
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023 11345

Mobility and Deadline-Aware Task Scheduling
Mechanism for Vehicular Edge Computing

Joahannes B. D. da Costa , Allan M. de Souza , Rodolfo I. Meneguette , Eduardo Cerqueira ,
Denis Rosário , Christoph Sommer , and Leandro Villas

Abstract— Vehicular Edge Computing (VEC) is a promising
paradigm that provides cloud computing services closer to vehic-
ular users. In VEC, vehicles and communication infrastructures
can form pools with computational resources to meet vehicular
services with low-latency constraints. These resource pools are
known as Vehicular Cloud (VC). The usage of VC resources
requires a task scheduling process. In this case, depending on
its complexity, a vehicular service can be divided into different
tasks. An efficient task scheduling needs to orchestrate where
and for how long such tasks will run, considering the available
pools, the mobility of nodes, and the tasks deadline constraints.
Thus, this article proposes an efficient VC task scheduler based
on an approximation heuristic and resources prediction to select
the best VC for each task, called MARINA. MARINA aims to
analyze the behavior of vehicles that share their computational
resources with the VC and make scheduling decisions based on
the mobility (VC availability) of these vehicles. Simulation results
under a realistic scenario demonstrate the efficiency of MARINA
compared to existing state-of-the-art mechanisms in terms of the
number of tasks scheduled, monetary cost, system latency, and
Central Processing Unit (CPU) utilization.

Index Terms— Vehicular edge computing, task scheduling,
resource prediction, recurrent neural network.

I. INTRODUCTION

VEHICLES are becoming more intelligent, connected,
and autonomous to allow safer, greener, and efficient

transportation systems [1], [2], [3]. This new connected
and autonomous vehicle era will support several applica-
tions that require high bandwidth and low latency [4]. For

Manuscript received 22 November 2022; revised 27 March 2023; accepted 3
May 2023. Date of publication 31 May 2023; date of current version
4 October 2023. This work was supported by the São Paulo Research
Foundation (FAPESP) under Grant 2015/24494-8, Grant 2018/16703-4, and
Grant 2021/13780-0. The work of Rodolfo I. Meneguette was supported by
FAPESP under Grant 2020/07162-0. The work of Eduardo Cerqueira and
Denis Rosário was supported by the National Council for Scientific and
Technological Development (CNPq). The Associate Editor for this article was
H. Jiang. (Corresponding author: Joahannes B. D. da Costa.)

Joahannes B. D. da Costa is with the Institute of Computing, University
of Campinas (UNICAMP), Campinas 13083-852, Brazil, and also with the
Faculty of Computer Science, TU Dresden, 01187 Dresden, Germany (e-mail:
joahannes.costa@ic.unicamp.br).

Allan M. de Souza and Leandro Villas are with the Institute of Computing,
University of Campinas (UNICAMP), Campinas 13083-852, Brazil (e-mail:
allan.souza@ic.unicamp.br; leandro@ic.unicamp.br).

Rodolfo I. Meneguette is with the Institute of Mathematics and Computer
Science, University of São Paulo (USP), São Carlos 13566-590, Brazil
(e-mail: meneguette@icmc.usp.br).

Eduardo Cerqueira and Denis Rosário are with the Institute of Technol-
ogy, Federal University of Pará (UFPA), Belém 66075-110, Brazil (e-mail:
cerqueira@ufpa.br; denis@ufpa.br).

Christoph Sommer is with the Faculty of Computer Science, TU Dresden,
01187 Dresden, Germany (e-mail: sommer@cms-labs.org).

Digital Object Identifier 10.1109/TITS.2023.3276823

instance, self-driving vehicles, real-time learning, and artificial
intelligence-oriented applications are expected to be largely
deployed, producing lots of data with low latency require-
ments [5], [6].

Vehicular Edge Computing (VEC) emerged as a promising
paradigm to move communication, computing, and storage
resources closer to vehicular users [7], [8]. In this sense,
VEC aims to reduce latency while decreasing the heavy
traffic from the network core [9]. VEC considers a set of
Vehicular Cloud (VC) to allow users to request resources to
meet application/service demands that require computational
power above the locally supported ones. A VC group shares
computational resources, such as processing units and storage
capacity, available in a set of vehicles (i.e., either moving or
parked vehicles) and infrastructure (i.e., Roadside Unit (RSU),
5G Base Stations (BSs), network controllers, and Remote
Server (RS) in the Internet cloud) nodes to provide cloud
services, such as the Infrastructure-as-a-Service (IaaS) [10].

In this VEC scenario, each network controller, called VEC
controller, is responsible for coordinating a predefined city
region, such as a neighborhood, for forming the VCs based
on the regional knowledge about the vehicle and infrastructure
nodes through the Vehicle-to-Infrastructure (V2I) communi-
cation. Hence, the VEC controller can be responsible for
two main processes, namely, VC formation and task schedul-
ing [11], [12], [13]. The VC formation process concerns an
efficient grouping and management of computational resources
available by the network entities to form a VC [4], [9]. On the
other hand, the task scheduling process concerns the efficient
use VC resources, i.e., the tasks will be scheduled to be
processed in a given VC. Therefore, these two processes are
crucial to group computational resources and provide cloud
services closer to vehicular users. Advance the state-of-the-art
in the task scheduling process is essential to the success of
connected autonomous vehicle ecosystems. New approaches
to efficiently select and decide where and when tasks will
be scheduled in dynamic and mobile vehicular environments
are required. At least three key issues need to be addressed
for developing an efficient task scheduling mechanism to
meet users’ demands in VEC scenarios, namely (1) Vehicular
Mobility; (2) Deadline Constraints; and (3) Monetary Costs.

The Vehicular Mobility is one of the main challenging
factors for the efficient performance of vehicular scenarios
with support to VEC applications since vehicle mobility
causes several changes in network topology and (including
intermittent connections) [14]. For instance, vehicular mobility

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9973-2479
https://orcid.org/0000-0002-5518-8392
https://orcid.org/0000-0003-2982-4006
https://orcid.org/0000-0003-2162-6523
https://orcid.org/0000-0003-1119-2450
https://orcid.org/0000-0002-4336-7350
https://orcid.org/0000-0002-3372-3366

11346 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

causes an unexpected disconnection between VC members and
the VEC controller, leading to a fluctuation in terms of the
number of available resources in the VC and/or causing the
task processing results loss, impacting the system efficiency.
Hence, the mobility of vehicles has a high impact in the
number of tasks attended/scheduled [15]. In this sense, it is
essential to consider vehicular mobility information to estimate
vehicles’ location, which can be used to estimate the future
resource availability in each VC. This aims in selecting stable
VCs to run the tasks, where VC’s stability refers to its
low rate of resource variability over time. However, how to
predict these vehicular dynamics accurately and explore their
spatiotemporal correlation is still an open issue [16]. In this
sense, Recurrent Neural Network (RNN) can use in vehicular
mobility estimates due to their high accuracy rates in general
form predictions [17], [18], [19].

The Deadline Constraints represent the time that tasks
can wait to be served. In other words, it is important that
the obtained result must be returned to the requesting entity
before a hard deadline. Otherwise, this result becomes useless
[20], [21]. Therefore, the tasks’ deadline constraints can be
better observed and considered from a resource availabil-
ity estimation in the VCs, making it possible to infer the
processing time and the service probability to increase the
scheduled and completed tasks rate. Also, the system latency is
minimized by prioritizing tasks with less processing time. The
system latency represents the waiting time and the time that a
task will remain running in a given processing configuration.

Finally, Monetary Cost refers to the price of using compu-
tational resources, such as the pay-as-you-go basis commonly
used in cloud computing IaaS architectures [1]. For instance,
the monetary cost can be minimized by knowing the task pro-
cessing time, making using computational resources less costly
for the end users. In addition to task deadline constraints,
the tasks often have high processing requirements. Scheduling
tasks with high computational power requirements, such as
traffic image processing or real-time learning, is a challeng-
ing issue in a highly dynamic vehicular environment [22].
In other words, the task scheduling mechanisms must make
accurate decisions considering all the tasks’ computational
requirements, regardless of the variability of these require-
ments in different classes of applications. Besides, scheduling
mechanisms must always minimize costs for end-users.

To the best of our knowledge, a unique solution that
considers mobility-awareness, deadline constraints, and mon-
etary costs for decision-making in a task scheduling process
is still an open issue and remains a challenge. Thus, this
article proposes MARINA (Mobility and deAdline-awaRe task
schedulIng mechaNism for vehiculAr edge computing) to
maximize the number of tasks scheduled while minimizing
the monetary costs of utilizing VC’s resources. The MARINA
runs on VEC controllers to coordinate the task scheduling
in multiple VCs. In MARINA’s operation, a vehicle without
enough computational resources to run a specific task can
forward this task to be processed somewhere in the vehicle
ecosystem. In this sense, MARINA selects a set of tasks to
be scheduled in real-time in each available VC based on the
Pareto Optimality and Bin Covering Problem (BCP). Pareto

optimality allows the joint minimization between the deadline
and estimated processing time. Besides, the BCP makes it
possible to find the best fit for the minimization provided by
Pareto, always seeking to maximize the number of scheduled
tasks. MARINA also considers a Long Short-Term Memory
(LSTM) to predict resource availability in each VC based on
vehicular mobility information. Hence, MARINA prioritizes
scheduling tasks in VCs with more available resources to
maximize the fulfillment of demands in as few rounds as
possible. Simulation results show that, compared to state-of-
the-art solutions, MARINA can schedule more tasks while
minimizing monetary cost and system latency.

The main contributions of this article are the following:
• The use of vehicular mobility information and an LSTM

architecture to predict the available resources in each VC
with high accuracy.

• An efficient task scheduling mechanism that considers the
task deadline, mobility-awareness, and monetary costs in
its decision-making process. Thus, it schedules a high
number of tasks without increasing the monetary cost of
using VC’s computational resources.

• A combined approach that leverages low-computational
complexity techniques to minimize the monetary cost and
maximize the number of scheduled tasks.

• A detailed performance evaluation with a realistic mobil-
ity trace, showing the benefits of vehicular mobility
information for the task scheduling process compared to
other state-of-the-art approaches.

The remainder of this article is structured as follows.
Section II describes key related works. Section III introduces
the system model, problem definition, and mobility predic-
tion model. Section IV presents the MARINA’s operation.
Section V discusses the performance evaluation and results
obtained. Finally, Section VI presents the conclusions and
future works direction.

II. RELATED WORK

This section presents state-of-the-art research regarding task
scheduling in VCs. In general, scheduling approaches can be
classified into three perspectives. (1) Centralized, where an
entity has a scenario holistic view and makes more accurate
decisions. This approach has the advantage of an environment
global view, but maintaining this knowledge is a challenge
for system scalability; (2) Decentralized, which has different
agents that make decisions based on local knowledge. This
approach does not need to maintain global knowledge, but
the accuracy of decisions is compromised in some cases; and
(3) Hybrid, which combines the advantages of two previous
techniques to increase system efficiency [31]. Observing the
advantages of each scheduling approach, we consider only the
Centralized and Hybrid approaches due to the essential role
the 5G network can play in these specific scenarios [32].

Pereira et al. [24] proposed FORESAM, a policy for
scheduling tasks in VCs based on the fog computing paradigm
for urban environments. Specifically, vehicles cooperate with
the set of BSs to create a pool of resources for vehicular
services. FORESAM decides whether resources are available
based on Analytic Hierarchy Process (AHP) mathematical

DA COSTA et al.: MOBILITY AND DEADLINE-AWARE TASK SCHEDULING MECHANISM FOR VEC 11347

method. However, FORESAM employs greedy decision-
making, where in case a task does not fit into the VC, it is
discarded, impacting the overall system efficiency.

Some works consider optimization algorithms for decision-
making. Da Costa et al. [13] introduced CRATOS, a combi-
natorial optimization-based mechanism for task scheduling in
VCs. CRATOS considers the arrival of tasks in real-time and
regardless of each other following a Poisson process. The VEC
controller located at a higher level in the network receives the
resource requests (which are the tasks) and schedules them in
the available VCs. 0/1 Knapsack Problem is used to schedule
tasks optimally given the contextual configuration (tasks’ input
size and VC’s available computational resources). However,
CRATOS does not consider tasks with deadlines higher than
1s in its decision process. Also, the user defines how much it
will cost to process his task. Hence, CRATOS would not fit
into an actual application, as the monetary cost model used
by cloud providers is different.

Dai et al. [25] presented a probabilistic algorithm for
cooperative task scheduling in VCs. The authors formulate
Cooperative Computing Offloading (CCO) problem by mod-
eling the procedure for uploading, migrating, and scheduling
tasks based on queuing theory to minimize the delay in
the system. The BS makes online scheduling based on the
calculated probability provided by a probabilistic offloading
algorithm. Three aspects are considered for computing the
offloading probability: the time that vehicles will stay in
BS’s coverage range; the density of vehicles; and resources
available in the BS. However, this computation is offline,
which means it is executed on a high-performance server in the
Internet cloud. The probability that the BS will meet demand is
computed before the process of task arrival, which can degrade
the system’s performance in a highly dynamic environment.
Finally, VCs considers only the resources available in the BSs.

Luo et al. [7] presented a detailed analysis of the delay and
cost of task offloading for VCs. The authors first establish an
offloading framework with communication and computation
for VC, considering tasks with different requirements. In this
sense, a multi-objective optimization problem is formulated to
joint minimization the delay and the monetary cost. A Parti-
cle Swarm Optimization (PSO)-based computation offloading
(PSOCO) algorithm is proposed to obtain the Pareto-optimal
solutions. However, due to its bio-inspired approach, its con-
vergence time can impact the algorithm’s performance.

Some works use queuing theory to model the vehicular sce-
nario. Hattab et al. [23] proposed a polynomial time algorithm
for task scheduling in VCs with different resources. First, the
algorithm classifies tasks according to the completion and wait
times. Afterward, it selects a subset of tasks with the lowest
proportion and then solves a sequence of Linear Programs.
They formulate the bottleneck assignment problem, where the
goal is to minimize the completion time of the scheduled tasks
in the available VCs. However, this work does not consider
the vehicle mobility for VC formation, i.e., VCs are stationary,
and the proposed algorithm considers only one VC.

Some approaches use Machine Learning (ML) techniques
for the scheduling decision process. Kazmi et al. [30] pro-
posed a task scheduling mechanism for mobile vehicular

networks using a Deep Reinforcement Learning (DRL)-based
approach. The approach considers electric vehicles in task
processing. The focus is to make energy consumption more
efficient. Mobility information considers the relative mobility
and kinematic equations to estimate the communication phase
between two vehicles. However, an evaluation comparing the
solution with state-of-the-art is still necessary. Furthermore,
the BS does not cooperate in task processing, decreasing
system efficiency. Gao et al. [27] present a solution for task
scheduling that aims to minimize service delay and energy
consumption. The authors use a Deep Q-Network (DQN)
approach for scheduling decision-making and a Gradient
Descent (GD) method for Central Processing Unit (CPU)
frequency allocation. However, the work needs to discuss the
solution convergence time, which depending on the scenario,
can make it unfeasible for more dynamic environments.

Chen and Xu [21] presented an RL-based algorithm for task
scheduling in VC, called DATE-V, which provides resources
for scheduling tasks with deadline constraints in the VCs.
DATE-V is based on a contextual and combinatorial Multi-
Armed Bandit (MAB) learning framework. The algorithm
uses vehicle contextual data (i.e., speed, location, and com-
putational resources available) to infer the probability of
completing a task replication under random vehicles. DATE-V
also replicates the task received in the BS and sends such
replications to different vehicles to ensure service attendance
and increase its success rate. However, these replications
potentially lead to a costly solution, given that defining the
number of replications is challenging. Liu et al. [26] pro-
posed a vehicle-assisted task scheduling approach for mobile
users, considering delay constraints. The authors formulate
an optimization problem to maximize the long-term use-
fulness of VC’s resources. Considering stochastic vehicle
traffic, dynamic computation requests, and time-varying com-
munication conditions, the problem is later formulated as
a Semi-Markov Decision Process (SMDP). Two reinforce-
ment learning methods are proposed to obtain the optimal
computation offloading and VC’s resource allocation, namely
(i) Q-learning based and (ii) Deep Reinforcement Learn-
ing (DRL) methods. However, given the nature of DRL
approaches, it is necessary to train the model in advance. Thus,
the solution depends on the offline phase for its execution,
which can negatively impact highly dynamic scenarios.

Some works consider mobility prediction to estimate vehicle
positions and ensure reliability in the task scheduling process.
For example, Misra and Bera [28] proposed a mobility-
aware task scheduling scheme named Soft-VAN, which aims
to minimize task computation delay in a software-defined
vehicular network. Soft-VAN consists of two phases, fog node
selection and task scheduling. An Integer Linear Program
(ILP) is solved in the first phase to get the optimal number of
fog nodes required for a given network. In the second phase,
the authors formulate an optimization problem to minimize the
delay in task computation and consider the vehicle’s mobility
and the parameters associated with the scheduling decisions.
However, the algorithm depends on an offline phase to identify
fog nodes to assist the delivery process of the tasks performed.
Also, they do not consider the vehicles’ dynamics to make

11348 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

TABLE I
SUMMARY OF RELATED WORKS HIGHLIGHTING THEIR CHARACTERISTICS AND LIMITATIONS

the processing decisions for the task, only to send the final
result.

Wu et al. [29] investigate the task scheduling and resource
allocation optimization problem by considering the vehicular
mobility effect in the VEC environment. Specifically, the
authors formulate the joint optimization problem from a Min-
Max perspective to reduce the overall task latency. Then they
decompose the non-convex problem into two sub-problems,
one-to-one matching and bandwidth resource allocation. Also,
considering a vehicle’s relatively stable moving patterns in a
short period, the authors further introduce mobility prediction
to design a mobility prediction-based scheme to obtain a better
solution. However, the mobility model is unrealistic since
vehicles need constant acceleration during the task scheduling.

Table I summarizes the main characteristics of reviewed
studies considering system design, the entities forming the
VCs, the approach used in the task scheduling process, and
vehicular mobility information. Based on the state-of-the-
art analysis, we conclude that centralized approaches allow
the constructed knowledge to be global and more accurate.
However, the network’s overload levels can be high and
overload the centralized entities, raising the monetary costs of
using computational resources [13], [23], [28], [29]. In another
direction, some works consider hybrid architectures, enabling
to build on regional knowledge without burdening a central
entity and the network’s core with high message exchange [7],
[21], [24], [25], [26]. A VEC architecture allows the coop-
eration of computational resources among vehicles and BSs
for VCs creation, allowing resources to be always available.
For instance, considering only vehicles, the approaches are
limited to regions with high vehicle flows to maintain the
high resource availability. On the other hand, considering BS
as an entity that composes the VCs enables more effective
management both in forming VCs and using resources, making
the processes more stable and reliable [7], [24], [26], [29].

Regarding the scheduling approach, it is essential to con-
sider decision-making techniques with low complexity to
deal with the real-time requirements of different classes of
applications explicitly defined by their deadlines. In this
sense, in computational complexity order, some studies con-
sider simple computing algorithms [23], [24], others con-
sider optimization techniques [7], [13], [25], [28], [29], and

some studies consider machine learning algorithms [21], [26],
[27], [30].

In this sense, the techniques used should be less com-
putationally complex, and thus their decision time does not
negatively impact the system’s overall efficiency. Furthermore,
creating knowledge about the dynamics of computational
resources through vehicular mobility is essential to estimate
future resource availability. In this sense, approaches can
make better decisions, relating task requirements, such as
deadlines, and computational resources available in the future,
reducing the task scheduling interruptions and the monetary
cost employed by this process. However, only a few studies
consider vehicular mobility information in their decision-
making processes [28], [29], [30]. To the best of our knowl-
edge, only MARINA considers every critical characteristic
previously mentioned not provided by existing task scheduling
mechanisms in a VEC environment. In other words, MARINA
considers a hybrid architecture to avoid network overload,
VCs formed by vehicles and BSs to increase resource avail-
ability, a polynomial-time heuristic for decision making, and
vehicle mobility information to estimate future computational
resources in each VC.

III. SYSTEM MODEL

This section introduces the MARINA task scheduling in
VEC scenarios, which considers available resources, tasks’
deadline constraints, and vehicular mobility for decision-
making. We first overview the designed system and then illus-
trate the VCs formation process, mobility prediction approach,
and monetary cost model. Finally, we formulate the problem.
Table II summarizes the key notations used in this work.

A. Overview

Figure 1 shows the system architecture composed of vehi-
cles, BSs, VEC controllers, and an RS in the Internet cloud.
We consider a scenario composed of x moving vehicles,
denoted as ui ∈ U = {u1, u2, . . . , ux }. Also, we consider
a set of BSs deployed in the city, denoted as by ∈ B =
{b1, b2, . . . , bm}, where m is the total number of BSs. Each
BS has wired communication (e.g., optical fiber) with the
RS and could provide processing power and storage capacity

DA COSTA et al.: MOBILITY AND DEADLINE-AWARE TASK SCHEDULING MECHANISM FOR VEC 11349

TABLE II
SUMMARY OF KEY NOTATIONS

Fig. 1. The architecture employed by MARINA, presenting its main compo-
nents; in particular, Vehicular Clouds (VCs) and Vehicular Edge Computing
(VEC) controllers.

on the network edge, decreasing response time for some
applications [26]. Also, each BS on the 5G network has an
Xn interface, which allows the information exchange between
neighboring BSs and assists in the handover process [33].
Each vehicle has an On-Board Unit (OBU) that allows com-
munication with the neighbor devices through Vehicle-to-
Everything (V2X) communication. For instance, vehicles can
associate with a BS and communicate with an RS to access
the Internet, request resources for data processing, and share
their resources.

We used a BS-UE (Base Station-User Equipment) method
based on the maximum signal to interference plus noise ratio
(SINR) for this association process. In this case, a vehicle will
associate with a BS which provides the Max-SINR [34]. The
Max-SINR ensures that the vehicle is associated with only one
BS [35]. After the association between vehicle and BS, the BS
sends the vehicle’ information to RS.

In this scenario, we consider the city divided into R
regions (neighborhoods), and each region has at least one BS.
We also consider that each VEC controllers cover a given
region R, and it is randomly deployed in a given BS of
such region. It is important to mention that VEC controllers
are randomly deployed in the scenario, since this is not our
research focus. We denote the set of VEC controllers as
co ∈ C = {c1, c2, . . . , ce}, where e = |R| is the total number
of controllers, and directly related to the number of regions R.

Fig. 2. Vehicular Cloud (VC) formation process – from Base Station
(BS) association to scheduling – based on a prediction approach using Long
Short-Term Memory (LSTM).

Each controller is responsible for managing the BSs in its city
region, where this management includes the VC formation and
task scheduling processes.

In the VC formation process, the VEC controller requests
to the RS the information about BSs and vehicles to build
their regional knowledge. In this case, the Publish/Subscribe
paradigm is considered to obtain the relevant information
without inserting unwanted traffic on the network. The VEC
controller subscribes to BSs’ updates in its region. Thus,
the RS plays the role of Publisher, and the regional VEC
controllers play the role of Subscribers. Based on the infor-
mation about the BSs, the VEC controllers could starts the
VCs formation process. In this sense, VCs can be classified
in different regions according to BSs’ positions in the city.
Considering that the number of VCs is the same number
of BSs in the scenario, we can denote a set of VCs by
v j ∈ V = {v1, v2, . . . , vm}, where m is the total number of
VCs. A VC consists of a set of nodes (i.e., vehicles and BS)
that can share two types of computational resources ω and φ,
namely CPU-cycle frequency (processing power) and storage
capacity, respectively.

In this context, ωui denotes the vehicle’s CPU-cycle fre-
quency, φui denotes the vehicle’s storage capacity, ωby denotes
the BS’s CPU-cycle frequency, and φby denotes the BS’s
storage capacity. Therefore, each VC is represented by a tuple
{id, resourcesvehicles, resourcesbs, resourcestotal}, where id is
the VC’s unique identification, resourcesvehicles is the total
resources of vehicles (ωui and φui), resourcesbs is the total
resources of BS (ωby and φby), and resourcestotal is the sum
of resources in the VC (� j and 8 j), calculated as

� j =

x∑
i=1

ωui +

m∑
y=1

ωby , if ui , by ∈ v j , (1)

8 j =

x∑
i=1

φui +

m∑
y=1

φby , if ui , by ∈ v j . (2)

In short, the total amount of processing power resources � j
and 8 j of each VC v j is the sum of the shared resources from
each vehicle ui and BS by belonging to a given VC v j .

Figure 2 depicts the VCs formation process based on
a spatial layer to add temporal information about vehicle
mobility and their computational resources. We assume that
BS is aware of vehicle mobility to add the temporal layer
in the VC formation, which is possible to take advantage of
beacons already exchanged by vehicles to obtain the vehicles’

11350 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

Fig. 3. Time series created by the system for a Vehicular Cloud (VC).

information, avoiding extra overhead. Specifically, each vehi-
cle transmits periodic beacons containing its id, computational
resources, speed, positioning, and route. In this sense, the BS
receives such information and forwards it to the RS. Based on
the information requested by the VEC controller to the RS, the
VC formation process begins with mapping which BS holds
which vehicles in its coverage (Label 1 in Figure 2). Given the
history of associations in the BSs, it is possible to decompose
this information into time series representing the time variation
of vehicles in each VC (Label 2 in Figure 2). Spatiotemporal
information on the dynamics of resources in each VC is
created and stored in the regional VEC controller. Considering
the importance of estimating the resources available in a
VC to make task scheduling decisions with high precision,
an LSTM-based prediction model is used in this step. With
this, we can define a time window and estimate the resources
available in each VC (Label 3 in Figure 2). Finally, a resource
repository stores the predicted information, and the MARINA
consults such spatiotemporal information for decision-making
(Label 4 in Figure 2). Therefore, it is possible to estimate
resources available in each VC in k time slots by considering
the spatiotemporal information. In this sense, we can represent
the resources available at VC in each k ∈ K by � jk and 8 jk .

B. Mobility Prediction Model

We consider a mobility prediction process to add a temporal
layer to the spatial information about vehicle mobility and their
computational resources, which is essential in task scheduling
scenarios for VCs environments. In this sense, we need to
estimate the vehicles’ dwell time in each VC, enabling to
obtain information on the VCs’ computational capacity in a
predefined time window.

Several works consider Markov models, Extended Kalman
Filter (EKF), Support Vector Regression (SVR), and Autore-
gressive Integrated Moving Average (ARIMA) models to pre-
dict vehicular mobility [36], [37]. However, neural networks
have gained increasing attention from academia and industrial
groups for the accurate predictions offered by their various
models. In this scenario, an RNN is a deep learning approach
that extends the traditional feed-forward networks with internal
cycles [38]. These internal cycles allow tracking information
sequences to create spatiotemporal knowledge through current
and past inputs. LSTM is an advanced version of the RNN
architecture developed to model chronological sequences and
their long-term dependencies with greater precision [39].

In this sense, to employ an RNN in MARINA, we need
to build a dataset containing resources available information

Fig. 4. Recurrent Neural Network (RNN) employed by MARINA.

in each VC. The model learns from past dynamics and
accurately estimates the available resources in a given time
window. To this end, the information about user association
in a given BS is stored in the RS. In this way, when the
VEC controller starts the VC formation process, it is easier to
aggregate and create each VC’s resources time series. Let Z =
{z0, z1, . . . , zk} be a vector that represents the dataset, in which
each element consist of a tuple zk = {timestamp, resources}
representing a simulation step and resources available in this
step, for each VC, as shown in Figure 3.

In summary, the predictor model is defined as f = ϒ ◦2,
where ◦ indicates applying function ϒ on function 2’s output.
The feature learning machine 2(·), which converts inputs
into features, is utilized to process the input data first. After
that, the next step involves the representation function ϒ(·),
which maps features into a prediction [17]. In this sense, the
prediction process of the next available resources for each VC
is given according to

zk+1
� j
= ϒk ◦2k(zk

� j
). (3)

where zk+1
� j

represents the next available resources of the VC
j considering its previous observations zk

� j
.

Figure 4 shows how the RNN employed by MARINA
works. In summary, the RNN receives an input zk representing
a set of tuples, and for each VC, it employs an LSTM as a
recurrent layer. The dynamic employed by LSTM is to store
past information in long-term memory to explore the internal
relationships between each prediction. The information per-
sists across the network and is used in comparisons to improve
prediction estimates [40]. Finally, the output represents the
future resources available in each VC given a time window k.

C. Problem Definition

Each task tl ∈ T = {t1, t2, . . . , tn} is denoted by a tuple
{id t

l , st
l , wt

l , Dt
l } where id t

l means the unique task identifica-
tion, st

l denotes the size of task input data, wt
l is the numbers

of CPU cycles required to complete the task, and Dt
l is the

deadline constraint. In this way, the scheduling mechanism
aims to optimize scheduling a set of tasks T ′ ⊂ T to be
processed in the available VCs without increasing monetary
costs and scheduling as many tasks as possible.

The computational resources of the same VC are shared
among different tasks scheduled in that cloud. Thus, � j for
calculating the computation delay for a given task must be
updated according to the degree of sharing of that resource
within the VC, represented by 9 j . The value of � j is divided
by the number of tasks |T ′j | that have been scheduled for this

DA COSTA et al.: MOBILITY AND DEADLINE-AWARE TASK SCHEDULING MECHANISM FOR VEC 11351

VC, according to

9 j =
� j

|T ′j |
. (4)

According to the literature, all processes that add delay
must be considered to compute the computing delay for a
task scheduling in VC, [20], [21], [41]. For example, the
transmission delay of the resource request, the scheduling
delay between BS and VC, the task computation delay in the
VC, and the entire reverse path until the requesting obtains
the result of its task. However, this article only considers the
task computation delay in the VC. This is because this metric
simplifies the understanding of the efficiency of task schedul-
ing solutions, given that the entire network infrastructure is
the same for all approaches. The computation delay d t

l j can
be obtained based on the required CPU cycle wt

l divided by
the CPU-cycle 9 j of the server (VC), according to

d t
l j =

wt
l

9 j
, ∀ tl ∈ v j . (5)

As noted, each task has deadline constraints in its config-
uration, represented by Dt

l . Therefore, scheduling solutions
must consider this metric to ensure that these restrictions are
respected and tasks are successfully processed in the VCs.
In this scenario, if d t

l j ≤ Dt
l , the task was successfully

scheduled and executed in the v j VC. Also, when a task is
scheduled and starts to be processed, there is a cost associated
with this execution. The monetary cost is modeled as

Cl = d t
l j ×

(
wt

l × Price(tl)
)
, (6)

where d t
l j is the tl processing time in v j ∈ V and wt

l is its CPU
cycles required. Price(tl) is the resource price, calculated as

Price(tl) =

{
11.444 if tl uses by’s proc. resources,
5.016 if tl uses ui ’s proc. resources.

(7)

These costs are based on instances with GPU capacity avail-
able on Amazon EC2,1 such as g4ad and g3 for BS and
vehicle, respectively.

When a task arrives in the system, the VEC controller
must select the best VC to process this task. This selection
must consider the monetary cost of using VC’s resources.
In this case, we must first apply a Pareto optimization for a
joint minimization between processing time and task deadline.
These metrics are directly related to monetary costs. Thus, the
Pareto set allows us to find, among the queued tasks in the
system, a set P that jointly minimizes the processing time and
the deadline. With the Pareto set P defined, which has the tasks
that imply a lower monetary cost, we can select from this set
the tasks that will be processed in the VCs, represented by T ′.

To coordinate this selection, we can reduce this problem
as a Bin Covering Problem (BCP). BCP solves the items’
packaging problem with different weights in a finite set of
bins. Given a set of items, the BCP decides how many items
can be stored in the same bin. The algorithm aims to maximize
the number of items stored. However, given that BCP is a

1https://aws.amazon.com/ec2/dedicated-hosts/pricing/

combinatorial NP-hard problem, we use an approximation
heuristic First-Fit Decreasing (FFD) to find a solution to our
problem instances in polynomial time [42]. With the FFD
heuristic, they are sorted in non-increasing order of sizes
before placing the items in bins. Each item attempts to be
placed in the first bin that can accommodate this item. If no
bin is found, a new bin is observed, and the item is put in this
new bin. FFD can be implemented to have a running time of
at most O(n log n), where n is the number of items (tasks).

In this context, we formulate a task scheduling problem by
maximizing the number of tasks served while minimizing the
cost monetary of VC’s resources used in this process. It should
be noted that minimizing the monetary cost is provided by the
step that finds the Pareto set P . Furthermore, maximization is
performed by selecting tasks in the given Pareto set. In this
way, we can define the problem as follows:

P1 : maximize
|P |∑
l=1

tl , l ∈ P, (8)

subject to d t
l j ≤ Dt

l , j ∈ V, l ∈ P, (9)
|P |∑
l=1

st
l ≤ 8 jk, k ∈ K , j ∈ V, l ∈ P,

(10)
|P |∑
l=1

wt
l ≤ � jk, k ∈ K , j ∈ V, l ∈ P,

(11)

The (9) guarantees that the task deadline is respected,
avoiding rescheduling. The (10) and (11) ensures that VCs’
storage and processing limits are respected during the k
required processing time intervals.

IV. EFFICIENT TASK SCHEDULING MECHANISM
FOR VEC ENVIRONMENTS

This subsection describes an efficient task scheduling mech-
anism for VEC, called MARINA. We consider a scenario
composed of multiple VCs coordinated by regional VEC con-
trollers, which runs MARINA for task scheduling. MARINA
finds the Pareto set to ensure monetary cost minimization and
considers the BCP to resolve the problem in P1 of equations
(8 et seq.).

A. MARINA’s Operations

In short, MARINA first searches for the Pareto set P
using the joint minimization of task processing times and task
deadlines as a criterion, creating a vector for each criterion
(processing time and deadline). Therefore, the vectors are
arranged in a 2-dimensional plane, and the Pareto set is found.
Figure 5 presents an example of searching for the Pareto set
in a queue with 24 tasks. We can obtain a Pareto solution
set in 2-dimensional in polynomial time O(n log n) [43]. This
step ensures that the tasks selected to be verified with BCP
already have joint minimization of estimated processing times
and deadline constraints. In this case, this directly impacts the
overall monetary cost.

11352 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

Fig. 5. Pareto set example with 24 tasks.

As discussed earlier, the VEC environment is highly
dynamic due to vehicular mobility. Therefore, many works
model VEC environments as an M/M/1 queue to bring the
system’s dynamics closer to the real world [20], [44]. However,
in realistic scenarios, several entities can process existing
requests. Also, it is essential to consider that the service
time of the queued tasks is defined by the task requirements,
such as size, required number of CPU cycles, and deadline
constraints [20]. Thus, we consider that our VEC environment
works as an M/G/z queue. The tasks arrive in the system
following a Poisson process (M). The service time of the tasks
is defined by their characteristics (that is, it follows a general
distribution G). Finally, the system has more than one server
(z) to attend to requests, which are the various VCs formed
in the scenario.

When tasks arrive in the system, they are queued. Tradi-
tional approaches schedule tasks based on the organization
in that queue. However, as the processing time and deadline
of the tasks are crucial factors, MARINA prioritizes the
minimization of these aspects in its decision-making process.
That is, if a scheduling choice returns a lower processing time
than another, the use of resources will also be minimized.
In the same way, the monetary cost associated with the lower
processing time will also be minimized. However, to perform
this selection, MARINA needs to know the processing time
of all queued tasks. In this step, Equation (5) estimates the
processing time since it is unknown how many tasks will be
scheduled in this VC.

Algorithm 1 shows how our VEC system works over time.
Initially, the data structures that store the tasks in the system,
the tasks in execution, and the VCs of the scenario are created
(Lines 1 and 2). In a dynamic environment, tasks are generated
independently, following an arrival rate that can be defined
after observing the system’s behavior. Thus, each time slot
k ∈ K and following a Poisson process, a set of tasks arrives in
the system to be executed (Line 3). The task set is queued and
goes on standby to be scheduled and executed (Line 4). For
the task scheduling process to occur, it is necessary to know
the VCs available in the scenario. Thus, if k is equal to the
VC formation interval, the formation process occurs, and the
VC information is maintained until the next interval (Lines 5
and 6). If the Q queue is not empty (Line 7), the queued
tasks and the set of VCs are passed to the task scheduling
mechanism (Lines 8 and 9) presented in Algorithm 2. After
the scheduling process, verification is performed at each time
slot k if the tasks in the R queue (run queue) reached their

Algorithm 1 Vehicular Edge Computing (VEC) Envi-
ronment

1 Q,R← ∅ ▷ Waiting and Run queues
2 V, T ← ∅ ▷ VC and Task sets
3 foreach time slot k ∈ K do
4 Q.enqueue(Tk)

5 if k is update interval then
6 V ← update VCs with model in Section III-A

7 if Q ̸= ∅ then
8 T ← Q
9 R← MARINA(T, V) ▷ Algorithm 2

10 if R ̸= ∅ then
11 foreach r ∈ R do
12 if r has completed its execution then
13 compute cost with (6)
14 Q.dequeue(r)

15 R.dequeue(r)

16 else
17 Update r computation estimation

processing time in each VC (Lines 10 and 11). If the task
has completed its execution, the monetary cost is calculated,
and the task is removed from Q and R queues (Lines 12
and 13 and 14 and 15). Otherwise, the task execution estimate
is updated, as other tasks may have left the system, and more
resources may be available at the corresponding VC (Line 16
and 17). We emphasize that Algorithm 1 is executed in the
VEC controllers.

After a VC formation process, task scheduling is triggered,
and information such as available VCs and the set of tasks is
provided to the MARINA. In summary, Algorithm 2 describes
the MARINA’s operations in a VEC controller. In this sense,
the controller gets the VC set V and task set T , which
gives the T ′ task scheduling set as an output. The set V is
sorted non-increasing, so VCs with more available resources
are prioritized (Line 1). Two vectors are created based on T ,
the first PT for the estimated processing time, and the second
D for deadlines (Lines 3 and 4). MARINA calls the procedure
PARETOSET with configuration for joint minimization of
vectors PT and D (Line 5). The procedure returns a set P
containing the ID of the tasks that are part of the minimal
Pareto set. With the Pareto set defined, the BCP uses this
task subset to schedule tasks, considering other computational
requirements of each task (Line 6). In this step, BCP returns
a subset of candidate tasks S′. Also, the total number of
resources needed for this returned set is calculated (Line 7).
After that, for each task in the set, it is verified if the VC will
have available resources until its deadline Dt

l (Lines 8 and 9).
If not, that task is removed from the set S′ and its required
resources are removed from the total resource estimate
(Lines 10 and 11). If so, its actual processing time is calculated
(Line 13). If the processing time is longer than its deadline,
the task is removed from S′ and will be rescheduled in the

DA COSTA et al.: MOBILITY AND DEADLINE-AWARE TASK SCHEDULING MECHANISM FOR VEC 11353

Algorithm 2 Abstraction of MARINA
Input: task set T and VC set V
Output: scheduled tasks T ′

1 V ← decreasing order of available resources
2 foreach v j ∈ V do
3 PT ← processing time (tl , v j) for each tl ∈ T
4 D← deadline of each tl ∈ T
5 P ← PARETOSET({PT, D}, sense=[min, min])
6 S′← BINCOVERINGPROBLEM(P, v j)

7 total Resources ←
|S′|∑
l=1

wt
l , ∀tl ∈ S′

8 foreach t ′ ∈ S′ do
▷ use predicted vehicular
information

9 if total Resources < v j until Dt
l then

10 S′← S′ \ {t ′}
11 total Resources ← total Resources − t ′

12 else
13 d t

l j ← (5)
14 if d t

l j > Dt
l then

15 S′← S′ \ {t ′}

16 else
17 T ′← S′

18 return T ′

next round. Otherwise, set S′ is added to the scheduled tasks
list T ′.

B. Computational Complexity

The MARINA’s time complexity is analyzed as follows.
MARINA has three main stages. The first stage runs in time
O(n log n) in the worst case, which is the time complexity
to find Pareto set [43]. In the same direction, the BCP
algorithm needs O(n log n) to sort non-increasing order of
items by sizes (CPU cycles) and to cycle through all the
items to be checked. Also, the number of tasks decreases
based on the select VC with maximum resources available,
where the number of VCs is represented by m. In the worst
case, the second and third stages have linear O(n) complexity
to check the deadline and computation delay constraints for
each temporarily scheduled task S′. Finally, a constant F is
added that represents the computational complexity of the
prediction step, which may vary according to the technique
used. In summary, the algorithm’s time complexity can be
described as O(max{m}+n log n+F) in the worst case, with
m being the number of VCs and n the number of tasks. In this
context, MARINA is a polynomial-time algorithm.

V. EVALUATION

This section describes the methodology and metrics used to
evaluate MARINA performance in a VEC environment. First,
we show the simulation environment, including implemen-
tation, parameters, and evaluation metrics. Second, to better

understand the resource prediction model used, we present
LSTM results compared to other models in the literature.
Finally, we present and discuss the results of task scheduling
using the prediction model employed and the main insights.

A. Simulation Environment

The experiments were carried out with the Simulator of
Urban Mobility (SUMO), in version 1.11.0. The algorithms
were implemented in Python 3.8 and connected to SUMO
through the TraCI interface. We considered a deterministic
realistic mobility trace from TAPAS Cologne2 project, which
reproduces vehicle traffic in the city of Cologne, Germany,
as shown in Figure 6(a). The trace contains vehicular mobility
from 6 to 8 AM on a typical working day and covers a region
of 400 km2. However, only a city submap with 114 km2 was
picked for our simulation experiments because it contains a
greater variability of vehicles over time and up to 700 vehicles
at peak times. The simulation time was 700 s, with 100 initial
seconds of warm-up, as shown in Figure 6(c). The simulations
were run 33 times to obtain a 95 % confidence interval.

The Bag-of-Tasks (BoT) applications were considered since
they have no dependence on each other and can be exe-
cuted out of the submission order. The tasks’ deadline varies
between 3, 5, and 7 seconds. This is important to generalize
the representation of possible application classes. The VC
formation interval was defined in 5 seconds. The scenario con-
siders different task arrival rates (i.e., 1, 3, and 5 tasks/second)
following a Poisson distribution [20], [25], [41]. Also, the
size st

l of each task is [1, 10] MByte. The number of CPU
cycles wt

l required to complete the task is fixed in [1, 30]
Million of Instructions (MI). We consider that a vehicle ui
makes available resources (CPU-cycle capacity and storage
capacity) in 1 unit/vehicle, the number of CPU cores ωui

(CPU-cycle capacity in Million of Instructions Per Second
(MIPS)), which without loss of generality is proportional to
the storage capacity φui (1 MByte). In this way, we can get an
idea of the impact that sharing lower resource units employ
on the system. The communication ranges of vehicles and BSs
were 250 m and 2000 m, respectively.

In addition, we consider 14 BSs, and each one is capable of
sharing processing and storage resources, where such values
were configured at 15 MIPS and 15 MByte, respectively.
We deployed 4 VEC controllers, and each can manage up
to 4 neighboring BSs. We deployed the BSs in the city
following positioning information provided by the TAPAS
Cologne project, as shown in Figure 6(b). Moreover, we used
the TensorFlow framework version 2.8.2 to implement the
RNN [45]. We also consider a Graphics Processing Unit
(GPU) NVIDIA(R) Tesla V100 with 5120 CUDA cores and
32 GB of VRAM to train the ML models. Table III summarizes
the main simulation parameters.

We considered three scheduling mechanisms to compare
their performance with MARINA, namely: (i) UNC [23]
task scheduling scheme is a classic queuing theory algo-
rithm that is widely used as a policy for scheduling tasks

2http://kolntrace.project.citi-lab.fr/

11354 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

Fig. 6. Simulation scenario.

TABLE III
SIMULATION PARAMETERS

in computational systems. It is similar to First-Come-First-
Serve (FCFS) scheme, but the UNC scheme is free to select
any task in the task queue for scheduling during the current
time. (i i) FORESAM [24] considers a multi-criteria analytical
method to select the most appropriate VC to receive the task.
FORESAM considers all task requirements. (i i i) CRATOS [13]
considers a combinatorial optimization approach to schedule
tasks in the available VCs. The algorithm was adapted for our
scenario. The value of each task was defined as 1, given that,
by default, the tasks have no value associated with them.

We consider the following evaluation metrics:
• Root Mean Square Error (RMSE): quantifies the differ-

ence between ground-truth and predicted data regarding
resource availability in each VC. This metric is widely
used to measure the performance of predictors. In our
case, it was used to evaluate and decide the best model
for predicting vehicular resources for the proposed task
scheduling mechanism.

• Scheduled tasks (%): percentage of successfully sched-
uled tasks. We consider successful scheduling when a
task is scheduled in a VC and can be executed respecting
its deadline constraint.

Fig. 7. Example of the data used for the training and prediction processes.

• Monetary Cost ($/time): represents the monetary cost of
using VC’s computational resources for k units of time.
As defined in Section III-C, a VC comprises vehicles and
BS, each of which has a different monetary cost.

• System latency (s): refers to the processing time of the
task in a given computational configuration plus the queue
waiting time. That is, this metric shows how efficient the
decisions made by the mechanisms are.

• CPU time (s): represents the sum of the execution time
of all the processes involved in the mechanism. This
time may vary depending on the machine’s configuration
used in the evaluation. For this evaluation, we used an
Intel(R) Xeon(R) CPU X5650 (24×2.66GHz) with Linux
architecture x86_64.

B. Results: Mobility Prediction

We used 85 % of the samples of the data for training
and 15 % for testing to analyze the RNN performance in
our scenario. The prediction performance of the RNN was
measured in terms of RMSE compared to Dense Neural
Network (DNN) and Support Vector Regression (SVR), which
are two approaches widely used in state-of-the-art to predict
time series. Figure 7 shows an example of a time series
built for VC with ID number 4. As can be seen, most of
the time series (85 %) is used for model training, with the
remainder (15 %) being used to test the predictions. Given the
characteristics of the mobility trace, records from 6000 s were
disregarded as they only contain the dynamics of removing
vehicles from the simulation.

Figure 8 compares the RMSE obtained in the predictions
with the considered models. This assessment considers the

DA COSTA et al.: MOBILITY AND DEADLINE-AWARE TASK SCHEDULING MECHANISM FOR VEC 11355

Fig. 8. Results of resource predictions by Long Short-Term Memory (LSTM), Dense Neural Network (DNN), and Support Vector Regression (SVR).

Fig. 9. Example of task queue Q over the simulation time considered.

average RMSE among the 14 VCs in the scenario in different
time horizons for prediction. At this stage, we performed an
exploratory assessment of the size of the prediction window.
This is important to show the degradation of the prediction
as the prediction window increases, which is expected in
this type of evaluation. Thus, for each VC, we consider the
prediction windows 5, 10, 15, 20, 25, 30, 60, 120, 180, 240,
and 300 seconds. In summary, the hyperparameters for training
the LSTM model are: number of epochs = 100, batch size =
64, and number of LSTM cells = 128.

In this sense, we can see that the predictions provided
by LSTM achieve an average RMSE of about 0.1 in most
prediction windows, while the predictions provided by DNN
and SVR suffer more significant degradations as the prediction
window increases. LSTM is generally more efficient than
other models at considering past events to provide predictions
closer to dataset ground truth. Thus, this type of RNN proved
ideal for helping our task scheduling mechanism. Based on
the results, the LSTM proved to be more robust in resource
prediction phase. Thus, we chose to use it to help our task
scheduling process with the time window setting equal to 5 s.

C. Results: Task Scheduling

Figure 9 shows the behavior of the waiting queue Q over
the simulation time considered if no scheduling mechanism is
used. Different arrival rates significantly increase the difficulty
of orchestrating the task schedule process. For example, at the
highest arrival rate (λ = 5), 4500 tasks are queued at the
end of the simulation run. In other words, it is a challenging
scenario, considering that task sizes and deadline constraints
also vary according to their arrival in the system.

Fig. 10. Total sent packets on the network considering different system
architectures.

Figure 10 shows the difference in packets sent on the
network, considering the centralized and hybrid architectures.
In this sense, in a centralized architecture, where one entity
makes all the decisions and builds its global knowledge, all
vehicles must maintain communication with that entity. Thus,
the number of packets sent per time unit is directly related
to the number of vehicles communicating with the central
entity. However, in a hybrid architecture, intermediary entities
aggregate the messages of vehicles in their coverage and send
this information to the remote server in a single data stream.
The number of data messages transiting the network core is
significantly reduced. In this evaluation, we can observe an
average reduction of 50 % in the number of sent packets on
the network when the hybrid architecture is considered.

Figure 11 displays the percentage of successfully sched-
uled and executed tasks with different maximum delay con-
straints 3, 5, and 7 seconds, respectively. We can check the
behavior of the mechanisms when the system receives a high
load of requests. All mechanisms improve their performance as
the deadline increases. However, we can see that they all have
difficulty scheduling as the task arrival rate increases. In all
configurations MARINA performs better than other mecha-
nisms. Also, when the arrival rate is equal to 1, MARINA
can schedule over 91 % of the tasks in the configurations
with the largest maximum deadline constraint, as shown in
Figure 11(a). Both FORESAM and UNC operate similarly in
this configuration. CRATOS has the worst performance when
the deadline increases. This is due to its selection strategy,
which is only concerned with the task size, not consider-
ing fundamental aspects such as deadline and computation
delay. The tasks scheduled with CRATOS have processing
restrictions that are not considered in its decision-making

11356 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

Fig. 11. Results of the scheduled tasks with different maximum deadline constraints and task arrival rates.

Fig. 12. Results of the monetary cost with different maximum deadline constraints and task arrival rates.

process. In the configuration with a task arrival rate equal
to 3, MARINA already starts to have difficulty scheduling
when the deadline grows, as shown in Figure 11(b). However,
the MARINA still manages to schedule up to 90 % of tasks
in scenarios with the highest deadline constraints. In this
configuration, we see a more significant difference between
FORESAM and UNC due to UNC applying the simple greedy
policy. In this scenario, MARINA is superior in all configu-
rations considered. Finally, when the task arrival rate is 5,
MARINA maintains its results closer to 88 %. FORESAM
has results close to MARINA in this scenario. In FORESAM’s
setup, the main factor taken into account in its decision process
was the task deadline, so when the deadline increase, its
scheduling choices cannot relate to all the problem restrictions
well. Even applying a simple scheduling method, the UNC can
handle many requests compared to CRATOS.

Figure 12 shows the monetary cost of using the computa-
tional resources of the VCs. As mentioned in Section III-C,
the cost of the vehicle’s resources is less than that of the BS.
Therefore, to minimize this cost, the approaches choose to
select the resources of the vehicles for the scheduling first.
We can see that MARINA minimizes the monetary cost in all
evaluations. In this case, it is natural for the performance of all
mechanisms to fall due to the percentage of scheduled tasks
that also decreases in more challenging scenarios, as shown
in Figure 11. The best performance of MARINA occurs due
to the selection of the tasks considering the VC’s predicted
available resources and the joint minimization provided by the
Pareto set approach. Applying BCP allows a more significant

number of tasks to be scheduled out in the same VC, prior-
itizing that such resources come from vehicles and not from
BS. In addition, the more challenging the scenario (increasing
the task arrival rate) becomes, the more costly the scheduling
process becomes. More computational resources need to be
used to run the existing tasks. MARINA reduces the monetary
cost by up to 80 % in all scenarios. CRATOS proves to be
more costly because its decision process involves only the
amount of computational resources available. In this way,
many tasks are rescheduled during the mechanism’s operation,
thus increasing its final monetary cost. The UNC maintains its
expected behavior of increasing the monetary cost as deadline
constraints increases. The application of Pareto set and BCP by
MARINA allows the best task set to be scheduled in the same
VC with minimum processing time and deadline constraints.

Figure 13 depicts the system latency results, including the
computational delay and queue time. This metric is important
because it shows the impact of scheduling tasks in a given
processing configuration and is directly associated with how
the scheduling approach selects VCs. We can see, in all
evaluations, that MARINA reduces the computation delay of
the tasks in the VCs. Hence, it is mainly due to selecting the
VCs employed by MARINA, filtering based on the VC’s pro-
cessing rate considering the task deadline constraint. In addi-
tion to selecting the VC with greater computational capacity,
selecting tasks based on the joint minimization of processing
time and deadline helps reduce system latency. In addition,
CRATOS and UNC employ a higher computation delay in all
assessments due to their decision strategy that considers only

DA COSTA et al.: MOBILITY AND DEADLINE-AWARE TASK SCHEDULING MECHANISM FOR VEC 11357

Fig. 13. Results of the system latency with different maximum deadline constraints and task arrival rates.

Fig. 14. Results of the CPU time with different maximum deadline constraints and task arrival rates.

the order in which tasks arrive in the system. Specifically,
in the configuration with a tasks arrival rate equal to 3 and 5,
MARINA and FORESAM stabilize their performance due
to the absence of considerable variation in the number of
tasks scheduled, as shown in Figure 13(b) and 13(c). In sum-
mary, MARINA has better managed VC’s resources when
considering aspects of both tasks and VCs in its decision-
making process. In other words, an efficient task scheduling
approach should maximize the number of scheduled tasks
while minimizing the time that such tasks await their schedule.

Finally, Figure 14 presents the CPU time by the VEC
controllers that run the scheduling approaches. This metric is
directly related to the approach’s computational complexity.
Also, an approach that manages to schedule more tasks
has more overall CPU time, even with less computational
complexity. In all evaluations, UNC has lower CPU time
because its selection method is simple, selecting the task to
be scheduled based on its order of arrival in the system,
operating with time complexity O(n2), where n is the total
number of tasks. CRATOS has the second-lowest CPU time,
but this can be justified by the number of tasks scheduled
and successfully executed, even having pseudo-polynomial
complexity (O(max{m} + n × W), where m is the set VC,
n is the number of tasks, and W is the size of the VC
considered in each round). FORESAM has a high CPU time
because it iteratively selects one task at a time given a VC,
making a more significant number of checks for each VC
considered in the round. FORESAM uses the AHP technique
in its decision process, and the time complexity of AHP
is O(min{mn2, m2n}), where m is alternatives, and n is

criteria. Finally, MARINA has CPU time statistically close to
FORESAM. This is also true of its iterative decision-making
process. In certain rounds, the returned Pareto set may be
small, requiring further rounds to fill the VC. A 2-dimensional
set is constructed at each decision round, and the algorithm
searches for the Pareto optimal set, taking O(n log n) time.

VI. CONCLUSION

This article introduced MARINA, an efficient task schedul-
ing for VEC environments. MARINA divides its scheduling
process into three stages. The first step is finding the Pareto
set based on a joint minimization of processing time and
deadline constraints. After that, it applies BCP with the FFD
heuristic to select a set of tasks for a given VC, aiming to
maximize the number of tasks scheduled and minimize the
monetary cost of this processing. The second step selects the
tasks based on the correlation between the tasks’ deadline
constraint and predicted information about the computational
resources available in each VC. Finally, the third step verifies
the processing time of these tasks in the selected VC to reduce
the computation delay and, consequently, the monetary cost
of using the computational resources. MARINA employs an
RNN architecture to predict vehicular resources in VCs and
assist in its decision-making process.

Simulation results in a realistic vehicular scenario show that,
compared to other solutions, MARINA has high performance
in scheduling a higher number of tasks at lower monetary cost
of using resources and lower overall system latency. It also
keeps the CPU usage time around 10 ms in the regional VEC
controllers.

11358 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

During the task scheduling process, the system only has
a macroscopic view of the VCs, so our objective is to
have a microscopic view of the task management within
each VC and increase the fault tolerance from MARINA.
Besides, it is essential to highlight that the proposed solu-
tion can be extended to consider different metrics, such as
energy consumption, load balancing, and reward for sharing
resources. As future work, in addition to the different decision
metrics, we plan to consider a more heterogeneous environ-
ment, including electric vehicles and their specific energy
consumption models and mobile devices such as Unmanned
Aerial Vehicles (UAVs). Also, we plan to consider load
balancing in the task scheduling process to distribute available
resources evenly. Additionally, we could consider migrating
computational resources to increase reliability in maintaining
the task scheduling process. Finally, we intend to consider a
network environment where other applications use the VEC
controller to verify the impact of the task scheduling in a
shared resources environment.

REFERENCES

[1] A. Waheed et al., “Volunteer computing in connected vehicles: Oppor-
tunities and challenges,” IEEE Netw., vol. 34, no. 5, pp. 212–218,
Sep. 2020.

[2] I. W. Damaj, D. K. Serhal, L. A. Hamandi, R. N. Zantout, and
H. T. Mouftah, “Connected and autonomous electric vehicles: Quality
of experience survey and taxonomy,” Veh. Commun., vol. 28, Apr. 2021,
Art. no. 100312.

[3] C. A. R. L. Brennand, F. D. D. Cunha, G. Maia, E. Cerqueira,
A. A. F. Loureiro, and L. A. Villas, “FOX: A traffic management
system of computer-based vehicles FOG,” in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jun. 2016, pp. 982–987.

[4] R. Meneguette, R. D. Grande, J. Ueyama, G. P. R. Filho, and E. Madeira,
“Vehicular edge computing: Architecture, resource management, secu-
rity, and challenges,” ACM Comput. Surv., vol. 55, no. 1, pp. 1–46,
Jan. 2023.

[5] S. Zhang, J. Liu, H. Guo, M. Qi, and N. Kato, “Envisioning device-to-
device communications in 6G,” IEEE Netw., vol. 34, no. 3, pp. 86–91,
May 2020.

[6] G. P. R. Filho et al., “Enhancing intelligence in traffic management
systems to aid in vehicle traffic congestion problems in smart cities,”
Ad Hoc Netw., vol. 107, Oct. 2020, Art. no. 102265.

[7] Q. Luo, C. Li, T. Luan, and W. Shi, “Minimizing the delay and cost
of computation offloading for vehicular edge computing,” IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 2897–2909, Sep./Oct. 2021.

[8] C. A. R. L. Brennand, A. Boukerche, R. Meneguette, and L. A. Villas,
“A novel urban traffic management mechanism based on FOG,” in Proc.
IEEE Symp. Comput. Commun. (ISCC), Jul. 2017, pp. 377–382.

[9] A. Boukerche and V. Soto, “Computation offloading and retrieval for
vehicular edge computing: Algorithms, models, and classification,” ACM
Comput. Surv., vol. 53, no. 4, pp. 1–35, Jul. 2021.

[10] A. Masood, D. S. Lakew, and S. Cho, “Security and privacy challenges
in connected vehicular cloud computing,” IEEE Commun. Surveys Tuts.,
vol. 22, no. 4, pp. 2725–2764, 4th Quart., 2020.

[11] A. Katiyar, D. Singh, and R. S. Yadav, “State-of-the-art approach to
clustering protocols in VANET: A survey,” Wireless Netw., vol. 26, no. 7,
pp. 5307–5336, Jun. 2020.

[12] S. Olariu, “A survey of vehicular cloud research: Trends, applications
and challenges,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 6,
pp. 2648–2663, Jun. 2020.

[13] J. B. D. Da Costa, R. I. Meneguette, D. Rosário, and L. A. Villas,
“Combinatorial optimization-based task allocation mechanism for vehic-
ular clouds,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring),
May 2020, pp. 1–5.

[14] J. B. D. Da Costa, A. M. de Souza, D. Rosário, E. Cerqueira, and
L. A. Villas, “Efficient data dissemination protocol based on complex
networks’ metrics for urban vehicular networks,” J. Internet Services
Appl., vol. 10, no. 1, pp. 1–13, Aug. 2019.

[15] Z. Rejiba, X. Masip-Bruin, and E. Marín-Tordera, “A survey on
mobility-induced service migration in the fog, edge, and related comput-
ing paradigms,” ACM Comput. Surv., vol. 52, no. 5, pp. 1–33, Sep. 2020.

[16] A. M. de Souza, H. F. Oliveira, Z. Zhao, T. Braun, A. A. F. Loureiro,
and L. A. Villas, “Enhancing sensing and decision-making of auto-
mated driving systems with multi-access edge computing and machine
learning,” IEEE Intell. Transp. Syst. Mag., vol. 14, no. 1, pp. 44–56,
Jan. 2022.

[17] A. M. de Souza, T. Braun, L. C. Botega, L. A. Villas, and
A. A. F. Loureiro, “Safe and sound: Driver safety-aware vehicle re-
routing based on spatiotemporal information,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 9, pp. 3973–3989, Sep. 2020.

[18] A. Ip, L. Irio, and R. Oliveira, “Vehicle trajectory prediction based on
LSTM recurrent neural networks,” in Proc. IEEE 93rd Veh. Technol.
Conf. (VTC-Spring), Apr. 2021, pp. 1–5.

[19] B. Brik and A. Ksentini, “Toward optimal MEC resource dimensioning
for a vehicle collision avoidance system: A deep learning approach,”
IEEE Netw., vol. 35, no. 3, pp. 74–80, May 2021.

[20] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task
scheduling for online vehicular edge computing,” IEEE Trans. Mobile
Comput., vol. 21, no. 2, pp. 598–611, Feb. 2022.

[21] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2019, pp. 748–756.

[22] I. Sorkhoh, D. Ebrahimi, R. Atallah, and C. Assi, “Workload scheduling
in vehicular networks with edge cloud capabilities,” IEEE Trans. Veh.
Technol., vol. 68, no. 9, pp. 8472–8486, Sep. 2019.

[23] G. Hattab, S. Ucar, T. Higuchi, O. Altintas, F. Dressler, and D. Cabric,
“Optimized assignment of computational tasks in vehicular micro
clouds,” in Proc. 2nd Int. Workshop Edge Syst. Anal. Netw., Mar. 2019,
pp. 1–6.

[24] R. Pereira et al., “FORESAM—FOG paradigm-based resource allocation
mechanism for vehicular clouds,” Sensors, vol. 21, no. 15, p. 5028,
Jul. 2021.

[25] P. Dai, K. Hu, X. Wu, H. Xing, F. Teng, and Z. Yu, “A probabilis-
tic approach for cooperative computation offloading in MEC-assisted
vehicular networks,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 899–911, Feb. 2022.

[26] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158–11168,
Nov. 2019.

[27] J. Gao, Z. Kuang, J. Gao, and L. Zhao, “Joint offloading scheduling
and resource allocation in vehicular edge computing: A two layer
solution,” IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3999–4009,
Mar. 2023.

[28] S. Misra and S. Bera, “Soft-VAN: Mobility-aware task offloading in
software-defined vehicular network,” IEEE Trans. Veh. Technol., vol. 69,
no. 2, pp. 2071–2078, Feb. 2020.

[29] X. Wu, S. Zhao, R. Zhang, and L. Yang, “Mobility prediction-based joint
task assignment and resource allocation in vehicular fog computing,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), May 2020, pp. 1–6.

[30] S. M. A. Kazmi et al., “Computing on wheels: A deep reinforcement
learning-based approach,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 11, pp. 22535–22548, Nov. 2022.

[31] J. Leng et al., “ManuChain: Combining permissioned blockchain with a
holistic optimization model as bi-level intelligence for smart manufactur-
ing,” IEEE Trans. Syst. Man, Cybern., Syst., vol. 50, no. 1, pp. 182–192,
Jan. 2020.

[32] I. A. Ridhawi, M. Aloqaily, A. Boukerche, and Y. Jararweh, “Enabling
intelligent loCV services at the edge for 5G networks and beyond,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5190–5200,
Aug. 2021.

[33] X. Yan, M. Ma, and R. Su, “Efficient group handover authentication
for secure 5G-based communications in platoons,” IEEE Trans. Intell.
Transp. Syst., vol. 24, no. 3, pp. 3104–3116, Mar. 2023.

[34] X. Tian, B. Zhang, and C. Li, “Throughput-optimal dynamic broadcast
for SINR-based multi-hop wireless networks with time-varying topol-
ogy,” IEEE Trans. Veh. Technol., vol. 70, no. 11, pp. 11962–11975,
Nov. 2021.

[35] Z. Li, C. Wang, and C. Jiang, “User association for load balancing in
vehicular networks: An online reinforcement learning approach,” IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 8, pp. 2217–2228, Aug. 2017.

DA COSTA et al.: MOBILITY AND DEADLINE-AWARE TASK SCHEDULING MECHANISM FOR VEC 11359

[36] P. Sun, N. Aljeri, and A. Boukerche, “Machine learning-based models
for real-time traffic flow prediction in vehicular networks,” IEEE Netw.,
vol. 34, no. 3, pp. 178–185, May 2020.

[37] I. Rasheed and F. Hu, “Intelligent super-fast vehicle-to-everything 5G
communications with predictive switching between mmWave and THz
links,” Veh. Commun., vol. 27, Jan. 2021, Art. no. 100303.

[38] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[39] H. Guo, L.-L. Rui, and Z.-P. Gao, “V2V task offloading algorithm with
LSTM-based spatiotemporal trajectory prediction model in SVCNs,”
IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 11017–11032, Oct. 2022.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[41] Y. Sun, S. Zhou, and Z. Niu, “Distributed task replication for vehic-
ular edge computing: Performance analysis and learning-based algo-
rithm,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1138–1151,
Feb. 2021.

[42] P. Schwerin and G. Wäscher, “The bin-packing problem: A problem
generator and some numerical experiments with FFD packing and MTP,”
Int. Trans. Oper. Res., vol. 4, nos. 5–6, pp. 377–389, Sep./Nov. 1997.

[43] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proc. 17th Int. Conf. Data Eng., 2001, pp. 421–430.

[44] V. Sethi and S. Pal, “FedDOVe: A federated deep Q-learning-based
offloading for vehicular fog computing,” Future Gener. Comput. Syst.,
vol. 141, pp. 96–105, Apr. 2023.

[45] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2016, pp. 265–283.

Joahannes B. D. da Costa received the B.Sc. degree
in information systems and the M.Sc. degree in
computer science from the Federal University of
Pará (UFPA), Brazil, in 2016 and 2018, respec-
tively. He is currently pursuing the Ph.D. degree
in computer science with the University of Camp-
inas (UNICAMP), Brazil. His research interests
include machine learning, intelligent transportation
systems, vehicular clouds, resource allocation, and
task scheduling.

Allan M. de Souza received the M.Sc. degree in
computer science from the University of Campinas,
Brazil, in 2016, and the joint Ph.D. degree in com-
puter science from the University of Campinas and
University of Bern, Switzerland, in 2021. Currently,
he is a Post-Doctoral Research with the University
of Campinas. His research interests include data
dissemination, congestion detection, congestion con-
trol, and re-routing in VANETs and traffic manage-
ment systems.

Rodolfo I. Meneguette received the bachelor’s
degree in computer science from Paulista University
(UNIP), Brazil, in 2006, the master’s degree from the
Federal University of São Carlos (UFSCar) in 2009,
and the Ph.D. degree from the University of Camp-
inas (Unicamp), Brazil, in 2013. In 2017, he was
a Post-Doctoral Researcher with the PARADISE
Research Laboratory, University of Ottawa, Canada.
He is currently a Professor with the University of
São Paulo (USP). His research interests include
vehicular networks, resources management, flow of
mobility, and vehicular clouds.

Eduardo Cerqueira received the Ph.D. degree
in informatics engineering from the University of
Coimbra, Portugal, in 2008. He is currently an
Associate Professor with the Faculty of Computer
Engineering, Federal University of Pará (UFPA),
Brazil, and an Invited Researcher with the Network
Research Laboratory, UCLA, USA, and the Centre
for Informatics and Systems, University of Coim-
bra, Portugal. His publications include five edited
books, five book chapters, four patents, and over
than 180 articles in national/international refereed

journals/conferences. His research interests include multimedia, future inter-
net, the quality of experience, mobility, and ubiquitous computing. He has
been serving as a guest editor for six special issues of various peer-reviewed
scholarly journals.

Denis Rosário received the Ph.D. degree in elec-
trical engineering from the Federal University of
Pará, Brazil, with joint supervision undertaken by
the Institute of Computer Science and Applied Math-
ematics, University of Bern, Switzerland, in 2014.
He is currently a Professor with the Federal Univer-
sity of Pará. His current research interests include
multimedia, wireless networks, FANET, vehicular
networks, vehicular clouds, mobility, the quality of
experience, and software defined networks.

Christoph Sommer received the Ph.D. (Dr.-Ing.)
degree (Hons.) in engineering and the M.Sc. (Dipl.-
Inf.Univ.) degree in computer science from the Uni-
versity of Erlangen-Nuremberg in 2011 and 2006,
respectively. He is currently a Full Professor and
holds a chair at the Faculty of Computer Science,
School of Engineering Sciences, TU Dresden, and
is heading the Networked Systems Modeling Group.
He also authored the textbook Vehicular Networking
(Cambridge University Press). His research interests
include the protocol and system designs of wire-

lessly connected mobile systems exhibiting high topology dynamics.

Leandro Villas received the Ph.D. degree in com-
puter science from the Federal University of Minas,
Brazil, in 2012. He had the doctoral thesis selected
among the top six in the Brazilian Computer
Society. He was awarded the Excellence Research
Award from PARADISE Laboratory—University of
Ottawa. Currently, he is a CNPq Researcher level
1D, an Associate Professor in computer science with
the Institute of Computing, University of Campinas
(Unicamp), and the Coordinator of the Hub of
Artificial Intelligence and Cognitive Architectures,

Unicamp (https://hiaac.unicamp.br/en/). He has already published more than
80 articles in international journals and more than 160 in conferences. Nine
of those papers received the Best Paper Award in IEEE/ACM Conference and
SBC Conference. He was recently named among the Top 1% Scientists with
the most significant impact in the world, according to a study by Stanford
University/PLOS Biology.

