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Robust and Sample-Efficient Estimation of
Vehicle Lateral Velocity Using Neural
Networks With Explainable Structure

Informed by Kinematic Principles
Mauro Da Lio , Member, IEEE, Mattia Piccinini , Member, IEEE, and Francesco Biral

Abstract— This paper presents kinematics-structured neural
networks (KS-NN) for the lateral speed estimation of vehicles.
The internal structure of the networks is designed to incorporate
the kinematic principles, enhancing the physical explainability
and generalization capacity. Both the internal structure and
training method are devised for better generalization perfor-
mance. Various linear and nonlinear variants of our estimator
are assessed for accuracy and robustness. The approach is
validated using an openly accessible dataset with two race cars.
The performance of the novel networks is evaluated against
Luenberger, neural network, factor graph and Kalman filter
estimators from the literature. In comparison with a Luenberger
kinematic observer, our networks improve noise rejection, and
overcome the well-known observability problem for low yaw
rates. Compared to existing neural network estimators, our
networks exhibit better generalization capacity, are more sample-
efficient, require fewer learnable parameters, and their structure
is physically explainable.

Index Terms— Lateral speed estimation, explainable neural
network, neural observer, sample-efficient neural network.

I. INTRODUCTION

THE estimation of lateral velocity is essential in advanced
vehicle control and stability systems [1], [2], [3], [4], [5],

[6], [7], [8].
Since the direct measurement of the lateral velocity is feasi-

ble only with expensive optical sensors or dual-antenna Global
Positioning Systems (GPS) —which are not affordable for
most commercial vehicles— many estimators have flourished.

Among the estimation techniques, model-based approaches
take a prominent role. The literature (see Section I-B) presents
two main types of model-based observers: a) those using
a model of the vehicle dynamics and b) those based on
universal kinematic principles. The latter type does not depend
on dynamical characteristics that may vary among vehicles
and environmental conditions. However, the kinematic esti-
mation suffers from observability problems at low yaw rates
(e.g., on straights) and significant noise sensitivity.
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Data-driven methods, especially neural networks, are
alternatives to model-based approaches. They are trained on
specific vehicles and environments for which they gener-
ally perform well. However, they are unexplainable black
boxes. It is difficult to assess how much vehicle- and
environment-specific they are, what they have learned, and
whether they learned dynamical characteristics that may vary
in operation.

A. Contribution of This Paper

The paper presents a specialized neural architecture for the
physical problem at hand, offering several advantages:

• Sample-efficiency, by requiring fewer parameters to
model the physical phenomenon accurately;

• Ability to generalize, resulting in robustness;
• Explainability, as it is an interpretable linear parameter

varying discrete-time model;
• Being a linear parameter varying model, it can be imple-

mented easily with automotive-grade hardware.
The study evaluates 28 variants of our specialized model

in 4 groups, 10 variants of benchmark general-purpose
recurrent neural networks in 2 groups (GRU and LSTM,
from [9] and [10]), the benchmark Luenberger kinematic
observer [11], and the benchmarks factor graph and Kalman
filter [12].

The evaluation of the above candidates for accuracy and
robustness uses an openly accessible dataset of telemetries
from two real race cars, with challenging top speeds of
240 km/h and lateral accelerations up to m/s2.

B. Related Work

The design of lateral speed estimators has been an active
research topic for more than 30 years. The authors of [13]
review the methods published until 2018, finding two broad
categories: one based on vehicle models and the other purely
data-driven. The former class can be split into three subgroups:
dynamical vehicle models, kinematic models, or combinations
of the two.

1) Dynamic Model-Based Observers: Observers adopting
dynamical models typically depend on several vehicle param-
eters —including tire submodels—, which makes them vehi-
cle and context specific. For example, [14] and [15] used
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Kalman filters (KF) with single-track vehicle models. Using
a dynamical vehicle model, a sliding mode estimator was
adopted in [16], in combination with a KF. Linear, nonlinear,
and sliding mode observers were compared in [17], using
dynamic vehicle models restricted to moderate accelerations.
The authors of [12] presented a factor graph approach based
on a vehicle dynamic model.

However, the use of dynamic vehicle models usually results
in a high sensitivity to variations in the environment, operative
conditions and/or vehicle parameters.

2) Kinematic Model-Based Observers: Kinematic observers
exploit the principles of kinematics to estimate the vehicle
velocity components, using the measured accelerations and
angular rate. One seminal paper is [11], which developed a
parameter-varying Luenberger observer such that the estima-
tion error vanishes for a non-zero yaw rate. The approach
of [11] is quite robust to variations in the physical parameters
of the vehicle, which do not appear in the formulation. The
authors of [18] extended the Luenberger estimator with an
adaptive dead zone in the feedback terms, which permits
larger gains to compensate for lateral acceleration biases.
Starting from [11], a heuristic correction term was added
in [19] to bring the estimated lateral speed to zero when the
vehicle is driving straight. The lateral speed estimation in [20]
and [21] was improved by utilizing the measurement bias
estimates of an inertial measurement unit (IMU). Extended
KFs were implemented in [22], [23], and [24] using the
two- and three-dimensional kinematic models.

However, using basic kinematic estimators, the lateral speed
becomes unobservable for low yaw rates. In addition, the
estimation degrades in the presence of biases on the measured
accelerations (e.g., due to gravity when the chassis rolls or
pitches and when the road bank and grade angles are not
negligible).

3) Mixed Kinematic-Dynamic Model-Based Observers:
Mixed kinematic-dynamic methods were introduced in [25],
[26], [27], and [28] to overcome the limitations of purely
kinematic estimators. In these papers, lateral vehicle dynamic
models improve the lateral speed observability for low yaw
rates. The authors of [29] proposed a fuzzified weighted mean
of the estimates obtained with a kinematic observer and with
a dynamic model-based KF.

Compared with pure kinematic estimators, mixed
kinematic-dynamic methods inevitably increase the sensitivity
to changes in operative conditions and vehicle parameters.

4) Data-Driven Observers: Some authors used neural net-
works (NNs) in pure data-driven black-box state estimation
methods. For example, NNs using gated recurrent units
(GRUs) were employed in [9] and [30] to estimate the lateral
speed with end-to-end approaches. Similarly, [10] used a
long short-term memory (LSTM) network. A simple single-
hidden-layer NN was presented in [31] to estimate the side
slip using only simulated tests. A similar NN was adopted
in [32] to predict the lateral tire forces, which were then
fed to an extended KF for state estimation. The authors
in [33] designed a single-hidden-layer neural observer using
the set membership theory. To deal with variable road friction,
[34] combined three nonlinear auto-regressive networks

(ARX), to learn the side slip in three different adherence
conditions.

However, pure data-driven neural network estimators tend
to suffer from overfitting issues, since they implicitly learn
vehicle dynamic characteristics that depend on the operating
conditions used during training.

To the best of the authors’ knowledge, the lateral speed
estimators in the literature are limited by at least one of the
following aspects:

1) The neural networks in data-driven estimation (e.g.,
GRU, LSTM) [9], [10], [30] usually overfit the vehicle
and environment conditions used for training.

2) The neural networks’ generic internal structures do not
follow kinematic laws, and the learnable parameters
cannot be physically explained.

3) All the neural and many model-based kinematic esti-
mators rely on measuring the steering wheel angle.
However, this can decrease the robustness of the esti-
mator: the relation between the steering angle and the
lateral velocity depends on vehicle characteristics (e.g.,
tires and steering system), which can vary with different
tires, road surfaces, and vehicle types.

4) Some kinematic estimators require an IMU sensor, e.g.,
to estimate the roll angle [19]. However, an IMU is not
affordable for most commercial cars.

C. Structure of the Paper

Section II discusses the principles of traditional kine-
matic estimation and its limitations. Section III presents the
kinematics-driven internal structure of the proposed neural net-
works. The interpretation of the structure of the neural network
is explained in more detail in Section IV. Section V discusses
the literature benchmarks used for comparison. Section VI
introduces the open experimental race car dataset used to
validate the approach, and the training method. Section VII
analyzes the measurement noise and dynamic characteristics
of the two race cars used in the dataset. Section VIII discusses
the main findings, highlighting the improved robustness of the
new networks. Finally, Section IX concludes the study and
suggests areas for future research.

II. PRINCIPLES AND LIMITATIONS OF TRADITIONAL
KINEMATIC ESTIMATION

This section provides an overview of the principles of
traditional kinematic lateral speed estimation, along with a
discussion of their limitations. Understanding these principles
is crucial to comprehend the proposed neural network archi-
tecture, and its advantages over conventional methods.

A. Measurement Principle

The direct measurement of a vehicle’s lateral velocity (v)
is not easily affordable, but estimators can give indirect mea-
surements. Kinematic estimators exploit measurements of the
angular velocity (ω), acceleration (a), and forward speed (u)
with the following principle. Let:

v = u i + v j + wk (1)
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be the velocity vector expressed in a moving reference frame
{i, j , k}, where u, v, w are the components of v in that frame.

The time derivative of (1) reads as:

a = u̇ i + v̇ j + ẇk + u(ω × i) + v(ω × j) + w(ω × k) (2)

where the Poisson’s formulas are used to express the deriva-
tives of {i, j , k} (e.g., d i

dt = ω× i). After computing the cross
products, the projection of (2) on the axes {i, j} is:{ ay = v̇ + uωz−wωx (3a)

ax = u̇ − vωz + wωy (3b)

where {ωx , ωy, ωz} are the components of ω in {i, j , k}.
If the three-dimensional motion of the vehicle is approxi-

mated in two dimensions (ωx = ωy = 0, w = 0 and ωz = ω),
with i being the vehicle longitudinal axis on a flat ground and
j pointing leftwards (k upwards), the planar kinematic model
is finally obtained: {

v̇ = ay−uω (4a)
u̇ = ax + vω (4b)

Since ay , u and ω can be measured by on-board sensors,
(4a) provides a means to compute v̇, and hence, in principle,
an estimation v̂ of v could be obtained via integration. How-
ever, besides the approximation from (3a) to (4a), ay , u and ω

are noisy,1 and their integration according to (4a) will diverge
following a partially random walk.

The drift can be attenuated by using both equations (4a)
and (4b): the velocity v̂ integrated by the former is used in
the latter, to compute the expected longitudinal velocity û.
Since the actual longitudinal velocity can be measured (um),
the quantity û − um becomes an indicator of the accumulated
drift, which can be injected in (4a) as follows:{

˙̂v = ay − ûω − f̄1(ω, û − um) (5a)
˙̂u = ax + v̂ω − f̄2(ω, û − um) (5b)

where f̄1(ω, û − um) and f̄2(ω, û − um) are suitable feedback
corrections, which can be designed as functions of the yaw
rate ω and of û − um.

Equations (5a) and (5b) are the basic prototype of kinematic
observers.

B. Unobservability Issues of Pure Kinematic Estimation

Using the basic kinematic model (4a,4b) and measuring the
forward speed um, the lateral speed v̂ becomes unobservable as
the yaw rate ω approaches zero (a proof can be found in [11]).
As a consequence, the estimators based on pure kinematic
models, like the Luenberger observer of [11], need to change
their estimation model or be reset for low yaw rate values.

The structure of the novel neural model of this paper is
(among the others) designed to overcome the observability
issue.

1The acceleration measurements {ay , ax } contain biases if the chassis rolls
or pitches, or if the road bank and grade angles are non zero. The estimation
of such angles [35] can help to compensate the biases, to some extent.

Fig. 1. The proposed KS-NN model is a memoryless recurrent neural
network (RNN). The input of KS-NN is a window of N past measurements
{rk−N+1, . . . , rk }, with r = {ω, um, ay , ax }. The recurrence to compute
{v̂k+1, ûk+1} starting from {v̂k−N+1, ûk−N+1} = {0, umk−N+1 } is unrolled,
for an easier graphical representation. The inner structure of the C blocks is
depicted in Fig. 2(a).

III. NEURAL NETWORK ESTIMATOR WITH
KINEMATICS-DRIVEN STRUCTURE

This section outlines the design of the proposed lateral
velocity neural network estimator. Our estimator is labeled KS-
NN (kinematics-structured neural network), and its internal
structure is designed to generalize the kinematic laws.

Let us begin with an overview of the design and operating
principle of KS-NN.

We collect in the vector r = {ω, um, ay, ax } the input
measurements required by KS-NN, namely the yaw rate ω,
the forward speed um, and the accelerations {ay, ax }.

KS-NN operates as a memoryless recurrent neural net-
work (RNN), i.e., as a finite impulse response (FIR) system.
As shown in Fig. 1, at each discrete time step k, a window
of N past measurements {rk−N+1, . . . , rk−1, rk} is used to
estimate the states {v̂k+1, ûk+1}, starting from a standard initial
state {v̂k−N+1, ûk−N+1} = {0, umk−N+1}. In the following
implementations, the sampling time of the KS-NN model is
τ = 0.05 s, and N = 30, so that the input windows of past
measurements span 1.5 s (= Nτ ), which means that we ask
the estimator to converge within 1.5 s.

Fig. 2(a) shows the internal architecture of the recurrent
network (the C block appearing in Fig. 1). It is a bank
of Luenberger-like modules (Mp) that are combined with
the channel coding technique [36, Section III.A-1]. Each
module Mp is a local model, activated by a function φp(|ω|)

with local support. Hence, each module learns to estimate v̂

in a specific range of yaw rates (ω). There can be many
local models Mp, p ∈ {1, . . . ,P} to improve the descriptive
capacity of the network at varying yaw rates.

The structure of each module is similar to the Luenberger
estimator [11], but with several learnable weights and a
possibly nonlinear feedback function, with Q hidden neurons.

Let us see more in detail the structure of the models and
how they are combined with channel coding.

A. Custom Neural Network Module M

The design of the local models {M1, . . . , MP }, depicted in
Fig. 2(b), is based on a neural module, named M , which we
now illustrate. Let us start from the explicit Euler discretization
of the basic kinematic observer (5a,5b):{

v̂k+1 = v̂k + τ
(
ayk − ûkωk − f̄1(ωk, ûk − umk )

)
(6a)

ûk+1 = ûk + τ
(
axk + v̂kωk − f̄2(ωk, ûk − umk )

)
(6b)

where {v̂k, ûk} are the estimates of {v, u} at the time step k, and
τ is the integration time step. We now cast the basic kinematic
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Fig. 2. Internal architecture of the recurrent block C of Fig. 1: (a) combination of P parallel modules of type M , to define the overall neural model C (9);
(b) internal structure of the neural network module M (7a,7b); (c) internal structure of the { f1(·), f2(·)} feedback sub-networks (8) composing the module M .

model (6a,6b) into a neural network module M , using the
following recursion scheme:

M :



v̂k+1M =
γ1v̂kM +β1τ · (ayk − umk ωk)+

− ωk · f1(ûkM − umk )

=
G1(v̂kM ,ayk , umk , ωk)+

− ωk · f1(ûkM − umk )

(7a)

ûk+1M =
γ2ûkM +β2τ · (axk + v̂kM ωk)+

− f2(ûkM − umk )

=
G2(v̂kM ,ûkM , axk , ωk)+

− f2(ûkM − umk )

(7b)

In (7a,7b), {v̂kM , ûkM } are the estimates obtained with the
module M at the time step k. In comparison with the basic
observation model (6a,6b), the proposed module (7a,7b) has
additional learnable quantities, namely the parameters {γi , βi },
i ∈ {1, 2}, and the weights and biases contained in the neural
feedback functions { f1(·), f2(·)}, which will be described next.
Equations (7a,7b) can therefore be seen as a generalized
explicit Euler discretization of (5a,5b), in which the time
step is τ . The {G1(·),G2(·)} functions in (7a,7b) are used to
facilitate a graphical interpretation of the module M , provided
in Fig. 2(b).

As will be described in Section IV, all the learnable param-
eters in (7a,7b) have a physically explainable role, improve the
noise rejection capabilities of the observer, and overcome the
unobservability problem of the basic kinematic model during
straight driving.

The learnable feedback functions fi (·) of (7a,7b), i ∈ {1, 2},
are designed with a two-branch shallow neural architecture:

fi (ûkM − umk ) = w1i (ûkM − umk )+b1i

+

Q∑
j=1

w3 j i Tanh
(

w2 j i (ûkM − umk )+b2 j i

)
(8)

where i ∈ {1, 2}. As shown in Fig. 2(c), the fi (·) functions
in (8) have a linear and a nonlinear branch. The linear branch
computes w1i (ûkM − umk )+b1i , with the learnable parameters
{w1i , b1i }. The nonlinear branch combines two fully-connected
layers: the first layer (“Lin2i ” in Fig. 2(c)) hasQ neurons and a
Tanh activation function, while the second layer (“Lin3i ”) has
1 neuron and a linear activation function. Each of the fi (·)

functions in (8), i ∈ {1, 2}, has a maximum of 3Q + 2
learnable parameters, namely the weights {w1i , w2 j i , w3 j i } and
the biases {b1i , b2 j i }, j ∈ {1, . . . ,Q}. The number Q of
neurons might be varied, together with the number of hidden
layers, to change the complexity of the fi (·) networks.

The maximum number of learnable parameters in the neural
module M is Np = 4 + 2 · (3Q+ 2) = 6Q+ 8.

B. Combining Multiple Parallel Modules

Within the neural module M (7a,7b), the learnable param-
eters are {γi , βi } and the weights and biases of the func-
tions fi (·) in (8), i ∈ {1, 2}.

The theory of vehicle dynamics [37] suggests that the
behavior of the lateral velocity could vary with the magnitude
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Fig. 3. This figure shows the activation functions φp(|ω|) of the local neural
models Mp , where p ∈ {1, . . . ,P}. The centers of the φp(|ω|) functions are
equally spaced over the range of recorded yaw rate ω values, which is denoted
as

[
0, |ωmax|

]
. The plot is an example with three local models, P = 3.

of the yaw rate |ω|, and therefore the optimized parameters of
the neural module M should also vary with |ω|. Following
this physical consideration, the channel coding technique
[36, Section III.A-1] is employed to create P parallel models
of type M , named {M1, . . . , MP } and shown in Fig. 2(a).
The outputs of the Mp models are weighted by the activation
functions φp(|ω|), p ∈ {1, . . . ,P}. As shown in Fig. 3, the
φp(|ω|) are by design piecewise linear in |ω|, they partition the
unity, that is,

∑P
p=1 φp(|ω|) = 1, and they have local support:

they are non-zero in a neighborhood of their center |ω| = ωp.
The centers ωp are defined to partition the range

[
0, |ωmax|

]
of

the recorded yaw rate values (Fig. 3). In this way, a model Mp
locally estimates {v̂, û} in the vicinity of |ω| = ωp.

Notably, the functions φp(|ω|) are also called receptive
fields, validity functions, or membership functions [38] in
different contexts. Interested readers can find more details
about our implementation in [36] and [39, Section III.A-1],
where we discuss the relationship with similar approaches in
biology and other engineering applications.

The complete local model approximation C is written as
follows, and implemented in the network shown in Fig. 2(a):

C :

[
v̂k+1
ûk+1

]
=

P∑
p=1

φp(|ωk |) ·

[
v̂k+1Mp

ûk+1Mp

]
(9)

where {v̂k+1Mp
, ûk+1Mp

} are the estimates computed with the
module Mp, p ∈ {1, . . . ,P}, using (7a,7b). The model C
in (9) defines the interpolation of the estimates of the local
models. The maximum number of trainable parameters for
KS-NN is NpP= (6Q+ 8)P . Note that the number of neu-
rons Q and the number of local models P are adjustable
hyperparameters, through which one can change the complex-
ity and learning capability of the model. The role of Q and P
is conceptually similar to the number of hidden layers and
states of traditional recurrent neural networks [38].

IV. INTERPRETATION OF THE NEURAL
NETWORK STRUCTURE

In this section, we show how the proposed neural network
KS-NN can be interpreted in various ways.

A. Intepreting the Extended Kinematic Laws

In ideal conditions, with no measurement noise and on a
perfectly planar surface, the evolution of the lateral speed

could be in principle predicted through the integration of the
exact kinematics, represented by equations (4a,4b). However,
the existence of sensor noise, and the variation in chassis
roll and pitch angles make the integration of (4a,4b) diverge.
The feedback functions f̄1(·) and f̄2(·) in (5a,5b) are used to
correct the divergence.

The model presented in equations (7a,7b) adapts the kine-
matic laws to the noise levels in the measured channels:
compared to the discrete-time kinematic estimator (6a,6b),
it has additional learnable parameters {γ1, γ2, β1, β2}, and
feedback functions { f1(·), f2(·)} that are more general than
those used in the Luenberger observer [11] (Appendix A).
The additional parameters and extended feedback functions
improve noise rejection and overcome the unobservability
issue.

1) Interpreting the Output of KS-NN: We can decompose
the lateral velocity estimate produced by KS-NN into three
independent and fused estimates, each of which has a physical
interpretation. To simplify the analysis, let us focus on a
single neural module M , represented by equations (7a,7b), and
consider the case where the feedback functions { f1(·), f2(·)}

in (8) are linear (Q = 0):{
f1(ûk − umk ) = w11 · (ûk − umk )+b11 (10a)
f2(ûk − umk ) = w12 · (ûk − umk )+b12 (10b)

Since the resulting neural module M (7a,7b) is linear, it is
possible to apply the Z transform, obtaining:

v̂(z) =

first sub-model︷ ︸︸ ︷
A(z)
D(z)

(
ay(z) − ωum(z)

)
+

B(z)
D(z)

(
um(z)

z − 1
τ

− ax (z)
)

︸ ︷︷ ︸
second sub-model

+
C(z)
D(z)

ω︸ ︷︷ ︸
third sub-model

(11)

where the quantities {A(z), B(z), C(z), D(z)} are given by:

A(z) = τβ1(z + w12 − γ2), B(z) = τβ2w11ω (12a)
C(z) =

(
w11(z − zβ2 + β2 − γ2)

)
um(z)

+

(
b12w11 − b11(z + w12 − γ2)

)
z

z − 1

(12b)

D(z) =z2
+ z(w12 − γ1 − γ2) + w11β2τω2

+

− w12γ1 + γ1γ2
(12c)

The equation (11) shows that v̂ is determined by merging
three sub-models:

• The first sub-model estimates v̂ given the measurements
of the slip rate ay −ωum, which is the right-hand side of
the basic kinematic model (4a).

• The second sub-model uses the quantity um(z) · (z − 1)/
τ − ax (z), which is another estimate of v derived from
(4b), i.e. v = (u̇ − ax )/ω.

• The third sub-model estimates the lateral velocity v̂ by
learning the relationship between v and ω, for a certain
forward speed um contained in C(z).2

2This third model implicitly considers vehicle dynamics, which can vary
among different cars, but is weighted against the previous two models.
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The learnable transfer functions A(z), B(z), C(z), D(z)
weight the three sub-models. It is worth noting that equations
(11) and (12) apply to one neural module M . However, KS-NN
employs P modules M , which activate in specific ω intervals
through channel coding. This approach allows the transfer
function’s pole-zero maps and gains to adapt to varying ω,
enhancing the model’s learning ability.

The role of the main learnable parameters in (11,12) will
now be explained in detail.

2) Explaining the Role of γ1: We now focus on (7a),
assuming a fixed β1 = 1 and a learnable γ1 ∈ (0, 1]. The
term γ1v̂k + τ(ayk −umk ωk) in (7a), with γ1 ∈ (0, 1], operates
like a leaky integrator, accumulating an estimate of the lateral
velocity, while forgetting some less recent input noise. During
straight driving (ω ≈ 0), the parameter γ1 < 1 helps to
let v̂ converge to zero, therefore overcoming the observability
problem of the basic kinematic model for low yaw rates.3

The measured yaw rate ωk is introduced in the ωk f1(·) term
of (7a), to force (7a) to be decoupled from (7b) during straight
driving, so that v̂ → 0.

In the proposed approach, each of the M1, . . . , MP local
models can learn different values of γ1. However, to preserve
the kinematic relations, the learned γ1 values are close to 1 in
the local models at higher yaw rates, where there are no
observability issues.

3) Explaining the Role of γ2 and β2: The learnable param-
eters γ2 and β2 in (7b) modify the interpretation of the
state û, which is no longer necessarily the true forward speed,
but rather a transformed version of it, that is optimized for
improved estimation accuracy of v̂.

The parameters γ2 and β2 modify the weighting transfer
function C(z) in (12b), by adding a term proportional to um
when they are not equal to 1. This modification enables the
third sub-model in (11) to learn a dynamic relationship among
v, ω, and um, that cannot be captured by the basic kinematic
estimator (6a,6b) or the Luenberger observer of [11].

The parameters γ2 and β2 also represent additional
degrees of freedom to learn the transfer functions
{A(z), B(z), C(z), D(z)} in (11), which further improves the
observer performance.

4) Explaining the Role of β1: The learnable parameter β1
in (7a) generalizes the kinematic relation between v and the
slip rate ay − ωum, which improves noise rejection. The
optimized β1 values in the neural modules M1, . . . , MP
are typically lower than 1. As a result, (7a) still integrates
ay −ωum, but the integrand has a reduced weight (β1), which
leads to improved noise rejection. The missing contribution
is provided by the term ωk f1(ûk − umk ) in (7a), which
represents a lateral velocity dynamic model that is learned
with the state û.

5) Explaining the Role of b11 and b12 : The biases {b11 , b12}

in (10a) have the capacity to learn the measurement biases
specific to a particular vehicle and sensor setup. However, this
specialization can reduce the estimator’s robustness, as dis-
cussed in Section VIII.

3The parameter γ1 ∈ (0, 1] plays a role similar to the threshold ωth used
to switch off the benchmark Luenberger observer [11] for |ω| < ωth (refer to
the Appendix A).

B. Interpreting KS-NN as an LPV Model

This section shows that the proposed KS-NN model can be
interpreted as a linear parameter varying (LPV) system.

The combination of the local neural modules {M1, . . . , MP }

in (9) can be expanded using (7a,7b):

v̂k+1 =

P∑
p=1

φp(|ωk |) ·
(
γ1p v̂k + β1pτ(ayk − ωkumk )+

− ωk f1p (ûk − umk )
) (13a)

ûk+1 =

P∑
p=1

φp(|ωk |) ·
(
γ2p ûk + β2pτ(axk + ωk v̂k)+

− f2p (ûk − umk )
) (13b)

If the feedback functions { f1p (·), f2p (·)} are linear, then the
dynamics can be represented as a linear parameter varying
(LPV) discrete-time system. This is because, when performing
the products among φp(|ωk |) and the Mp models in (13a,13b),
the resulting equations can be written in a linear form, with
parameters that vary with the value of |ωk |.

v̂k+1 = γ1(|ωk |)v̂k + β1(|ωk |)τ (ayk − ωkumk )+

− ωk f̃1(ûk − umk , |ωk |)
(14a)

ûk+1 = γ2(|ωk |)ûk + β2(|ωk |)τ (axk + ωk v̂k)+

− f̃2(ûk − umk , |ωk |)
(14b)

where the linear functions f̃i (ûk − umk , |ωk |), i ∈ {1, 2}, are
a parameter-varying extension of (10a,10b):

f̃i (ûk − umk , |ωk |) =

P∑
p=1

φp(|ωk |) · fi p (ûk − umk )

= w1i (|ωk |) · (ûk − umk )+b1i (|ωk |) (15)

The functions {γ1(|ω|), γ2(|ω|), β1(|ω|), β2(|ω|)}, together
with {w1i (|ω|), b1i (|ω|)}, i ∈ {1, 2}, inherit from φp(|ω|) the
piecewise linearity in |ω| (Fig. 3), providing the interpolation
among the local models.

V. LITERATURE BENCHMARKS

The neural network KS-NN is compared with the following
literature benchmarks:

• Kinematic Luenberger observer [11], with 2 train-
able parameters. The implementation is detailed in
Appendix A.

• Gated recurrent network (GRU). The implementation
follows the E1 estimator proposed by [9], using the same
input signals of KS-NN.

• Long short-term memory network (LSTM). The imple-
mentation follows [10], using the same input signals
of KS-NN.

• Factor graph (FG) and Kalman filter (KF) estimators
of [12]. The authors used the same race car dataset as
our paper; hence their results are directly comparable
with ours.
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TABLE I
STATISTICS OF THE EXPERIMENTAL RACE CAR DATASETS. (* 0.99 QUANTILES)

VI. EXPERIMENTAL DATASET AND
MODEL PARAMETERIZATION

A. Experimental Dataset

We use real telemetries of race cars from the Revs
Vehicle Dynamics database (Stanford University), which is
openly accessible [40]. It contains data from two cars —with
challenging top speeds of 240 km/h and lateral accelerations
up to 12 m/s2. They are:

• Corvette Grand Sport 1963, hereafter named “Corvette”;
• Ferrari 250 LM GT 1965, hereafter named “Ferrari”.
We focus on the Palm Beach sessions listed in Table I.

For each vehicle, the available data are divided into two
subsets, named {C-1,C-2} for the Corvette and {F-1,F-2} for
the Ferrari: the −1 and −2 subsets will be used for training
and testing, as explained below. Table I shows the names of
the corresponding files in the Revs database and some lap
statistics.

To comply with the design sampling time of the neural esti-
mators, the original signals, stored at 1 kHz, are down-sampled
to τ−1

= 20 Hz.

B. Training of the Estimators

We now describe how the datasets of Table I are used
to train, validate and test the novel and benchmark neural
estimators.

As mentioned in the introduction, observers can either be
tailored to specific vehicles, or designed to be insensitive to
variations in parameters such as operating conditions, vehicle
types, and aging. Our objective is to develop observers with the
latter characteristic, which can be achieved by designing and
training neural networks with strong generalization abilities.
This means that a network trained on data from one vehicle
should be able to function effectively on another vehicle.

Networks with this level of generalization tend to be robust.
Instead, networks specialized for a specific vehicle design may
suffer from unpredictable degradation when vehicle parame-
ters vary.

The benchmark Luenberger observer is constrained by
design to use only kinematics. To a slightly lesser extent,

TABLE II
TRAINING, VALIDATION AND TEST SETS FOR THE NOVEL

AND BENCHMARK NEURAL ESTIMATORS

the KS-NN networks introduced in this paper are also con-
strained to adhere to kinematics (Sections III and IV).

However, the generic LSTM and GRU networks used for
benchmarking are not ideal for our purposes. These networks
are designed to fit the training data by identifying any hidden
correlations in the input-output examples. With hundreds of
parameters, these generic networks can easily learn character-
istics that depend on fewer parameters, that differentiate one
vehicle from another.

1) Controlling LSTM and GRU Overfitting: To force the
benchmark GRU and LSTM networks to learn universal
input-output relations as much as possible, we adopt the early
stopping technique. The networks are trained with the training
set of one vehicle and, as a validation set,4 with the training
set of the other vehicle. For example, the Corvette set C-1
for training, and the Ferrari set F-1 for validation, or vice
versa, as shown in Table II. For convenience, this technique
is referred here as cross-vehicle regularization. To have a
uniform training procedure, the same training method with
cross-vehicle regularization is adopted for the novel KS-NN
networks as well.

With early stopping, the training process terminates as soon
as the validation loss stops improving. This mitigates the
risk of updating the network parameters in ways that are not
general (at least not for the given validation examples), and
yields the most robust network.

With early stopping, the trained network may vary with
the initial parameter seeds (because of premature stopping).

4We recall that, in neural network terminology, the training set is used
for updating the model parameters in gradient descent iterations, and the
validation set is used for model selection.
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TABLE III
MODELS HYPERPARAMETERS AND INSTANTIATIONS

Hence, we repeated the training several times with randomized
initial guesses, and evaluated the distributions of the resulting
quality metrics, taking the best performing networks of the
random search.5

2) Training Procedure: The neural networks are developed
and trained in Wolfram Mathematica 12.3.1, which uses the
MXNet Deep Learning framework.

The training set for KS-NN consists of the input →

output data {rk−N+1, . . . , rk−1, rk} → vk+1, with vk+1
being the ground truth lateral speed measurements and
rk = {ωk, umk , ayk , axk }. The model estimates v̂k+1 using
the provided windows (with size N ) of past measurements r ,
according to the recursion scheme of Fig. 1. Using supervised
learning, the network is trained to minimize the mean square
error (MSE) of v̂k+1 − vk+1. The Adam method [41] is
employed for numerical optimization, with a maximum of
1000 training epochs (but early stopping typically occurs at
about 200 epochs) and a small batch size of 64 (which helps
generalization abilities).

C. Model Hyperparameters and Model Instantiations

Except for the benchmark Luenberger observer, all models
have hyperparameters that control model complexity and the
number of trainable parameters. For the benchmark LSTM and
GRU networks, it is the dimension of the internal state that
controls the model complexity. For the novel KS-NN networks
of this article, the number of local models P and the number of
hidden neurons in the feedback functionsQ play a similar role.

Table III lists the models that were instantiated for each
category. In total, there are 39 different candidates, with the
number of parameters spanning the range 12-271 (except for
the Luenberger, which has only two parameters).

VII. INVESTIGATION ON THE QUALITY OF THE DATA

A. Measurement Noise Analysis of the Experimental Vehicles

Equation (4a) states that v̇ equals ay − ωum. However,
if we obtain v̇ from the derivative of the ground truth lateral
velocity v, it may not match ay − ωum. This is because ay ,
ω and um are noisy and contain measurement biases, such
as errors in the mounting position of the accelerometer and

5In one case, an outlier was removed.

Fig. 4. The periodograms compare the spectral densities of the measured
signal v̇ and the process noise v̇ − (ay − ωum), for the Ferrari (top) and the
Corvette (bottom). They show that the noise-to-signal ratio is more favorable
in the Ferrari than in the Corvette, especially at low frequencies.

gyroscope, chassis roll and pitch angles, and sensor offsets.
Assuming that the ground truth lateral velocity v is more
precise than the other signals, the quantity v̇ − (ay − ωum) is
an estimate of the overall noise on the right-hand side of (4a).

Fig. 4 compares the periodograms [42] of v̇ − (ay − ωum),
for the Ferrari and the Corvette, to the periodograms of the
measured v̇, to visualize the signal-to-noise ratios, shown with
shaded areas. The signal-to-noise ratio is more favorable in the
Ferrari, where the power of v̇ is relatively high compared to
the power of v̇−(ay −ωum). In the Corvette, the power of v̇ is
lower, resulting in a higher noise-to-signal ratio. In particular,
in the Corvette, below 0.1 Hz, the signal v̇ is below the noise
level.

1) Mean Bias: The mean value of v̇ − (ay − ωum) is
0.10 m/s2 for the Corvette, and a better -0.03 m/s2 for the
Ferrari. We can interpret this figure as a mean bias that
originates somewhere on the right-hand side of (4a), which
is the primary signal to estimate v kinematically.

B. Lateral Velocity Dynamics of the Experimental Vehicles

Fig. 5 shows that the measured lateral velocity v and lateral
acceleration ay exhibit different dynamics for the Ferrari and
the Corvette. The plot suggests that the Ferrari achieves higher
lateral velocities for the same lateral acceleration, compared
to the Corvette. These differences emphasize the importance
of testing the observer’s ability to generalize and potential
overfitting issues, which is achieved by testing the observer
on the vehicle not used for training.
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Fig. 5. The plot shows the measured lateral velocity v versus the lateral
acceleration ay , for the Ferrari and the Corvette. It can be observed that
the Ferrari achieves larger absolute values of v than the Corvette for the
same ay , indicating different dynamic characteristics between the two cars.
These differences support the robustness analyses presented in the paper,
which aim to evaluate the observer’s ability to generalize by testing it on
a car that was not used for training.

VIII. RESULTS AND DISCUSSION

Fig. 6 gives a visual representation of the performance of
the 39 candidate models in Table III.

The left column concerns models trained according to
scheme 1 of Table II, i.e., with the Corvette set C-1 for
training, and the Ferrari set F-1 for validation. The right
column concerns models trained with scheme 2, i.e., using F-1
for training, and C-1 for validation. The performance metrics
are evaluated on both test sets C-2 and F-2, and are the
coefficient of determination R2 in the top row and the root
mean square error (RMSE) of the predicted lateral velocity in
the bottom row.

More precisely, R2
= 1 − var(v − v̂)/var(v) —with v̂ the

estimated lateral velocity, v the ground truth lateral veloc-
ity, and var(·) the variance operator— is a non-dimensional
index showing how much of the variation of v is suc-
cessfully accounted for by a model. Its complement to 1,
FVU = 1 − R2

= var(v − v̂)/var(v), is known as the fraction
of variance unexplained by a model.

The root mean square error of the lateral velocity, on the
bottom charts, complements the above information with
the expected magnitude of the estimated error: RMSE =√

E[(v − v̂)2].

A. Model Quality in Terms of Accounted Variance

Let us first study the top row of Fig. 6. The dots show
the coefficient of determination R2 of the 39 models. The
benchmark Luenberger model is shown in gray. The bench-
mark LSTM and GRU models have similar behavior and are
shown together in purple. The KS-NN models with linear
feedback (Q = 0) are colored blue. They form two clusters:
models without biases (b1i = 0 in (10a)), and models with
biases (b1i ̸= 0 in (10a)). The KS-NN models with nonlinear
feedback (Q > 0) are colored in orange. They also form
two clusters: without biases (b2 j i = 0 in (8)) and with biases
(b2 j i ̸= 0 in (8)).

1) Training Scheme 1: Let us now focus on training
scheme 1 (Corvette C-1 as training set and Ferrari F-1 as
validation set), shown in the top left sub-plot of Fig. 6.
By training on C-1 with F-1 as the validation set, the models
seek to optimize the performance of the Corvette, subject to
not worsening the performance of the Ferrari. So, they seek
to best model one vehicle while maintaining the maximum
generalization capacity measured on the other. The graph
plots R2, evaluated in test sets C-2 (Corvette) and F-2 (Ferrari),
which were not used for training or selection. C-2 is on the
y-axis.

All dots are above the main diagonal, meaning that the
performance on C-2 (the Corvette test set) is better than the
performance on F-2 (the Ferrari test set). This is expected,
since we trained with Corvette data, and used Ferrari data
only to stop the training process. The difference between
C-2 and F-2, i.e., the distance from the main diagonal, can
be seen as a measure of model specialization for one vehicle,
and thus, the generalization loss.

The benchmark Luenberger observer performs similarly in
C-2 and F-2. However, it only accounts for 76.5% and 74.7%
of the variance of v, respectively, indicating that about 25%
of the variance is not predicted by the Luenberger.

The benchmark LSTM and GRU models outperform the
Luenberger on C-2, exceeding 90% of explained variance.
However, their performance worsens on F-2, indicating spe-
cialization for one vehicle at the expense of the other.

The KS-NN linear and nonlinear models with biases per-
form even better than the benchmarks in the C-2 test set, and
marginally better than the Luenberger observer in F-2. This
means that they are able to improve both vehicles, with the
greatest gains for the vehicle that provided the training set.

The KS-NN models without biases are the most robust,
as they remain close to the main diagonal and exhibit
equal improvements in both vehicles. The cost of such a
greater generalization capacity is a decrease of R2 to 86.8%
in C-2 (from 92.9% of the models with biases), which,
however, is balanced with an increase to 85.5% in F-2
(from 75.8% of the models with biases). We argue that
models with biases (and, among others, the benchmarks GRU
and LSTM) learn to compensate for the measurement biases
discussed in Section VII. However, since the measurement
biases vary in time and across different sensors and cars,
specializing for one vehicle reduces performance for others
with different biases.

2) Training Scheme 2: The above considerations hold also
for training scheme 2, shown in the top right sub-plot of
Fig. 6, in which the Ferrari F-1 set is used for training, and
the Corvette C-1 set for validation. However, the signal-to-
noise ratio of the Ferrari is better than that of the Corvette
(Section VII-A). Therefore, while performance in the Ferrari
test set F-2 (y-axis) tends to improve, it comes at the cost of
reduced generalization capacity for most models, except for
the KS-NN nonlinear model without biases, which is the most
robust.

In the top right chart, the most general models and the most
specialized models are indicated.
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Fig. 6. The charts illustrate the performance of the candidate observers listed in Table III. The top row shows the explained variance R2 on test datasets of
the Ferrari (F-2) and the Corvette (C-2), while the bottom row shows the root mean square error (RMSE) on the same datasets. The first column corresponds
to training scheme 1 (Table II), in which the C-1 (Corvette) dataset is used for training and the F-1 (Ferrari) is employed for early stopping. The second
column is for the opposite training scheme 2. The “KS-NN nonlinear no bias” model exhibits the best generalization capacity, outperforming all other models
on the vehicle not used for training. Compared to the benchmark Luenberger, the increase in R2 is 25-43%, while the improvement over the benchmarks
GRU and LSTM is 47-65%.

B. Model Quality in Terms of Expected Error

The bottom row of Fig. 6 displays the root mean square
error (RMSE) of the predicted velocity. The KS-NN non-
linear model without biases exhibits the best generalization
capacity: compared to the benchmark Luenberger, it improves
the RMSE by 16-24% on the vehicle not used for training;
compared to the benchmarks GRU and LSTM, it improves
by 27-38%.

C. Models With the Best Generalization Capacity

Tables IV and V list the most general models per category.
The general models significantly improve the observer’s ability
to predict the velocity of the testing vehicle, with only a minor
loss in accuracy for the training vehicle. The model with the
best generalization capacity is highlighted: it is the KS-NN
network, with nonlinear feedback functions and no biases.
Compared to the benchmark Luenberger, it improves the FVU



13680 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 12, DECEMBER 2023

TABLE IV
MOST GENERAL MODELS PER CATEGORY, TRAINING SCHEME 1: TRAINING ON CORVETTE, VALIDATION ON FERRARI,

TEST ON CORVETTE (C-2) AND FERRARI (F-2). THE KS-NN NONLINEAR MODEL WITHOUT BIASES
IS THE MOST ACCURATE ON F-2, I.E., HAS THE BEST GENERALIZATION CAPACITY

TABLE V
MOST GENERAL MODELS PER CATEGORY, TRAINING SCHEME 2: TRAINING ON FERRARI, VALIDATION ON CORVETTE,

TEST ON CORVETTE (C-2) AND FERRARI (F-2). THE KS-NN NONLINEAR MODEL WITHOUT BIASES
IS THE MOST ACCURATE ON C-2, I.E., HAS THE BEST GENERALIZATION CAPACITY

by 25-43% on the test vehicle; compared to the benchmarks
GRU and LSTM, it improves by 47-65%.

From Tables IV and V, one may observe that robust
solutions tend to have few parameters.

The nonlinear feedback functions { f1(·), f2(·)} (8) in the
best general models realize variable feedback gains, as already
found in [18].

D. Comparison With the Factor Graph Benchmark [12]

This section presents a comparison between the KS-NN
network and the factor graph (FG) and Kalman filter (KF)
estimators proposed by [12]. The comparison is based on the
same Ferrari telemetries used in the open race car dataset [40]
presented in this paper. To directly compare our results
with [12], we compute the RMSE of the side slip angle
estimate (β = atan(v/u)).

Table VI shows the results obtained with our KS-NN,6 the
benchmarks Luenberger, GRU, LSTM, and the FG and KF of
[12, Section 4].

Our KS-NN model shows superior performance compared
to the FG and KF benchmarks, with an RMSE of 0.40◦, which
is 30% and 54% lower, respectively. It is worth noting that
the FG and KF benchmarks were not cross-evaluated on the
Corvette in [12]. On the other hand, as shown in Table V,
our KS-NN also exhibits good generalization capacity on the
Corvette dataset, which was not used for training.

E. Noise Sensitivities

Assuming that most of the noise is contained in the ay
and ax signals, one can study the propagation of noise in

6We use the bias-free nonlinear variant of our KS-NN, which has the best
generalization capacity (Table V).

TABLE VI
RMSE OF THE SIDESLIP ANGLE (β) ESTIMATE ON THE FERRARI F-2
TEST SET: THE KS-NN MODEL OUTPERFORMS THE BENCHMARKS,

INCLUDING THE FG AND KF OF [12]

the KS-NN linear networks and in the benchmark Luenberger
observer [11] as follows.

Starting from the characteristic equations of each model
((7a,7b) for KS-NN), the quantities {ayk , axk } are replaced
with {ayk + δayk , axk + δaxk }, where {δayk , δaxk } stand for the
acceleration noise. Applying the Z transform, the variation
δv̂(z) for given {δay(z), δax (z)} is:

δv̂(z) = HYM(z)δay(z) + HXM(z)δax (z) (16)

with HYM(z) and HXM(z) being the noise sensitivities, and
M={KS-NN,Luenberger} indicating the model type. The
expressions of {HYM(z), HXM(z)} for KS-NN and the bench-
mark Luenberger are reported in Appendix B.

HYM(z) and HXM(z) (Appendix B) depend on the yaw
rate ω. Figure 7 compares the sensitivities of the KS-NN
model and the Luenberger benchmark for two different values
of ω: 0.2 rad/s (which is the median value of |ω| for both the
Corvette and the Ferrari) and 0.4 rad/s. The plot shows that the
KS-NN model has significantly lower sensitivities compared
to the Luenberger, for both yaw rate values. The sensitivities
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Fig. 7. Magnitudes of the transfer function sensitivities to acceleration
noise, for the KS-NN model and the benchmark Luenberger, trained with
the Corvette and the Ferrari training sets. The left column corresponds to the
Corvette, while the right column corresponds to the Ferrari. For both vehicles,
the KS-NN model has significantly lower sensitivities than the Luenberger
benchmark, indicating that the KS-NN is more robust to acceleration noise.
Note that the sensitivities to ay and ax are not equal, due to the different
levels of noise in the signals. During training, the sensitivities are balanced
to maximize the estimation accuracy.

to lateral acceleration (ay) and longitudinal acceleration (ax )
for the two vehicles are not equal, as they have different
levels of noise in their respective signals. During training,
the sensitivities are adjusted to balance the trade-off between
accuracy in estimating the states and robustness to noise.

F. Power Spectral Densities of the Residuals

Figure 8 displays the power spectral densities (PSDs) [42]
of the lateral speed estimation errors, obtained by the KS-NN
network and the benchmarks Luenberger and LSTM. The top
plot illustrates the results of the Ferrari test set, using the most
robust models trained with the Corvette, while the bottom plot
depicts the results of the Corvette test set, using the most
robust models trained with the Ferrari.

The PSD of the measured lateral velocity signal is plotted
as well (in black), to appreciate the signal-to-noise ratios.

The benchmark Luenberger residuals have a higher PSD
than the KS-NN model, across most frequencies. Beyond
1-2 Hz, the PSD of the Luenberger exceeds even the signal
level, indicating noise introduced by the observer.

The benchmark LSTM residuals have greater power than
the KS-NN network, with a 7 dB difference at 0.1 Hz and
8-10 dB difference at 1 Hz, on the Corvette. In contrast, the
PSD of the residuals of the KS-NN model is consistently
below the signal level, and has the lowest values for all
frequencies in both cars, confirming its improved estimation
robustness.

G. Computational Efficiency of Implementations

As noted, the KS-NN estimator is made of parallel models,
whose outputs are weighted by activation functions. The
discrete-time equations of a module (7a,7b), feedback func-
tion (8), and the activation functions (φp(|ω|)) are not difficult

Fig. 8. This figure compares the power spectral densities of the v estimation
errors, for the KS-NN network and the benchmarks Luenberger and LSTM.
The top and bottom plots present results on the Ferrari and Corvette test
sets, respectively, using the most robust models trained on the opposite car
(Tables IV and V). The KS-NN network outperforms the benchmarks, as its
residuals have the lowest power.

to code. Weights can be obtained from the trained network.
The total number of mathematical operations is small and
easily supported by low-cost automotive-grade hardware.

H. What Happens Without Cross-Vehicle Regularization

In Section VI-B.1, the cross-vehicle regularization technique
was introduced to prevent overfitting of the training data, using
early stopping with a validation set of another vehicle. In this
section, we investigate the effects of removing cross-vehicle
regularization.

Let us consider the findings in Table V, and focus on the
benchmark LSTM model and the novel “KS-NN nonlinear no
bias (best generalization).” Let us re-train these two architec-
tures (LSTM with 2 states and KS-NN with P = 2 and Q = 2)
as follows. Instead of using the Ferrari F-1 set for training and
the Corvette C-1 set for validation, let us use the first two files
of F-1 for training and the last file of F-1 for validation. This
means that we train on Ferrari data, and the validation set
is from the same vehicle. Using both training and validation
sets from the same vehicle permits exploiting characteristics
that are specific to that vehicle: on the one hand, the trained
network improves specialization, but on the other hand, it loses
generality. We show that the loss of generality is negligible for
KS-NN, but is severe for LSTM.

The results are shown in Table VII. When cross-vehicle
regularization is not used, the benchmark LSTM performs
better on the Ferrari F-2 test set, with an FVU of 0.042,
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TABLE VII
MODELS TRAINED WITH AND WITHOUT CROSS-VEHICLE REGULARIZATION (TRAINING SCHEME 2). IN THE ABSENCE OF

REGULARIZATION, THE BENCHMARK LSTM CONSIDERABLY WORSENS THE ACCURACY ON THE CORVETTE (C-2),
NOT USED FOR TRAINING. IN CONTRAST, THE KS-NN MODEL PRESERVES GOOD GENERALIZATION CAPACITY

which is more than twice as good as the regularized version’s
FVU of 0.098. However, in the absence of regularization, the
LSTM model fails to accurately predict the sideslip on the
Corvette (C-2) test set, with an FVU of 0.84. In Fig. 6,
the point of this case would fall outside the left edge of the
charts (and still below the most specialized KS-NN model
with nonlinear feedback, at R2 = 0.967). In contrast, the
KS-NN model maintains its performance on the Ferrari F-2
test set, and exhibits only a slight decline in accuracy on the
Corvette C-2 test set.

IX. CONCLUSION AND FUTURE WORK

This paper introduces novel kinematics-structured neural
network (KS-NN) models for lateral speed estimation in
vehicles. The KS-NN model is designed to incorporate and
generalize the underlying kinematic laws.

The kinematics-driven internal structure of the KS-NN
models makes them physically explainable and enhances their
generalization capacity. This reduces the risk of the mod-
els learning vehicle- and environment-specific characteristics,
as they are designed to embed and generalize the underlying
kinematic laws.

We propose a physical interpretation of the neural network’s
internal structure, explaining the role of its learnable parame-
ters, and discussing the advantages over existing unexplainable
neural estimators.

We evaluate KS-NN against existing Luenberger [11], GRU
and LSTM neural networks (similar to [9] and [10]), and factor
graph [12] estimators, using an openly accessible dataset with
the telemetries of two race cars. The cars have significantly
different lateral velocity dynamics, noise levels, and measure-
ment biases.

The KS-NN variants that exhibit the highest generalization
capacity are those with nonlinear feedback functions and no
biases. When tested on a vehicle that was not used during
training, these models outperform the Luenberger observer by
25-43% in terms of explained variance R2, as well as the GRU
and LSTM networks by 47-65%. Furthermore, KS-NN out-
performs the factor graph proposed in [12] by 30%, in terms
of RMSE. Although the best linear variants of KS-NN have
slightly lower accuracy (up to 2% RMSE) than their nonlinear
counterparts, they are simpler and physically explainable LPV
systems with only 12 parameters. Despite their simplicity, they
still exhibit superior generalization performance compared to
all the benchmarks.

The KS-NN models have low computational complexity and
require only few parameters, with the best nonlinear variant

having up to 36 parameters and the linear variant having
only 12. They rely on standard odometers, gyroscopes, and
bi-axial accelerometers to measure forward speed, yaw rate,
and longitudinal/lateral accelerations. Unlike other recurrent
neural network estimators, which may require specialized
hardware for real-time operation, the KS-NN models can be
easily deployed using standard sensors and automotive-grade
hardware.

A. Limitations and Future Work

This study used an open dataset with the telemetries of
two different race cars, indicating how well the models may
generalize. Future work might aim to study a broader set of
experimental cars.

In this study, roll and pitch biases were not compensated for,
as using a 6-degree-of-freedom inertial measurement unit for
commercial vehicles is not affordable. Hence, estimators that
do not compensate for acceleration biases were studied. It was
found that models that can learn biases perform better on the
training vehicle, but perform worse on others, as different
vehicles have different biases. Therefore, it is expected that
removing biases from the measurements before feeding the
networks, e.g. via bias estimation and removal, would achieve
better performance without sacrificing generalization capacity.
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APPENDIX A
BENCHMARK LUENBERGER OBSERVER

This section discusses the implementation of the kinematic
Luenberger observer of [11], which is used as a benchmark.
The observer uses the basic kinematic estimation model
(5a,5b), where the feedback functions f̄1(·) and f̄2(·) are
designed as:[

f̄1(ω, û − um)

f̄2(ω, û − um)

]
= L(ω) · (û − um)=

[
2α|ω|

(α2
− 1)ω

]
(û − um)

(17)

Following [11], the feedback gain L(ω) in (17) is designed
to place both the eigenvalues of the resulting state matrix in
−α|ω|, where α ∈ R>0 is a design parameter. Large values
of α produce faster estimation convergence dynamics, at the
price of a higher sensitivity to the measurement noise.
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HYKS−NN(z) =

(β1z + β1w12 − β1γ2)τ

z2 + (w12 − γ1 − γ2)z + β2ω2τw11 − w12γ1 + γ2γ1

HXKS−NN(z) =
−ωw11β2τ

z2 + (w12 − γ1 − γ2)z + β2ω2τw11 − w12γ1 + γ2γ1

(18)


HYLuenberger(z) =

(−1 + (2|ω|αTs + 1)z)Ts z
(α2ω2T 2

s + 2|ω|αTs + 1)z2 + (−2|ω|αTs − 2)z + 1

HXLuenberger(z) = −
α2ωT 2

s z2

(α2ω2T 2
s + 2|ω|αTs + 1)z2 + (−2|ω|αTs − 2)z + 1

(19)

We discretize the observer dynamics (5a,17) using the
implicit Euler method, with a fixed time step Ts = 0.01 s.

One of the main issues with the basic kinematic estimation
model (5a,5b) is that the lateral velocity becomes unobservable
for low yaw rates ω (Section II-B). On this account, the
observer state {v̂, û} is reset when |ω| is below a tunable
threshold ωth: v̂ is reset to 0, while û is reset to um. In this
way, the tunable parameters for the Luenberger observer are
two: {α, ωth}.

A Lyapunov function is given in [11], proving the asymp-
totic stability of the estimation error dynamics (5a,17),
if ω ̸= 0 and in the absence of measurement noise. The
switching dynamics of the observer with reset inherit the
asymptotic stability properties of (5a,17) if |ω| ≥ ωth. For
the case |ω| ≤ ωth, the estimation error remains bounded, but
it cannot be proved to converge to zero.

The design parameters {α, ωth} are optimized by minimizing
the mean square estimation error obtained with the Luenberger
observer dynamics (with reset). For the optimization, we adopt
the direct search Nelder-Mead method [43], [44], since the use
of gradient-based techniques is hindered by the discontinuous
switching dynamics. Box constraints7 are imposed for {α, ωth}

to improve the stability of the optimization algorithm [45].
In order to reduce the risk of finding local minima, the
optimization is repeated with a 4 × 4 grid of initial guesses
for {α, ωth}.8

APPENDIX B
EXPRESSIONS OF THE NOISE SENSITIVITIES

The transfer functions HYM(z) and HXM(z), M={KS-NN,
Luenberger}, providing the noise sensitivities for the novel
KS-NN linear networks and the benchmark Luenberger [11]
are (18) and (19), shown at the top of the page.

Note that the transfer functions (18) are derived from the
infinite impulse response (IIR) filter that approximates the FIR
recurrence.
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