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Abstract— The automatic identification system (AIS) and video
cameras have been widely exploited for vessel traffic surveillance
in inland waterways. The AIS data could provide vessel identity
and dynamic information on vessel position and movements.
In contrast, the video data could describe the visual appear-
ances of moving vessels without knowing the information on
identity, position, movements, etc. To further improve ves-
sel traffic surveillance, it becomes necessary to fuse the AIS
and video data to simultaneously capture the visual features,
identity, and dynamic information for the vessels of interest.
However, the performance of AIS and video data fusion is
susceptible to issues such as data spatial difference, message
asynchronous transmission, visual object occlusion, etc. In this
work, we propose a deep learning-based simple online and real-
time vessel data fusion method (termed DeepSORVF). We first
extract the AIS- and video-based vessel trajectories, and then
propose an asynchronous trajectory matching method to fuse
the AIS-based vessel information with the corresponding visual
targets. In addition, by combining the AIS- and video-based
movement features, we also present a prior knowledge-driven
anti-occlusion method to yield accurate and robust vessel tracking
results under occlusion conditions. To validate the efficacy of
our DeepSORVF, we have also constructed a new benchmark
dataset (termed FVessel) for vessel detection, tracking, and data
fusion. It consists of many videos and the corresponding AIS
data collected in various weather conditions and locations. The
experimental results have demonstrated that our method is capa-
ble of guaranteeing high-reliable data fusion and anti-occlusion
vessel tracking. The DeepSORVF code and FVessel dataset are
publicly available at https://github.com/gy65896/DeepSORVF and
https://github.com/gy65896/FVessel, respectively.
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I. INTRODUCTION

THE autonomy and intelligence of the inland waterways
surveillance system play a significant role in the devel-

opment of inland waterborne transportation, which can effec-
tively reduce the labor cost of the supervisory departments
and ensure the safety of vessel navigation. To accomplish
this objective, the vessel traffic service (VTS) system is
capable of providing effective situational awareness by using
the automatic identification system (AIS), radar, closed circuit
television (CCTV) [1], etc. To further increase the capability
of situational awareness, many intelligent technologies for
single sensor have been presented, e.g., AIS-based vessel
trajectory prediction [2], radar-based object detection [3], and
video-based object detection [4]. It is well known that each
type of sensor has its own advantages and disadvantages
under the same scenarios. As a consequence, numerous efforts
have been devoted to simultaneously exploiting the multi-
source data [1], [5], [6], [7], [8], [9], [10], [11] to promote
the traffic situational awareness for maritime transportation
systems. However, these fusion methods mainly just take into
consideration the positional relationship of the same target at
a certain moment. It thus becomes difficult to guarantee high-
quality data fusion, especially for the existence of time delay,
missing data, random outliers, etc. The same moving vessels
essentially share similar navigation behaviors, which could be
represented using the time-series data, e.g., spatio-temporal
trajectories. To further improve the stability and accuracy of
data fusion, we will first extract the vessel trajectories from
the raw sensing data, and then propose a trajectory matching-
based fusion method (termed DeepSORVF) in this work.

A. Motivation and Contribution

Owing to the remote, intuitive, and real-time advantages
of CCTV, terrestrial video surveillance systems have been
widely used in inland waterborne transportation to improve
the ability of traffic situational awareness and vessel abnormal
behavior monitoring [12]. In particular, massive monitoring
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cameras can provide indispensable visual information for guar-
anteeing maritime safety. To fully use these visual features,
many efforts have focused on the research of vessel detection
and tracking to meet the requirement of intelligent supervi-
sion [13], [14], [15]. However, these methods could only detect
the moving vessel from the video images. It is intractable to
achieve important identity information (e.g., vessel name and
size) and dynamic information (e.g., vessel speed and course).

Other maritime awareness equipment, such as AIS and
radar, could provide much richer attribute information about
the vessel. In particular, the AIS data contains rich vessel
identity and spatio-temporal information, which makes it play
an essential role in analyzing vessel abnormal behaviors. The
AIS data mainly contains static and dynamic information, e.g.,
maritime mobile service identification (MMSI), vessel size,
speed, course, position, etc. However, the AIS data essentially
suffers from the inconsistency of time intervals, which lim-
its its application in maritime intelligent transportation [16].
The radar has been widely used in near port supervision
since it can provide the accurate distance and bearing of
vessels. Unfortunately, some radar equipment is forbidden to
be installed in populated regions to avoid the high-frequency
electromagnetic radiation harming the health of people [1].
In the literature [17], many methods have been proposed to
robustly and accurately fuse the AIS and radar data. As long
we simultaneously collect the AIS, radar, and video data,
we can directly adopt the existing advanced methods to fuse
the AIS and radar data, and then implement fusion with the
video data. Intuitively, the fusion of AIS and video data seems
more difficult because of the different coordinate systems,
asynchronous data collection, different data structures, etc.
Therefore, we tend to only fuse the AIS and video data
to enhance the traffic situational awareness for intelligent
surveillance in inland waterways.

In this work, we propose a deep learning-based simple
online and real-time vessel data fusion method (termed Deep-
SORVF) for promoting inland waterways surveillance. The
main contributions of this work are as follows:

• We build two simple yet efficient methods to extract the
AIS- and video-based vessel trajectories for data fusion,
respectively. To avoid the interference of vessel occlusion,
we propose a novel anti-occlusion tracking method, which
adopts the historical fusion results as prior knowledge
to predict the bounding boxes and video-based vessel
trajectories in the occluded region.

• We design a novel asynchronous trajectory matching
method to achieve the robust fusion of AIS and video
data. The proposed method adopts an enhanced fast
dynamic time warping algorithm for trajectory similarity
measure and employs an AIS/video association method to
decrease the computational cost and increase the stability.

• We construct a public benchmark dataset (termed FVes-
sel) for vessel detection, tracking, and data fusion, which
consists of many videos and the corresponding AIS data
collected in various weather conditions and locations.

To the best of our knowledge, the proposed DeepSORVF
is the first trajectory matching-based computational method to
fuse the AIS and video data for inland waterways surveillance.

Meanwhile, we have verified the effectiveness of the proposed
method on our newly-developed FVessel dataset.

B. Organization

The rest of this paper is organized as follows. Section II
briefly reviews the recent research on object detection, track-
ing, AIS and video data fusion. In Section III, the proposed
data fusion framework is described in detail. Section IV imple-
ments extensive comprehensive experiments to demonstrate
the effectiveness of our method. Finally, Section V summarizes
the main contributions of this work.

II. RELATED WORKS

This section mainly introduces the recent studies related to
our work, i.e., multi-vessel detection and tracking, AIS and
video data fusion.

A. Multi-Vessel Detection and Tracking

Multi-object detection and tracking methods are generally
divided into two categories, namely traditional and deep learn-
ing methods. Due to the particularity of the research issue, this
section mainly reviews the related works on vessel detection
and tracking.

1) Traditional Methods: Background subtraction (BS) is
a classic object detection method. Although many BS-
based methods are proposed to detect conventional objects,
these methods still achieve poor precision in vessel detec-
tion [18]. To improve the accuracy of the BS-based method,
Hu et al. [19] designed a robust foreground detection and back-
ground update method to effectively reduce the influence of
waves. Bloisi et al. [20] proposed an independent multi-modal
background subtraction (IMBS) algorithm. In particular, this
algorithm models highly dynamic backgrounds (e.g., water) by
creating a “discretization” of an unknown distribution. Further-
more, other types of vessel detection methods are proposed.
For instance, Zhu et al. [21] designed a hierarchical complete-
based vessel detection approach for spaceborne optical images.
Zhang et al. [22] proposed a vessel detection algorithm using
the discrete cosine transform (DCT)-based Gaussian mixture
model (GMM) for efficient visual maritime surveillance on
non-stationary surface platforms. Chen et al. [23] achieved the
vessel object tracking using multi-view learning and sparse
representation. Although many techniques have been intro-
duced to improve the performance of detectors, hand-designed
features still produce poor robustness in vessel detection.
Meanwhile, the high computational complexity of some meth-
ods will hinder their practical applications.

2) Deep Learning Methods: With the emergence and
rapid development of graphics processing units (GPU), deep
learning technology is widely used in the field of image
processing. Many deep learning methods are proposed for
object detection, e.g., region-based convolutional neural net-
work (R-CNN) [24], [25], single shot multibox detector
(SSD) [26], [27], and you only look once network (YOLO)
[28], [29], [30], [31]. Based on these object detection net-
works, many vessel detection methods are further researched.
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Fig. 1. The architecture of the proposed deep learning-based simple online and real-time vessel data fusion method (DeepSORVF). The DeepSORVF consists
of AIS-based vessel trajectory extraction, video-based vessel trajectory extraction, and asynchronous vessel trajectory matching.

Shao et al. [32] proposed a YOLOv2-based saliency-aware
network for vessel detection, which combined the salient
features and coastline features to predict more accurate vessel
positions. Liu et al. [14] built an enhanced YOLOv3 net-
work to promote vessel detection in video-based maritime
surveillance. To reduce the impact of poor weather envi-
ronments on vessel detection, this method constructed a
data enhancement strategy to improve vessel detection pre-
cision in low-light, hazy, and rainy images. Furthermore,
Chen et al. [33] proposed a small vessel detection method
based on an improved generative adversarial network (GAN)
and a convolutional neural network (CNN). Feng et al. [4]
proposed a ship detection method based on the multi-size
gradient features and multi-branch support vector machine
(SVM). Yang et al. [34] applied the visual object tracking and
semi-supervised object segmentation to the vessel tracking
task, and proposed an enhanced SiamMask network. Despite
numerous deep learning-based vessel detection and tracking
methods that have been proposed, these methods often suffer
from detection failures or bounding box displacements when
visual vessels occlude each other.

B. AIS and Video Data Fusion

In current literature, many AIS and video data fusion
methods have been proposed. For instance, Chen et al. [5]
proposed a single-vessel tracking method by combining AIS
and video data. In particular, this method could make the
camera focus on the vessel according to the position infor-
mation provided by the AIS, and use the Kalman filter to
ensure the smoothness of the tracking. However, the operator
fails to accurately obtain the identities and attributes of each
vessel when the field of view has multiple vessels. Therefore,
more researchers began to focus on the information fusion of
multiple vessels. For instance, Man et al. [6] fused the AIS
and video data with the Kalman filter to obtain the opti-
mal vessel trajectory. Bloisi et al. [1] proposed an automated
maritime surveillance system that replaces radar sensors with
vision sensors, which can be deployed in densely populated
regions. Lu et al. [7] proposed a vision and AIS fusion
method, which estimated the distance and azimuth of the

detected visual vessel from the camera and fused it with
the position information in the AIS data. Huang et al. [8]
designed a novel multi-vessel tracking technology based on
the improved single shot multi-box detector (SSD) [26] and
DeepSORT [35] algorithm, and used a multi-modal data fusion
algorithm to display the AIS information of visual targets.
Recently, Liu et al. [9] constructed an intelligent edge-enabled
shipboard navigation system based on augmented reality, deep
object detection, and multi-source data fusion technologies.
This system can achieve stable vessel detection under various
complex weather conditions and fuse the detected vessel
targets with synchronized AIS information. Although these
methods use the current vessel features (such as position,
azimuth, and motion) to match AIS and visual targets, the
importance of historical information is ignored, which limits
the accuracy of matching.

III. DEEPSORVF: DEEP LEARNING-BASED SIMPLE
ONLINE AND REAL-TIME VESSEL DATA FUSION

In this section, the details of our method will be introduced.
Fig. 1 displays the flowchart of our data fusion method,
including AIS-based vessel trajectory extraction, video-based
vessel trajectory extraction, and asynchronous vessel trajec-
tory matching. For the AIS data, we perform data cleaning
and delayed data prediction to obtain high-quality AIS data.
To guarantee that the AIS and video data are in the same
coordinate system, we use the pinhole model to project the AIS
data to the pixel coordinate system. For the video data, we first
use the YOLOX network to detect vessel targets. To avoid
the impact of vessel occlusion on the video-based trajectory,
a prior knowledge-driven anti-occlusion tracking method is
then used for video-based vessel trajectory extraction. During
trajectory matching, we adopt the enhanced fast dynamic time
warping algorithm (E-FastDTW) to calculate the similarity
between trajectories and combine the Hungarian algorithm to
obtain the matching results. It is worth mentioning that the
matching result will be input into the video-based vessel tra-
jectory extraction task at the next moment as prior knowledge.
Based on our matching results, the AIS information, including
MMSI, longitude, latitude, speed, course, heading, etc., and the
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Fig. 2. The flowchart of the AIS data processing, which consists of data
cleaning, data prediction, and data re-cleaning.

visual vessel can be easily fused to facilitate inland waterways
surveillance.

A. AIS-Based Vessel Trajectory Extraction

The AIS is widely used in maritime services since it can
provide integrated and rich vessel information. However, due
to the limitation of the AIS working principle, AIS data
fails to be required in real-time. Meanwhile, some abnormal
and redundant AIS information will affect the accuracy and
robustness of AIS-based trajectory extraction. Furthermore,
the matching of these two data becomes increasingly difficult
since AIS- and video-based trajectories are, respectively, in the
WGS-84 and pixel coordinate systems. Therefore, we tend
to extract the AIS-based trajectory projected in the pixel
coordinate system for data fusion. To achieve this goal, we first
process the AIS data to generate high-quality AIS data.
Subsequently, the AIS-based vessel trajectory will be obtained
by the pinhole model.

1) AIS Data Processing: Fig. 2 displays our framework for
processing AIS data. The historically processed AIS data and
the AIS data received at the current moment are combined
as the input. The input data is successively processed by
data cleaning, data prediction, and data re-cleaning to obtain
high-quality AIS data as output. The data cleaning process
is used to delete the AIS data outside the supervision region
and abnormal data, including the missing and abnormalities of
the latitude, longitude, heading, speed, and MMSI. The data
prediction module can estimate the position of vessels that
have not yet received AIS information. Let vt−1 be the speed
of the vessel at time Tt−1, the moving distance D1t at the time
interval 1t = Tt −Tt−1 can be expressed as D1t = vt−1 ∗1t .
According to the longitude λt−1, latitude φt−1, and course θt−1
at time Tt−1, and the moving distance at time interval D1t ,
the longitude λt and latitude φt at time Tt can be generated
by the forward geodetic computations.1

2) Vessel Positioning via Coordinate Transformation:
To fuse the high-quality AIS information and visual object,
it is necessary to unify the different source data into the
same coordinate system. In this work, we tend to project
the AIS information in the world coordinate system (WCS)
to the pixel coordinate system (PCS). Before the coordinate
transformation, we first perform a Mercator projection on the

1We exploit the pyproj.Geod.fwd function to implement the forward geode-
tic computations.

original position of the AIS information. Let (U, V, W ) be
the real vessel position in the 3D WCS, its 2D projection
coordinate (x, y) in PCS can be obtained byx

y
1

 =
1
Z
KinKex


U
V
W
1

 , (1)

with Z being the scale factor. Here, Kin and Kex are the
internal and external parameter matrices of the camera, respec-
tively. In this work, since the camera is fixed, we set the
extrinsic parameter matrix Kex as an identity matrix. In par-
ticular, we directly use the pinhole model to estimate Kin.
Please refer to [36] for more details on the internal parameter
estimation. Finally, we sequentially save the AIS data with the
same MMSI into the same list in time series to build a set of all
AIS-based vessel trajectories Tais = {Xa1 , . . . , Xai , . . . , XaI }

with Xai and I being the i-th AIS trajectory and the number
of AIS-based vessel trajectories.

B. Video-Based Vessel Trajectory Extraction

Although many methods have been proposed to achieve ves-
sel detection and tracking [4], [18], [37], it is still intractable
to extract high-quality video-based vessel trajectories for data
fusion. In the actual application of video-based maritime
surveillance, the inevitable occlusion between vessels occurs
in the cross encounter, confrontation, and chasing situations.
Generally, it becomes difficult to accurately and robustly
detect these vessels under the occlusion condition. Meanwhile,
the corresponding appearance will be seriously affected by
other vessels. To improve the quality of extracted trajectories,
we propose a prior knowledge-driven anti-occlusion tracking
method, as shown in Fig. 3. The AIS/video association results
of the previous moment are considered to predict the bounding
box of the occluded region and improve the visual trajectory
quality of the occluded vessel.

Specifically, we first adopt the YOLOX network [30] to
detect the visual vessel object and get a set of bounding boxes,
which can be given by

Boxes = {box1, . . . , boxl , . . . , boxL}, (2)

where L denotes the number of bounding boxes. boxl =

[xtl, ytl, xbr, ybr]
⊤ is the location of the l-th bounding box, with

(xtl, ytl) and (xbr, ybr) being the pixel indexes of the top-left
and bottom-right points.

1) Bounding Box Removal in the Occlusion Areas: Before
the tracking, the results of the previous moment are input as
the prior knowledge. Firstly, a set of the occlusion areas OAR
will be used, which depends on the ratio of the occlusion area
to the bounding boxes. The judgment metric of the occlusion
area can be expressed as follows

So

min(S1, . . . , Sr , . . . , SR)
> ω, (3)

where So is the area of the occluded part, Sr is the area of the
r -th occluded bounding box, R is the number of occluded
bounding boxes, ω represents the anti-occlusion threshold.
When the ratio of So to the minimum bounding box of the



GUO et al.: ASYNCHRONOUS TRAJECTORY MATCHING-BASED MULTIMODAL MARITIME DATA FUSION 12783

Fig. 3. The flowchart of anti-occlusion tracking method for video-based vessel trajectory extraction. Note that G is the wide residual network-based appearance
feature extractor. The extraction of AIS-based vessel trajectories Tais has been introduced in Section III-A. The generation of Boxes, OAR, T last

vis , and Fid
will be mentioned in Section III-B. The generation of AIS/video association results Blast will be described in Section III-C.

occlusion region exceeds ω, we will store the location of the
smallest rectangle box AR which can contain all occluded
bounding boxes into the OAR. Meanwhile, the AIS-based
vessel trajectories at the current moment Tais and the video-
based vessel trajectories at the previous moment T last

vis are also
used as prior information, which can be given by{

Tais = {Xa1 , . . . , Xai , . . . , XaI },

T last
vis = {Y ′

v1
, . . . , Y ′

v j
, . . . , Y ′

vJ
},

(4)

where Xai and Y ′
v j

represent the trajectory series of the i-th
AIS target and the j-th visual target, respectively, I and J
are the numbers of AIS- and video-based vessel trajectories,
respectively. Besides, we consider the AIS/video association
results Blast at the previous moment and the vessel appearance
embedding Fid before the occlusion, which can be given by{

Blast
= {. . . , [ai , v j ], . . .},

Fid = {. . . , fvb , . . .},
(5)

where [ai , v j ] means that the i-th AIS target ai and j-th visual
target v j are successfully associated, fvb is the appearance
embedding of the b-th visual target before occlusion.2 We will
detailedly describe the generation of AIS/video association
results Blast in Section III-C.

2) Occluded Bounding Box Prediction: For the anti-
occlusion tracking, the detection results located in the occlu-
sion area OAR are removed to avoid the mis-detection caused
by the vessel overlapping. Based on the fusion results at the
previous moment, the corresponding AIS information of the
occluded visual vessel is available. Therefore, the location of
the occluded vessel’s bounding box at the current moment
boxpre can be estimated by

boxpre
=


xpre

tl

ypre
tl

xpre
br

ypre
br

 =


1xais
1yais
1xais
1yais

 +


x last

tl

ylast
tl

x last
br

ylast
br

 , (6)

where (x last
tl , ylast

tl ) and (x last
br , ylast

br ) are the pixel indexes of
the top-left and bottom-right points of the previous bounding
box, respectively. 1xais and 1yais are the horizontal and
vertical motion speeds, respectively, which are equal to the

2The vessel appearance embedding is extracted by the wide residual
network [38] in the DeepSORT.

horizontal and vertical differences between the AIS pixel
positions generated by Eq. (1) at the current and previous
moments.

For the occluded vessels without the corresponding AIS
information, the bounding box will be predicted via the visual
motion features. The prediction result can also be given by
variants based on Eq. (6). The horizontal and vertical motion
speeds (1xais, 1yais) are replaced with the visual trajectory-
based horizontal and vertical motion speeds (1xvis, 1yvis),
which can be calculated by

1xvis =
xt−1 − xt−δ

δ
,

1yvis =
yt−1 − yt−δ

δ
,

(7)

where (xt−1, yt−1) and (xt−δ, yt−δ) denote the points of the
video-based vessel trajectory at the previous moment and the
previous δ moment, respectively.

After prediction, we will then update the OAR and Fid.
Based on the predicted detection box position, the occlusion
area list OAR will be updated via Eq. (3) for the anti-occlusion
tracking at the next moment. For the update of Fid, we first
set up the occluded visual target as v j . If fv j exists in the
original Fid, we directly store fv j into the new Fid; otherwise,
the appearance embedding of v j at the previous moment will
be stored in the new Fid. Then, we employ a wide residual
network G to extract the vessel appearance embedding in
normal bounding boxes, and assign the vessel appearance
embedding before occlusion in the Fid to occluded bounding
boxes. Finally, the bounding boxes and the corresponding
vessel appearance embedding are jointly input into the Deep-
SORT [35] for generating the video-based vessel trajectories
at the current moment Tvis.

3) DeepSORT-Based Vessel Tracking: It is worth men-
tioning that DeepSORT employs two metrics to resolve ID
assignment issues. Firstly, the Mahalanobis distances between
the predicted Kalman states and the newly arrived locations
are calculated as the location similarity metrics. Moreover,
the cosine distances between the appearance embedding are
calculated as the appearance similarity metrics. In our method,
the appearance features of the occluded vessels are kept
consistent with the latest extractions before the occlusion.
Therefore, as long as the predicted bounding box is close
to the prediction of Kalman filters, the ID of occluded
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Algorithm 1 Anti-Occlusion Vessel Tracking
Input: OAR: A set of all occlusion areas; Boxes: A set of

all bounding boxes detected by YOLOX network;
Tais: A set of all AIS-based vessel trajectories at the
current moment; T last

vis : A set of all video-based
vessel trajectories at the previous moment; Blast: A
set of all AIS/video association results at the
previous moment; Fid: A set of all occluded vessel
appearance features before the occlusion;

Output: Tvis: A set of all video-based vessel trajectories at
the current moment;

1 Initialization: Boxespre: A empty set to save all predict
bounding boxes of the occluded vessels; G: A wide
residual network-based appearance feature extractor; I: A
empty set to save all DeepSORT input data;
// Step 1. Bounding box removal in the

occlusion areas.
2 for boxl in Boxes do
3 for AR in OAR do
4 if boxl locates in AR then
5 Remove the boxl from Boxes;
6 break;

// Step 2. Occluded bounding box
prediction.

7 for Y ′
v j

in T last
vis do

8 for AR in OAR do
9 if The center point of the bounding box at the

previous moment in Y ′
v j

locates in AR then
10 Search the matched [:, v j ] from Blast;
11 if exist [ai , v j ] then
12 Predict the bounding box boxpre

v j by
AIS-based vessel trajectory Xai in Tais;

13 else
14 Predict the bounding box boxpre

v j by
video-based vessel trajectoryY ′

v j
;

15 Add the boxpre
v j to Boxespre;

16 break;

17 Update Fid and OAR;
// Step 3. DeepSORT-based vessel

tracking.
18 for boxl in Boxes do
19 Add [boxl ,G(boxl)] to I;

20 for boxpre
v j in Boxespre do

21 for fvb in Fid do
22 if v j = vb then
23 Add [boxpre

v j , fvb ] to I;
24 break;

25 Run DeepSORT with I;
26 Add the results of DeepSORT to T last

vis for generating the
video-based vessel trajectory at the current moment Tvis;

vessels will not be assigned incorrectly. The pseudo-code
of the proposed anti-occlusion tracking method is shown in
Algorithm 1.

C. Asynchronous Vessel Trajectory Matching

In this section, we propose a simple yet effective trajectory
matching method to fuse the AIS- and video-based asyn-
chronous vessel trajectories. Firstly, we adopt an enhanced fast
dynamic time warping (E-FastDTW) algorithm considering the
direction to calculate the similarity of AIS- and video-based
vessel trajectories. Based on the similarity measure result,
the Hungarian algorithm is employed to generate the optimal
matching result. To improve the stability and robustness of
data fusion and reduce the computational cost, we employ an
AIS/video association mechanism. When the number of suc-
cessful pairings of two trajectories exceeds a pre-determined
threshold, the AIS- and video-based vessel trajectories will be
associated directly without similarity evaluation.

1) Trajectory Similarity Measure via E-FastDTW: For
trajectory-based data fusion, it is an important prerequisite to
determine the similarities between the AIS- and video-based
vessel trajectories. The Euclidean distance is a simple but
effective similarity calculation method. However, it requires
that the two trajectories to be matched have the same length.
Meanwhile, the Euclidean distance considers that two similar
trajectories with only a slight shift in the time axis are signifi-
cantly different. Therefore, dynamic time warping (DTW) has
been proposed for ignoring this shift [39]. Suppose we have
two trajectories X and Y of length P and Q respectively,
represented as{

X = m1, m2, . . . , m p, . . . , m P ,

Y = n1, n2, . . . , nq , . . . , nQ .
(8)

Based on the two trajectories, the DTW constructs a P × Q
alignment matrix d where d(p, q) is the Euclidean distance
between the points m p and nq . Then, a warp path W is defined
to construct the mapping between X and Y , which can be
written by

W = w1, w2, . . . , wc, . . . , wC , (9)

with C being the length of W , and max{P, Q} ≤ C < P + Q.
In particular, the warp path W has three restrictions. For the
sake of better understanding, we define the (c − 1)-th and the
c-th elements of W as wc−1 = (p′, q ′) and wc = (p, q). These
three constraints for warp path can be defined as follows:

• Restriction 1: The 1-st and the C-th elements of W are
w1 = (1, 1) and wC = (P, Q), respectively.

• Restriction 2: The adjacent elements of the warp path W
can only contain the adjacent coordinate points, including
the diagonal adjacent. Therefore, the wc−1 can only be
one of {(p − 1, q), (p, q − 1), (p − 1, q − 1)}.

• Restriction 3: The elements of the warp path W are
monotonically increasing in time, i.e., p′

≤ p and q ′
≤ q .

Under the premise of satisfying the above three constraints,
DTW only focuses on the path with the minimum cumulative
distance of alignment matrix elements corresponding to all
points [39]. Meanwhile, the included angle ϕ between the
starting and ending points of X and Y is also considered.
Finally, the similarity value S(X, Y ) between X and Y
calculated by our proposed E-FastDTW can be written
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Algorithm 2 Asynchronous Vessel Trajectory
Matching

Input: Tais: A set of all AIS-based vessel trajectories; Tvis:
A set of all video-based vessel trajectories; Mlast: A
set of all AIS/video numbers of matches at the
previous moment; Blast: A set of all AIS/video
association result at the previous moment;

Output: M: A set of all AIS/video numbers of matches at
the current moment; B: A set of all AIS/video
association result at the current moment;

1 Initialization: d(i, j): The Euclidean distance between the
last trajectory points of Xai and Yv j ; Ms : An empty
trajectory similarity matrix; Ores: An empty set to save the
matching results; Dmax: The maximum matching
distance; Matmin: The minimum number of matches;
Tmax: The maximum time threshold; S: The E-FastDTW
trajectory similarity measurement operator;
// Step 1. Trajectory similarity

measure.
2 for Xai in Tais do
3 for Yv j in Tvis do
4 if d(i, j) > Dmax then
5 Ms(i, j) = +∞ ;
6 else if [ai , :] or [:, v j ] in Blast then
7 if [ai , v j ] in Blast then
8 Ms(i, j) = −∞ ;
9 else

10 Ms(i, j) = +∞ ;

11 else
12 Ms(i, j) = S(Xai , Yv j ) by Eq. (10);

// Step 2. Matching result generation.
13 Using the Hungarian algorithm to calculate Ms for

obtaining the matching result Ores = {. . . , [ai , v j ], . . .};
14 for [ai , v j ] in Ores do
15 if zai ,v j in Mlast then
16 Add zai ,v j = zai ,v j + + to M;
17 else
18 Add zai ,v j = 1 to M ;

19 for zai ,v j in Mlast do
20 if [ai , v j ] not in Ores and the time interval between the

last matching moment of [ai , v j ] and the current
moment < Tmax then

21 Add zai ,v j to M;

// Step 3. Association result
generation.

22 for zai ,v j in M do
23 if zai ,v j > Matmin then
24 Add [ai , v j ] to B;

as follows

S(X, Y ) = Dis(W ) · eϕ
= min{

C∑
c=1

d(wcp, wcq)} · eϕ, (10)

where d(wcp, wcq) is the Euclidean distance between two data
points corresponding to the c-th element in the warp path

W , Dis(W ) denotes the sum of all d(wcp, wcq) in the warp
path W . To find the desired unique warp path, the DTW
adopts the dynamic programming strategy. The cumulative
distance D(p, q) between m p and nq is the sum of the
minimum cumulative distance of three previous possible warp
path elements and the Euclidean distance d(p, q) between the
points m p and nq , which can be mathematically written as

D(p, q) = d(p, q) + min{D(p − 1, q),

D(p, q − 1),D(p − 1, q − 1)}. (11)

Furthermore, we also adopt the multi-level approach used
in the FastDTW to speed up the time series similarity search
and reduce the computational complexity. Please refer to [40]
for more details on the multi-level approach.

2) Trajectory Matching: In this work, we propose a novel
matching method with higher precision and less computation.
In particular, we will match and associate the AIS-based vessel
trajectories Tais mentioned in Section III-A, and the video-
based vessel trajectories Tvis mentioned in Section III-B, which
can be defined as follows{

Tais = {Xa1 , . . . , Xai , . . . , XaI },

Tvis = {Yv1 , . . . , Yv j , . . . , YvJ },
(12)

where Xai and Yv j represent the trajectories of the i-th AIS
target ai and the j-th visual target v j , respectively, I and J
are the numbers of AIS- and video-based vessel trajectories,
respectively. Furthermore, the numbers of AIS/video matches
Mlast and association results Blast at the previous moment are
also considered as input, i.e.,{

Mlast
= {. . . , zai ,v j , . . .},

Blast
= {. . . , [ai , v j ], . . .},

(13)

where zai ,v j is the number of successful matches of Xai

and Yv j , [ai , v j ] means that ai and v j have been associated
together. In the similarity measure, it is obviously time-
consuming and intractable to adopt the E-FastDTW for calcu-
lating the similarity between all trajectories at each moment.
Inspired by the DeepSORT algorithm, we propose a trajectory
association mechanism to solve these issues. In particular,
if two trajectories have been recorded in the Blast , the two
trajectories are directly matched by default without similarity
measurement with other trajectories. Subsequently, we perform
the similarity measure between all trajectories and construct a
similarity matrix Ms of size I × J , where Ms(i, j) represents
the similarity value of Xai and Yv j . In particular, when
the Euclidean distance between the last trajectory points of
Xai and Yv j exceeds the maximum matching distance Dmax,
we consider the two trajectories to be completely different and
set Ms(i, j) = +∞. When the binding trajectory pair [ai , v j ]

exists in the Blast, we set Ms(i, j) = −∞ and set the values
of other horizontal and vertical positions to positive infinity.
For other ordinary trajectory pairs that do not satisfy the above
conditions, we employ Eq. (10) (i.e., E-FastDTW) to calculate
the trajectory similarity. After obtaining the similarity matrix
Ms , we adopt the Hungarian optimization algorithm [41] to
find the optimal matching result Ores, which contains the
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matching trajectory pair information, i.e.,

Ores = {. . . , [ai , v j ], . . .}, (14)

where [ai , v j ] means that ai and v j are matched together.
Then, we will generate the AIS/video matching results M and
association results B at the current moment. More specifically,
we iterate through all matching trajectory pairs in the Ores.
If the number of matching times zai ,v j of trajectory pair
[ai , v j ] in the Ores exists in the Mlast, we will store (zai ,v j +1)

to M; otherwise, 1 will be stored to M. In addition, we save
the number of matching times zai ,v j for some trajectory pairs
directly from Mlast into M. These zai ,v j need to satisfy two
conditions, which can be defined as follows:

• zai ,v j must exist in Mlast but [ai , v j ] is not in Ores.
• The time interval between the last matching moment and

the current moment is less than Tmax.
For the generation of the AIS/video association result,

we set a minimum number of matches Matmin as a threshold
to ensure that the association information is accurate. When
zai ,v j in the M is greater than Matmin, we will store [ai , v j ]

into B. The pseudo-code of the proposed trajectory matching
method is shown in Algorithm 2.

D. Implementation Details

This section mainly introduces the detailed settings of the
proposed data fusion method. In particular, our method is
implemented on the Python 3.7 platform. All experiments
and tests are conducted on a PC with Intel Core i5-10600KF
CPU @ 4.10GHz and Nvidia RTX A4000 GPU. To meet the
requirement of real-time processing while ensuring accurate
fusion, our method only executes one processing per second.
For the AIS-based vessel trajectory extraction, we delete the
data more than two nautical miles from the camera and set
the maximum storage time to two minutes. For the vessel
detection task, we collect 20k images containing vessel objects
as the training dataset. In training, we set the epoch to 100 and
employ the Adam algorithm as the optimizer. The initial
learning rates for the first 50 and last 50 epochs are 10−3

and 10−4, respectively. For the video-based vessel trajectory
extraction, we set the occlusion area threshold ω = 0 and the
time span of visual motion feature extraction δ = 5s. For the
AIS and video data fusion, we set the maximum matching
distance Dmax as the half of the horizontal size of the image,
the minimum number of matching times Matmin = 15, and
the maximum time threshold Tmax = 15s.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we conduct massive experiments on vessel
detection, vessel tracking, and data fusion to quantitatively
evaluate the performance of our proposed method. The running
time analysis is also carried out to verify its practicality.

A. Benchmark Dataset

In this section, we construct a benchmark dataset for vessel
detection, tracking, and data fusion (named FVessel) contain-
ing 26 videos and the corresponding AIS data captured by the

TABLE I
DETAILS OF THE FVESSEL DATASET. THE “TOO”, “NOV”, AND “NOA”

ARE THE TIMES OF OCCLUSIONS, THE TOTAL NUMBER OF VESSELS,
AND THE NUMBER OF VESSELS WITH AIS, RESPECTIVELY

Fig. 4. Some samples of the FVessel dataset. This dataset contains massive
images and videos captured on the bridge region and riverside under sunny,
cloudy, and low-light conditions.

HIKVISION DS-2DC4423IW-D dome camera and Saiyang
AIS9000-08 Class-B AIS receiver on the Wuhan Segment
of the Yangtze River.3 As shown in Fig. 4, these videos
were captured under many locations (e.g., bridge region and
riverside) and various weather conditions (e.g., sunny, cloudy,
and low-light). Table I displays more details about the FVessel
dataset, including the video length, collection location, weather
condition, the times of occlusions, the total number of vessels,
and the number of vessels with AIS. To verify the superiority
of the proposed module, we intercept ten clips existing the
vessel occlusion from the FVessel dataset for comparison
experiments on vessel detection, tracking, and data fusion.
More detailed information on the test dataset can be found
in Table II.

B. Experiments on Data Fusion

In this section, we implement the data fusion experiment
to compare various methods, i.e., Euclidean distance-based
data fusion (EDDF), multi-source data fusion (MSDF) [9],
multi-modal data-based ship tracking (MMDST) [8],

3The vessel is uniquely identified by a particular MMSI in raw AIS data.
To protect the privacy, the MMSI for each vessel has been replaced with a
random number in our dataset.
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TABLE II
DETAILS OF THE DATASET USED IN THE VESSEL DETECTION, VESSEL
TRACKING, AND DATA FUSION EXPERIMENTS. THE “TOO”, “NOV”,

AND “NOA” ARE THE TIMES OF OCCLUSIONS, THE TOTAL
NUMBER OF VESSELS, AND THE NUMBER OF

VESSELS WITH AIS, RESPECTIVELY

DeepSORVF (w/o) without the anti-occlusion strategy,
and DeepSORVF. In particular, the EDDF calculates the
Euclidean distance between the pixel position points at the
current moment for similarity measurement and employs
the near-matching mechanism. For the point matching-based
MSDF and MMDST, we only replace our asynchronous vessel
trajectory matching part with its corresponding matching
method to compare the fusion effect under the premise of
consistent detectors. Furthermore, all methods only process
data once per second.

1) Evaluation Metric: To evaluate the performance of data
fusion, we first use a variant of multi-object tracking accuracy
(MOTA) [42] as the evaluation metric and name it multi-object
fusion accuracy (MOFA), i.e.,

MOFA = 1 −
F Nmmsi + F Pmmsi

GTmmsi
, (15)

where mmsi represents the identity of the vessel of interest
(MMSI), F Pmmsi, F Nmmsi, and GTmmsi are the number of the
MMSI false positive, MMSI false negative, and MMSI ground
truth, respectively. Furthermore, the identification precision
(IDP), identification recall (IDR), and identification F1 (IDF1)
are also employed as evaluation metrics. The IDP, IDR, and
IDF1 can be given by

IDP =
T Pid

T Pid + F Pid
, (16)

IDR =
T Pid

T Pid + F Nid
, (17)

IDF1 =
2T Pid

2T Pid + F Pid + F Nid
, (18)

where T Pid, F Pid, and F Nid are the numbers of the ID true
positive, ID false positive, and ID false negative, respectively.
In particular, the id is replaced with the identity of the vessel
of interest (MMSI) in the data fusion evaluation. Please refer
to [42] and [43] for more details on the MOTA, IDP, IDR, and
IDF1. Generally, higher MOFA, IDP, IDR, and IDF1 mean
better fusion performance.

2) Fusion Results on Ten Clips: Table III displays the evalu-
ation results on all clips. It can be found that EDDF and MSDF
perform poorly. Especially for clip-04, the MOFA is only
54.82% for EDDF and 53.73% for MSDF. The poor fusion
effect stems from the fact that these methods only consider the
current information without associating the historical feature.

TABLE III
MOFA, IDP, IDR, AND IDF1 RESULTS OF DATA FUSION

FOR THE TEN CLIPS FROM TABLE II. (UNIT: %)

By considering the displacement direction of AIS- and video-
based vessel trajectories, the MMDST greatly improves the
fusion effect. However, the two DeepSORVFs based on the
vessel motion trajectory matching have better performance by
comparison. Particularly after implementing the anti-occlusion
strategy, the performance of our DeepSORVF has improved
considerably across all metrics.

To provide a more understandable explanation, we display
two examples of data fusion obtained by MSDF, MMDST,
DeepSORVF (w/o), and DeepSORVF shown in Figs. 5 and 6.
Specifically, Fig. 5 displays the visualized data fusion
result captured by the bridge region camera. Since the
MSDF only considers the vessel characteristic at the current
moment, the vessel information is more likely to be matched
incorrectly. In the 80th second, the MSDF, MMDST, and
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Fig. 5. Visual comparisons of fusion results on the dataset captured by the bridge region camera from Table II. From top to bottom: visual fusion results
generated by (a) MSDF [9], (b) MMDST [8], (c) DeepSORVF without the anti-occlusion strategy, and (d) DeepSORVF, respectively.

Fig. 6. Visual comparisons of fusion results on the dataset captured by the riverside camera from Table II. From top to bottom: visual fusion results generated
by (a) MSDF [9], (b) MMDST [8], (c) DeepSORVF without the anti-occlusion strategy, and (d) DeepSORVF, respectively.

DeepSORVF (w/o) are unable to match the vessel identifica-
tion information since the detector fails to identify the partially
occluded target. For the data collected by the riverside, the
visual vessels are often more severely occluded, resulting in
the complete disappearance of target features. By analyzing
Fig. 6, the MSDF, MMDST, and DeepSORVF (w/o) will
produce more missing detection and false matching. It is worth
mentioning that the vessel occlusion will also affect the trajec-
tory feature extraction and cause the feature matching failure.
In contrast, the proposed DeepSORVF with the anti-occlusion
strategy has a more stable data fusion effect and is suitable
for a variety of scenarios.

3) Fusion Results on FVessel Dataset: Our DeepSORVF
is also used to process more data in the FVessel dataset and
calculate the MOFA, IDP, IDR, and IDF1. Table IV and Fig. 7
display the metric calculation results and the visualized fusion

results, respectively. It can be found that the proposed method
has stable fusion performance. The fusion accuracy (MOFA)
of our method is between 73.19% and 98.68%, and the average
is 91.13%. In the evaluation of the other three metrics, our
method also has a good performance. Through the comparison
in Fig. 7, the results generated by our DeepSORVF are
accurate and stable. The superiority of the proposed method
benefits from the accurate prediction of the vessel bounding
box by the anti-occlusion tracking method under the occlusion
condition and the accurate matching based on the trajectory
series.

C. Influence of Data Fusion on Vessel Detection
and Tracking

In our proposed method, the result of trajectory matching is
fed as prior knowledge to the vessel detection and tracking
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Fig. 7. Visual fusion results of our DeepSORVF on the FVessel dataset from Table I.

TABLE IV
MOFA, IDP, IDR, AND IDF1 RESULTS OF DATA FUSION

FOR THE FVESSEL FROM TABLE I. (UNIT: %)

tasks at the next moment for promoting the video-based
vessel trajectory extraction. To verify that our proposed data
fusion method can improve vessel detection and tracking
performance, we conduct massive experiments on ten clips.
In particular, we select five different deep neural networks as
detectors, i.e., Faster-RCNN [25], SSD [26], YOLOv4 [44],
YOLOv5 [45], and YOLOX [30]. Each detector has two
versions, i.e., “Detection” and “Detection + Data Fusion”.
Furthermore, all methods only process data once per second.

1) Evaluation Metric: To evaluate the performance of ves-
sel detection, we select the Precision and Recall as evaluation
metrics. Let T P , F P , and F N denote the number of the true
positive, false positive, and false negative, the Precision and
Recall can be given by

Precision =
T P

T P + F P
, (19)

Recall =
T P

T P + F N
. (20)

For vessel tracking, we tend to use MOTA as an evaluation
metric, which can be defined as

MOTA = 1 −
F P + F N + I Ds

GT
, (21)

where F P , F N , I Ds , and GT represent the numbers of
the false positive, false negative, I D switch, and ground
truth, respectively. Furthermore, we also adopt the IDP, IDR,
and IDF1 metrics. Theoretically, better detection results have
higher Precision and Recall, and better tracking results have
higher MOTA, IDP, IDR, and IDF1.

2) Vessel Detection and Tracking on Ten Clips: Table V
compares the detection Precision and Recall of various detec-
tors on ten clips. Due to the mutual occlusion between
the targets, some vessel characteristics are easily hidden by
another vessel. Therefore, detectors often suffer from missing
detection, resulting in higher F N and poorer Recall. In most
cases, detectors are prone to produce false detection boxes in
vessel encounter regions due to the overlapping of multiple
vessel features. These false detection boxes will produce
higher F P and poorer Precision. In contrast, the proposed anti-
occlusion method based on data fusion results can improve the
performance of various detectors.
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TABLE V
PRECISION AND RECALL RESULTS OF VESSEL DETECTION

FOR THE TEN CLIPS FROM TABLE II. (UNIT: %)

TABLE VI
MOTA, IDP, IDR, AND IDF1 RESULTS OF VESSEL TRACKING

FOR THE TEN CLIPS FROM TABLE II. (UNIT: %)

To compare the tracking performance, Table VI further
shows the MOTA, IDP, IDR, and IDF1 results of various
detectors on ten clips. In contrast, the proposed data fusion
method can significantly improve the tracking performance of
all five detectors and reduce the number of missing and false
detection. The performance improvement benefits from the
proposed anti-occlusion method based on data fusion results.
The proposed method can achieve more stable vessel tracking
during the occlusion.

D. Running Time Analysis

The time complexity of the proposed method is a critical
metric which directly determines whether it can be used in
actual engineering. In this work, we only process the data once
per second to ensure practicability. Therefore, we are unable
to use the frame per second (FPS) as an evaluation metric.
Meanwhile, since the proposed method considers trajectory
features, the time complexity is also related to the number
and length of AIS- and video-based vessel trajectories. Con-
sequently, it is also inaccurate to calculate the running time
of a single image. Finally, we compute the processing time of
one-second data for ten clips in Table II. The processing time
of our method for each clip is shown in Fig. 8 and Table VII.
It can be seen that our DeepSORVF has low time complexity
and high practicability. It can process one second of data in
0.175-0.500 seconds and 0.2562 seconds on average.

E. Discussion

Although our proposed method adopts the prior knowledge-
driven anti-occlusion tracking method and trajectory matching

Fig. 8. Processing time of one-second data on the ten clips from Table II.

TABLE VII
PROCESSING TIME OF ONE-SECOND DATA (MEAN ± STD) ON

THE TEN CLIPS FROM TABLE II (UNIT: Sec.)

TABLE VIII
MOFA (%) AND MOFP RESULTS OF DATA FUSION FOR THE CLIP-02

AND CLIP-03 FROM TABLE II. DEEPSORVF (W/O) REPRESENTS OUR
DEEPSORVF WITHOUT THE ANTI-OCCLUSION STRATEGY

method to effectively improve the accuracy of data fusion,
our method still has two key limitations that require further
investigation and improvement in future research.

1) Precision of Predicted Boxes Under the Occlusion:
We use the multiple object fusion accuracy (MOFA) and
multiple object fusion precision (MOFP) as evaluation metrics,
where the MOFP is a variant of the multiple object tracking
precision (MOTP) [42] in the data fusion. The MOFP can be
given by

MOFP =
Σt,iDt,i

mmsi
Σt N t

mmsi
, (22)

where Dt,i
mmsi denotes the distance of the i-th MMSI matching

pair in the t-th second, N t
mmsi is the number of matches in the

t-th second. Theoretically, a better fusion effect has higher
MOFA and lower MOFP.

Using clip-02 and clip-03 as examples, we compute their
MOFA and MOFP. As shown in Table VIII, it can be found
that the proposed anti-occlusion tracking method can signif-
icantly improve the accuracy of data fusion by comparing
the MOFA. However, the DeepSORVF is slightly inferior
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Fig. 9. Visual comparisons of fusion results on the dataset from Table II.
DeepSORVF (w/o) represents our DeepSORVF without the anti-occlusion
strategy.

to the DeepSORVF (w/o) without the anti-occlusion strategy
in the bounding box localization precision evaluated by the
MOFP. The more intuitive comparisons before and after the
use of the anti-occlusion strategy are illustrated in Fig. 9.
Our DeepSORVF with the anti-occlusion strategy can predict
the vessel position and accurately match the occluded vessel
information. However, the predicted bounding boxes still have
some degree of bias in complex occlusion conditions. This
deviation is mostly attributable to the inaccurate estimation of
AIS and visual motion characteristics. When a vessel travels
away from the camera, for instance, its visual movement
speed generally slows, and the object gets smaller. To further
improve the vessel anti-occlusion performance, our future
work will take into account the changing features of the
moving vessels in the visual data.

2) Usage in Congested Waterway: It is challenging to
practically apply our method under highly congested waterway
conditions. Firstly, the large number of vessels and complex
trajectories result in decreased accuracy of anti-occlusion
tracking and data matching results. Secondly, highly con-
gested waterways mean a large number of vessels need to
be monitored and tracked, increasing the amount of data and
computing resources required by the system. Therefore, our
future research will focus on the design of high-accuracy and
low-computation methods to overcome these limitations and
ensure accurate vessel detection and tracking, as well as high
reliability of data fusion.

V. CONCLUSION

In this paper, we proposed a deep learning-based sim-
ple online and real-time vessel data fusion method (named
DeepSORVF). The DeepSORVF could pair the vessel fea-
tures of AIS with visual targets. Due to the fact that
reciprocal occlusion between vessel targets may readily inter-
fere with video-based trajectory extraction, we suggested a
prior knowledge-driven anti-occlusion tracking method. Mean-
while, a novel asynchronous trajectory matching method was
designed for robust data fusion. Comprehensive experiments
on vessel detection, vessel tracking, data fusion, and running

time analysis have demonstrated the superior performance of
our DeepSORVF on the newly-developed FVessel dataset.
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