Y. Zhang, “Autonomous driving on curvy
roads without reliance on Frenet frame: A Cartesian-based trajectory
planning method,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9,
pp. 15729–15741, Sep. 2022.

[2] B. Li, Y. Ouyang, X. Li, D. Cao, T. Zhang, and Y. Wang, “Mixed-
integer and conditional trajectory planning for an autonomous mining
truck in loading/dumping scenarios: A global optimization approach,”
IEEE Trans. Intell. Vehicles, vol. 8, no. 2, pp. 1512–1522, Feb. 2023.

[3] F. Gao, Y. Han, S. Eben Li, S. Xu, and D. Dang, “Accurate pseu-
dospectral optimization of nonlinear model predictive control for
high-performance motion planning,” IEEE Trans. Intell. Vehicles, vol. 8,
no. 2, pp. 1034–1045, Feb. 2023.

[4] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for
autonomous vehicles in unknown semi-structured environments,” Int. J.
Robot. Res., vol. 29, no. 5, pp. 485–501, Apr. 2010.

[5] C. Pek and M. Althoff, “Fail-safe motion planning for online verification
of autonomous vehicles using convex optimization,” IEEE Trans. Robot.,
vol. 37, no. 3, pp. 798–814, Jun. 2021.

[6] P. Scheffe, T. M. Henneken, M. Kloock, and B. Alrifaee, “Sequential
convex programming methods for real-time optimal trajectory planning
in autonomous vehicle racing,” IEEE Trans. Intell. Vehicles, vol. 8, no. 1,
pp. 661–672, Jan. 2023.

[7] B. Li and Z. Shao, “A unified motion planning method for parking
an autonomous vehicle in the presence of irregularly placed obstacles,”
Knowl.-Based Syst., vol. 86, pp. 11–20, Sep. 2015.

[8] A. V. Rao, “A survey of numerical methods for optimal control,” Adv.
Astron. Sci., vol. 135, no. 1, pp. 497–528, Aug. 2009.

[9] S. Vasantharajan and L. T. Biegler, “Simultaneous strategies for
optimization of differential-algebraic systems with enforcement of
error criteria,” Comput. Chem. Eng., vol. 14, no. 10, pp. 1083–1100,
Oct. 1990.

[10] K. Kaczmarski, M. Mazzotti, G. Storti, and M. Morbidelli, “Modeling
fixed-bed adsorption columns through orthogonal collocations on mov-
ing finite elements,” Comput. Chem. Eng., vol. 21, no. 6, pp. 641–660,
Feb. 1997.

[11] B. Li, H. Zhang, W. Zheng, and L. Wang, “Spacecraft close-range trajec-
tory planning via convex optimization and multi-resolution technique,”
Acta Astronautica, vol. 175, pp. 421–437, Oct. 2020.

[12] T. Schoels, P. Rutquist, L. Palmieri, A. Zanelli, K. O. Arras,
and M. Diehl, “CIAO*: MPC-based safe motion planning in pre-
dictable dynamic environments,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 6555–6562, 2020.

[13] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time Gaussian process motion planning via probabilistic inference,” Int.
J. Robot. Res., vol. 37, no. 11, pp. 1319–1340, Sep. 2018.

[14] B. Li and Z. Shao, “Simultaneous dynamic optimization: A trajectory
planning method for nonholonomic car-like robots,” Adv. Eng. Softw.,
vol. 87, pp. 30–42, Sep. 2015.

[15] X. Zhou, Z. Wang, X. Wen, J. Zhu, C. Xu, and F. Gao, “Decentralized
spatial–temporal trajectory planning for multicopter swarms,” 2021,
arXiv:2106.12481.

[16] B. Li et al., “Optimization-based trajectory planning for autonomous
parking with irregularly placed obstacles: A lightweight iterative
framework,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8,
pp. 11970–11981, Aug. 2022.

[17] Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization approach
to smooth trajectories for motion planning with car-like robots,” in Proc.
54th IEEE Conf. Decis. Control, Dec. 2015, pp. 835–842.

[18] B. Li, Y. Zhang, T. Acarma, Q. Kong, and Y. Zhang, “Trajectory
planning for a tractor with multiple trailers in extremely narrow envi-
ronments: A unified approach,” in Proc. Int. Conf. Robot. Autom.,
May 2019, pp. 8557–8562.

[19] G. Van Den Bergen, “Proximity queries and penetration depth compu-
tation on 3D game objects,” in Proc. Game Developers Conf., vol. 170,
2001, pp. 1–17.

[20] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff,
“CommonRoad drivability checker: Simplifying the development and
validation of motion planning algorithms,” in Proc. IEEE Intell. Vehicles
Symp., Oct. 2020, pp. 1013–1020.

[21] J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” Int. J. Robot. Res., vol. 33, no. 9,
pp. 1251–1270, Aug. 2014.

[22] A. Scheuer and T. Fraichard, “Continuous-curvature path planning for
car-like vehicles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. Innov.
Robot. Real-World Appl., Sep. 1997, pp. 997–1003.

[23] N. Ghita and M. Kloetzer, “Trajectory planning for a car-like robot by
environment abstraction,” Robot. Auto. Syst., vol. 60, no. 4, pp. 609–619,
Apr. 2012.

[24] B. Li and Z. Shao, “Precise trajectory optimization for articulated
wheeled vehicles in cluttered environments,” Adv. Eng. Softw., vol. 92,
pp. 40–47, Feb. 2016.

[25] Z. Zhang et al., “A guaranteed collision-free trajectory planning method
for autonomous parking,” IET Intell. Transp. Syst., vol. 15, no. 2,
pp. 331–343, Feb. 2021.

[26] D. S. Yershov and E. Frazzoli, “Asymptotically optimal feedback plan-
ning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive
mesh refinement,” Int. J. Robot. Res., vol. 35, no. 5, pp. 565–584,
Apr. 2016.

[27] W. Chen, Y. Ren, G. Zhang, and L. T. Biegler, “A simultaneous approach
for singular optimal control based on partial moving grid,” AIChE J.,
vol. 65, no. 6, pp. 1–10, Jun. 2019.

[28] B. Li, T. Acarman, Y. Zhang, L. Zhang, C. Yaman, and Q. Kong,
“Tractor-trailer vehicle trajectory planning in narrow environments with
a progressively constrained optimal control approach,” IEEE Trans.
Intell. Vehicles, vol. 5, no. 3, pp. 414–425, Sep. 2020.

[29] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, no. 1, pp. 25–57, Mar. 2006.

[30] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. South San Francisco, CA,
USA: Scientific Press, 2003.

[31] HSL. A Collection of Fortran Codes for Large Scale Scien-
tific Computation. Accessed: Jun. 27, 2014. [Online]. Available:
http://www.hsl.rl.ac.uk/

[32] B. Li et al., “Sharing traffic priorities via cyber–physical–social intel-
ligence: A lane-free autonomous intersection management method in
metaverse,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 53, no. 4,
pp. 2025–2036, Apr. 2023.

Bai Li received the B.S. degree from Beihang
University, China, in 2013, and the Ph.D. degree
from Zhejiang University, China, in 2018. From
November 2016 to June 2017, he visited the Uni-
versity of Michigan, Ann Arbor, USA, as a Joint
Training Ph.D. Student. He is currently an Associate
Professor with the College of Mechanical and Vehi-
cle Engineering, Hunan University, China. Before
teaching with Hunan University, he was with JDX
Research and Development Center of Automated
Driving, JD Inc., China, as an Algorithm Engineer,

from 2018 to 2020. He has been the first author of more than 80 jour-
nal/conference papers and two books in numerical optimization, motion
planning, and robotics. His research interest is optimization-based motion
planning for autonomous driving. He was a recipient of the International
Federation of Automatic Control (IFAC) Best Journal Paper Prize from
Engineering Applications of Artificial Intelligence (2014–2016). He received
the 2022 Best Associate Editor Award of IEEE TRANSACTIONS ON
INTELLIGENT VEHICLES. He is currently an Associate Editor of IEEE
TRANSACTIONS ON INTELLIGENT VEHICLES.

2060 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Youmin Zhang (Fellow, IEEE) is a Professor
with the Department of Mechanical, Industrial,
and Aerospace Engineering, Concordia University,
Canada. He has published eight books and over
600 journal and conference papers. His research
interests are in the areas of monitoring, diagno-
sis, and physical fault/cyber-attack tolerant/resilient
control, guidance, and navigation; and the con-
trol of unmanned systems and smart grids, with
applications to forest fires and smart cities in the
framework of cyber-physical systems by combin-

ing with remote sensing techniques. He is a fellow of CSME; a Senior
Member of AIAA; the President of the International Society of Intelligent
Unmanned Systems (ISIUS), from 2019 to 2022; and a technical committee
member of several scientific societies. He has been the Editor-in-Chief (EIC)
and the Editorial Advisory Board Member of several journals, including
a Board Member of Governors and Representatives of Journal of Intelli-
gent and Robotic Systems; an Associate Editor of IEEE TRANSACTIONS
ON INDUSTRIAL ELECTRONICS, IEEE TRANSACTIONS ON NEURAL NET-
WORKS AND LEARNING SYSTEMS, IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS—II: EXPRESS BRIEFS, IET Cyber-Systems and Robotics,
Unmanned Systems, and Security and Safety; and the Deputy EIC of Guidance,
Navigation and Control.

Tantan Zhang received the B.S. degree from Hunan
University, Changsha, China, in 2012, the double
M.S. degrees from Politecnico di Torino, Turin, Italy,
and Tongji University, China, in 2015, and the Ph.D.
degree from Politecnico di Torino in 2020. He is
currently an Assistant Professor with the College of
Mechanical and Vehicle Engineering, Hunan Univer-
sity. His research interests include motion planning
of automated vehicles.

Tankut Acarman received the Ph.D. degree in
electrical and computer engineering from Ohio
State University, Columbus, OH, USA, in 2002.
He is a Professor and the Head of the Depart-
ment of Computer Engineering, Galatasaray Uni-
versity, Istanbul, Turkey. He is the coauthor of
the book entitled Autonomous Ground Vehicles.
His research interests include aspects of intelligent
vehicle technologies, driver assistance systems, and
performance evaluation of inter-vehicle communi-
cation. He serves as a Senior Editor for IEEE

TRANSACTIONS ON INTELLIGENT VEHICLES.

Yakun Ouyang received the B.S. degree from Nan-
chang University, China, in 2020, and the master’s
degree from Hunan University, China, in June 2023.
His research interests include trajectory planning,
control, and software engineering of autonomous
vehicle systems. He was a recipient of the first prize
of the 2019 National University Students Intelligent
Car Race in China. He received the National Schol-
arship for Graduate Students in 2022.

Li Li (Fellow, IEEE) is currently a Professor with
the Department of Automation, Tsinghua University,
Beijing, China, working in the fields of artificial
intelligence, complex systems, intelligent trans-
portation systems, and intelligent vehicles. He has
published over 160 SCI-indexed international journal
articles and over 70 international conference papers,
as a first/corresponding author. He is a member of
the Editorial Advisory Board of the Transportation
Research Part C: Emerging Technologies and a
member of the Editorial Board of the Transport

Reviews and ACTA Automatica. He serves as an Associate Editor for IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS and IEEE
TRANSACTIONS ON INTELLIGENT VEHICLES.

Hairong Dong received the Ph.D. degree from
Peking University in 2002. She was a Visiting
Scholar with the University of Southampton in
2006 and The University of Hong Kong in 2008.
She was also a Visiting Professor with the KTH
Royal Institute of Technology in 2011. She is
currently a Professor with the Beihang Univer-
sity, State Key Laboratory of Rail Traffic Control
and Safety, Beijing Jiaotong University, China. Her
research interests include intelligent transportation
systems, automatic train operation, intelligent dis-

patching, and complex network applications. She is a fellow of the Chinese
Automation Congress and the Co-Chair of the Technical Committee on
Railroad Systems and Applications of the IEEE Intelligent Transportation
Systems Society. She serves as an Associate Editor for IEEE TRANSACTIONS
ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON
INTELLIGENT VEHICLES, IEEE Intelligent Transportation Systems Magazine,
and Journal of Intelligent and Robotic Systems.

Dongpu Cao received the Ph.D. degree from Con-
cordia University, Canada, in 2008. He is a Professor
with Tsinghua University, China. He has contributed
more than 200 papers and three books. His current
research interests include driver cognition, auto-
mated driving, and cognitive autonomous driving.
He received the SAE Arch T. Colwell Merit Award
in 2012, the IEEE VTS 2020 Best Vehicular Elec-
tronics Paper Award, and six best paper awards
from international conferences. He has served as the
Deputy Editor-in-Chief for IET Intelligent Transport

Systems; and an Associate Editor for IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTA-
TION SYSTEMS, IEEE/ASME TRANSACTIONS ON MECHATRONICS, IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE/CAA JOURNAL
OF AUTOMATICA SINICA, IEEE TRANSACTIONS ON COMPUTATIONAL
SOCIAL SYSTEMS, and ASME Journal of Dynamic Systems, Measurement,
and Control. He is an IEEE VTS Distinguished Lecturer.

