
1200 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Reference Tracking Optimization With Obstacle
Avoidance via Task Prioritization for

Automated Driving
Francesco Vitale and Claudio Roncoli

Abstract— Obstacle avoidance is a fundamental operation for
automated driving and its formulation traditionally originates
from robotics and decision making control fields. Given the high
complexity required to compute an obstacle-free trajectory, this
operation is usually demanded to a lower frequency planning
layer that provides then a trajectory reference to be followed by a
higher frequency control layer. As a result, whenever replanning
is needed (for example, due to a new detected obstacle), the
control layer must wait for a new planned trajectory to be
generated. In this paper, we propose a novel methodology to
approach obstacle avoidance already in the control layer, which
allows a prompter response. In particular, we show how obstacle
avoidance and reference tracking can be integrated, thus with no
need to switch among different controllers, based on a null-space
based behavioral control approach, implemented in a (possibly
nonlinear) model predictive control scheme. We demonstrate
practical implementation of the proposed methodology employing
two different vehicle dynamic models and in four different
(urban and highway) scenarios. Furthermore, we provide a
sensitivity analysis to understand how parameters choice affects
the automated vehicle behavior.

Index Terms— Obstacle avoidance, null-space based control,
model predictive control, automated driving, mixed traffic.

I. INTRODUCTION

AUTOMATED Vehicles (AVs) are making their way
through the automotive industry, while vast efforts are

devoted to research for safety [1], [2], common practices, and
new technologies [3]. Among the latter, a considerable amount
of work is related to sensing the environment, e.g., 3D object
detection [4] and sensor fusion [5]. Likewise, advances in
communication technologies, such as 5G [6], allow vehicular
communications [7], [8] giving rise to Connected and Auto-
mated Vehicles (CAVs).

CAVs are embraced with enthusiasm because of their poten-
tial improvement in terms of energy efficiency, environmental
sustainability [9], as well as safety impacts [10], [11]. At the

Manuscript received 26 November 2021; revised 19 August 2022,
18 January 2023, and 9 August 2023; accepted 25 August 2023. Date of publi-
cation 14 September 2023; date of current version 2 February 2024. This work
was supported by the Academy of Finland under Project ULTRA (328216)
and under Project ALCOSTO (349327). An earlier version of this paper
was presented at the 2021 European Control Conference (ECC) [DOI:
10.23919/ECC54610.2021.9654856]. The Associate Editor for this article was
T. Q. Dinh. (Corresponding author: Francesco Vitale.)

The authors are with the Department of Built Environment, School of Engi-
neering, Aalto University, 02150 Espoo, Finland (e-mail: francesco.vitale@
aalto.fi; claudio.roncoli@aalto.fi).

Digital Object Identifier 10.1109/TITS.2023.3312999

same time, however, new and more complex challenges arise
for the scientific and industrial community, such as how
to integrate them with conventional (human-driven) vehicles,
guarantee connectivity, update (physical and digital) infras-
tructures, integrate within traffic management strategies, and
develop vehicle real-time planning and control strategies (see,
e.g., [12], [13], [14], [15]).

A typical architecture for AV operations consists in a
hierarchical structure, where the trajectory/path planning layer,
which aims at generating a feasible route given a goal
and constraints dependent on the surrounding environment,
is implemented in the upper layer; whereas, a reference
tracking control layer, aiming at continuously minimizing the
error with respect to the planned trajectory, is implemented in
the lower layer [16].

Finding a collision-free path or trajectory for a mobile
agent has always been a topic of concern, because of the
increasing interest in mobile robots for various purposes such
as warehousing, automation industry, rough terrain explo-
ration, as well as AVs (see, e.g., [17], [18], [19]). Typically,
for applications such as AVs, similarly as for other mobile
robots, Obstacle Avoidance (OA) is handled at the higher
level of control in a hierarchical control system [20]. In such
settings, collision avoidance is more often treated as a trajec-
tory planning problem that provides the (lower level) control
loop with a collision-free trajectory or path for Reference
Trajectory Tracking (RTT). As a result, whenever a new
obstacle is detected, or when a monitored dynamic obstacle
has a discrepancy with respect to its predicted behavior,
a trajectory replanning procedure is needed in the guidance
loop. This implies that the agent’s response to the surrounding
environment is paced by the planning loop, which is typi-
cally slower than the low-level control loop, due to the high
complexity of such process, caused by the non-linearity of
the involved models and the non-convexity of the resulting
search problems [21]. To address trajectory planning, vari-
ous strategies, aiming at solving a collision-free trajectory
problem, have been proposed in different fields of mobile
robotics [22].

A widely used technique for OA is the Artificial Poten-
tial Field approach (see, e.g., [23], [24], [25], [26]), which
considers the agent moving in a field of forces, where the
target position is modeled as a minimum, while obstacles are
maxima. Obstacles may represent either objects that must be

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1008-416X
https://orcid.org/0000-0002-9381-3021

VITALE AND RONCOLI: REFERENCE TRACKING OPTIMIZATION WITH OA VIA TASK PRIORITIZATION 1201

avoided or rules that should be abided ([27], [28], [29]).
This intuitive, yet elegant, method is not free from problems
and, in [30], several issues were identified during experiments,
mainly due to attraction to local minima and oscillatory
behavior.

Moreover, search algorithms can be applied for obstacle-free
path planning, with the drawback of having to cope with
the high-dimensional states. The introduction of RRT [31]
and subsequent variants, including, in particular, randomized
algorithms [32], contributed to overcome such issues.

Another well-known search method for OA management
relies on the idea of Velocity Obstacle [33]. This method
consists in selecting avoidance maneuvers generated by agent
velocities outside of the velocity obstacle set, which includes
velocities that would lead to a collision with a given obstacle
at some point in the future. The trajectory from start to goal is
computed by searching a tree of feasible avoidance maneuvers,
computed at discrete time intervals. Different variants of this
technique have been further proposed, including [34], where
the Reciprocal Velocity Obstacle concept was introduced for
real-time multi-agent navigation. This new version assumes
that the other agents react by running a similar collision-
avoidance algorithm, guaranteeing safe and oscillation-free
motion for all agents.

Reachability-based methods have also been investigated
especially in an attempt to bridge the gap between safety and
real-time performance (see, e.g., [35], [36]). Another example
is [37], where funnel libraries are utilized to compute a suitable
trajectory while taking into account uncertainties.

Nonlinear Model Predictive Control (NMPC) [38] has been
exploited in many research works (e.g., [39], [40]), due to its
ability in managing nonlinear constraints in optimization prob-
lems, given by the dynamics of the vehicle and the geometry of
the OA task. In particular, for trajectory optimization, Mixed-
Integer Linear Program (MILP) has been explored [41], where
integer variables are used to define a geometrical area around
an agent at a given time instant, not to be accessed by any other
one. Nevertheless, integer variables in an optimization problem
complicate the process of finding a suitable solution, thus the
viability of such a method is subordinate to the specific solver
in use and the problem size [42].

Neural networks inspired other approaches for path plan-
ning, considering both static and moving obstacles, aiming
at making the decision process faster [43] and closer to
optimal [44].

Recent research works were devoted to improve the perfor-
mance of vehicles interacting with systems including uncer-
tainty. Among these, various approaches were investigated,
including: robust MPC [45], Gaussian probability distribu-
tion propagating along the nominal path [46], Markov pro-
cesses [47], [48], Monte Carlo dropout and bootstrapping [49],
and multi-modal constraint uncertainty [50].

Finally, reactive path following is an alternative approach
for the OA problem, where decisions are made directly at the
control lower level. This methodology usually comes with a
behavior-switching logic [51] that selects which algorithm to
trigger among a library of different options, including go-to-
goal, collision avoidance, etc.

A novel approach, which slightly differs from traditional
behavior-switching logic, was presented in [52], where the
Null-Space-Based (NSB) behavioral control was employed to
demonstrate how a proper composition of outputs based on
single elementary behaviors may be effective. The key point
is sorting tasks by their priority, so that the input of each task
is projected into the null-space of the higher-priority tasks.
A stability analysis of such a technique is provided in [53],
while another remarkable result in this context is discussed
in [54], where an input saturation management procedure was
used for a non-holonomic mobile robot. This latter method
derives from an effective intuition on how tasks input with
different priorities can be properly saturated so that they: a) are
compliant with the system physical constraints; and b) do not
cause degradation of higher tasks performance [55].

In this paper, we propose a novel approach to achieve
prompt, i.e., real-time, reactions to unplanned situations in
the context of vehicle control in road traffic. The proposed
method is composed of two ingredients, namely: a) an NSB
OA algorithm that determines proper velocities to perform
evasive maneuvers whenever obstacles are detected; and b) the
formulation of an NMPC problem where the underlying opti-
mization problem is subject to proper constraints taking into
account the velocities computed by the NSB OA algorithm.
Our contribution to this paper is fourfold:

a) we design a novel methodology to integrate an NSB
OA algorithm with reference tracking within an NMPC
framework;

b) we propose a novel formulation to identify the minimum
safety distance in a 2D environment;

c) we present how such a combination of techniques can be
implemented with different (vehicle) dynamic systems to
tackle different realistic road traffic scenarios;

d) we show the applicability of the proposed technique to
react promptly to abrupt obstacles with no need for an
immediate replanning of the reference trajectory.

In addition, it is worth noting that previous research works
have typically tested the NSB approach for autonomous mobile
robots whose physical and environmental constraints are less
restricting than those of a CAV. Therefore, to the best of
our knowledge, this is the first implementation of such a
technique considering road vehicles. The proposed minimum
safety distance gives the possibility to compute a 2D distance
and to employ it without much of a computation burden.
Indeed, a vast variety of spacing policies are available for the
sole longitudinal control [56], and, hence, they are suitable
for 1D operations. On the other hand, potential fields, which
are usually employed in lane-changing decision-making (as
for references above), consist of articulated formulations to
be managed by the optimization problem. Conversely, our
approach identifies a 2D spacing policy to return a simple
constant value before computing an instance of the optimiza-
tion problem. If such a minimum safety distance is violated,
then the OA constraint is constructed. An earlier version of
this work appeared in [57]. Here, we extend such work by
i) considering both a kinematic and a dynamic bicycle model
for the controlled vehicle; ii) including sensitivity analysis

1202 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

simulation experiments; iii) performing a comparison with a
state-of-the-art approach; and iv) showing the advantage of
using the proposed approach in terms of computation time,
improving the presentation regarding practical implementation,
and considering additional, more realistic traffic scenarios for
different circumstances that might be encountered.

This paper is structured as follows. In Section II, we present
the formulation of the proposed task priority management
method and we describe how to apply it for obstacle avoid-
ance; in Section III, we show how the two components of
this method are integrated. In Section IV, we show how to
implement our method for two different (vehicle) dynamic
models; while in Section V, we present and discuss simulation
results. Finally, Section VI summarizes the main findings of
this paper and introduces future challenges.

II. TASK PRIORITY

In order to manage both trajectory tracking and collision
avoidance operations according to priorities, we adopt the
tasks formulation proposed in [52]. First, the general math-
ematical formulation of a task is given (Section II-A), then it
is applied to the OA and stopping operations (Sections II-B
and II-C). Sections II-D and II-E propose strategies to combine
both operations, as well as some operating assumptions.

A. Mathematical Background

Let us introduce σ (t) ∈ Rm as the task variable to be
controlled and q(t) ∈ Rn as the system configuration vector,
where n and m are proper state and task dimensions. We can
express the task vector as a function of the system configura-
tion, namely

σ (t) = f (q(t)) , (1)

while its time derivative is

σ̇ (t) =
∂ f (q(t))

∂q
q̇(t) = J (q(t)) q̇(t), (2)

where J (q(t)) ∈ Rm×n is the configuration-dependent task
Jacobian matrix and q̇(t) ∈ Rn is the system velocity. We can
then introduce the task error vector as

σ̃ = σ des − σ , (3)

where the dependencies are dropped for the sake of readability,
and σ des ∈ Rm is the vector of desired values for the task
related to the motion reference qdes ∈ Rn . In order to avoid
the well-known problem of numerical drift, the system desired
velocity can be expressed in a Closed Loop Inverse Kinematics
(CLIK) version [58] as

q̇des = J # (σ̇ des +3σ̃) , (4)

where J # may be either the transpose or the pseudoinverse of
J , i.e., either J #

= J⊺ or J #
= J+ = J⊺(J J⊺)−1, depending

on the adopted strategy, and 3 ∈ Rm×m is a positive-definite
gain matrix.

Let us turn our attention to a regulation problem where
NT > 1 tasks are to be fulfilled. Denoting tasks as σ i ,

characterized by σ̇ i = 0, for i = 1, . . . , NT, we can rewrite (4)
as

q̇des = J #
1 31σ̃ 1 +

NT∑
i=2

N̄i−1 J #
i 3i σ̃ i , (5)

where

N̄i−1 = In×n − J̄ #
i−1 J̄i−1 (6)

is a projector in the null space of J̄i−1, In×n is the n × n
identity matrix, and J̄i−1 is the augmented task Jacobian, i.e.,

J̄i−1 =

J1
J2
...

Ji−1

 , (7)

which allows us to perform a so-called internal motion, that
is, we generate a motion of a robotic system without affecting
that of primary tasks [59].

B. Obstacle Avoidance

The proposed method abstracts the concept of an obstacle,
which may be whichever type of obstruction a vehicle may
find in its planned path, be it either idle or moving, a vehicle
or a person, a lane edge, or any other signal. The only care is
to make sure that the OA task related to such an obstacle has
a higher priority than the RTT task. Should the ego-vehicle
detect collisions with more than one obstacle, we may want
to consider: a) only the most dangerous one; b) all of them
using (5) and treating RTT as the lowest priority task while the
more dangerous an obstacle is, the higher priority it has in the
OA algorithm; c) a combination of the previous strategies, e.g.,
considering only some of the obstacles, etc., where the closer
to collision an obstacle is, the more dangerous it is considered.
In Section V, whenever needed, we consider as a primary
task the avoidance of another vehicle, while as a secondary
task the avoidance of the road boundaries. Such a choice is
motivated by solid results in the literature, including, e.g., [52]
and [54], thus, we do not focus further on this aspect. On the
other hand, we do focus on the novel part, which involves
the implementation of this approach in NMPC to perform our
simulations.

The obstacle avoidance operation can be tackled by impos-
ing an adequate distance between the ego-vehicle and the
obstacle. Such a distance should be carefully computed taking
into account the position, speed, and orientation of both.
It should be stressed that minimum safety distances for
vehicle control are typically constructed to perform longitu-
dinal control operations, such as, e.g., adaptive cruise control.
Therefore, while well-known methods are addressing 1-D
scenarios, we formulate here a novel method suitable for 2-
D applications. To accomplish this, we consider two ellipses
to define forbidden areas: one of them centered at the center
of gravity of the ego-vehicle and the other one centered at
the center of gravity of the obstacle. Ellipses are oriented so
that the major axis lies on the yaw direction of the object they
refer to. If the object is static, the yaw direction can be chosen

VITALE AND RONCOLI: REFERENCE TRACKING OPTIMIZATION WITH OA VIA TASK PRIORITIZATION 1203

Fig. 1. (a) The ego-vehicle (blue) computes its minimum safety distance to
the obstacle vehicle (red) as σdes = σego only. (b) The ego-vehicle computes
its minimum safety distance to the obstacle vehicle as σdes = σego + σobs,
given a higher risk of collision.

arbitrarily, e.g., the direction pointing towards the controlled
vehicle. The semi-major and semi-minor axes of the ellipse
are denoted as Lego and lego when referred to the ego-vehicle,
and Lobs and lobs when referred to the obstacle, respectively.
Omitting the dependence on the time step, we define Lego :=

0.5 s0 + vego1t + 0.5 aego1
2
t and lego := 0.5 s0 for the

ego-vehicle, and Lobs := 0.5 s0 + vobs1t + 0.5 aobs1
2
t and

lobs := 0.5 s0 for the obstacle, where s0 is a minimum safety
distance, 1t is the time sample, vego and aego are the speed and
acceleration of the ego-vehicle, respectively, and vobs and aobs
are the speed and acceleration of the obstacle, respectively.
Therefore, the resulting safety distance to be maintained (see
Fig. 1 for a clarification) is

σdes =
∑

i∈{ego, obs}

8

 L i li√
L2

i sin2 θi + l2
i cos2 θi

, θmax, s0

, (8)

where 8(·) is a saturation function defined as

8(x(θ), θmax, s0) =

{
x(θ), if |θ | <= θmax

0.5 s0, otherwise;
(9)

variable θego (θobs) denotes the angle between the position
of the obstacle (ego-vehicle) and the orientation of the ego-
vehicle (obstacle); and θmax is a maximum range angle
encompassing the feasible region of future input. Note that the
formula provided as an argument to 8(·) in (8) is the distance
between the center of an ellipse and the point on such ellipse
positioned at a θi angle. In addition, notice that 8(·) gives as
an output at least 0.5 s0, namely half of the minimum safety
distance, so that the summation in (8) will always result in
σdes ≥ s0.

We can now proceed formulating our tasks based on the
quantities introduced above. Let q = pego =

[
xego yego

]⊺ be
the position coordinates of the ego-vehicle, namely its state
configuration vector. We construct a task aiming at keeping a
given distance from the obstacle, thus

σ = f (pego) =
∥∥pego − pobs

∥∥ , (10)

while the desired distance is, e.g., σdes as in (8). Knowing
both σ and σdes, we can compute σ̃ from (3). It is then

straightforward to compute σ̇ (t) = J (pego(t))ṗego(t), where

J=
∂

√(
pego−pobs

)⊺ (
pego−pobs

)
∂pego

=
p⊺

ego−p⊺
obs∥∥pego−pobs

∥∥= p̂⊺
oe (11)

and p̂oe is the unit vector pointing from the position of the
center of gravity of the obstacle to that of the ego-vehicle.
The vector of velocities is then

q̇des = ṗego = (p̂⊺
oe)

#(3σ̃) (12)

and the projector in the null space of the OA task is therefore

N =
[
In×n − (p̂⊺

oe)
#p̂⊺

oe
]
. (13)

Recalling that the OA task should be considered with a
higher priority, while still tending to accomplish the RTT task,
we can define the control input as

ṗego = J⊺
obs3obsσ̃obs + Nobs J⊺

des3desσ̃des, (14)

where Jobs, 3obs, σ̃obs, and Nobs are the task Jacobian, gain,
error to a desired behavior, and null projector of the OA task,
respectively, while Jdes, 3des, and σ̃des are the task Jacobian,
gain, and error to a desired trajectory RTT task, respectively.

Hence, (14) summarizes the obstacle avoidance maneuver
strategy that will be considered as a constraint in our NMPC
problem (see Section III).

C. Defining Stopping Maneuvers as Obstacle Avoidance

Now we present an extension of (14) to handle the spe-
cial case of defining a task when a stopping maneuver is
clearly identified, e.g., when a vehicle approaches a red
traffic signal or any other contingency for which stopping is
deemed necessary by sensors (see section II-D). Before we
proceed, we present a graphical example illustrating how the
above-described task priority management algorithm combines
the OA and the RTT tasks. As we can observe in Fig. 2a,
if the two tasks agree on the input to give, [0, 1]⊺ in the
example, such an input remains unchanged. If the two tasks are
completely discordant, namely the OA input direction points
towards the anti-parallel direction [0,−1]⊺ with respect to the
RTT desired input, then the RTT task is ignored, while not all
of the final control inputs lie in the feasible region, denoted
by the gray triangle. A first way to overcome this issue is to
let the optimization problem in the subsequent NMPC find the
control input within the feasible region. However, in such a
way, there is no guarantee that the optimal solution is indeed
the most appropriate for a given stopping scenario. A possible
solution could employ a different projection method, like the
one illustrated in Fig. 2b, where all the feasible inputs do not
change, while only the unfeasible ones are projected to obtain
a feasible and suitable control. As we can see, the completely
discordant OA task control is projected onto the 0 velocity.
Theoretically, this would mean that providing the completely
discordant control input would be enough to effectively brake
in front of a stopping signal. Of course, this strategy is
inadmissible in a real-world scenario where not only do we
need an infinite precision to provide a completely discordant
control input, but we also need an infinite precision in the

1204 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Fig. 2. Example of mapping of primary task velocities towards the final ones, given a secondary task velocity. The ego-vehicle (centered at [0, 0]⊺) is
required to drive with desired speed [0, 1]⊺. All dots around its position are possible (OA yielded) primary task velocity unit vectors. (a) Lines joining OA
velocities with other points are mappings of the primary task, considering the secondary one, to the resulting final input velocity as in (14). (b) Mapping of
primary task velocities towards the final velocities and saturated to the feasible region, given a secondary task velocity pointing upward.

projection process as well. Nonetheless, we can still take
advantage of this algorithm by assigning the higher priority
task input to 0 and the null projector to the all-zeros matrix
to force a braking maneuver.

D. Dealing With Complex Driving Scenarios

A combination of the previous two solutions to OA and
stopping scenarios may be implemented to cope with a wide
amount of cases. For example, suppose that we predefine a
“giving way to vehicles from the right” rule. Then, whenever
a vehicle from the right is predicted to intersect the ego-vehicle
trajectory, it is possible to: a) apply the stopping algorithm as
far as the vehicle is still on the right; and b) eventually apply
the OA algorithm to safely continue on the desired direction.

E. Obstacles Measurement Assumptions

A prediction for future states of an obstacle is retrievable
either by direct communication with it, e.g., if vehicles are
connected, or by some other prediction algorithm, considering,
e.g., the current state and constant speed and orientation for
the following time steps.

Finally, we assume that sensors are able to provide prelimi-
nary useful information. For example, if the controlled vehicle
sensed two obstacles too close to each other, so that it is not
possible to pass between them, they should be considered as
a single obstacle. This assumption, again, is quite reasonable,
considering currently available technologies [5], [60], [61].

III. PROPOSED ALGORITHMS

In this section, we introduce the proposed algorithms to
implement the problem described above. The block diagram
in Fig. 3 aims at clarifying the context where the proposed
method is assumed to operate, which is described hereafter.
The sensors block (S) provides internal measurements to the
navigation block (N) and external measurements to the mission
block (M); in this context, internal measurements include

Fig. 3. Schematic block diagram of the proposed framework: guidance (G),
control (C), navigation (N), mission (M), mission for guidance (MG), mission
for control (MC), actuators (A), sensors (S). The blocks implemented in this
work are grouped in the red dashed rectangle.

any quantity measured from the vehicle that are useful for
vehicle state estimation, while external measurements are the
ones originated from, e.g., cameras, radars, and LiDARs. The
navigation block (N) is assumed to implement an estimator
that is used to reconstruct the full (vehicle) system state. The
mission block (M) accommodates, in addition to external mea-
surements, possible communication with connected vehicles
infrastructures. It is divided into (MC) and (MG), which feed
the control block (C) and the guidance block (G), respectively,
with the corresponding required data. Block (G) employs the
full vehicle state estimate, as well as the foreseen tasks (i.e.,
tasks that are related to obstacles already detected that limit
the configuration space), to compute a trajectory reference that
is then fed to block (C). Block (C), besides the trajectory

VITALE AND RONCOLI: REFERENCE TRACKING OPTIMIZATION WITH OA VIA TASK PRIORITIZATION 1205

Algorithm 1 Algorithm to Run at Each NMPC Step
Require: ζ i , i ∈ {1, . . . , NPO} possible obstacles states, and

NMPC horizon H
Ensure: Updated vehicle state z

O ← ∅ ordered set of actual obstacles
for h ← 1 to H do

for k ← 1 to NPO do
Compute σ as in (10)
Compute σdes as in (8)
if σ ≤ σdes then

Insert ζ i into the proper position of O
end if

end for
Let NO ← |O|
Run Algorithm 2 (returns η1 +

∑NO
i=2

(
N̄i−1ηi

)
, N̄NO)

end for
Solve NMPC problem (15) instance at time t
Apply control input u1 at time t

reference, employs the full state estimate and any unforeseen
tasks (i.e., sudden obstacles or any obstacle that was not
considered in the trajectory planning), to generate the inputs
implemented in the actuators block (A). Note that blocks (C)
and (MC) run at a higher frequency than blocks (G) and (MG).
Typical values for the time sample of the (G) block are of the
order of tenths of a second, while for the (C) block, they are
smaller up to one order of magnitude less (see, e.g., [16],
[32], [50], [62], [63], [64]). In this paper, we focus on block
(C), for which Algorithm 1 is designed, and (MC), for which
Algorithm 2 is designed. Since the problem is solved in an
NMPC framework, both algorithms are supposed to run at
each control step.

Algorithm 1 describes all the calculations to be performed
at each control step. Vectors z and ζ i are the state vector
of the ego-vehicle and of the i th possible obstacle detected,
respectively. In what follows, we consider the state (control)
vector as the vector of all states (controls) stacked in time, i.e.,
z =

[
z1

1 · · · z j
1 · · · zn

1 z1
2 · · · z j

k · · · zn
H

]⊺
, where j = 1, . . . , n

denotes the different variables and k = 1, . . . , H represents the
different time of the receding horizon.

We formulate the NMPC problem as

min
z̃,ũ

1
2

z̃⊺Qz̃+
1
2

ũ⊺ Rũ

s.t. z ∈ Z, ū ∈ Ū,

zk+1 = f (zk, uk), ∀k = 1, . . . , H − 1

v = η1 +

NO∑
i=2

(
N̄i−1ηi

)
+ N̄NOuaux, (15)

where the state error from a reference vector is denoted as z̃ =
zdes− z and zdes is the state reference vector. Input error from
reference is given by ũ = ūdes−ū, where ū = [u, uaux]⊺ is the
augmented input vector calculated by solving the optimization
problem, and ūdes = [udes, vdes]⊺ is the augmented desired
input vector. Vectors uaux and vdes are an auxiliary vector
and the vector of desired velocities, respectively. These two

Algorithm 2 Obstacle Avoidance Algorithm
Require: z Vehicle states, O ordered set of obstacles states,

NO cardinality of O , and 3obs gains
Ensure: 6 := η1 +

∑NO
i=2

(
N̄i−1ηi

)
, and N̄NO

Let 6← 0
Let N̄NO ← In×n
if NO > 0 then

Extract ζ 1 from O and use it to:
Compute J1 and σ̃1 as in (11) and (3)
Let 6← J⊺

1 31σ̃1
Let N̄NO ← as in equation (13)
for i ← 2 to NO do

Extract ζ i from O and use it to:
Compute Ji and σ̃i as in (11) and (3)
Let 6← 6 + N̄i−1 J⊺

i 3i σ̃i
Let N̄NO ← as in equation (6)

end for
end if

latter vectors are deliberately defined generically, since they
can be adapted to the vehicle dynamic model in use (for
examples, see Section IV). Again, we consider the velocity
vdes as the vector of stacked desired velocities over time.
In the cost function, Q is a positive semidefinite matrix and
R is a positive definite matrix. Note that weights for desired
speed tracking are placed in the R matrix, while the Q matrix
values may be null at the corresponding entries. In particular,
we define Q := diag

{
qz1

1
, · · · , qzn

1
, qz1

2
, · · · , qzn

H

}
, where qz j

k

is the weight associated to state variable z j
k , and, similarly,

R := diag
{

rū1
1
, · · · , rūm

1
, rū1

2
, · · · , rūm

H

}
, where rū j

k
is the

weight associated to control variable ū j
k . The first constraint

guarantees that z and ū are in their respective feasible regions;
the second constraint is a discretized version of the vehicle
dynamic model; whereas the third constraint corresponds to
the result of the OA algorithm, returned from Algorithm 2,
where v is the set of stacked velocities over the time horizon
as it is defined in the state vector (whatever way it is defined),
ηi is the input yielded by the obstacle with priority i in the OA
algorithm, and N̄i is given by (6). Basically, we are allowing
an auxiliary velocity vector uaux to track the desired speed
vdes; then, projecting uaux into the null space of higher tasks
will eventually result in the final velocity; note that the latter
is part of the state vector. As a last remark, one may consider
excessive to perform the OA constraint at each NMPC time
step. Indeed, we could identify a check horizon H̄ smaller
than or equal to the control horizon. In such a case, the OA
constraint would be applied from the detection of an obstacle
to no more than H̄ time instants in the NMPC instance.
This aspect will be further investigated in a set of sensitivity
analysis experiments presented in Section V-B.

IV. SYSTEM DYNAMICS

We present here two vehicle models that can be incorporated
within our method. In particular, Section IV-A describes a
kinematic bicycle model and Section IV-B describes a dynamic

1206 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Fig. 4. (a) Kinematic bicycle model used in the simulations. (b) Dynamic bicycle model used in the simulations.

bicycle model. These dynamical models are chosen as exam-
ples to validate the proposed methodology. Indeed, both the
kinematic and dynamic models are broadly used in literature
for similar applications (see, e.g., [12], [65]), and, in particular,
the kinematic model is typically used for trajectory planning,
while the dynamic model is more employed for reference
tracking control. However, it is worth mentioning that also
different, more complex, models, have been investigated in
literature (see, e.g., [64]) and a strength of the proposed
method is that Problem (15) can be straightforwardly adaptable
to them. Note that, in both formulations, time dependency is
dropped for the sake of readability and, with abuse of notation,
all operations are meant component-wise.

A. Kinematic Bicycle Model

We consider the following kinematic bicycle model,
depicted in Fig. 4a, where (16)–(20) are from [66], and (21)
describes the OA task, defined as in (5):

ẋ = v cos(ψ + β) (16)
ẏ = v sin(ψ + β) (17)
v̇ = a (18)

ψ̇ =
v
lr

sin(β), (19)

with β = tan−1
(

lr
lf + lr

tan(δf)

)
, (20)[

v cosψ
v sinψ

]
=η1+

NO∑
i=2

N̄i−1ηi+ N̄NO

[
vaux cosψaux
vaux sinψaux

]
, (21)

where (x, y) is the ego-vehicle coordinate vector, v is the
speed, and ψ is the heading angle; all variables are referred
to a Cartesian global coordinate system. The angle between
the vehicle velocity and its longitudinal axis is denoted as β,
while a is the acceleration along the same direction. The
distance from the center of gravity of the vehicle to the front
and rear axles are denoted as lf and lr, respectively. Finally, δf
denotes the front steering angle, while the rear steering angle
is assumed to be null. In (21), ηi is the velocity obtained
to avoid the i th obstacle, NO is the number of obstacles to

be avoided, vaux and ψaux are the auxiliary inputs as already
discussed, and N̄i is the set of null projectors appropriately
stacked according to other vectors. For this system, the state
vector is z =

[
x⊺ y⊺ v⊺ ψ⊺]⊺ and the input vector is u =[

a⊺ β⊺ v⊺
aux ψ

⊺
aux

]⊺.

B. Dynamic Bicycle Model

We consider the following dynamic bicycle model, depicted
in Fig. 4, where (22)–(27) are from [66], and (28) describes
the OA task, defined as in (5):

Ẋ = vx cos(ψ)− vy sin(ψ) (22)

Ẏ = vx sin(ψ)+ vy cos(ψ) (23)

ψ̇ =
vx

lf + lr
tan(δf) (24)

mv̇x = Fx + mvyψ̇ − 2Fcf sin(δf) (25)

mv̇y = −mvx ψ̇ + 2 (Fcf cos(δf)+ Fcr) (26)

Izψ̈ = 2 (lfFcf cos(δf)− lrFcr) (27)[
vx
vy

]
= η1 +

NO∑
i=2

N̄i−1ηi + N̄NO

[
vxaux
vyaux

]
, (28)

where (X, Y) is the position vector in the global coordinate
system and, analogously for ψ orientation, vx and vy are the
longitudinal and lateral speed, while ψ̇ is the yaw rate. The
distance from the front axle and rear axle to the center of
gravity are lf and lr, respectively. The exerted force, the front
tire force, and the rear tire force are, respectively, Fx , Fcf, and
Fcr, given Fcf = Cf

(
δf − arctan

(
vy+lfψ̇

vx

))
, and Fcr = −

Cr arctan
(

vy−lrψ̇
vx

)
, where Cf and Cr are the cornering stiffness

of the front and rear tire respectively. In (28), ηi is the
velocity obtained to avoid the i th obstacle, NO is the number
of obstacles to be avoided, vxaux and vyaux are the auxiliary
inputs as already discussed, and N̄i is the set of null projectors
appropriately stacked according to other vectors. Here, the
state vector is z =

[
X⊺ Y⊺ ψ⊺ v⊺

x v⊺
y ψ̇

⊺
]⊺

and the input
vector is u =

[
a⊺ δ

⊺
f v⊺

xaux v⊺
yaux

]⊺.

VITALE AND RONCOLI: REFERENCE TRACKING OPTIMIZATION WITH OA VIA TASK PRIORITIZATION 1207

Fig. 5. (a) Four vehicles with intersecting desired trajectories deviate their paths to avoid collisions. Rectangles represent vehicles positions colored depending
on the time step they refer to (starting instant = light blue, final instant = dark blue). (b) Distances between each vehicle and the relative closest obstacle
throughout the simulation.

Fig. 6. (a) Overtaking maneuver considering only the vehicle in front as an obstacle. (b) The controlled vehicle and the obstacle vehicle never collide.
(c) Overtaking considering both the vehicle in front and the left boundary of the road as obstacles. (d) The controlled vehicle never collides with the obstacle
vehicle.

V. SIMULATION EXPERIMENTS

In this section, we present a set of simulation experiments
with the goal of evaluating the suitability and effectiveness
of the proposed method for different road traffic scenarios.
First, in Section V-A, we consider a warm-up scenario where
four vehicles, aligned along a circumference, are moving
towards the diametrically opposed point so that they are
expected to intersect their trajectories in the middle of their
path. Such a simulation, even though not realistic in traffic
situations, is widely employed when testing obstacle avoidance
algorithms (see, e.g., [34]). Then, in Section V-B, we present
a scenario characterized by an overtaking maneuver; in addi-
tion, for this scenario, we perform a sensitivity analysis to
assess the impact of parameters’ choice on the proposed
algorithm, discuss the computational aspects of the proposed
method, and present a comparison with a state-of-the-art

method. After that, we include two additional scenarios,
representative of different realistic traffic situations. In par-
ticular, in Section V-C, we investigate a giving way-turning-
overtaking scenario; while, in Section V-D, we consider a
lane drop in a multi-lane environment. Note that, besides
the specific settings, these last scenarios incorporates many
different behaviors that can be induced by our method, such as
stopping, giving way, and overcoming a sequence of obstacles.
Mastering these actions are, of course, indispensable for an AV
to move safely in a typical (urban) road environment.

All simulation experiments are performed utilizing forward
Euler discretized versions of the dynamical systems. Each
NMPC step time instant is in the order of a tenth of a second,
which is a commonly employed value for the dynamic bicycle
model (see, e.g., [65]). Whenever non-connected vehicles are
involved in the following, the controlled vehicle assumes

1208 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

TABLE I
PARAMETERS USED FOR THE DYNAMIC BICYCLE MODEL

they will maintain a constant speed and orientation for the
prediction horizon used in the NMPC.

A. Scenario 1: Simple Crossing

In this warm-up simulation experiment, we consider four
CAVs, which can communicate with one another to inform
about their future positions. The model we implement here is
the kinematic bicycle model (16)–(21). The desired trajectories
are set in such a way to all intersect at (0, 0). Fig. 5a shows
how vehicles properly deviate from their desired trajectory
to avoid collisions. The vertical color bar on the right side
confirms that vehicles positions do not overlap at any time
step. Notice that, in this case, only the closest obstacle was
considered to perform the evasive maneuver and, therefore,
no other traffic rule was considered; namely, vehicles were
not forced to overtake on a given side or avoid going out-
side boundaries. The proper functioning of our algorithm is
confirmed by inspecting Fig. 5, which shows that distances
between each vehicle and its relative closest obstacle is always
greater than a constant minimum safety distance.

B. Scenario 2: Overtaking Maneuver

An overtaking scenario is considered in this second sim-
ulation experiment. As a prediction within the NMPC, the
controlled AV assumes that the other vehicle (obstacle) moves
at constant speed and orientation. For this scenario, we employ
the dynamic bicycle model (22)–(28) with parameters defined
as in Table I.

First, we test a situation where the controlled vehicle
considers the sole vehicle in front as an obstacle, which
results in the ego-vehicle succeeding to perform the overtaking
maneuver. Fig. 6a shows that the trajectories of the vehicles
only intersect at different time instants (see the color bar on the
right for a clarified view), while Fig. 6b shows that the distance
between the two vehicles never goes below the minimum
safety distance. However, in practice, road boundaries restrict
the space where a vehicle is allowed to move. To address
that, we include road boundaries as additional obstacles by
considering a static (i.e., with zero velocity) virtual obstacle
on the left side of the controlled vehicle, which is present
at any time instant for which a collision with the edge is
detected. In this case, the ego-vehicle succeeds in performing
the overtaking maneuver while still remaining within the road
boundaries, as we can see from Figs. 6c and 6d. Indeed,
first the ego-vehicle detects a possible collision with another
vehicle, starting the overtaking maneuver as it identified there
is available space on the left side. Then, when the orientation
of the ego-vehicle reaches a value that could lead to a collision
with the left road boundary, the latter is seen as a second
obstacle and a corresponding constraint is activated. Once the
vehicle on the right is not seen as an obstacle anymore, the

TABLE II
ACCELERATION AND STEERING TO VARYING OF THEIR WEIGHTS

overtaking maneuver is completed and the ego-vehicle returns
to its nominal trajectory tracking behavior.

Sensitivity Analysis: It is important to understand how
parameters affect the results obtained via the proposed algo-
rithms. Therefore, we perform a sensitivity analysis to inves-
tigate the behavior of the proposed method for a set of
significant parameters, evaluating their impact on the results
in this scenario. In particular, we consider various values for
the receding horizon size, the cost function weights, and the
gain 3.

In Fig. 7, we show different results obtained for different H
and H̄ , namely, for how many steps the algorithm updates the
OA constraint for an obstacle once it is detected. As expected,
the time at which a collision with an obstacle is sensed is
the same for all the simulations and the longer an obstacle is
considered as a possible collision, the longer the OA constraint
is triggered. On the other hand, it is interesting to notice
that how long the left boundary is considered as a secondary
obstacle does not show significantly different patterns. In any
case, the minimum safety distance is always kept and the
distance between the two vehicles differs very slightly for the
set of parameters tested in our study.

Let us turn our attention to the cost function weights in
Q and R. Note that positive weights should necessarily be
set for qX, qY, rvxaux , and rvyaux , since they are applied to the
error related to the desired trajectory (i.e., X̃, Ỹ, ṽxaux, and
ṽxaux) and, hence, allow a proper RTT operation. Therefore,
we set to 1 the corresponding entries in Q and R and vary the
others. The most interesting weights to probe are those for the
acceleration a and steering angle δf. We tested different values
for them (smaller and bigger than 1 and various combinations).
For the sake of brevity, in Fig 8, we show results obtained by
only two particular configurations: one with acceleration and
steering weights set to 0.1 (hence, smaller than the others),
and one with acceleration and steering weights set to 10
(hence, bigger than the others). As expected, acceleration
and steering angle are smaller if they have bigger weights,
as can be observed from Figs. 8a, 8b, 8c, and 8d. On the
other hand, when the weights set for the steering angle and
acceleration are higher, the controlled vehicle drives less
aggressively, it implements less pronounced orientations and,
as a consequence, it perceives the left boundary as an obstacle
for shorter time (Fig. 8f) than otherwise (Fig. 8e). Of course,
if a too large penalty is set in the cost function, then the
vehicle may not be able to avoid the obstacles as in the case
depicted in Figs. 9 and 10, where ra and rδf are set to 45.
Table II shows the maximum of the absolute value obtained for
acceleration and steering angle to varying of their respective
weights. Modifying other weights do not seem to strongly
affect results.

VITALE AND RONCOLI: REFERENCE TRACKING OPTIMIZATION WITH OA VIA TASK PRIORITIZATION 1209

Fig. 7. Effects on obstacle detection and distance resulting by utilizing different control horizon H and check horizon H̄ ; (a) H = 1 s, H̄ = 0.5 s. (b) H = 1 s,
H̄ = 1 s. (c) H = 2 s, H̄ = 0.5 s. (d) H = 2 s, H̄ = 1 s. (e) H = 2 s, H̄ = 2 s.

Fig. 8. Testing different weights for the cost function. (a) Acceleration when its corresponding weight is smaller than the others, i.e.
qX = qY = rvxaux = rvyaux = 1 and ra = rδf = 0.1. (b) Acceleration when its corresponding weight is larger than the others,
i.e. qX = qY = rvxaux = rvyaux = 1 and ra = rδf = 10. (c) Steering angle when its corresponding weight is smaller than the others,
i.e. qX = qY = rvxaux = rvyaux = 1 and ra = rδf = 0.1. (d) Steering angle when its corresponding weight is larger than the oth-
ers, i.e. qX = qY = rvxaux = rvyaux = 1 and ra = rδf = 10. (e) Distance to the obstacle when acceleration and steering have smaller weight than the
others, i.e. qX = qY = rvxaux = rvyaux = 1 and ra = rδf = 0.1. (f) Distance to the obstacle when acceleration and steering have bigger weight than the
others, i.e. qX = qY = rvxaux = rvyaux = 1 and ra = rδf = 10.

Lastly, we consider the gain parameter 3, which is utilized
in Algorithm 2. As a rule of thumb, it should not be too
large, otherwise an excessive avoidance maneuver could lead
the ego-vehicle outside the road, whereas it is more advisable
to keep it smaller when an obstacle is in front, so that the
OA operation can begin gently. Figs. 11a and 11b show
what happens when the obstacle is in front, and 3 is set to
0.1 and 0.2, respectively, while always employing 3 = 1 when
the obstacle is behind the ego-vehicle. Indeed, already for
3 = 0.2, the vehicle performs a too aggressive maneuver that
leads it slightly out of the road. On the other hand, Fig. 12a

and 12b, show results for 3 = 0.01 and 3 = 100, respectively,
when the obstacle is behind the ego-vehicle, while 3 = 0.1 is
employed when the obstacle is in front. In these cases, the gain
does not seem to significantly affect the final results, even if
we can observe that a slightly larger maneuver is performed
for 3 = 100. This is probably due to the fact that the obstacle
behind yields an OA velocity that is more in accordance
with the RTT one, so that no big disruption is introduced.
Based on our experimental results, it is reasonable to employ
3 ≤ 0.1 when the obstacle is in front and 3 ≤ 1 when it
is behind. Thus, for the simulation shown in the rest of this

1210 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Fig. 9. Cost function weights set as qX = qY = rvxaux = rvxaux = 1 and
ra = rδf = 45. (a) Changes in acceleration are barely noticeable. (b) Changes
in steering are barely noticeable. (c) A collision with the obstacle vehicle does
occur.

Fig. 10. If too high weights are set on the acceleration and steering, then
the vehicle is unable to effectively avoid the obstacle and go back on track.

paper, we employ 3 = 0.05 when the obstacle is in front of
the ego-vehicle and 3 = 0.5 when the obstacle is behind the
ego-vehicle, respectively.

Computational Efficiency: We used MATLAB and nlmpc
(part of Model Predictive Control Toolbox [67]). For the first
simulation, we considered a 2.5 s optimization window with
a 0.5 s time sample. For the remaining simulations (excluding
those for the sensitivity analysis, as already discussed) we

Fig. 11. Testing different 3 values when the obstacle is in front, while
keeping 3 = 1 when the vehicle is behind. (a) 3 = 0.1 for the obstacle in
front. (b) 3 = 0.2 for the obstacle in front.

Fig. 12. Testing different 3 values when the obstacle is behind, while keeping
3 = 1 when the vehicle is in front. (a) 3 = 0.01 for the obstacle behind.
(b) 3 = 100 for the obstacle behind.

considered a 1 s optimization window with a 0.1 s time sample.
Simulations were performed on a machine with the following:

Processor: Intel(R) Core(TM) i5-8365U CPU @ 1.60 GHz
1.90 GHz

RAM: 16.0 GB (15.8 GB usable)
OS type: 64-bit Windows 10, x64-based processor
On an average, an NMPC step optimization plus OA took

60% more time than a simple RTT. Nevertheless, this result
is not to be considered of much concern, since there are
many solutions to improve the performance of NMPC [68].
In fact, many other papers have already focused on faster

VITALE AND RONCOLI: REFERENCE TRACKING OPTIMIZATION WITH OA VIA TASK PRIORITIZATION 1211

Fig. 13. Comparison between the proposed algorithm, considering an
unforeseen obstacle, and an artificial potential field method, where the obstacle
is known in advance. a) Most of the difference is evident during the first part
of the overtaking maneuver, since the proposed algorithm is reacting to an
unforeseen obstacle, while the artificial potential field algorithm is aware of
it well in advance. b) The lateral position error, i.e. the distance between the
X coordinate between the two algorithms is higher at the beginning and then
goes back to zero.

implementation of NMPC on vehicle nonlinear dynamics even
for smaller time steps (see, e.g., [62], [63], [69]). Moreover, the
proposed technique enjoys a remarkable generalization and it
is applicable to different systems, for which we only presented
the nonlinear bicycle models. Therefore, such algorithms
would adapt to linearized models as well. Furthermore, even if
our algorithms run in series by construction, some expedients
can quicken the whole process. For example, if the time sample
is sufficiently small, it could be an option to parallelize the two
algorithms, so that the NMPC procedure at time instant t runs
while data on obstacles that will be dangerous in time instant
t + 1 are being processed. Finally, using a dedicated machine,
with optimized code using a more efficient programming
language, such as C++, and the compiler would allow us
to get efficient online performances.

Comparison With an Artificial Potential Field Method: An
interesting evaluation of the proposed method can be given by
comparing our solution with that obtained via a state-of-the-
art trajectory planning method, where the latter optimizes the
vehicle trajectory by knowing in advance information about
obstacles. In particular, we consider an artificial potential field-
based method, where the objective function penalizes the error
from a desired trajectory and the input effort similarly to the
proposed algorithm, while the closeness to obstacles (vehicles
and roadside) are defined as in [26]. Figs. 13a and 13b show
how most of the difference between the two solutions lies
in the first phases of the overtaking maneuver. This result is
as expected since, in the artificial potential field method, the
presence of the obstacle is known a-priori, giving the possi-
bility to consider the evasive maneuver since the beginning.
Nevertheless, even though the simulation for the proposed
algorithm is constructed so that the ego-vehicle learns about
the presence of the obstacle only later, it is still capable
to react to it and accurately track the desired trajectory.

Fig. 14. Simulation of an intersection. (a) The ego-vehicle (coming from the
down leg) decelerates to let the non-CAV vehicle go. (b) The ego-vehicle turns
left and detects the non-CAV vehicle again. (c) The ego-vehicle performs an
OA maneuver to overtake the slower obstacle.

In order to solve the mixed integer nonlinear programming
problem resulting from the artificial potential field strategy,
the optimization software APMonitor [70], [71] is utilized.
Within our experiments, the solution took 4.206 s to be found,
which means that, in case a sudden obstacle is encountered,
a vehicle would need such a long time to re-plan a trajectory
and then apply its own tracking control algorithm to follow
it. On the other hand, our optimization problem, also coded
in APMonitor for the sake of fair comparison, yielded a
solution in 0.418 s, namely about 10 times faster, and this
is already comprehensive of the tracking control capabilities,
i.e., no further algorithm (and time) is needed.

C. Scenario 3: Giving Way - Turning - Overtaking

In this simulation experiment, we consider a four-leg inter-
section with two vehicles: a controlled vehicle willing to
perform a left turn (hence whose planned desired trajectory
exhibits a left turn) and a “traditional” manually-driven non-
connected vehicle arriving from the right and willing to go

1212 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

Fig. 15. CAVs A and B driving together with non-CAVs C and D. Desired trajectories for A and B are denoted by a green line. (a) Vehicle A senses a
lane drop and starts a lane change maneuver. Vehicle B starts decelerating as there is no room for any other maneuver. (b) Vehicle A detects vehicle D and
overtakes it. Vehicle B, once vehicle A has gone, accelerates. (c) Vehicle A is free to continue tracking its reference. Vehicle B detects the possibility to
overtake vehicle D without colliding with vehicle C.

straight ahead (see also Fig. 14). The two techniques of
stopping and obstacle avoidance are implemented here. First
(Fig. 14a), the controlled vehicle senses the other vehicle
approaching from its right side with a trajectory that may
lead to a collision and, consequently, it decelerates, since there
are no other options. Once the non-connected vehicle crosses
the intersection (Fig. 14b), the controlled vehicle can freely
accelerate and keep the desired trajectory again. When the
two vehicles are getting too close to each other (Fig. 14c), the
controlled vehicle performs an overtaking maneuver to avoid
collision and continues on its way.

D. Scenario 4: Lane Drop

In this last simulation experiment, we consider a scenario
in which an unforeseen lane drop, hence unplanned from
the trajectory planning, is sensed. The setup consists of four
vehicles: two of them are assumed to be connected and auto-
mated, i.e., they are controlled by our proposed methodology
and they are able to exchange information on their predicted
states resulting from the NMPC process, while other two are
assumed to be human-driven, moving at a constant speed
and heading. In this example, we consider again the dynamic
bicycle model (22)–(28) as a dynamic model for the CAVs.
We present three different figures to illustrate the resulting
behavior. Fig. 15a shows one of the CAVs, vehicle A (the
rightmost one), sensing the lane drop; although its desired
trajectory suggests to proceed straight, the controlled vehicle
starts a lane-changing maneuver to avoid the obstacle in front
of it. The second CAV, vehicle B, senses that vehicle A
is going to enter its lane and intersect its path (moreover,
in this case, they actually communicate to each other their
intents). Vehicle B has, thus, an obstacle on the right, but

it senses a non-CAV, vehicle C, on its left as well. In this
case, since there is no space for an OA maneuver, vehicle B
starts slowing down implementing a stopping maneuver (see
Section II-C). In Fig. 15b, we observe that vehicle A senses
another non-CAV vehicle (vehicle D) and, therefore, it starts
an OA maneuver with respect to it, while still coping with the
left side of the road. Meanwhile, vehicle B does not detect
any obstacle, since vehicle A is not sensed anymore as an
obstacle, and, consequently, it accelerates to keep up with its
desired trajectory. Finally, Fig. 15 shows that vehicle A is
again able to follow its reference trajectory, while vehicle B is
approaching vehicle D and, insofar, engages an OA maneuver.
Of course, this last maneuver is deemed safe since vehicle C
is not sensed as a close obstacle.

Notice that this simulation is of great significance because
it summarizes how the proposed technique behaves in case
of: 1) stopping required, i.e. when vehicle B is surrounded
by other vehicles; 2) giving way, again for vehicle B, while
sensing vehicle A approaching; and 3) coping with different
obstacles in sequence, namely vehicle A that senses a lane
drop, communicates with vehicle B so that it can safely change
lane, and overtakes vehicle D paying attention to the left side
of the road.

VI. CONCLUSION

In this paper, we presented a novel approach for providing
a prompt response to unforeseen contingencies in the control
loop of a vehicle in an (urban) traffic context. In particu-
lar, we integrated a null-space-based behavioral control-like
algorithm with reference tracking in a Nonlinear Model Pre-
dictive Control framework. Such a solution allows us to
take advantage of the robustness of NMPC while running an

VITALE AND RONCOLI: REFERENCE TRACKING OPTIMIZATION WITH OA VIA TASK PRIORITIZATION 1213

obstacle avoidance algorithm in real-time. The validity of our
approach was evaluated via a sensitivity analysis, identifying
some reasonable bounds for the most interesting and relevant
parameters coming into play. Since this strategy permits to
react promptly to unexpected obstacles, the trajectory replan-
ning process can safely take more time, as it normally requires,
to generate a more convenient reference trajectory. Of course,
this would allow the guidance operation to reach a solution
closer to the optimal one. This work paves the way for future
developments, besides the possibility to relax the requirements
for trajectory planning in terms of computation time. Indeed,
it would be interesting to test the proposed framework in a
larger variety of more complex cases, both for urban and high-
way traffic, and even more interestingly with real-vehicle data,
in order to, e.g., fine-tune some of the parameters. Another
interesting extension would be the development of a fully
distributed version of the proposed method, so that (connected)
vehicles are able to cooperate rather than to simply react
to each other. Finally, some more features regarding sensors
may be considered, especially investigating the preferred type
of data, the amount of pre-processing that may be needed,
as well as the robustness of the proposed method to noise and
inaccuracy.

REFERENCES

[1] I. Y. Noy, D. Shinar, and W. J. Horrey, “Automated driving: Safety blind
spots,” Safety Sci., vol. 102, pp. 68–78, Feb. 2018.

[2] P. Junietz, U. Steininger, and H. Winner, “Macroscopic safety require-
ments for highly automated driving,” Transp. Res. Rec., J. Transp. Res.
Board, vol. 2673, no. 3, pp. 1–10, Mar. 2019.

[3] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE Access, vol. 8, pp. 58443–58469, 2020.

[4] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby,
and A. Mouzakitis, “A survey on 3D object detection methods for
autonomous driving applications,” IEEE Trans. Intell. Transp. Syst.,
vol. 20, no. 10, pp. 3782–3795, Oct. 2019.

[5] Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated driving:
A survey,” IEEE Access, vol. 8, pp. 2847–2868, 2020.

[6] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A survey on 5G networks for the Internet of Things: Communication
technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, 2017.

[7] P. K. Singh, S. K. Nandi, and S. Nandi, “A tutorial survey on vehicular
communication state of the art, and future research directions,” Veh.
Commun., vol. 18, Aug. 2019, Art. no. 100164.

[8] H. Ullah, N. G. Nair, A. Moore, C. Nugent, P. Muschamp,
and M. Cuevas, “5G communication: An overview of vehicle-to-
everything, drones, and healthcare use-cases,” IEEE Access, vol. 7,
pp. 37251–37268, 2019.

[9] M. Taiebat, A. L. Brown, H. R. Safford, S. Qu, and M. Xu, “A review on
energy, environmental, and sustainability implications of connected and
automated vehicles,” Environ. Sci. Technol., vol. 52, pp. 11449–11465,
Sep. 2018.

[10] Y. Lian, G. Zhang, J. Lee, and H. Huang, “Review on big data
applications in safety research of intelligent transportation systems and
connected/automated vehicles,” Accident Anal. Prevention, vol. 146,
Oct. 2020, Art. no. 105711.

[11] Z. Yao, R. Hu, Y. Jiang, and T. Xu, “Stability and safety evaluation of
mixed traffic flow with connected automated vehicles on expressways,”
J. Safety Res., vol. 75, pp. 262–274, Dec. 2020.

[12] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and auto-
mated vehicles: State of the art and future challenges,” Annu. Rev.
Control, vol. 45, pp. 18–40, Jan. 2018.

[13] I. Papamichail et al., “Motorway traffic flow modelling, estimation and
control with vehicle automation and communication systems,” Annu.
Rev. Control, vol. 48, pp. 325–346, Jan. 2019.

[14] Y. Zhang and C. G. Cassandras, “An impact study of integrating
connected automated vehicles with conventional traffic,” Annu. Rev.
Control, vol. 48, pp. 347–356, Jan. 2019.

[15] S. Jin, D.-H. Sun, M. Zhao, Y. Li, and J. Chen, “Modeling and stability
analysis of mixed traffic with conventional and connected automated
vehicles from cyber physical perspective,” Phys. A, Stat. Mech. Appl.,
vol. 551, Aug. 2020, Art. no. 124217.

[16] O. Sharma, N. C. Sahoo, and N. B. Puhan, “Recent advances in
motion and behavior planning techniques for software architecture of
autonomous vehicles: A state-of-the-art survey,” Eng. Appl. Artif. Intell.,
vol. 101, May 2021, Art. no. 104211.

[17] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments: A
survey,” Robotica, vol. 33, no. 3, pp. 463–497, Mar. 2015.

[18] P. Victerpaul, D. Saravanan, S. Janakiraman, and J. Pradeep, “Path
planning of autonomous mobile robots: A survey and comparison,”
J. Adv. Res. Dyn. Control Syst., vol. 9, no. 12, pp. 1535–1565, 2017.

[19] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 1826–1848, May 2020.

[20] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,” J. Intell.
Robotic Syst., vol. 57, nos. 1–4, pp. 65–100, Jan. 2010.

[21] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, Mar. 2016.

[22] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016.

[23] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous Robot Vehicles. New York, NY, USA: Springer,
1986, pp. 396–404.

[24] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning
and tracking for vehicle collision avoidance based on model predictive
control with multiconstraints,” IEEE Trans. Veh. Technol., vol. 66, no. 2,
pp. 952–964, Apr. 2016.

[25] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi, “A potential
field-based model predictive path-planning controller for autonomous
road vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5,
pp. 1255–1267, Oct. 2016.

[26] K. Makantasis and M. Papageorgiou, “Motorway path planning for
automated road vehicles based on optimal control methods,” Transp. Res.
Rec., J. Transp. Res. Board, vol. 2672, no. 19, pp. 112–123, Dec. 2018.

[27] M. T. Wolf and J. W. Burdick, “Artificial potential functions for highway
driving with collision avoidance,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2008, pp. 3731–3736.

[28] R. Daily and D. M. Bevly, “Harmonic potential field path planning
for high speed vehicles,” in Proc. Amer. Control Conf., Jun. 2008,
pp. 4609–4614.

[29] J. Wang, J. Wu, and Y. Li, “The driving safety field based on driver–
vehicle–road interactions,” IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 4, pp. 2203–2214, Aug. 2015.

[30] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proc. IEEE Int. Conf. Robot.
Automat., vol. 2, Apr. 1991, pp. 1398–1404.

[31] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[32] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[33] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–772,
Jul. 1998.

[34] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2008, pp. 1928–1935.

[35] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan,
“Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots,” Int. J. Robot. Res., vol. 39,
no. 12, pp. 1419–1469, 2020.

[36] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Trans. Intell. Vehicles,
vol. 6, no. 2, pp. 232–248, Jun. 2021.

1214 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

[37] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feed-
back motion planning,” Int. J. Robot. Res., vol. 36, no. 8, pp. 947–982,
Jul. 2017.

[38] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory
Algorithms. London, U.K.: Springer-Verlag, 2017.

[39] M. Werling and D. Liccardo, “Automatic collision avoidance using
model-predictive online optimization,” in Proc. 51st IEEE Conf. Decis.
Control (CDC), Dec. 2012, pp. 6309–6314.

[40] A. Gray, M. Ali, Y. Gao, J. Hedrick, and F. Borrelli, “Semi-autonomous
vehicle control for road departure and obstacle avoidance,” in Proc. IFAC
Symp. Control Transp. Syst., 2012, pp. 1–6.

[41] A. Richards and J. P. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in Proc. Amer.
Control Conf., vol. 3. Anchorage, AK, USA, May 2002, pp. 1936–1941.

[42] E. Klotz and A. M. Newman, “Practical guidelines for solving difficult
mixed integer linear programs,” Surv. Oper. Res. Manage. Sci., vol. 18,
nos. 1–2, pp. 18–32, Oct. 2013.

[43] R. Glasius, A. Komoda, and S. C. A. M. Gielen, “Neural network
dynamics for path planning and obstacle avoidance,” Neural Netw.,
vol. 8, no. 1, pp. 125–133, Jan. 1995.

[44] N. H. Singh and K. Thongam, “Neural network-based approaches for
mobile robot navigation in static and moving obstacles environments,”
Intell. Service Robot., vol. 12, no. 1, pp. 55–67, Jan. 2019.

[45] R. Soloperto, J. Köhler, F. Allgöwer, and M. A. Müller, “Collision
avoidance for uncertain nonlinear systems with moving obstacles using
robust model predictive control,” in Proc. 18th Eur. Control Conf. (ECC),
Jun. 2019, pp. 811–817.

[46] H. Banzhaf, M. Dolgov, J. Stellet, and J. M. Zöllner, “From footprints
to beliefprints: Motion planning under uncertainty for maneuvering
automated vehicles in dense scenarios,” in Proc. 21st Int. Conf. Intell.
Transp. Syst. (ITSC), Nov. 2018, pp. 1680–1687.

[47] C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Auto-
mated driving in uncertain environments: Planning with interaction and
uncertain maneuver prediction,” IEEE Trans. Intell. Vehicles, vol. 3,
no. 1, pp. 5–17, Mar. 2018.

[48] J. Feng, C. Wang, C. Xu, D. Kuang, and W. Zhao, “Active collision
avoidance strategy considering motion uncertainty of the pedestrian,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 3543–3555,
Apr. 2022.

[49] B. Lutjens, M. Everett, and J. P. How, “Safe reinforcement learning with
model uncertainty estimates,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2019, pp. 8662–8668.

[50] I. Batkovic, U. Rosolia, M. Zanon, and P. Falcone, “A robust scenario
MPC approach for uncertain multi-modal obstacles,” IEEE Control Syst.
Lett., vol. 5, no. 3, pp. 947–952, Jul. 2021.

[51] D. Liberzon, Switching in Systems and Control. Cham, Switzerland:
Springer, 2003.

[52] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The null-space-based
behavioral control for autonomous robotic systems,” Intell. Service
Robot., vol. 1, no. 1, pp. 27–39, Jan. 2008.

[53] G. Antonelli, “Stability analysis for prioritized closed-loop inverse kine-
matic algorithms for redundant robotic systems,” IEEE Trans. Robot.,
vol. 25, no. 5, pp. 985–994, Oct. 2009.

[54] F. Arrichiello, S. Chiaverini, P. Pedone, A. A. Zizzari, and G. Indiveri,
“The null-space based behavioral control for non-holonomic mobile
robots with actuators velocity saturation,” in Proc. IEEE Int. Conf.
Robot. Autom., May 2009, pp. 4019–4024.

[55] G. Indiveri, “Swedish wheeled omnidirectional mobile robots: Kine-
matics analysis and control,” IEEE Trans. Robot., vol. 25, no. 1,
pp. 164–171, Feb. 2009.

[56] C. Wu, Z. Xu, Y. Liu, C. Fu, K. Li, and M. Hu, “Spacing poli-
cies for adaptive cruise control: A survey,” IEEE Access, vol. 8,
pp. 50149–50162, 2020.

[57] F. Vitale and C. Roncoli, “An MPC-based task priority management
approach for connected and automated vehicles reference tracking with
obstacle avoidance,” in Proc. Eur. Control Conf. (ECC), Jun. 2021,
pp. 813–819.

[58] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators,” IEEE Trans. Robot.
Autom., vol. 13, no. 3, pp. 398–410, Jun. 1997.

[59] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. Cham, Switzerland: Springer, 2010.

[60] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey,” Integration, vol. 59, pp. 148–156, Sep. 2017.

[61] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence applica-
tions in the development of autonomous vehicles: A survey,” IEEE/CAA
J. Autom. Sinica, vol. 7, no. 2, pp. 315–329, Mar. 2020.

[62] M. A. Abbas, R. Milman, and J. M. Eklund, “Obstacle avoidance in real
time with nonlinear model predictive control of autonomous vehicles,”
Can. J. Electr. Comput. Eng., vol. 40, no. 1, pp. 12–22, Winter 2017.

[63] W. Farag, “Complex track maneuvering using real-time MPC control
for autonomous driving,” Int. J. Comput. Digit. Syst., vol. 9, no. 5,
pp. 909–920, 2020.

[64] N. Chowdhri, L. Ferranti, F. S. Iribarren, and B. Shyrokau, “Integrated
nonlinear model predictive control for automated driving,” Control Eng.
Pract., vol. 106, Jan. 2021, Art. no. 104654.

[65] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in Proc.
IEEE Intell. Vehicles Symp. (IV), Jun. 2015, pp. 1094–1099.

[66] R. Rajamani, Vehicle Dynamics and Control. Cham, Switzerland:
Springer, 2011.

[67] Model Predictive Control Toolbox, MathWorks, Inc., Natick, MA, USA,
2020. [Online]. Available: https://se.mathworks.com/help/mpc/

[68] V. M. Zavala, C. D. Laird, and L. T. Biegler, “Fast implementations and
rigorous models: Can both be accommodated in NMPC?” Int. J. Robust
Nonlinear Control, vol. 18, no. 8, pp. 800–815, 2008.

[69] S. S. Oyelere, “The application of model predictive control (MPC) to fast
systems such as autonomous ground vehicles (AGV),” IOSR J. Comput.
Eng., vol. 16, no. 3, pp. 27–37, 2014.

[70] J. D. Hedengren, R. A. Shishavan, K. M. Powell, and T. F. Edgar,
“Nonlinear modeling, estimation and predictive control in APMonitor,”
Comput. Chem. Eng., vol. 70, pp. 133–148, Nov. 2014.

[71] L. Beal, D. Hill, R. Martin, and J. Hedengren, “GEKKO optimization
suite,” Processes, vol. 6, no. 8, p. 106, 2018.

Francesco Vitale received the B.Eng. degree in
information technology engineering and the M.Eng.
degree in computer engineering from the University
of Salento, Lecce, Italy, in 2016 and 2019, respec-
tively. He is currently pursuing the Ph.D. degree in
spatial planning and transportation engineering with
the Department of Built Environment, School of
Engineering, Aalto University, Espoo, Finland. His
research interests include autonomous mobile robots,
distributed optimization and control, and machine
learning.

Claudio Roncoli received the Ph.D. degree from the
University of Genoa, Italy, in 2013. He is currently
an Associate Professor in transportation engineering
with Aalto University, Finland. Before joining Aalto
University, he was a Research Assistant with the
University of Genoa, a Visiting Research Assis-
tant with Imperial College London, U.K., and a
Post-Doctoral Researcher with the Technical Uni-
versity of Crete, Greece. He has been involved in
several national and international research projects
as a principal investigator. His research interests

include real-time traffic management, modeling, optimization, and the control
of traffic systems with connected and automated vehicles, and smart mobility
and intelligent transportation systems.

