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Modular Autonomous Electric Vehicle Scheduling
for Customized On-Demand Bus Services

Rongge Guo , Wei Guan , Mauro Vallati , and Wenyi Zhang

Abstract— The emerging customized bus system based on mod-
ular autonomous electric vehicles (MAEVs) shows tremendous
potential to improve the mobility, accessibility and environmental
friendliness of a public transport system. However, the existing
studies in this area almost focus on human-driven vehicles which
face some striking limitations (e.g., restricted crew scheduling
and fixed vehicle capacity) and can weaken the overall benefits.
This paper proposes a two-phase optimization procedure to fully
unleash the potential of MAEVs by leveraging the strengths of
MAEVs, including automatic allocation and charging of modules.
In the first phase, a mixed integer programming model is
established in the space-time-state framework to jointly optimize
the MAEV routing and charging, passenger-to-vehicle assign-
ment and vehicle capacity management for reserved passengers.
A Lagrangian relaxation algorithm is developed to solve the
model efficiently. In the second phase, three dispatching strategies
are designed and optimized by a dynamic dispatching procedure
to properly adapt the operation of MAEVs to emerging travel
demands. A case study conducted on a major urban area of
Beijing, China, demonstrates the high efficiency of the MAEV
adoption in terms of resource utilization and environmental
friendliness across a range of travel demand distributions, vehicle
supply and module capacity scenarios.

Index Terms— Customized bus, modular autonomous elec-
tric vehicle, space-time-state network, Lagrangian relaxation,
dynamic dispatching.

I. INTRODUCTION

THE customized bus (CB) system is an emerging demand-
responsive transit (DRT) service that aims to improve

the punctuality and serviceability of the public transit (PT)
system [1]. It offers great accessibility with non-transfer and
door-to-door service to passengers with similar travel requests
in both space and time, or personalized requirements [2].
The CB system operates with flexible routes, timetables,
and schedules, based on the time-varying travel demands.
Practical experience has acknowledged that CB can provide an
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effective and green alternative to private cars and conventional
buses [3].

Routinely, a CB system plans the service according to
passengers’ travel requirements submitted in advance via
dedicated online booking. The CB service regarding routes,
timetables, vehicles, and crew schedules designed for given
static demands are then fixed for the service duration, which
is known as the first phase. The work of [4] first introduced
a CB route planning framework, which was then extended to
consider the timetable design and passenger choice behaviors
when dealing with the clustering travel demands [5]. As travel
demands are assumed to be known and static beforehand, some
studies treat the CB service design problem as a generalized
extension of the vehicle routing problem with pick-up and
delivery [6]. They put forward the exclusive decision vari-
able for modeling passenger-to-vehicle (P2V) assignment and
extended the CB design problem to address the scenario with
the travel time dependency and path flexibility [7].

In practice, however, many travel requests are likely to be
submitted in almost real-time, after the first phase has been
completed and shortly before the actual need for the service.
Those emerging requests pose a challenge for maintaining
the punctuality and effectiveness of the CB system. The con-
ventional addressing method is to either update initial routes
generated for reserved requests or dispatch new vehicles [8],
[9]. Existing approaches for CB systems usually consider
human-driven vehicles (HVs), which may hinder the ability
to cope with emerging time-sensitive requests. This is due
to the crew schedule, which may not allow accommodating
the potentially significant detour time required to serve such
requests. Furthermore, HVs have fixed capacity, which may
result in lower vehicle loads and significant capacity waste due
to a lack of flexibility in the presence of real-time requests.

The innovative autonomous electric vehicles (AEVs) tech-
nology can support urban mobility and reduce the carbon
footprint of on-demand transit systems [10]. A major benefit
lies in the fact that AEVs can achieve automated allocation,
improve charging management and remove range anxiety,
especially in car sharing and PT [11], [12]. Specifically,
the integration of AEVs and PT provides a powerful plat-
form for delivering efficient on-demand transportation ser-
vices: [13] successfully implemented autonomous technology
to offer on-demand services to fixed-route buses dealing with
the first/last mile problem; [14] concluded that autonomous
mobility-on-demand transit system could balance the vehicle
distribution. Another remarkable feature is that AEVs can be
treated as modular autonomous electric vehicle (MAEV) units,
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which are allowed to assemble or disassemble into varying
capacities while traveling on roads [15]. Such a novel concept
enables high capacity flexibility for accommodating real-time
requests, and provides the potential to improve accessibility
and reliability while enhancing capacity utilization rate and
operational efficiency in PT systems [16]. Some researchers
have explored the benefits of modularity in bus routing and
scheduling when dealing with time-dependent travel requests
[17], [18]. Recently, a few studies have investigated the use
of modular vehicles in flexible transit service: [19] extended
modular transit into the first- and last-mile problem; [20], [21]
introduced the hybrid transit service (fixed and flexible routes)
to improve service quality for door-to-door services.

With the aim of fully nurturing the potential of a CB sys-
tem, this paper provides a novel scheduling methodology for
the modular autonomous electric customized bus (MAECB)
system. We make threefold contributions:

• First, we define the MAECB system operation, where
the emerging MAEV technology is integrated to deal
with heterogeneous travel requests. The new CB scenario
can address the joint optimization of routing, scheduling,
charging, P2V assignment, and dynamic capacity man-
agement, which can fully accommodate the space- and
time-varying travel requests.

• Second, we introduce a two-phase optimization proce-
dure to adequately address the reserved and emerging
travel demands. A mixed integer programming model is
developed in the space-time-state framework to formulate
the problem of the first phase. A Lagrangian relaxation
algorithm is proposed to solve the model, where the
complex problem is decomposed into an electric vehi-
cle routing problem, a P2V assignment problem, and a
module assembling problem. Three dispatching strategies,
which are optimized by a dynamic dispatching procedure,
are introduced to re-optimize the service in the second
phase. The re-optimal plan is dynamically adapted to
travel demands arising in multiple periods.

• Third, we perform extensive numerical experiments on
large-scale real-world instances, which yields valuable
insights into the capabilities of the proposed MAECB
system. We empirically demonstrate that i) the resulting
MAECB system is more effective and efficient than the
HV-based CB system, particularly in terms of vehicle
usage and operating cost; and ii) the adoption of MAEV
technology can significantly reduce environmental pollu-
tion and energy consumption.

To better position and contextualize this work, Table I
presents an overview of the existing literature in this field.

II. PROBLEM DESCRIPTION

This section provides a formal description of the on-demand
MAECB scheduling problem. The problem can be naturally
presented as a two-phase optimization problem, as shown in
Fig. 1. The first phase aims to plan the service for passen-
ger groups who book CBs beforehand. The second phase
re-optimizes the existing service through dynamic vehicle
scheduling, based on emerging travel requests.

TABLE I
OVERVIEW OF RELATED WORK ON CB SYSTEMS

Fig. 1. The two-phase optimization procedure of the MAECB service.

Fig. 2 exemplifies the temporal nature of the considered
problem. The on-demand MAECB scheduling problem can be
characterized to serve passenger groups P = {p1, p2, . . . , pn}

submitted (θn < t0, θn is the submitted time for pas-
senger group pn) before time t0 and the groups P ′

=

{p(n+1), p(n+2), . . . , p(n+m)} that dynamically arrive (θn+1 >

t0) through the finite horizon T = [t0, |T |]. Each passenger
group represents multiple passengers with the same travel
plan, characterized by pick-up and drop-off points (r, s), cor-
responding preferred time windows ([earr , latr ], [ears, lats]),
and quantity Num p. At every timestamp t (t0 ≤ t ≤ T ), group
p ∈ P ∪ P ′ can be in one of four states αp(t) ∈ {1, 2, 3, 4},
denoting unassigned, assigned, in-vehicle and served, respec-
tively. These four states correspond to four mutually exclusive
subsets of passenger groups. The unassigned groups PU (t) =

{P∪P ′
| αp(t) = 1} have made a request but have not yet been

assigned. The assigned groups PA(t) = {P ∪ P ′
| αp(t) = 2}

have been assigned but not yet picked up. The in-vehicle
groups PI (t) = {P ∪ P ′

| αp(t) = 3} have been picked up,
while the served groups PS(t) = {P ∪ P ′

| αp(t) = 4} have
arrived at their destinations.

As shown in Fig. 2, the system has full information about
reserved travel requests at time t0, and allocates these groups
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Fig. 2. Timeline of MAECB system.

to vehicles. This process corresponds to the first phase. After
t0 (t > t0), emerging travel demands can be received at every
time interval h. At t , the system has full information about
generated passenger groups before t . Therefore, the system
re-plans the MAECB service for new requests PU (t), until the
states of all passenger groups turn to served αp(t) = 4 and t
is greater than T . This process of assessing new requests at
every h and adapting the original plan accordingly corresponds
to the second phase. The inter-operation time interval h is an
adjustable parameter of which the value depends on various
external factors.

To serve passengers, here we consider a homogeneous
AECB module fleet M = {1, 2, . . . , |M |}. At timestamp t ,
each module has a physical location posVm(t) and a state
βm(t). The module m ∈ M can be in one of three states
βm(t) ∈ {1, 2, 3} differentiating between modules that are
idle MI (t) = {M | βm(t) = 1}, en-route ME (t) = {M |

βm(t) = 2}, and charging MC (t) = {M | βm(t) = 3},
respectively. The idle state implies that a module is in a
depot or a charging station, which has been fully charged and
can be activated for service. The en-route state means that
a module has already left the depot for serving passengers.
The charging state indicates that a module is recharging the
battery at a charging station. If the remaining electricity of a
module is estimated to be below the minimum threshold emin
before reaching the next vertex (including pick-up and drop-
off points, and the nearest charging station), then it must go
to the nearest charging station and get fully charged with a
constant recharging rate g. At timestamp t0, modules are all
in the idle state m ∈ MI (MI = {M | βm(t) = 1}), and are
fully charged at depots.

A key point of the MAECB service is that modules can be
assembled at depots and/or disassembled on roads into a set of
AECBs (K = {1, 2, . . . , |K |}) with varying capacities, to serve
fluctuating travel demands. The capacity capw of an AECB
varies against the vehicle type w(w ∈ W ) which ultimately
depends on the number of assembling modules. However,
we do not consider assembling on roads, as the movement of
a vehicle will be heavily affected by the assembling modules
with unequal remaining energy states. Further, each AECB
k ∈ K has a physical location posVk(t) and one of three states
βk(t) ∈ {1, 2, 3} at t , which is associated with posVm(t) and
βm(t) of modules.

Fig. 3 gives an example to illustrate the assembling and
disassembling operations. In the first phase t0, idle modules
m1, m2 and m3 are assembled into vehicle k1 for serving
passenger group 1. In the second phase, a new travel request
OD2 emerges at t . After dropping off the passengers of

Fig. 3. Assembling and disassembling of AECB modules.

OD1, the en-route vehicle k1 is disassembled into m3 and
k1, according to the passenger quantity of OD2; then, k1 is
scheduled to serve the new passengers, while m3 moves to
charging station for recharging. After finishing recharging,
m3 turns to be idle state.

III. MAECB SERVICE PLAN FOR THE FIRST PHASE

In this section, a space-time-state network-based model
is formulated to optimize the operation of MAECB for the
reserved travel demands in the first phase. A Lagrangian
relaxation algorithm is developed to solve the model.

A. Mathematical Model

To facilitate handling the complex temporal-spatial con-
straints and relations in the route planning of the first phase,
we adopt the discrete space-time-state modeling framework
to construct a CB service network with three dimensions,
including the space, time and state dimensions [25].

Consider a service network G = (V, A), where the vertices
are depicted by the space-time-state tuple (i, t, e), indicating
that the AECB k maintains the state e with the cumulative
number of remaining electricity at vertex i at time t . An arc
(i, j, t, t ′, e, e′) ∈ A signifies the directed path from vertex
(i, t, e) to vertex ( j, t ′, e′), and it indicates that k travels
through the arc (i, j) during the time duration (t, t ′) with
the remaining energy change (e → e′). The state e indicates
the remaining electricity which must be beyond the minimum
threshold emin , otherwise, the AECB must be recharged. The
time horizon is discretized into a series of 1-min-width time
intervals. The use of a space-time-state network model makes
it convenient to embed a set of constraints (including those
regarding time window, electricity state and charging) into the
algorithm to remove the infeasible arcs and prune the search
space efficiently [26]. Table II lists the sets, indices, parameters
and variables used in the model.

The basic assumptions of the model are the following: (1)
AECBs begin and end their routes at depots; (2) each AECB
leaves the depots and charging stations with a full charge, and
the power consumption rate is a constant and calculated per
travel distance; (3) If the remaining electricity is estimated
to be below the given threshold before reaching the next
vertex, the AECB will get fully charged at the nearest charging
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TABLE II
MODEL NOTATIONS

station and the recharging rate is constant; (4) modules are
homogeneous, and can be assembled or disassembled into
capacity-flexible AECB vehicles; (5) passenger groups should
be served within their preferred time windows.

The MAECB service plan for the first phase aims to
minimize the operating costs, including total traveling costs
and departure costs. The objective function can then be stated
as expression (1), subject to constraints (2)–(10).

min C =

∑
(i, j,t,t ′,e,e′)∈A

∑
k∈K I

∑
w∈W

wci, j,t,t ′,e,e′ xk,w
i, j,t,t ′,e,e′

+

∑
k∈K I

∑
m∈MI

∑
w∈W

cwzk,m,w (1)

s.t.
∑

(i, j,t,t ′,e,e′)∈A

xk,w
i, j,t,t ′,e,e′ −

∑
( j,i,t ′,t,e′,e)∈A

xk,w
j,i,t ′,t,e′,e

=


1 i ∈ O, t = DeT K , e = eo,

−1 i ∈ O, t = ArT K , e ∈ E,

0 otherwise,
k ∈ K I , w ∈ W

(2)

∑
k∈K I

∑
w∈W

yk,w
p = 1, p ∈ PU (3)

yk,w
p ≤

∑
(i, j,t,t ′,e,e′)∈Ar (p)

xk,w
i, j,t,t ′,e,e′ ,

p ∈ PU , k ∈ K I , w ∈ W (4)

yk,w
p ≤

∑
(i, j,t,t ′,e,e′)∈As (p)

xk,w
i, j,t,t ′,e,e′ ,

p ∈ PU , k ∈ K I , w ∈ W (5)∑
p∈PU

yk,w
p Num p ≤ capw, k ∈ K I , w ∈ W (6)

∑
p∈PU

yk,w
p Num p ≥ Loadw, k ∈ K I , w ∈ W (7)

∑
m∈MI

zk,m,w
= wxk,w

i, j,t,t ′,e,e′ ,

(i, j, t, t ′, e, e′) ∈ 9k
o , k ∈ K I , w ∈ W (8)∑

k∈K I

∑
w∈W

zk,m,w
≤ 1, m ∈ MI (9)

∑
k∈K I

∑
m∈MI

∑
w∈W

zk,m,w
≤ |M | (10)

Constraints (2) ensure the balance of AECB flow at the
depot, which shows that each AECB must originate from
and terminate at the designated depot. Constraints (3) depict
that each passenger group must be served. Constraints (4)
and (5) show that if group p is assigned to an AECB, the
vehicle must visit both the pick-up and drop-off points of p
and satisfy the time window constraints herein. Constraints
(6) are vehicle capacity constraints. Constraints (7) formulate
the minimum load requirement for activating an idle vehicle.
Constraints (8)-(10) capture the modular features. Constraints
(8) show that the type of an AECB is decided by the number
of modules assembled to this vehicle. Constraints (9) represent
that a module can be activated or not, depending on the cost
effectiveness. Constraints (10) define the quantitative upper
bound of the applicable modules.

B. Lagrangian Relaxation Heuristic Algorithm

The first-phase problem can be viewed as a variant of the
vehicle routing problem which has been proven to be computa-
tionally NP-hard. In this study, we propose a Lagrangian relax-
ation heuristic (LRH) algorithm to solve it. In the literature,
the LRH has shown desirable performance in solving similar
high-dimensional and large-scale combinatorial optimization
problems [27].

1) Lagrangian Relaxation and Decomposition: It is worth
noting that a solution of the MAECB service involves three
types of decisions: (i) how AECBs travel in the network; (ii)
how to assign a passenger to an AECB; and (iii) how to
assemble or disassemble modules. In the model, Constraints
(4), (5) and (8) involve the coupling of decision variables
xk,w

a and yk,w
p , xk,w

a and zk,m,w, which can be viewed as
the primarily hard constraints and relaxed into the objective
function. By relaxing the three constraints and associating
them with multipliers λk,w

p , β
k,w
p and π

k,w
a , we obtain the
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relaxed model of the first phase as follows:

min L(λ, β, π) =

∑
a∈A

∑
k∈K I

∑
w∈W

wca xk,w
a

+

∑
k∈K I

∑
m∈MI

∑
w∈W

cwzk,m,w

+

∑
p∈PU

∑
k∈K I

∑
w∈W

λk,w
p

yk,w
p −

∑
a∈Ar (p)

xk,w
a


+

∑
p∈PU

∑
k∈K I

∑
w∈W

βk,w
p

yk,w
p −

∑
a∈As (p)

xk,w
a


+

∑
a∈9k

o

∑
k∈K I

∑
w∈W

πk,w
a

 ∑
m∈MI

zk,m,w
− wxk,w

a


s.t. constraints (2), (3), (6), (7), (9) and (10). (11)

Without the coupling constraints, the above relaxation problem
can be decomposed into three sub-problems, namely the elec-
tric vehicle routing problem with time window (E-VRPTW)
associated with variable xk,w

a , P2V assignment problem asso-
ciated with variable yk,w

p and MAECB assembling problem
associated with variable zk,m,w.

• Sub-problem 1: E-VRPTW (SP1(λ, β, π )):

min SP1 =

∑
k∈K I

∑
w∈W

w

∑
a∈A

ca xk,w
a −

∑
a∈9k

o

πk,w
a xk,w

a


−

∑
p∈PU

∑
k∈K I

∑
w∈W

∑
a∈Ar (p)

λk,w
p xk,w

a

−

∑
p∈PU

∑
k∈K I

∑
w∈W

∑
a∈As (p)

βk,w
p xk,w

a

s.t. constraints (2). (12)

• Sub-problem 2: P2V assignment problem (SP2(λ, β)):

min SP2 =

∑
p∈PU

∑
k∈K I

∑
w∈W

(λk,w
p + βk,w

p )yk,w
p

s.t. constraints (3), (6) and (7). (13)

• Sub-problem 3: MAECB assembling problem (SP3(π )):

min SP3 =

∑
k∈K I

∑
m∈MI

∑
w∈W

 ∑
a∈9k

o

πk,w
a + cw

 zk,m,w

s.t. constraints (9) and (10). (14)

2) Solving Lagrangian Decomposition Problem: The stan-
dard sub-gradient algorithm used by [28] is adopted to iter-
atively update the multipliers λ, β and π , when calculating
the upper and lower bounds (U B and L B) of the relaxation
problem. The solutions of the decomposition problem produce
a lower bound, while the upper bound is generated with
feasible solutions of the proposed sub-problems. In this case,
the feasible solution is generated with the information from the
relaxed model solution. Specifically, when the relaxed solution
is obtained, we need to identify whether the optimal solution
fulfills the primal model, and the adjustment process is applied

to each solution route. The modified solution can directly
update the upper bound. The introduced LRH is designed as
follows.

Algorithm 1 Lagrangian Relaxation Heuristic Algorithm
Initialization: iteration n = 0, λn

= βn
= πn

= 0, U B =

+∞, L B = −∞

1: while n < nmax and Gap < ϕ do
2: Solve the sub-problems with the CPLEX: SP1(λ,β,π ),

SP2(λ,β), SP3(π )
3: Generate lower bound L B∗: L Bn

=SP1+SP2+SP3,
L B∗

= max{L Bn, L B∗
}

4: Generate upper bound U Bn with the feasible solution:
5: Construct the route solution xk,w

a,n of SP1(λ, β, π )
6: Set yk,w

p,n = 0 and zk,m,w
n = 0 for all p ∈ PU , k ∈

K I ,m ∈ MI , w ∈ W
7: for AECB k ∈ K I do
8: if

∑
a∈Ar (p) xk,w

a,n = 1
9: if then

∑
a∈As (p) xk,w

a,n = 1 then
10: if Loadw

≤
∑

p∈PU
yk,w

p,n ≤ capw then
11: yk,w

p,n = 1

12: if
∑

m∈MI
zk,m,w

n = wxk,w
a,n then

13: zk,m,w
n = 1

14: Compute the upper bound objective value U Bn

15: Acquire best lower bound U B∗
= min{U Bn, U B∗

}

16: Update λn+1, βn+1, πn+1 with the sub-gradient
17: Iteration n = n + 1
18: Compute relative gap percentage: Gap =

(U B∗
−L B∗)

U B∗

IV. MAECB SCHEDULING FOR SECOND PHASE

This section illustrates the second phase of the MAECB
scheduling problem, where three dispatching strategies can
be exploited to optimize the behaviors of modules against
emerging travel requests, including route re-planning, vehicle
scheduling and charging, and vehicle capacity adjustment.
Routinely, two activities need to be performed in response
to a new travel request for a MAECB: i) state identifi-
cation, and ii) dispatching strategy determination. Thanks
to the real-time information collected from modules and
passengers, the central system can be triggered to assign
the demands newly emerged over period h to available
AECBs via proper strategies. In this section, a dynamic
dispatching procedure is presented for determining the optimal
strategy.

A. MAECB State Identification

Given a time interval h, once a passenger group p′
=

{r ′, s′, [earr ′ , latr ′ ], [ears′ , lats′ ], Num p′ | r ′, s′
∈ S′

}(p′
∈

P ′) emerges, the system needs to check the feasibility of
implementing a service and determine available vehicles for it.
The feasibility of a service can be affected by multiple factors,
including the physical location posVk(t), the state βk(t) of
AECBs, the state βm(t) of modules, and the passenger group
state αp(t) at t . For each module and vehicle, there are three
states at t :
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• Idle state
If the state of a module is idle, i.e., βm(t) = 1(m ∈ MI )

and constraints (15) are satisfied, then the idle module can be
assembled into a vehicle to serve the new requests; otherwise,
the module will wait at the depot for future dispatching.

Num p′ ≤ cap · |M ′
o|, o ∈ O (15)

where M ′
o represents the set of remaining modules at depot o;

|M ′
o| is the number of remaining modules.
• En-route state
If the state of an AECB and its modules are both en-route,

i.e., βk(t) = 2(k ∈ KE ), βm(t) = 2(m ∈ ME ), and the
remaining vehicle capacity capw

k,re satisfies constraints (16),
then k is available for serving; otherwise, k must go to the
nearest charging station or depot. Note that the unavailable
en-route AECBs and modules can still be considered when
new requests occur in a subsequent time interval.

Num p′ ≤ capw
k,re, k ∈ KE , w ∈ W (16)

The remaining vehicle capacity capw
k,re at t can be computed

by subtracting the number of in-vehicle passengers Qk
j and

that of scheduled (but non-boarded) passengers at t from the
vehicle load capacity, as shown in Eq. (17).

capw
k,re = capw

− Qk
j −

∑
p∈PA

Num p, k ∈ KE , w ∈ W (17)

• Charging state
AECB and modules that are charging (i.e., βk(t) = 3(k ∈

KC ) and βm(t) = 3(m ∈ MC )) are unavailable to serve p′.

B. Dispatching Strategies

Two schemes are available to serve p′, namely activating
an idle AECB and inserting the newly emerged demands
into en-route AECBs. This inspires the development of three
dispatching strategies (named Strategies 1, 2 and 3) in this
paper. Strategy 1 is designed for activating an idle AECB
through assembling modules at depots, while Strategies 2 and
3 are designed for dispatching an en-route AECB with disas-
sembling operations. When serving a new passenger group
at time t , the performance of three strategies would be
compared by estimating objective (1), and the one yielding
the minimal increase in operating cost is selected as the
dispatching strategy. Solutions of all strategies should satisfy
the electricity state and charging constraints. In the space-time-
state transportation network, the remaining electricity state e
of each vehicle (and module) is updated with the traversed
distance.

From the perspective of a system, the three strategies are
usually combined to improve service efficiency and extend
adaptability to complex scenarios. This issue is discussed in
the section on experimental analysis.

1) Strategy 1: The first strategy considers the idle AECB
assembled with idle modules. If the idle AECB satisfies
constraints (15), then this vehicle is dispatched, and the service
should guarantee constraints (2), constraints (4)-(7) of p′.

Module assembling is utilized for MAECB system to avoid
expensive and unnecessary idle activation costs when serving

Fig. 4. MAECB dispatching based on Strategy 1(a), 2(b), and 3(c).

emerging demands, and then to enhance the profitability of the
system service. Eqs. (18) and (19) ensure the satisfaction of the
required capacity requirC (equals Num p′ ). Eq. (20) shows
that the number of applicable assembling modules cannot
exceed that of the remaining idle modules at t .

capw−1
≤ requirC ≤ capw, w ∈ W (18)

w =
capw

cap
, w ∈ W (19)∑

k∈K I

∑
m∈MI

∑
w∈W

zk,n,w
≤ |M ′

| (20)

Fig. 4(a) shows how Strategy 1 works in a small example,
and allows us to compare this strategy with the other two pre-
sented in the remainder of this section. When new passenger
requests arrive at time t , an idle AECB with one module will
be dispatched, and the states of the idle AECB and module
will become en-route, i.e., βk(t) = 2, βm(t) = 2.

2) Strategy 2: In this strategy, en-route AECBs and disas-
sembling operations are considered. If the en-route vehicle k
satisfies constraints (16), and the pick-up and drop-off vertices
r ′ and s′ exist in the current route of k, then the group p′ is
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assigned to k and its route remains unchanged, meanwhile, the
updated service should satisfy the related operation constraints
(2) and (4)-(5) of p′.

Module disassembling is applied here to decrease the capac-
ity of k at time t . Eq. (21) calculates the capacity requirement
at t . The type w of AECB can be re-determined according
to Eqs. (18)-(19). If a disassembling operation occurs, the
remaining electricity of the disassembled module will be
updated since it traverses directly for charging, instead of
continuing service.

requirC =

∑
p∈PA∪PI

Num p + Num p′ , k ∈ KE (21)

Fig. 4(b) displays the results of the example if Strategy
2 is put into operation. The insertion of new requests fulfills
the above restrictions. Thus, there is no change in routes and
capacity.

3) Strategy 3: This strategy still considers the AECBs
with en-route state, but those for which at least one vertex
(pick-up or drop-off) is not included in the current route.
If the en-route vehicle k is dispatched to serve p′ without
violating constraints (16), the inclusion of dispatching allows
the re-planning by adding the pick-up and/or drop-off vertices
into the existing route. The re-planned service needs to fulfill
the route constraints, the travel requirements of p′, as well
as the travel groups already assigned to k before t (see
constraints (2), (4)-(5)). Vehicle k is disassembled according
to the re-planned vehicle type w. The dissembled modules
without group assignment then drive to the nearest charging
station or depot. As the routes for AECBs and disassembled
modules are changed, the remaining electricity states and
charging operations are updated with the new routes.

Fig. 4(c) shows the result if Strategy 3 is exploited. The
new requests are inserted into the existing route, and the
re-optimized service disassembles the AECB into two parts.

C. Dynamic Dispatching Procedure

A dedicated dynamic dispatching procedure is introduced
for generating the optimal route re-planning solution to three
strategies, including a modified shortest routing algorithm for
Strategy 1 and a dynamic insertion algorithm for Strategies
2 and 3. When serving a newly emerged passenger group
at time t , the solutions of three strategies are compared,
and the best one is selected as the new route. A dynamic
capacity adjustment approach is commonly employed by two
algorithms to optimize the vehicle capacity and module fleet
size.

1) Shortest Routing Algorithm: The goal of the AECB
dispatching problem for Strategy 1 is to find the shortest
path from the nearest (measured by travel distance) depot to
pick up and drop off the passenger group with the minimum
vehicle capacity. For this purpose, we propose a dedicated
shortest routing algorithm (Algorithm 2) based on the greedy
heuristic, Dijkstra’s algorithm and dynamic capacity adjust-
ment. In addition to the shortest path between demand vertices,
the algorithm also enables generating a feasible route for
recharging.

Algorithm 2 Shortest Routing Algorithm
Input: solution set (Route, Charge, Pass A, ModuleS),

depot set O , idle modules m ∈ M ′, charging station set
F , consumption and recharging rate h, g, group p′

=

{r ′, s′, Num′
p, [earr ′ , latr ′ ], [ears′ , lats′ ] | r ′, s′

∈ S′
}

1: for o ∈ O do
2: omin = Shortpath(o, r ′)

3: route′
= (omin, r ′), S′

= S′
\r ′, curr V = r ′

4: RemainE = eo − domin ,r ′ · h
5: while isempty(S′) = 0 do
6: for unvisited vertex i ∈ S′ do
7: imin = Shortpath(curr V, i)
8: RemainE = RemainE − dcurr V,imin · h
9: if RemainE ≤ emin then

10: for f ∈ F do
11: fmin = Shortpath(curr V, f )

12: ChargeT = (eo − RemainE)/g
13: route′

= (route′, fmin, imin)

14: RemainE = eo − (dcurr V, fmin + d fmin ,imin ) · h
15: else route′

= (route′, imin)

16: RemainE = RemainE − dcurr V,imin · h
17: Update S′, currentV = imin

18: for o ∈ O do
19: omin = Shortpath(o, r ′)

20: Update charge′, passa′

21: modules′
= DynaCap(Num p′ , M ′)

Output: updated set (Route∗, Charge∗, Pass A∗, ModuleS∗)

2) Dynamic Insertion Algorithm: For Strategies 2 and 3,
we propose a dynamic insertion approach for all en-route
MAECBs to find the feasible insertion decision at t .

In the dynamic insertion algorithm, each en-route vehicle
is tested for insertion. After finding the en-route vehicle that
satisfies the capacity constraints, there are two cases in which
the dynamic insertion can be performed: i) applying Strategy
2 if the pick-up and drop-off vertices belong to existing routes;
ii) applying Strategy 3 if the pick-up or/and drop-off vertices
are not included in the current network. The re-planned service
needs to fulfill the spatial-temporal restrictions of both the new
and the scheduled passenger groups. A capacity adjustment
approach is also needed for disassembling MAECBs so as
to reduce the excess capacity at t . The dynamic insertion
algorithm is shown as Algorithm 3.

3) Dynamic Capacity Adjustment: The capacity adjustment
approach serves to realize a better adaptation of the vehicle
capacity to emerging requests at time t , through necessary and
efficient modules assembling or disassembling.

• Module assembling

Assembling occurs when a new route with an idle AECB
(Strategy 1) is created. In this case, the type w of AECB is
recognized according to the required capacity.
Input: new route for idle k (k ∈ K I ), new group p′

=

{r ′, s′, Num p′ | r ′, s′
∈ S′

} assigned to k.
Step 1: calculate the required capacity (requirC = Num p′ )
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Algorithm 3 Dynamic Insertion Algorithm
Input: solution set (Route, Charge, Pass A, ModuleS),

group state αp(t), passengers of assigned groups Num p,
location posVk(t), state βk(t), and remaining capacity
capw

k,re(t), new group p′
= {r ′, s′, Num′

p, | r ′, s′
∈ S′

}

1: for route of k (βk(t) = 2) do
2: if Num p′ +

∑
p∈PA

Num p ≤ capw
k,re(t) then

3: if r ′ and s′ exist in the route of k then
4: if ServeT satisfy time windows then
5: passa′

= (passa, p′)

6: if posVk(t) = i(i ∈ S) then
7: (route′, charge′, passa′) =

Short Route(PI , PA, p′)

8: else if posVk(t) = (i, j)(i, j ∈ S) then
9: if tposVk , j < h then

10: posVk(t + tposVk , j ) = j
11: Update αp(t) for all p(p ∈ PA ∪ PI ) of k
12: (route′, charge′, passa′) =

Short Route(P ′

I , PA, p′)

13: if ServeT satisfy time windows of p′ and p(p ∈

PI ∪ PA) then
14: modules′

= DynaCap(Num p′ , modules)

15: Update αp′(t) = 2(p′
∈ P ′)

16: else route is unavailable
17: k = k + 1
Output: updated set (Route∗, Charge∗, Pass A∗, ModuleS∗)

Step 2: determine the type w′ of k with Eqs.(18)-(19) and
select the idle modules (m1, . . . , mw ∈ M ′) at the nearest
depot for assembling.
Step 3: update the idle modules M ′

= M ′
− {m1, . . . , mw}.

Output: vehicle type w′ and capacity requirC for route.
• Module disassembling
Disassembling occurs when new travel requests are assigned

to a currently en-route AECB. Disassembling requires recog-
nizing if an AECB can be divided to reduce the excess capacity
for serving additional requests.
Input: current route for en-route k(k ∈ KE ), vehicle position
posVk(t) and type w; group set P = PA ∪ PI ∪ PS assigned
to k before t , new group p′ assigned to k.
Step 1: update states of all groups according to posVk(t).
Step 2: calculate the required vehicle capacity at t with
Eq. (21).
Step 3: determine the vehicle type w′ with Eqs. (18)-(19)
and disassemble k into an k and separated modules
(m1, . . . , mw−w′).
Step 4: update idle modules M ′

= M ′
+ {m1, . . . , mw−w′}.

Output: vehicle type w′ and capacity requirC for route.

V. EXPERIMENTAL ANALYSIS

This section conducts a large-scale instance with real-world
data from Beijing, China to validate the proposed algorithms
and strategies, as well as to deepen the understanding on the
impact of the proposed techniques.

Fig. 5. Road network of Beijing with travel demands of the R, C, and RC
instances. (Fig. 5 was initially applied to in [7], the number indicates the
number of passengers for the bar with such length.)

A. Experiments Design

To test the proposed methodology under a realistic
spatial-temporal demand distribution, the SCD collected from
the 24th to the 28th of April 2017 in Beijing is used to
capture travel trajectories of passengers, as in [29]. We focus
on the commuting data (from 7:00 AM to 8:30 AM) dis-
tributed across residential areas and central business districts.
40 trip groups (spreading over 53 vertices) are extracted as
the experimental travel requests. In this study, trip groups with
pick-up time before 7:30 AM are defined as reserved requests,
and the rest are treated as emerging requests and are further
divided into three parts with a time interval of 15 minutes.
Based on the pick-up and drop-off points, we generate three
types of instances, classified similarly to the R, C, and RC
of the Solomon instances, to represent different distributions
of travel requests, including random, clustered, and mixed
distribution [7]. Each instance contains 18 trip groups for the
first phase and 6 groups for the second phase. The second
phase contains 3 timestamps, each of which is associated
with 2 new request groups (namely group 1 and 2). The road
network and passenger distribution are shown in Fig. 5.

Considering the quantitative distribution of passengers for
each group, this section investigates a homogeneous fleet of
17 modules with a capacity of 15 people and an estimated
physical length of 5.5 meters. Then, a vehicle with three
modules can reach near the maximal physical length (about
20 meters) to run safely on urban roads with limited width
and turning radius. Therefore, three vehicle types are defined
herein, i.e., W = {1, 2, 3}. In addition, set the load capacity of
types 1, 2 and 3 to be 15, 30 and 45 people, the corresponding
departure cost per module is ¥550, ¥450 and ¥370, and the
minimum load requirement per vehicle is 10, 20 and 30 people,
respectively. The above quantitative parameter settings for
modules apply to this section unless additionally noted. Each
module has a 200kWh battery capacity. The recharging and
consumption rates are 5 kWh/min and 2kWh/km, respectively.
The travel cost is ¥20 for space-time-state arc, the service time
is 1 minute, and the minimum electricity is 40kWh.
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TABLE III
COMPARISON BETWEEN CPLEX, TS AND LRH FOR THE FIRST PHASE

B. Algorithm and Strategies Performance

This section validates the effectiveness of the solution
algorithm for the first phase by comparing it with the tabu
search (TS) algorithm and commercial solver ILOG CPLEX
providing the optimal solutions. In addition, we compare
the proposed dispatching strategies with a set of simplistic
strategies during the second phase, to better characterize the
behaviors and the capabilities of the proposed strategies.

1) Lagrangian Relaxation Heuristic Algorithm Perfor-
mance: Here we use the R instance to evaluate the effective-
ness of the proposed LRH algorithm. First, we test the duality
gap between lower and upper bounds for different relative
gaps, which is the termination condition of the algorithm.
The results show that LRH can achieve the approximate
optimal solution with the best gap of 0.9%. Please see the
corresponding detailed results in the supplementary materials.

To better contextualize the achieved performance, we further
compare the output of the LRH with the solutions obtained by
CPLEX and TS. Table III presents a comparison of the results.
The proposed Lagrangian approach can generate solutions
that are of the same quality as those by CPLEX, but with
a significant reduction in terms of CPU time. TS is the fastest
approach among the considered, but the generated solutions
are not as good as those of other approaches, requiring
additional modules to be dispatched. The results indicate that
the proposed method can produce a high-quality solution in
a short computational time, with zero gaps in operating cost,
distance and module utilization compared to CPLEX.

2) Strategy Comparison: We introduce an additional strat-
egy (namely Strategy 4) as a baseline to assess the gap with
the more sophisticated strategies. According to this strategy,
the central system dispatches an idle AECB from a random
depot instead of considering the shortest distance.

Table IV shows the results of the performed analysis on
the RC instance. All strategies consume a CPU time of fewer
than 0.2 seconds. Since strategies can be used in combination,
the best solution generated by a strategy for each group at
the timestamp is then shared across the strategies to be the
input of the next timestamp or new group, and all strategies
can benefit from synergies emerging over time. Strategy 4 is
always inefficient as it cannot effectively choose the closest
idle modules. Strategy 3 tends to be more efficient when the
updated route satisfies time windows for both assigned and
new demands. Although dispatching idle modules can avoid
the violation of temporal restrictions, it cannot save module
usage. Typically, Strategy 2 can operate without any detour
for vertex insertion. The findings suggest that the proposed
strategies are all superior to the naive Strategy 4, and that
Strategy 2 or 3 are better in the presence of available capacity

TABLE IV
SOLUTIONS GENERATED BY STRATEGIES IN THE SECOND PHASE

TABLE V
COMPARISON OF OPERATING COSTS (¥) BETWEEN COMBINED STRATE-

GIES AND PURE STRATEGY FOR THE SECOND PHASE

and if there is the possibility to re-route vehicles without
violating time windows.

We further assess the importance of combining strategies,
by comparing the solutions generated without sharing the
best solution for all instances. Strategies 2 and 3 are applied
together as a single strategy application as they correspond
to different scenarios of en-route AECBs. Table V gives
an overview of the solutions. Combined strategies always
outperform any single one, especially when en-route AECBs
are unavailable, i.e., the existing route does not include vertices
of new demands, and the insertion of new demands leads to
the violation of temporal constraints. For example, group 1 at
7:45 cannot be served with Strategies 2 and 3, although they
help to improve solution quality in the combined scenario. The
high cost of Strategy 1 becomes more marked over time.

To provide a complete overview of the performance of the
strategies, a comparison on the R and C instances is provided
as supplementary materials. In a nutshell, the findings suggest
that only dispatching idle modules can serve new requests
under all conditions. However, if all strategies are considered
simultaneously, it is possible to exploit the benefits of each
strategy under optimal conditions.

C. Importance of MAECB Features

1) Importance of Module Capacity: To explore the impact
of the module capacity, two kinds of capacity (namely 10 and
20 people) are compared with the 15-people scenario. For the
10-people modules, the maximum vehicle type is 4 (W =

{1, 2, 3, 4}). The departure cost per module is 500, 420,
350 and 300 (unit:¥) and the corresponding required minimum
load per vehicle is 5, 10, 15 and 20 people, respectively.
For the 20-people modules, the maximum vehicle type is 3
(W = {1, 2, 3}). The corresponding departure cost per module
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TABLE VI
IMPACT OF MODULE CAPACITY ON R, C, AND RC INSTANCES

is 600,480 and 400 (unit:¥), and the minimum load per vehicle
is 10, 20 and 30 people, respectively. The fleet size of the
10-people and 20-people modules is 25 and 14, respectively.

Table VI presents the results for different instances. In terms
of the operating cost and module usage, each indicator tends to
improve when the module capacity increases. To be specific,
the average savings of operating costs are 22.8%, 30.5% and
26.4% over the three instances. In terms of vehicle traveled
distance, the data of the R instance rises by almost 15.7% due
to the distributed nature of requests. In terms of the average
load factor, the scenario with 15-people modules generates
higher values (beyond 80%) over three instances. The reason
behind this outcome is as follows: when the module capacity
is large and the number of requests is small, it may result in
the capacity waste of the assembled vehicle; when the module
capacity is small, even though this scenario can deal with small
amount requests, the module usage tends to rise. Thus, apply-
ing modules with suitable capacity can improve operational
efficiency. For the considered scenarios, 15-people modules
appear to be the best trade-off in terms of operating costs and
capacity utilization; however, this value likely depends on the
network structure and request distribution.

2) Importance of the Electric Vehicles: This section inves-
tigates the effect of electric vehicle (EV) technology on
operation, carbon emissions and energy consumption. The
energy source changes from electricity to fuel. Considering
CO2 as the focus of our emission analysis, the CO2 of EVs and
fuel vehicles (FVs) are respectively 7.6 kg/km and 17.2 kg/km
on average. The energy consumption of an AEV is related to
the consumption rate and battery capacity. The average energy
consumption of autonomous fuel vehicles (AFVs) is assumed
to be 13.0L/100km. Table VII shows how the indicators
change when AEV modules are replaced by AFV modules,
where the units of the energy consumption measurement are
unified.

From the perspective of operation, the adoption of AFVs
can slightly reduce costs. We observe that the average savings
are approximately between 3.4% and 1.1%. In terms of the

TABLE VII
COMPARISON BETWEEN AEVS AND AFVS

Fig. 6. Module travel distance for R, C and RC instances respectively.

traveled distance and time, the average values increase by
14.8km and 0.9h when AFVs are in use. It is evident that the
adoption of AFVs can notably reduce the operating modules
while rising the route length without considering charging
operation. As for energy consumption and emission, AEVs
achieve nearly 126.2% of CO2 emission reduction and about
27.2% of energy saving on average. As to energy consumption,
the saving of AEVs is very pronounced for the R instance,
reaching 40.3%. In respect of CO2 emission, the savings of
three instances are 224.9 kg, 126.7 kg and 120 kg, respectively.
These findings show that the adoption of AEVs can be very
beneficial from an environmental perspective. Overall, when
AEVs are adopted for distributed travel requests, the savings
are more notable.

3) Importance of Autonomous Vehicles: This section com-
pares the HV and autonomous vehicle (AV) technology.
Table VIII and Fig. 6 summarize the results when AVs and
HVs used. Here three types of HVs with load capacities of
15, 30 and 45 people are applied, and cannot be reconnected.
For HV-based services, we consider three kinds of working
duration (namely 60, 75 and 90 minutes) with corresponding
labor costs being 150, 200 and 250 (unit: ¥). AVs and HVs
used here are equipped with the same batteries.

We observe that the adoption of AV technology dramatically
improves operational efficiency. In terms of operating costs,
the average savings are approximately 17.4%, 16.5% and
19.6% for instances R, C and RC, respectively. In terms of
module usage and operating routes, as the labor working time
increases from 60min to 90min, the saving for modules and
routes are more pronounced, especially for instances R and
RC. The AV technology also leads to obvious savings in
the operating distance, which reaches 20.7% for instance R.
It is important to highlight the reason for the above results.
The findings suggest that the limited labor working time
constitutes the main bottleneck of route lengths, which can
limit the new request insertion. Besides the labor working time
and cost, another important reason is the functionality of the
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TABLE VIII
COMPARISON BETWEEN AVS AND HVS

modular feature. It offers the opportunity to dynamically adjust
the vehicle capacity against fluctuating requests, and then
improves the utilization of the capacity resource. In contrast,
the HV scenarios are hard to realize similar efficient utilization
due to less flexibility in capacity adjustment.

VI. CONCLUSION

This paper introduces a two-phase optimization methodol-
ogy for addressing the operation of a MAECB system. For
the first phase, a space-time-state network-based model is
established to optimize the decisions of MAEV routing and
charging, P2V assignment and vehicle capacity management
for the reserved travel requests. A Lagrangian relaxation algo-
rithm is developed, which allows solving the original problem
as three separated sub-problems in a more tractable way. For
the second phase, three dispatching strategies are proposed
and optimized via a specially developed dynamic dispatching
procedure to realize the best adaptation of module resources
emerging travel requests. Succinctly, the first phase provides
an initially optimized operation plan for serving the reserved
passengers. The second phase then makes a proper adjustment
to the initial operation plan for serving the dynamically
emerged travel requests. The empirical analysis, performed
using real-world data, demonstrates the effectiveness of the
proposed methodology. We find that the module capacity and
vehicle technology have significant impacts on the system
performance. Briefly, the module capacity is a key factor
affecting operational efficiency. In addition, the adoption of
MAEV technology leads to much more significant savings in
energy consumption, carbon emission and module utilization
than the HV technology. Therefore, the proposed methodol-
ogy provides an effective way to operate MAEV-based CB
services.

Future work may include investigating the integrated opti-
mization of MAECB service and pricing problems and explor-
ing optimization/metaheuristic approaches to scale to very
large instances and scenarios.
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