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Aggregated Representation of Electric Vehicles
Population on Charging Points for Demand

Response Scheduling
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Abstract— Charging electric vehicles (EVs), whose number is
increasing, is a great challenge for the power grid due to the
charging load variability. Coordinated charging and schedule
optimization with seized demand response opportunities are well-
known conceptual solutions to that. Still, the main challenge
is to adequately predict availability and parameters of electric
vehicles which is crucial for determining the charging schedule
and the demand response potential. We propose a method to
represent a population of electric vehicles that on the one hand
enables prediction via machine learning and on the other it
enables an accurate optimization of the charging schedule and
demand response ability. The method essence is to use five
discrete-time signals spanned over a prediction horizon period
which are related to envelopes of feasible charging power and
charging states for the EV population on that horizon. We also
introduce a robust conversion of any sequence of these signals into
individual EVs data. It enables to pose and solve the optimization
problem of charging scheduling with included demand response
for a predicted population in the introduced representation. The
proposed method is validated by schedule optimization using first
the original data and then using reconstructed population data.
The validation results show that the proposed EV population
representation method preserves the valuable information needed
for the charging schedule optimization and demand response.

Index Terms— Electric vehicles charging, demand response,
EV aggregator, EV prediction, quadratic programming, model
predictive control, smart grids, microgrids.

I. INTRODUCTION

S IGNIFICANT and highly variable power demand related
to charging of massively deployed electric vehicles

threatens the power grid operation if it is not properly
managed [1], [2]. Coordinated EV charging brings also a
significant added value to the power grid via ancillary services
through demand response (DR) [3]. Data analysis [4] shows
that average idle time of an EV connected to a public charging
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point is 4 h. This fact brings an opportunity for offering
ancillary services such as tertiary frequency regulation without
any inconvenience for the EV owner.

This article is focused on a parking lot equipped with
charging points operated by an aggregator as a central entity
with a role similar to a smart microgrid [5]. The aggregator can
optimize EV charging schedule to maximize its profit and/or
to reduce charging fee for the EV owners. The optimization
is based on volatile energy prices and an extra income for the
aggregator is obtained by offering ancillary services to the grid
operator [6], [7], [8]. Two prerequisites for such EV aggregator
are optimization and prediction algorithms. These algorithms
together enable the EV aggregator day-ahead planning and
real-time control of EV charging.

Optimization model of an EV aggregator can be individual-
based or population-based [9]. Most research uses the
former, having a battery state and control signal per each
EV [10], [11], [12], [13], [14], [15], [16]. On the other
hand, population- or aggregation-based models [17], [18], [19],
[20], [21] are computationally more efficient but there is no
population-based research which implemented explicit demand
response [22].

One group of prediction algorithms focuses on time-series
prediction of one aggregated load profile for the whole
EV population charged in a non-coordinated way, by using
different machine learning techniques [23], [24], [25], [26].
Such predicted load profile cannot be used for charging
scheduling, only for the production side management of the
power grid. The second group of algorithms is based on
classification of EV behaviour [27], [28], [29], [30], [31] to
predict quantities of certain EV types that will come to a
parking lot to charge. The EV types are distinguished by state
of energy at the arrival as well as by arrival and departure
times.

A. Motivation and Hypothesis

The state-of-the-art misses a method to describe a
population of heterogeneous EVs connected to charging
stations that is suitable both for population prediction based
on machine learning and for charging scheduling with demand
response ability assessment. We propose a method to fill the
mentioned gap. Its main usage steps are shown in Fig. 1.

The proposed method transforms historical individual on-
arrival commitment data [14] to five discrete-time vectors
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Fig. 1. The proposed concept of aggregated population prediction using machine learning and charging scheduling of individual electric vehicles. The paper
is focused on two steps, marked with dashed green lines. The corresponding arrows from left to right denote Algorithm 1 and Algorithm 3 of this paper,
respectively.

related to envelopes of feasible charging powers and charging
states for the EV population whereas these signals are suitable
for quantification of demand response ability. The method has
the following features:

• it captures population’s flexibility to offer demand
response;

• it can describe any EV population represented in discrete-
time;

• it allows that every EV has a different nominal charging
power, relative capacity and connection time.

From the first and the most important feature follows the
main hypothesis of this paper: the proposed aggregated
representation of an EV population has small enough loss of
information so it can be used for charging scheduling and DR
of an EV aggregator.

The aggregated representation and the corresponding
reconstructed individual EV data can be input to any
optimization problem or demand response scheme that is
compatible with individual EV description in Table I.

B. EV Aggregator Context
This paper is focused on a parking lot equipped with

charging points (CPs) that are controlled by an aggregator.
The aggregator is an entity that achieves a profit by demand
response in excess to selling electrical energy to the EVs.
Charging schedule and power of all CPs is optimized by the
aggregator to maximize its profit while respecting charging
needs of the EVs. Its corresponding optimization problem,
the orange block in Fig. 1, is defined in Section III. On its
arrival to the parking lot and connection to the CP, the EV
owner provides the data about the planned departure time,
its charging target and allowed power. With this data an EV
becomes a charging task for the aggregator.

An EV population is made of all EVs connected to
the aggregator’s CPs during any time interval of interest. The
number of the CPs is finite and is not important for the
proposed method. The aggregator optimizes the charging
schedule for the whole population at once. The concept of
the aggregator control that utilizes the proposed representation
method for the population of charging EVs is shown in Fig. 1.

C. Outline
The work is organized as follows. Section II describes the

proposed representation method. The charging optimization
problem used to exploit the introduced representation is
defined in Section III and the validation of the main hypothesis
is given in Section IV. The conclusion is given in Section V.

TABLE I
SET OF PARAMETERS DESCRIBING AN INDIVIDUAL

EV (EV CHARGING SESSION)

II. INDIVIDUAL VEHICLE DATA AND
AGGREGATED REPRESENTATION

Individual EV data consists of a set of parameters shown in
Table I, similar to [14]. From the optimization perspective,
an EV charging task consists of constraints on relative state of
energy SoEi , charging uch,i and discharging energies udch,i ,
where index ‘i’ denotes the EV. Relative SoEi is always zero
at the moment of the arrival and equal to relative capacity Ci at
the moment of departure. These constraints can be visualised
with Fig. 2, similar to approaches in [18], [19], and [32]. Full
blue line is the upper constraint on EV’s state of energy based
on as-soon-as-possible (ASAP) charging and derived from
the EV’s nominal maximum charging power Pnom,i , relative
capacity Ci and discretization time T . Full red line is the lower
constraint based on as-late-as-possible (ALAP) charging and
taking care about the EV being fully charged at the departure
time instant. In Fig. 2. it can be seen that full blue and red
lines are not completely straight which is a consequence of
time discretization and that C is not a multiple of PnomηchT ,
where ηch denotes the charging efficiency of the battery and its
corresponding power converter that is assumed to be the same
for all EVs. This assumption is justified considering that the
historical EV data comes only from the side of CPs as charging
tasks, as described in subsection IV-A, and so no data from the
vehicle is needed. Namely, effectively the relative capacity in
the representation of the EV could be also regarded as C/ηch,
i.e. as already with included efficiency.

Dashed blue line is explicitly defined with C while dashed
red line is a consequence of a decision that in any case the
EV should not leave the parking lot with less energy than it
has arrived with, no matter if the owner approved possible
discharging of the battery or not. Both in Fig. 2. and further
in this paper, k ∈ {1, 2, . . . , N } denotes a discrete-time instant
where N ∈ N is the length of the optimization or prediction
horizon.
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Fig. 2. Visualisation of envelope of feasible charging powers and charging
states for a vehicle connected to the charging point, where kc and kr are
auxiliary characteristic discrete-time instants defined in subsection II-A.

The proposed method represents an EV population with five
discrete-time signals related to envelopes of feasible charging
powers and charging states whereas one such envelope is
shown in Fig. 2. The method consists of two algorithms,
marked with green dashed line in Fig. 1. The first, Algorithm 1,
constructs the five discrete-time signals from the individual
data while the other, Algorithm 2, reconstructs the individual
EV data of the population back from the discrete-time signals.
Algorithm 1 is used to transform historical individual EV data
to obtain data that can be input to a machine learning model.
The output of the model is the predicted population described
with aggregated representation and needs to be transformed
to individual EV data using Algorithm 2 to be used for the
optimization problem construction.

The feasible solution in Algorithm 2 cannot be guaranteed.
Algorithm 2 is thus upgraded to Algorithm 3 that can
always return an EV population described with individual EV
data. Algorithm 3 was used to experimentally validate the
main hypothesis about near-equivalence of the optimization
results obtained with the original and the reconstructed EV
population.

A. Aggregated Representation

Input in Algorithm 1 is an EV population described with
individual data and length N of the prediction horizon of
interest. The outputs of the algorithm are discrete-time signals
Pa, Pc, Pd, P r and Pconst that together describe the original
EV population.

Two characteristic discrete-time instants, kc,i and kr,i , are
determined for every EV in the population to calculate the
EV’s contribution to the time vectors of the population. Time
instants kc,i and kr,i are shown in Fig. 2 and it can be seen
that kc,i is the last time instant of ASAP charging while kr,i
is the first time instant of charging with the maximum power
in ALAP case. The time instants are derived as follows:

kc,i = ka,i +

⌊
Ci

Pnom,i T ηch

⌋
, (1)

kr,i = kd,i −

⌊
Ci

Pnom,i T ηch

⌋
, (2)

where i denotes a specific EV.
The first time vector Pc ∈ RN carries information about

the charging power decrement in case of ASAP charging
due to reaching battery capacity and thus implicitly contains
information about the capacity of EVs that are part of the

population. It is constructed using the characteristic time
instant kc,i and can be defined as:

Pc(k) =

∑
i

Pnom,i , ∀i |kc,i = k. (3)

Equation (3) is only valid under the assumption that
Pnom,iηchT (kc,i − ka,i ) = Ci . The assumption can be avoided
if it is defined that in ASAP charging mode the EV charging
will be turned off gradually through two steps, as shown in
Fig. 2. The initial maximal charging power Pnom,i is first
reduced at the time instant kc,i to Prem,i so that the EV will
be fully charged right at the next time instant. Power Prem,i is
determined with:

Prem,i =
mod(Ci , Pnom,iηchT )

ηchT
, (4)

where mod(·, ·) is the remainder (modulo) operator. Then,
at time instant kc,i +1 charging is completely turned off. Using
(4) vector Pc is finally defined with:

Pc(k) =

∑
i

(Pnom,i − Prem,i ) +

∑
j

Prem, j ,

∀i | kc,i = k, ∀ j | kc, j = k − 1. (5)

It can be seen that the first and the second sum correspond
to power decrements from the first and the second step,
respectively, represented with full blue lines in Fig. 2.

Similarly, in the case of ALAP charging mode, EV charging
is gradually turned on just on time so that EV is fully
charged at kd,i . Vector P r ∈ RN carries information about
the mentioned charging power increments in ALAP charging
mode, marked with full red lines in Fig. 2. and it is defined
as:

Pr(k) =

∑
i

Prem,i +

∑
j

(Pnom, j − Prem, j ),

∀i | kr,i = k + 1, ∀ j | kr, j = k. (6)

The subsequent two vectors are quite intuitive
– Pa(k) ∈ RN and Pd(k) ∈ RN give information about power
of all maximum charging powers related to EVs arriving and
departing at time interval k, respectively:

Pa(k) =

∑
i

Pnom,i ∀i |ka,i = k, (7)

Pd(k) =

∑
i

Pnom,i ∀i |kd,i = k. (8)

The last vector Pconst ∈ RN is the cumulative EV
population charging power in the constant charging mode
where an EV is being charged with constant power from the
first time instant after its arrival ka,i until the last time instant
before departure kd,i . Of course, constant charging power for
every EV is determined so that the EV is fully charged at
departure. Vector Pconst is defined as:

Pconst(k) =

∑
i

Ci

T (kd,i − ka,i )ηch
,

∀i | ka,i ≤ k < kd,i . (9)

Finally, the construction procedure of Pa, Pc, P r, Pd and
Pconst is described with Algorithm 1.



10872 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

Algorithm 1 Construction of Population Describing Vectors
Require: EV1 described with tuples (Pnom, C, ka, kd)

Ensure: EV2 described with Pa, Pc, P r, Pd, Pconst
initialize Pa, Pc, P r, Pd, Pconst = 0 ∈ RN

for all EVi ∈ EV1 do
calculate kc and kr ▷ (1), (2)

add contribution of EVi to Pa, Pc, P r, Pd, Pconst
▷ (4)-(9)

end for

Fig. 3. Example of a population containing all EVs from one day, represented
using vectors Pa, Pc, P r, Pd and Pconst. The last EV (orange) departed at
k = 64 and the rest of the day is not shown for brevity.

An example of a population represented with these vectors
and time discretization T = 15 min can be seen in Fig. 3.
Every color represents a contribution of one EV.

B. Reconstruction of Individual EV Data

In this subsection we show how individual EVs descriptions
can be reconstructed from the aggregated representation
introduced in the previous section.

Lemma 1 allows us to describe any EV population
with a population EV2 that contains only EVs with ratio

C
PnomT ηch

∈ N which enables reversible transformation
between individual data tuple (Pnom, C, ka, kd) and the tuple
(Pnom, ka, kc, kr, kd). Discrete-time instants kc and kr are
derived from individual data by using (1) and (2) while in
opposite direction Pnom is calculated from:

Ci = Pnom,i (kc,i − ka,i )T ηch. (10)

Lemma 1: Electric vehicle EV1 with C1
Pnom,1T ηch

∈ R can be
rewritten as EV2 and EV3 defined with attributes obtained
from equations:⌊

C1

Pnom,1T ηch

⌋
=

C2

Pnom,2T ηch
=

C3

Pnom,3T ηch
− 1 , (11)

Pnom,2 = Pnom,1 − Prem,1, (12)
Pnom,3 = Prem,1, (13)

C1 = C2 + C3, (14)

where C2
Pnom,2T ηch

∈ N, C3
Pnom,3T ηch

∈ N, time instants ka and kd
are the same for all three EVs.

Thus, we define set KN of all possible unique tuples
(ka,i , kc,i , kr,i , kd,i ):

KN =

(ka, kc, kr, kd)|

1 < kd ≤ N ,

1 ≤ ka < kc ≤ kd,

1 ≤ ka ≤ kr < kd,

kd − kr = kc − ka

 . (15)

Constraints on ka, kc, kr and kd in (15) assure that all EVs
are realistic meaning that they depart after they arrive and
respect the assumption that they will be fully charged.

It is possible that two or more EVs have the same
parameters (ka, kc, kr, kd) ∈ KN . Lemma 2 allows us to
represent them with only one EV and population EV2 can
consist of only one EV for every element in KN with
associated power Psol,i ≥ 0 in order to describe any original
population. Dimension MN of vector P sol ∈ RMN is equal to
the cardinal number of the set KN .

Lemma 2: All electric vehicles with the same arrival ka,
departure kd and the same ratio Ci

Pnom,i T ηch
∈ N can be

represented as one electric vehicle with C =
∑

i Ci and
P =

∑
i Pnom,i .

For easier following, proofs of Lemma 1 and Lemma 2 are
given in Appendices A and B.

For a population EV2 to have the same aggregated
representation as the original population EV1, P sol must be
a solution of the following underdetermined equation system:

∑
i Psol,i = Pa(k), ∀i ∈ {1, 2, . . . , MN | ka,i = k},

∑
i Psol,i = Pc(k), ∀i ∈ {1, 2, . . . , MN | kc,i = k},

∑
i Psol,i = Pd(k), ∀i ∈ {1, 2, . . . , MN | kd,i = k},

∑
i Psol,i = Pr(k), ∀i ∈ {1, 2, . . . , MN | kr,i = k},

∑
i Psol,i

kc,i −ka,i
kd,i −ka,i

= Pconst(k),

∀i ∈ {1, 2, . . . , MN | ka,i ≤ k < kd,i },

Psol,i ≥ 0, , ∀i ∈ {1, 2, . . . , MN}

∀k ∈ {1, 2, . . . , N } . (16)

Of course, the case when element Psol,i = 0 is understood
as there is no EV with parameters {ka,i , kc,i , kr,i , kd,i } in the
population EV2. On the other hand, if Psol,i > 0, an EV
with nominal charging power Psol,i , capacity Ci calculated by
using (10), arrival and departure at time instants ka,i and kd,i ,
respectively, is added to the reconstructed population EV2.

For a more compact representation, the relations (16) can
be rewritten as:

AN P sol = θ ,

I P sol ≥ 0, (17)

where θ = [P⊤
a , P⊤

c , P⊤
r , P⊤

d , P⊤
const]

⊤ and matrix AN
follows from (16).
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Finally, the individual EV data reconstruction procedure is
defined with the Algorithm 2.

Algorithm 2 Reconstruction of Individual EV Descriptions
Require: EV1 described with θ =

[P⊤
a , P⊤

c , P⊤
r , P⊤

d , P⊤
const]

⊤

Ensure: EV2 described with tuples (P, C, ka, kd)

initialize EV2 = ∅

find P sol as a solution of (17)
for all Psol,i > 0 do

add EVi = (Psol,i , Ci , ka,i , kd,i ) to EV2 ▷ (10)
end for

C. Robust Reconstruction of Individual EV Data
Constrained equation system (17) is underdetermined and

matrix AN is rank-deficient. Dimensions of matrix AN are
5N x MN and rank(AN ) = 4N − 3. The sum of every N rows
that belong to the one of the first four equations in (16) is
equal to a vector of ones I MN = [1, 1, . . . , 1] ∈ RMN . Last
N rows that belong to equation related to Pconst are linear
combinations of other rows. Consequently, due to existing
linear dependencies of rows in AN as well as due to the
requirement that all P sol must be non-negative, there is a
possibility that (17) has no solution.

To generalize the method and make it applicable to the
proposed concept in Fig. 1, Algorithm 3 was designed as
the robust version of Algorithm 2. Solution feasibility in
Algorithm 3 is guaranteed by optimization problem (18) that
is derived from (17), with equation constraints implemented
as soft constraints:

P∗

sol = arg min
Psol, θ̄

||θ̄ − θ ||,

s.t.

[AN − I ]

[
P sol

θ̄

]
= 0

P sol ≥ 0

, (18)

where ||·|| denotes the second norm and vector θ̄ is the second
norm closest one to the input vector θ for which it is possible
to find P sol.

Finally, the robust individual EV data reconstruction
procedure is defined with the Algorithm 3.

Algorithm 3 Robust Reconstruction of Individual EV
Descriptions
Require: EV1 described with θ =

[P⊤
a , P⊤

c , P⊤
r , P⊤

d , P⊤
const]

⊤

Ensure: EV2 described with tuples (P, C, ka, kd)

initialize EV2 = ∅

find P∗

sol by solving minimization problem (18)
for all P∗

sol,i > 0 do
add EVi = (P∗

sol,i , Ci , ka,i , kd,i ) to EV2 ▷ (10)
end for

Algorithm 3 was used to validate the proposed aggregated
representation in a way that it is applied directly to the outputs
of Algorithm 1 so there is at least one possible solution P∗

sol
with θ̄ = θ - the population that was the input to Algorithm 1.

D. Number of EVs in the Reconstructed Population
As a consequence of Lemma 1 and the way of the capacity

C reconstruction in (10), one original EV will be reconstructed
as two EVs. From the day-ahead scheduling perspective only
cumulative electric energy consumption of the aggregator and
its DR capacity are of interest for the aggregator. This fact
allows the number of reconstructed EVs to be bigger than
the number of CPs on the aggregator’s parking lot. During
the operation of MPC (real-time operation), the aggregator
explicitly schedules the charging only of the known present
and connected EVs. Future EVs, the ones to arrive to the
parking lot along the prediction horizon, are reconstructed
from the prediction in the form of the proposed five vectors.
Such predicted EVs do not need to be allocated to specific
physical CPs but they require a part of cumulative charging
power to be scheduled and assigned to them.

III. VALIDATION THROUGH OPTIMIZATION
FOR DEMAND RESPONSE

In order to validate the introduced EVs representation,
worst-case optimization is applied to schedule charging of EVs
connected to the CPs of an EV aggregator that offers an active
power reserve. The optimization problem is an extension of
our previous work [5] where a microgrid is replaced with
n CPs, where n is always big enough to serve the whole
population. Optimization horizon is one day, from midnight to
midnight, and starts and ends with the empty parking lot. The
problem is solved one day-ahead to obtain optimal frequency
regulation reserve power to contract with the transmission
system operator.

A. Charging Point Model
The 24-hours ahead scheduling problem engages n CPs,

where n is equal to the maximum concurrent number of EVs
in the population. In accordance with the elaboration in II.D,
number n could be even higher than the physically available
number of CPs on the parking lot.

A CP is modeled as a system with one state SoEcp that is
equal to zero when CP is not occupied. Otherwise, it is equal
to the relative SoE of a connected EV, which is described as:

SoEcp(k + 1) = SoEcp(k) + ηchuch,cp(k) − udch,cp(k)/ηdch,

∀k|k + 1 ∈ Ocp,

SoEcp(k) = 0, ∀k|


k ∈ Ocp, k − 1 ∈ Icp

or
k ∈ Icp

, (19)

where the index cp denotes a CP, uch,cp and udch,cp are
charging and discharging energies of the CP, respectively,
ηch = 0.9 and ηdch = 0.9 are charging and discharging
efficiency, respectively, Ocp is the set of time intervals in
which the CP indexed with cp is occupied with an EV
connected to the CP and Icp is the set of time intervals when
the CP is not occupied. It can be also seen that relative SoE
is automatically initialized to zero at the arrival when the EV
is connected to a CP. The value of the efficiency coefficients
ηch and ηdch are equal for all EVs since the predicted vehicle
in the population is not made concrete (or personalized) and
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only represents a forthcoming generic charging task for the
aggregator of the charging stations.

In the absence of an EV uch,cp(k) and udch,cp(k) must be
zero. During an EV presence, the EV’s battery charger defines
power constraints:

uch,cp(k) + udch,cp(k) ≤ Pnom,i T,

0 ≤ uch,cp(k) ≤ Pnom,i T,

0 ≤ udch,cp(k) ≤

{
0, vehicle-to-grid disabled
Pnom,i T, vehicle-to-grid enabled

,

(20)

where i denotes the corresponding EV connected to the
charging point cp at the kth discrete-time interval and T is
discretization time. EV relative battery capacity Ci constrains
the CP state as follows:

0 ≤ SoEcp(k) ≤ Ci , ka,i ≤ k < kd,i , (21)
SoEcp(kd,i − 1) + ηchuch,cp(kd,i − 1)

− udch,cp(kd,i − 1)/ηdch = Ci . (22)

Constraint (22) ensures that EVi leaves the parking lot with
the battery charged to the required level.

B. Explicit Demand Response Scheme

Commercial rules for flexibility provision by the Croatian
Transmission System Operator (TSO) are used as a setup
for our case study. Unlike in [5], the aggregator with the
TSO contracts frequency regulation reserve power Pres( f )

separately per every 15 min interval f ∈ F in a day, one
day ahead. Set F is the set of all discrete-time instants when
the activation can occur. Since the parking lots in the datasets
we use for verification belong to faculty buildings, the set F
contains only discrete-time intervals in period between 8:00
and 13:15 h to reduce the computational requirements due to
lack of EVs outside of that period. According to the contract,
the TSO can request consumption reduction Pact during a time
interval that starts at discrete-time interval f which is not
longer than 1 h. Request Pact is constant for the whole time
interval and must be lower than Pres( f ). Minimum time Tr
between starts of two consecutive activations is defined by the
TSO. The aggregator is notified about the activation 15 min
ahead of it.

C. Cost Variables

In this subsection components of the cost function for
energy exchange between the aggregator and the grid including
DR functionality are introduced. These components include
day-ahead energy cost, intra-day energy cost, peak power
penalization, frequency regulation reserve power revenue,
activation energy revenue and battery degradation cost. The
charging behaviour is indifferent to charging fee since the
final amount of the energy given to the EVs is constant due
to constraint (22) and thus the charging fee is not taken
into account. The charging fee and payment streams for EV
charging depend on the aggregator’s business model and are
not further discussed here.

Fig. 4. Peak power cost tariff.

The energy exchange with the grid in time interval
[kT, (k + 1)T ) is defined with:

Eg(k) =

n∑
cp=1

(
uch,cp(k) − udch,cp(k)

)
. (23)

1) Day-Ahead Energy Cost: The exchanged electrical
energy cost Jda is calculated in the following way:

Jda(Eg) =

N∑
k=1

cda(k)Eg(k), (24)

where cda ∈ RN is a vector of day-ahead prices for every
15-min discretization interval, obtained from the market.

2) Intra-Day Energy Cost: On the intra-day market,
deviation of the exhibited energy exchange profile Eg from the
day-ahead predicted/declared reference energy profile Eg,ref is
penalized with the cost function:

Jid(Eg, Eg,ref) =

N∑
k=1

1.2 cda(k)
∣∣Eg(k) − Eg,ref(k)

∣∣ , (25)

where | · | denotes the absolute value.
3) Peak Power Penalization: The aggregator contracts peak

power Ppp,c to the grid on a monthly basis. Peak power cost
considered in this paper is derived based on peak power billing
in Croatia [33], [34] (Fig. 4) and is defined with:

Jpp(Eg) = cppεpp, (26)

s.t.


εpp ≥ εpp,past,

εpp ≥ 0.85 Ppp,c,

εpp ≥ Eg(k)/T, ∀k ∈ {1, 2, . . . , N },

εpp ≥ 3Eg(k)/T − 2.1Ppp,c, ∀k ∈ {1, 2, . . . , N },

(27)

where εpp is an auxiliary variable, cpp is the price of peak
power obtained from the grid and εpp,past is the maximum
value of εpp since the beginning of the month until the
optimization is started.

4) Frequency Regulation Reserve Power Cost: The aggrega-
tor contracts unique reserve power Pres( f ) for every 15 minute
interval the next day and it is rewarded with:

Jres(P res) =

∑
f

cressgn(Pres( f ))Pres( f ), ∀ f ∈ F, (28)

where cres is the reservation power price and sgn(Pres) is
obtained from the TSO, where negative and positive values
denote reduction and increase of power, respectively.
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5) Frequency Regulation Energy Cost: When the grid
activates a part of or the whole agreed flexibility reserve, the
aggregator is rewarded for the exhibited difference in electrical
energy consumption compared to the declared consumption:

Jact(Eg, Eg,ref, Pact, f ) =

∑
k

cact(k)εact(k), f ≤ k < f + 4,

(29)

s.t.


εact(k) ≤ sgn(Pact)(Eg(k) − γ ( f )Eg,ref(k)),

εact(k) ≤ sgn(Pact)PactT,

εact(k) ≥ sgn(Pact)(1 − α)PactT,

(30)

where Pact is a regulation power request of the grid that must
be of the same sign and in absolute value lower than Pres( f ),
εact is an auxiliary variable, cact is the price of regulation
energy and α = 0.25 is a tolerance factor. A correction factor
γ compensates the aggregator’s deviation from the reference
profile Eg,ref prior to the moment of activation and corrects
the reference. Coefficient γ is calculated as follows:

γ ( f ) =

∑
−1
j=−4 Eg( f + j)∑

−1
j=−4 Eg,ref( f + j)

. (31)

The definition in (31) introduces a nonlinearity in
the optimization problem in which Eg,ref is also
optimized and linear relaxations are explained later in
subsection III-E.

6) EV Battery Degradation: Battery capacity is degraded by
every charging and discharging action. Since the EV owner
expects the battery is charged to the target state, battery
charging is not penalized. In the case the EV owner agrees
with discharging of the battery it is penalized with double
degradation price since the battery must be charged again after
the discharging:

Jbd(udch) = 2cbd

N∑
k=1

n∑
cp=1

udch,cp(k), (32)

where cbd is the battery degradation cost [35]. Expression (32)
is formally correct both for the cases when the EV is owned
by a person that needs to be reimbursed for the vehicle-to-grid
service and when the aggregator owns the EV and it should
take (32) into account for its long-term profit.

D. Worst-Case Problem

The considered optimization problem consists of one
scenario S f for the activation at every time instant f ∈ F
and of a scenario Sn without activation. Further on, indices
f and n used for different variables denote a scenario to
which a particular variable belongs. The information about
the activation at the moment f becomes available between the
time instants f − 1 and f which means that all optimization
variables of the scenario S f must be equal to the ones
of the scenario Sn until the activation occurs. Such an
optimization problem can be qualified as the worst-case multi-
stage recourse problem according to [36].

Constraints that connect scenarios Sn and S f assure that
all decision variables are calculated using only information

available at the corresponding moment:
SoEcp, f (k) = SoEcp,n(k) ∀k|1 ≤ k ≤ f,
uch,cp, f (k) = uch,cp,n(k) ∀k|1 ≤ k < f,
udch,cp, f (k) = udch,cp,n(k) ∀k|1 ≤ k < f,

∀ f ∈ F,

∀cp ∈ {1, 2, . . . , n}. (33)

When an activation occurs, it is certain that the next
activation can occur at f + Tr/T at earliest, because of the
recuperation period respected by the grid operator that utilizes
the flexibility. After the recuperation period has passed, i.e. for
k ≥ f + Tr/T , constraints are added as follows:

SoEcp, f (k) = SoEcp,n(k) ∀k| f + Tr/T ≤ k ≤ N ,

uch,cp, f (k) = uch,cp,n(k) ∀k| f + Tr/T ≤ k ≤ N ,

udch,cp, f (k) = udch,cp,n(k) ∀k| f + Tr/T ≤ k ≤ N ,

∀ f ∈ F,

∀cp ∈ {1, 2, . . . , n}. (34)

Constraints (34) ensure that the aggregator is ready for the
next activations that may occur after the recuperation period.
Scenario S f can be seen as a branch in a scenario tree which
is then connected back to the scenario Sn.

E. Complete Demand Response Optimization Problem for an
EV Population

It is assumed that the aggregator every day declares nominal
energy exchange profile Eg,n to the grid entity that utilizes the
flexibility so Eg,n is used as a reference profile to calculate Jid
and Jact. That causes a nonlinearity in calculating γ in (31).
The nonlinearity is bypassed by adding constraints:{

sgn(Pres( f ))Eg,n(k) ≥ sgn(Pres( f ))Eg, f (k)

f − 4 ≤ k < f, ∀ f ∈ F
, (35)

that limits γ to be equal to 1 in the worst case and allows us
to use γ = 1 instead of (31).

Total costs Jn of the scenario without activation and J f of
the scenarios with activation at interval f are defined as:

Jn = Jda(Eg,n) + Jpp(Eg,n) + Jbd(udch,n), (36)
J f = Jda(Eg, f ) + Jpp(Eg, f ) + Jbd(udch, f )

+ Jid(Eg, f , Eg,n) + Jact(Eg, f , Eg,n, Pres( f ), f ). (37)

It can be seen from (37) that every scenario assumes the grid
will activate the whole contracted reserve power Pres.

The optimization variables of the offline problem are uch
and udch of all scenarios and the vector of contracted 15 min
regulation power reserve P res while the cost being minimized
is:

J = min
uch, udch, P res

Jres(P res) + Jworst,

s.t.


Jworst ≥ Jn + β

∑
∀ f J f ,

Jworst ≥ J f + β Jn + β
∑

∀ j ̸= f J j , ∀ f,
(19) − (37)

(38)
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where β is empirically chosen equal to 0.001 and is used to
prevent certain scenarios not being optimized, which would
be a consequence of that only the worst scenario contributes
to Jworst (case where β = 0).

F. Aggregated Battery Model
To emphasize the necessity for the introduced EV popula-

tion representation method and its corresponding conversion
algorithms, the optimization was also carried out with using
an aggregated battery model similar to [18], [19], and [32].

Instead with (19)-(22), the dynamics of all EVs’ batteries is
modeled with only one state and one pair of control signals:

SoEagg(k + 1) = SoEagg(k) + ηchuch,agg(k)

− udch,agg(k)/ηdch,

SoEagg(0) = 0. (39)

Aggregated relative state of energy is constrained with:

Ragg(k) ≤ SoEagg(k) ≤ Cagg(k), (40)

where Ragg ∈ RN is a vector of aggregated energy requests
and it is derived from P r and Pd. Visually, it is the sum of all
constraints on individual EVs, marked red in Fig. 2. Similarly,
Cagg ∈ RN is derived from Pa and Pc:

Ragg(k) = T
k∑

j=1

j∑
l=1

(Pr(l) − Pd(l)) , (41)

Cagg(k) = T
k∑

j=1

j∑
l=1

(Pa(l) − Pc(l)) . (42)

Aggregated battery energy is constrained with:

0 ≤ uch,agg(k) ≤ Pmax(k)T, (43)
0 ≤ udch,agg(k) ≤ Pmin(k)T, (44)

Pmax(k) =

k∑
j=1

(Pa(k) − Pd(k)) , (45)

Pmin(k) =

{
0, vehicle-to-grid disabled
Pmax, vehicle-to-grid enabled

. (46)

Vector Pmax ∈ RN can also be defined as a sum of nominal
powers of all EVs power converters connected to CPs at a
specific moment.

At first sight constraint (40) guarantees that every EV will
be fully charged but that is not the case as will be shown in
Section IV-C by a counter-example.

IV. EXPERIMENTAL VALIDATION

The proposed method was validated by optimizing the
charging schedule for an EV population using first the
original data and then using reconstructed population data
obtained by reconstruction of the proposed aggregated
representation of the same original population (Fig. 5). Two
measures are used for comparison of the two populations:
the reserved frequency regulation power and the calculated
total optimization cost. Results were also compared with
optimization results based on the aggregated EV battery

Fig. 5. Validation procedure of the proposed representation method.

model of the original population, to emphasize the ability of
the proposed aggregated representation to capture a correct
demand response capacity of the population.

A. Experimental Data

Our method is tested on real historical data provided by
ACN-Data [37] that include two datasets from parking lots of
the California Institute of Technology (CalTech) and the Jet
Propulsion Laboratory (JPL). The datasets contain 1057 and
928 days, respectively. The original data consist of:

• Connection time when an EV was plugged in (tcon);
• Done-charging time when the last non-zero current draw

was recorded (tfull);
• Departure time when the EV was disconnected (td);
• Delivered energy to the EV (Edelivered).

In order to represent an EV charging session as shown in Fig. 2
and Table I., the data is preprocessed to obtain EV power P
and capacity C that are not contained in the data. Power is
determined using conservative assumption that EV was being
charged full time between the connection time tcon and the
done-charging time tfull:

P =
Edelivered

tfull − tcon
. (47)

After discretization of tcon and td into ka and kd, it is possible
that charging session becomes infeasible. For that reason,
with the assumption that the EV was fully charged or was
being charged during the whole connection period, the relative
capacity C is determined by using:

C = min (P ∗ T (kd − ka − 1)ηch, Edeliveredηch) . (48)

Since the data is gathered from the CPs side there is no
information about EVs that left without being charged due to
no available CP. Such information is however irrelevant from
the microgrid and DR point of view.

Values of the electrical prices used in the optimization
problem (38) are as follows: cpp = 0.116 e/kW, cres =

−0.0162 e/kW, cact = 0.065 e/kWh, cbatt = 0.226 e/kWh.
Vector of day-ahead prices cda is shown in Fig. 6.
Discretization time is T = 15 min and recuperation period
is Tr = 24 h.
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Fig. 6. Day-ahead electrical energy price profile.

TABLE II
COMPUTATIONAL TIMES OF THE RECONSTRUCTION ALGORITHM

Fig. 7. Computational times of the optimization problem (38) for the original
and the reconstructed EV population.

B. Computational Requirements

Quadratic optimization problem (QP) (18) was set up in
Python [38] using Numpy [39] and Scipy [40] modules and
as a solver IBM Cplex [41] was used. The construction of the
matrix AN in (17) lasts for 5 minutes for N = 96 while loading
the prepared matrix from the memory lasts for 20 s. QP solving
times are given in Table II. The size and the computational
time of the optimization problem (38) depend on the number
of EVs in the population, as shown in Fig. 7. For every point
on the x axis a single EV population was used such that it is
possible that for a specific case larger number of EVs gives a
smaller computation time, but still the growing trend is visible.
The bigger number of EVs in the reconstructed population
is discussed in Subsection II-D. Computations were run on a
Linux server with processor AMD Epyc 7351 CPU @ 2.4 GHz
(16 cores) and 64 GB RAM.

C. Analysis of Results

Simulation results are compared by using the optimized
daily cost and reserved regulation power. We propose those
measures as deviation measures between the populations since
they are the data of interest for the aggregator’s cost analysis
and DR contracting with the power grid. Cost deviation can
be seen in Fig. 8. A small deviation was expected since
the reconstructed EV population is generally not identical to
the original one due to the underdetermined reconstruction
problem (17) that has multiple solutions. Daily operation
costs of the reconstructed populations are mostly higher than
the ones of the original populations which corresponds with
mostly lower flexibility power shown in Fig. 9.

An example explaining too optimistic results of the
aggregated battery model is given in Fig. 10. Two different
populations (Fig. 10a and 10b) with the same aggregated
battery model (Fig. 10c) are compared. An aggregated
charging trajectory is given for the case of higher energy

Fig. 8. Comparison of optimal daily operation cost for one-day populations
from datasets a) CalTech, b) JPL.

Fig. 9. Reserved regulation power for the considered time intervals per day
in one week.

prices between intervals k = 5 and k = 9 when charging
is avoided. If the original population consists of EV1 and
EV2 then both of EVs are fully charged and the aggregated
charging trajectory corresponds to the sum of their individual
trajectories. For the mentioned case of energy prices, EV1 will
be charged as soon as possible, while EV2 will be charged as
late as possible. In the case of population in Fig. 10b EV3 can
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Fig. 10. A qualitative example of two populations (a), (b) with the same
representation using the aggregated battery model (c) and the proposed method
with vectors Pa, Pc, P r, Pd and Pconst (d).

be charged only during the mentioned period with high prices.
To satisfy the chosen aggregated charging trajectory EV4 must
be discharged at the same time and of course pre-charged
before and charged again after the high price period. Such
case does not take into account battery degradation cost and
energy losses due to EV3 charging, discharging and charging
again. Consequently the aggregated battery model operational
cost is seemingly lower than the real operational cost.

This effect is even more emphasized when the aggregator
participates in DR when in the specific intervals all charging
must be reduced to obtain reward from the power grid.

Fig. 11. Comparison of the original and the reconstructed population sizes.

TABLE III
STATISTICAL COMPARISON OF THE RECONSTRUCTED J AND

THE ORIGINAL J ′ , WHERE · DENOTES MEAN VALUE
AND σ(·) STANDARD DEVIATION

The proposed aggregated representation method distin-
guishes the two populations with vector Pconst, as shown in
Fig. 10d. Applying the reconstruction Algorithm 2 to the
discrete-time signals in Fig. 10d will result with populations
identical to the original ones.

Empirical results showed that for big enough EV popula-
tions in which more EVs are present at the same time, the
reconstructed number of EVs is up to five times bigger than
the original number of EVs. To better explore this effect,
the proposed reconstruction algorithm was iteratively applied
on the population which was stacked with one EV every
iteration. The EVs which were stacked belonged to the original
population of one working day from the dataset. The order of
the EVs stacking was according to their arrivals. The results of
the experiment are shown in Fig. 11. It can be seen that for the
initial small number of EVs, the number of the reconstructed
EVs is two times bigger than the original number, which
matches the effect mentioned in II-D and that is a consequence
of Lemma 1. For the larger number of EVs, the ratio can even
be five to one. That is a consequence of underdetermination
of the system (17). The influence of a larger number of the
reconstructed EVs to the error of the optimal daily cost is
acceptable, as evidenced in Fig. 11.

Since the charging fee is not included in the daily
optimization cost J , negative values in Fig. 8. and Table III
denote that the aggregator can obtain profit already by
participating in DR. The DR participation and profit
possibilities obviously rise with the number of EVs in the
population. With some tolerance chosen using statistical data
from Table III and IV, reconstructed results could be used to
contract day-ahead frequency regulation power. Finally, the
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TABLE IV
STATISTICAL COMPARISON OF THE RECONSTRUCTED Pres

AND THE ORIGINAL P ′
res , WHERE · DENOTES MEAN

VALUE AND σ(·) STANDARD DEVIATION

experimental proof of the main hypothesis can be seen in
Fig 8., Fig 9., Table III and IV altogether.

V. CONCLUSION

This paper proposes the method of representing an EV
population connected to a set of charging points that
are managed by an aggregator. The method preserves the
information valuable for EV charging scheduling in order for
the aggregator to participate in tertiary frequency regulation,
peak power shaving and volatile prices market. It consists of
creating five vectors from which an equivalent population can
be reconstructed. The simulation was run using real world
data and charging scheduling was optimized for both the
original population and the reconstructed one. The daily cost
and the optimal reserved power of the reconstructed population
match to the optimization result of the original population with
acceptable deviation. The proposed method for EV population
representation can be used in prediction of the EV population
using machine learning.

APPENDIX A
PROOF OF LEMMA 1

Proof: If we take a realistic EV1 for an example
with attributes {C1, Pnom,1, ka,1, kd,1} we can calculate the
corresponding kc,1, kr,1 and Prem,1 using (1), (2) and (4). Since
we observe only one EV - EV1, the aggregated representation
vectors consist only of several non-zero elements according to
(5)-(9):

Pa(ka,1) = Pnom,1,

Pc(kc,1) = Pnom,1 − Prem,1, Pc(kc,1 + 1) = Prem,1,

Pr(kr,1) = Prem,1, Pr(kr,1 − 1) = Pnom,1 − Prem,1,

Pd(kd,1) = Pnom,1,

Pconst(k) =
C1

T (kd,1 − ka,1)ηch
, ∀k|ka,1 ≤ k < kd,1. (49)

By solving relations (17) with vectors values from (49),
two reconstructed EVs are obtained with attributes shown in
Table V. If capacities C2 and C3 are summed, it can be seen
in (50) that together they are equal to the initial C1 according
to (4). In the second expression of (50) the first and the

TABLE V
EXPLICITLY GIVEN PARAMETERS OF THE RECONSTRUCTED EV2 AND EV3

second member can be recognized as parts of the capacity
C1 which are the multiplier of Pnom,1 ∗ T and the remaining
part, respectively.

C2 + C3 = (Pnom,1 − Prem,1)T (kc,1 − ka,1)ηch

+ Prem,1T (kc,1 − ka,1 + 1)ηch

= Pnom,1T (kc,1 − ka,1)ηch + Prem,1T ηch

= C1 (50)

It can be seen in Table V. that Pnom,1 = Pnom,2 + Pnom,3,
ka,1 = ka,2 = ka,3 and kd,1 = kd,2 = kd,3 which proves that the
population consisting of only EV1 is for optimization problem
(38) analogous to the population consisting of EV2 and EV3.

□

APPENDIX B
PROOF OF LEMMA 2

Proof: Unlike the aggregation example in Section IV-C,
aggregation in Lemma 2 is valid since all the batteries are
present during the intervals [ka,1, kd,1). The following ratios
ensure that all the batteries are empty or full at the same
moment to prevent that the aggregator relies on a power
contributions of already full batteries.

Pnom,i

Pnom,1
=

Ci

C1
=

uch,i (k)

uch,1(k)
=

udch,i (k)

udch,1(k)
=

SoE i (k)

SoE1(k)
,

∀k ∈ {1, 2, . . . , N }. (51)

Since both control signals uch,i and udch,i and battery
relative state of energy SoEi of EV1 and their constraints
can be explicitly expressed, there is no information loss and
every charging trajectory of EV1 can be realized with uch,i
and udch,i without any other hidden costs or energy losses.

From (51) follows that result of floor operator in (1) and (2)
is the same for EV1 and EVi . Since ka,1 = ka,i and kd,1 = kd,i
it is also kc,1 = kc,i and kr,1 = kr,i . □
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