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Abstract— Graph neural networks (GNNs) have been exten-
sively used in a wide variety of domains in recent years. Owing
to their power in analyzing graph-structured data, they have
become broadly popular in intelligent transportation systems
(ITS) applications as well. Despite their widespread applications
in different transportation domains, there is no comprehensive
review of recent advancements and future research directions
that covers all transportation areas. Accordingly, in this survey,
for the first time, we provide an overview of GNN studies in
the general domain of ITS. Unlike previous surveys, which have
been limited to traffic forecasting problems, we explore how GNN
frameworks have evolved for different ITS applications, including
traffic forecasting, demand prediction, autonomous vehicles,
intersection management, parking management, urban planning,
and transportation safety. Also, we micro-categorize the studies
based on their transportation application to identify domain-
specific research directions, opportunities, and challenges, which
have been missing in previous surveys. Moreover, we identify
unique and undiscussed research opportunities and directions,
which is the result of reviewing a wide range of transportation
applications. The neglected role of edge and graph learning in
ITS applications, developing multi-modal models, and exploiting
the power of unsupervised and reinforcement learning methods
for developing more powerful GNNs are some examples of such
new discussions in this survey. Finally, we have identified popular
baseline models and datasets in each transportation domain,
which facilitate the development and evaluation of future GNN-
based frameworks.

Index Terms— Graph neural networks, deep learning, intelli-
gent transportation systems, GNN, ITS.

I. INTRODUCTION

THE unprecedented growth of cities has imposed an
increasing burden on transportation systems. The emer-

gence of new technologies and intelligent transportation
systems, such as autonomous vehicles (AVs), shared mobility
systems, and new paradigms of public transportation services,
have made transportation systems even more complicated
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to analyze and manage. Fortunately, advancements in new
technologies have provided researchers with unique oppor-
tunities, which can be leveraged for tackling or alleviating
the consequences of such complexities. The main endeavor,
however, has been developing suitable and scalable algorithms
and methods that can harness the full potential of such data
for analyzing highly complex transportation systems.

Machine learning, and its more recent variant, deep
learning algorithms, have turned out to be popular and
practical solutions for many real-world applications and have
proved to perform satisfactorily in the domain of intelligent
transportation systems [1], [2], [3]. While deep learning
algorithms have shown promising results, there are some
shortcomings with these popular methods. Many deep learning
methods have been developed assuming that real-world data
can be represented in one, two, or three-dimensional Euclidean
space. However, there are plenty of applications in which
data is more realistically represented in the form of graphs,
where the inter-relations between objects/features are in
non-Euclidean space. Similarly, many transportation-related
data inherently enjoy spatial features in a non-Euclidean
space. For instance, in an urban road transportation network,
links and intersections are influenced by specific links and
intersections on the network, not necessarily the closer ones.
This makes conventional deep learning methods, such as
convolutional neural networks, unable to fully capture such
spatial dependencies [4]. Recently, studies applying machine
learning tasks on graphs have drawn special attention, and a
new family of neural networks, namely graph neural networks
has been introduced and embraced in various domains,
including social science, chemistry, knowledge graphs, and
e-commerce. This family of models has rapidly grown in
many fields due to its superior performance, and starting
from traffic forecasting problems [5], [6], has been applied to
many transportation applications as well. These applications
cover a wide range, including but not limited to traffic
forecasting, travel demand prediction, autonomous vehicles,
and intersection management. Considering the extensive use of
GNNs in various domains of intelligent transportation systems
and their fast-growing development, there is a need for a
comprehensive review of current studies, their limitations and
shortcomings, challenges, and future directions.

Accordingly, in this survey, we review the studies utilizing
GNNs in the general domain of intelligent transportation
systems. To the best of our knowledge, this is the first
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survey on GNNs that is not limited to traffic forecasting
problems and extensively investigate a wide range of
applications in transportation engineering. Also, for the
first time, we categorize the studies based on their
transportation domains, which are traffic forecasting, demand
prediction, autonomous vehicles, intersection management,
parking management, urban planning, and transportation
safety, and then investigate the studies per category. We believe
such classification of studies is indeed essential for several
reasons. Firstly, the problem design, graph construction,
dataset treatment, and computational complexities highly
depend on the transportation domain and application, and
putting all studies under one umbrella results in too simplified
analyses and overlooked properties of complex transportation
systems. For instance, constructing graphs in traffic forecasting
problems is more straightforward than in the AV domain,
where there is an unknown number of dynamic and interactive
objects. As another example, the influencing factors on a metro
transit system are different from those influencing vehicular
traffic.

Moreover, the nature of the dependent and independent
variables are different among domains, which could greatly
affect the design of GNN-based frameworks. In traffic
forecasting and travel demand modeling, for example, GNNs
are usually used for predicting a feature or variable over
nodes of the graph, while in AV or intersection management
domains, GNNs are usually used for learning control policies
or unraveling agents interactions, and therefore, learning or
predicting over the edges of the graph or over the whole
graph is also of great or even more interest. These differences
could greatly impact the design of GNN-based deep learning
models and have been mainly neglected in previous related
surveys. The second reason for such categorization of studies
is that it helps transportation planners and traffic engineers
to easily follow the state-of-the-art modeling endeavors and
identify the limitations and challenges of current studies per
transportation application. This allows them to explore how
GNNs have evolved in each domain, and what modules,
for which purposes, have been added to generic GNN-based
frameworks, which can inspire them to design problem-
specific frameworks based on the particular needs of each
domain.

We should note that there are two related surveys in the
transportation domain, but they do not overlap significantly
with this study. First, they are limited to traffic forecasting
problems and do not investigate problem-specific needs and
challenges in other transportation domains, such as AVs,
intersection management, and demand prediction. Moreover,
their approach within the traffic forecasting domain is also
different from the current survey. The first survey [7] mainly
focuses on providing guidelines for building graph-based
frameworks based on traffic datasets and available deep-
learning tools. In other words, they try to map different traffic
problems to different deep learning modules that are applicable
to GNNs. However, we aim at identifying domain-specific
open research areas and challenges by identifying state-of-the-
art endeavors in each domain, which is not achievable in [7].
The second survey [8] provides a comprehensive list of studies

that have utilized GNNs for traffic forecasting problems and
categorizes them based on their graph type, their adjacency
matrix, and their dependent variable (i.e., traffic speed, traffic
flow, and passenger flow). However, this survey does not
review the individual studies and does not discuss the variables
and features included/excluded in the literature. Therefore,
identifying the problem-specific limitations and challenges is
not feasible in this survey either.

Following the above discussions, the main contributions of
this study could be summarized as follows:

• For the first time, the GNN studies in the general domain
of intelligent transportation systems are reviewed and
investigated in detail. Many of the studies in this survey,
including AVs; demand modeling; intersection, urban,
and parking management; and transportation safety, have
been completely neglected or overlooked in previous
related surveys.

• We categorize the studies based on the transportation
application to identify domain-specific research needs and
challenges and help researchers explore the state-of-the-
art endeavors in their area of expertise. This practical
classification of studies and the in-depth investigation of
studies within each group is also lacking in previous
surveys.

• We identify unique and undiscussed research opportuni-
ties and directions, which is the result of reviewing a
wide range of transportation applications. Highlighting
the importance of edge and graph learning, developing
multi-modal demand prediction models, and exploiting
the power of unsupervised and reinforcement learning
for developing more powerful and efficient GNN-based
frameworks are such examples.

• We identify popular baseline models in each trans-
portation domain and provide baseline datasets and
open-source codes, which facilitate the development
and evaluation of GNN-based frameworks in different
domains of intelligent transportation systems.

The rest of this survey is organized as follows. In the
next section, we quickly overview the search methodology
and investigated databases for identifying the reviewed papers.
Then, we outline the background of GNNs and briefly
introduce the concepts behind them. At the end of the section,
we will also present a taxonomy of GNNs, which is helpful in
understanding the different approaches used in the literature.
In Section IV, previous surveys on graph neural networks,
as well as those focusing on the transportation area, are
reviewed. In Section V, we categorize the studies employing
GNNs based on their transportation context, in order to explore
how GNNs have evolved in different transportation domains
and identify open areas worth further investigation. Finally,
in Section VI, we look into open research areas and discuss
current challenges facing the development and application of
graph neural networks in the transportation domain.

II. METHODOLOGY

This section provides an overview of the methodology
used for detecting and selecting the papers in this survey.
The general procedure is depicted in Figure 1. Due to the
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Fig. 1. Search methodology for detecting and selecting papers in this survey.

broad range of studies, we searched separately within each
transportation domain by defining a unique search string.
These strings are summarized in Table I. The asterisk sign (*)
after a word expands the search to include different variations
of the key search string. For instance, the term “transport*”
includes “transportation” as well.

In the next step, the search string was used to find the
relevant papers for the survey. The main database used is Web
of Science (WoS), but the keywords were also searched in
Google Scholar to identify the most recent papers that are not
yet indexed in WoS or are only published in ArXive.org. This
was done because of the rapidly growing body of research in
this domain. Afterward, we removed out-of-scope studies by
reading their abstracts. In order to check if the selected search
strings are appropriate, we also did a snowballing search and
if the number of newly found papers during the snowballing
was more than 30 percent of previously found papers, the
search string was modified and the aforementioned procedure
was repeated. After this step, the candidate articles were
selected. However, due to the huge number of candidate papers
in some categories (mostly traffic forecasting), we defined
some criteria to select the most promising papers with true
novelties and more added value. Criteria considered were the
number of total citations, the number of citations per year,
the impact factors of the journal in which the paper was
published, and the importance of the conference in which the
paper was presented. After this final step, those papers that
passed the selection criteria were chosen as the final ones for
inclusion in this survey. In total, 109 papers were selected to
review.

III. GRAPH NEURAL NETWORKS - BACKGROUND

This section provides a short introduction to GNNs. First,
we present basic notions in graphs, graph types, different tasks

Fig. 2. (a) A simple graph of five nodes and eight edges, and (b) its adjacency
matrix that denotes which nodes are connected to each other.

in graph representation learning, and computational modules
in GNNs. Next, based on the introduced concepts, a taxonomy
of GNNs is presented that is the basis for identifying and
categorizing the structure of GNN models studied in this
survey and developing future frameworks.

A. A Gentle Introduction to Graphs

As a general definition, a graph is simply a collection of
objects (i.e., vertices or nodes), along with a set of interactions
between the pairs of these objects (i.e., edges or links) [9].
A graph is typically defined as G = (V, E), where V is the
set of nodes (vertices) in the graph G and E is a set of edges
(links) in this graph. Each edge can be denoted as (u, v) ∈ E ,
where node u ∈ V and node v ∈ V .

A graph is usually represented via its adjacency matrix.
To form the adjacency matrix A ∈ R|V |×|V |, nodes are
first ordered in the graph so that each specific column/row
represents a specific node in the graph. Then, the presence
of edges in the graph is defined in the adjacency matrix as
A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 if (u, v) /∈ E .
Figure 2 shows a simple graph with its adjacency matrix next
to it. It is worth noting that in some types of graphs, the entries
in the adjacency matrix are not limited to 0 or 1 and can accept
arbitrary real values. The edges in these types of graphs are
called weighted edges.

Another common term in spectral graph theory is graph
Laplacian. Given a graph G = (V, E), the Laplacian matrix
is defined as L := D − A, where D is the degree matrix
D ∈ D|V |×|V |, and A is the adjacency matrix defined earlier.
The Laplacian matrix is the discrete version of the Laplacian
(the divergence of the gradient) operator over graphs.

After introducing how a graph is constructed and defined,
in the following sections, we briefly introduce different
types of graphs including directed/undirected graphs, hetero-
geneous/homogeneous graphs, dynamic/statistic graphs, multi-
relational graphs, hypergraphs, and signed graphs.

B. Types of Graphs

Graphs that make up the basis of GNNs can be
categorized as Directed/Undirected, Static/Dynamic, Homo-
geneous/Heterogeneous, Hypergraphs, and Signed graphs [8].
However, there are also some other specific types of graphs,
and in the following subsections, we introduce them as well.
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TABLE I
THE SEARCH STRINGS USED FOR FINDING THE LITERATURE PER EACH TRANSPORTATION DOMAIN

1) Directed/Undirected Graphs: Graphs can be broadly
classified into directed and undirected graphs. In an undirected
graph, edges do not have a direction, which means there
is a two-way relationship, and information is passed in
both directions. In other words, in an undirected graph,
the adjacency matrix is symmetric along the main diagonal
((u, v) ∈ ε ↔ (v, u) ∈ ε). On the other hand, directed graphs
do not impose the restrictive assumption of symmetry on the
edges and therefore can provide more flexible information
propagation through the edges.

2) Weighted Graphs: In weighted graphs, there are arbitrary
values associated with edges. The weights of the edges (links)
can provide valuable information about the graph and its
edges. For instance, the weights can represent the length of
the edge or the cost/time needed to traverse the edge. In an
unweighted graph, however, the adjacency matrix is defined
only based on the binary condition of whether there is a
link/relationship between two vectors; therefore, the values in
the adjacency matrix are zeros or ones.

3) Multi-Dimensional Graphs: In addition to the concepts
of directed/undirected and weighted edges, some graphs
have edges of different types. In other words, the types of
relationships between vertices might be different across the
graph. Accordingly, a new term is added to the notation
of edges, indicating the type of the edge ((u, τ, v) ∈ E ,
where τ indicates the type of the edge from u to v).
Subsequently, a specific adjacency matrix is defined per edge
type, and the graph is represented by the adjacency tensor

A ∈ R|V |×|R|×|V |, where R is a set of relationships in the
graph. Accordingly, in multi-relational or multi-dimensional
graphs, a pair of nodes can share multiple types of edges.
This is useful especially when there are different types of
relationships between nodes. For example, in a transportation
network, two specific regions might be correlated not only
based on their direct distance from one another but also based
on socio-economic characteristics. These types of relationships
could be captured by multi-relational (-dimensional) graphs.
An example of a multi-dimensional graph can be found in
Figure 3.

4) Heterogeneous Graphs: In a regular graph, all nodes
share the same set of features. For example, we may consider
the stations of a public transportation network as nodes of
the public transportation graph. For each station, we have a
number of features such as the number of boarding passengers,
the lighting condition, etc. In a heterogeneous graph, there are
disjoint subsets of dissimilar nodes, and each node in the graph
belongs to one subset:
V = V1∪V2∪V3∪. . .∪Vk , where Vi ∩V j = ∅, ∀i ̸= j . In the

former example of the public transportation graph, we might
distinguish between bus and metro stations and include some
more features in the nodes for bus stations (features like
whether the station has a shelter or if the station is before
or after the intersection). Heterogeneous graphs provide much
more flexibility when dealing with nodes that are inherently
different but that interact with each other. This is quite
common in multi-modal transportation networks, especially in
urban areas.
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Fig. 3. An example of a multi-dimensional graph with two dimensions.
As can be seen, the connected nodes and the adjacency matrices are different
for the two dimensions. a) The multi-dimensional graph, a) the two dimensions
of the graph depicted separately.

Fig. 4. An example of a dynamic graph. The active nodes and the connections
change over time in this class of graphs.

5) Multiplex Graphs: Multiplex graphs consist of several
layers, where each node belongs to every layer and the
relationships between nodes are layer-specific. There are two
types of edges in multiplex graphs: 1) intra-layer edges that
form the relationships between nodes in each layer, and 2)
inter-layer edges that connect the same nodes across different
layers of the multiplex graph. Multiplex graphs can be useful
in representing transportation networks, where each layer
represents a different mode of transportation.

6) Dynamic Graphs: When input features or the topology
of the graph vary with time, the graph is regarded as a dynamic
graph [8]. Time information needs to be carefully considered
in dynamic graphs. A dynamic graph could be defined as
G = (G1,G2, . . . ,Gt ), where Gt = (Vt , Et ) and t ∈ T , where T
is the number of time intervals. In dynamic graphs, new nodes
can emerge or disappear, and new relationships between nodes
can be established or terminated in different time periods.
A simple dynamic graph is shown in Figure 4.

7) Hypergraphs: In contrast to a regular graph in which an
edge can only connect two vertices, in a hypergraph, an edge

Fig. 5. Visual representation of the three different levels of granularity
in graphs: a) node-level representation, b) edge-level representation, and c)
graph-level representation. At each level, specific parts of the graph are
embedded and learned.

can connect any number of vertices. Therefore, hypergraphs
can establish relationships beyond pairwise nodes, which could
be beneficial when there are relationships between multiple
nodes. Gao et al. [10] provided insights into the methods and
enumerated some applications of hypergraphs in their study.

8) Signed Graphs: Signed graphs are graphs with signed
edges, i.e., an edge can be either positive or negative.
This type of relationship could ease some representations
when dealing with binary relationships between vertices.
Also, it is sometimes desirable that edges have negative
weights indicating the dissimilarity or distance between nodes.
This type of representation adds still more flexibility when
representing data in a graph structure.

9) Nested Graphs: Nested graphs, which are useful in
hierarchically representing relationships, are another class of
graphs in which nodes themselves are (sub)graphs. From a
transportation point of view, nested graphs could be useful
when dealing with multi-level information flows or prediction
tasks. For example, one might be interested in the large-scale
interaction between cities and at the same time, finer levels
of interaction between subsets of roads within those cities.
In this case, we might have two GNNs, one trained at a higher
level for inter-city relationships, and the other for exploring
relationships within cities.

The next section provides an overview of different machine-
learning tasks related to graphs.

C. Machine Learning on Graphs

Graph-structured data can be analyzed or represented
at different levels: node-level, edge-level, and graph level,
as depicted in Figure 5. Each category can address a
specific type of question and may need distinct algorithms
for performing the task. Apart from the graph tasks, machine
learning algorithms are also categorized as supervised, semi-
supervised, and unsupervised. The combination of graph-
related tasks and learning types provides tremendous flexibility
when dealing with complex problems. Therefore, in this
section, we first give a quick overview of different machine
learning tasks on graphs [11] and then provide a taxonomy
of GNNs, which will be beneficial when developing a graph-
related deep learning structure, especially for new problems.

1) Node-Level: Given a graph G = (V, E), the goal of node-
level learning is to learn the features of the targeted nodes
in the graph v ∈ V . This includes node classification, node
regression, and node clustering. Node classification tries to
categorize nodes into several classes, and node regression
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predicts a continuous value or property for each node. Node
clustering aims to partition the nodes into several disjoint
groups based on their similarities, where similar nodes should
be in the same group [8].

Node classification/regression is probably the most popular
machine-learning task on graph data, especially in the
transportation domain. In many common node classification
problems, only a fraction of nodes are labeled for the training
task and the goal is to predict the feature(s) for all nodes v ∈ V .
One major difference between graph-based node classification
and traditional classification problems is that in graphs, nodes
are not independent and identically distributed (i.i.d) [9], while
in traditional classification problems, we either assume that
each data point is statically independent of others or try to
model the dependencies between data points.

2) Edge-Level: Given a graph G = (V, E), the goal of
edge-level tasks is to apply the learning task on each edge
e ∈ E . Edge-level tasks generally include edge classifica-
tion/regression and link prediction; the former requires the
model to classify edge types or predict properties for edges
of the graph, and the latter tries to predict whether there is
an edge between two given nodes [8]. Link prediction (also
known as relation prediction and graph completion) aims to
predict the unknown or missing relations/links between nodes
in the graph, given an incomplete set of links/relationships
between a training set of nodes Etrain ⊂ E .

3) Graph-Level: Given a dataset with multiple (n) different
graphs, the goal is to develop machine learning algorithms
on the entire graph. This class of tasks involves classifi-
cation/regression, and clustering. In graph classification and
regression tasks, the aim is to learn a feature over the entire
graph and predict the label or property associated with each
graph instead of predicting the individual components (vertices
or edges) within the graphs. As an example, one might be
interested in labeling the traffic situation in a whole city or
region as highly congested or not. Also, the overall situation at
an intersection could be measured at different levels of safety
based on the interactions between the agents on the scene
(vehicles, cyclists, and pedestrians).

As will be discussed in Section V, most of the current
studies utilizing GNNs in the transportation domain have
focused on node-level tasks, and the applications of link-level
and graph-level learning tasks have been mainly neglected
despite their great potential. We further discuss utilizing graph-
level and edge-level learning in GNNs and their applications
in the transportation domain in Section VI.

D. Taxonomies of GNNs

In this section, we present the taxonomies of GNNs
introduced in previous relevant studies and then propose a
taxonomy wrapping up the discussion in previous surveys
on categorizing GNNs to ease the understanding of different
frameworks and also to help researchers to combine different
GNNs toward solving more complex problems.

Different taxonomies have been proposed in previous
studies. Wu et al. [12] classified GNNs into recurrent
graph neural networks (RecGNNs), convolutional graph neural

networks (ConvGNNs), graph autoencoders (GAEs), and
spatial-temporal graph neural networks (STGNNs). The main
difference between RecGNNs and ConvGNNs is that node
representations in RecGNNs are learned using recurrent neural
architectures, whereas in ConvGNNs it is done based on
the aggregation of the features of the target node and its
neighbors (stacking multiple graph convolution layers). GAEs
first encode inputs (nodes/graphs features) into a latent space,
and then the graph is reconstructed based on the encoded
space. Finally, spatial-temporal graph neural networks aim to
simultaneously capture the spatial and temporal dependencies
in the graph.

In another proposed taxonomy of GNNs, Zhou et al. [13]
introduced a taxonomy based on different computation
modules in GNNs, namely propagation, sampling, and
pooling. The propagation module, which is responsible
for information dissemination through the graph, could be
comprised of convolution, recurrent, and/or skip connection
operators. The sampling module is usually integrated with the
propagation module in large graphs to make the propagation
of information efficient and thus feasible in such graphs. The
sampling could be done on the node, layer, or subgraph levels.
And finally, the pooling module is required when we aim
to achieve representations for high-level sub-graphs and itself
could be categorized as direct methods and hierarchical ones.
With these definitions, the GNN layers in graph-based deep
learning frameworks could be easily classified as is done in
this study [13].

Abadal et al. [14] proposed a more comprehensive
taxonomy by adding graph adversarial networks and
graph reinforcement learning to the identified classification
in [12]. This addition was inspired by the study of
Zhang et al. [15] who initially considered Graph Adversarial
Networks and Graph Reinforcement Learning as part of their
taxonomy.

In order to better understand and compare the taxonomies
presented in previous studies, and to provide a handy
taxonomy of GNNs for transportation research, a collective
graph of different taxonomies of GNNs is introduced in
this survey, which is depicted in Figure 6. This figure
has two levels; in the lower level, each study (denoted
by filled rhombi) is connected to its proposed taxonomy
using a colored arrow with the same color as the rhombus.
This is useful for recognizing how previous studies have
categorized and identified different GNNs. At the higher
level, GNNs introduced in previous studies are grouped
together under the umbrella of main GNN classes, which
are recurrent GNNs, convolutional GNNs, sptatial-temporal
GNNs, graph reinforcement Learning, and graph autoencoders
and adversarial GNNs. These higher-level classes are depicted
using transparent big ellipses in Figure 6. Please note that
the spatial-temporal GNNs are depicted as the intersection
of convolutional GNNs and recurrent GNNs. Furthermore,
we consider only one class for Graph Auto-encoders and
Graph Adversarial Networks. This is because adversarial
techniques have usually been used for training graph
autoencoders to improve their generalizability and make them
robust against adversarial attacks. In the following paragraphs,
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we dive into each of these higher-level classes on GNN and
describe them in more detail.

1) Recurrent GNNs: Recurrent modules in GNNs learn
node representations using recurrent neural architectures.
These types of models are the first generations of GNNs and
may use different aggregation and updating functions, such
as simple aggregation without edge transformation or gated
units [14].

2) Convolutional GNNs: This class of GNNs, which is very
popular in the transportation domain, aims to generalize the
operation of convolution from grid data to graph-structured
data [12]. The main idea is to generate the node representation
by aggregating the features from the target node and its
neighbors. Convolutional GNNs are broadly categorized as
spectral-based methods that are developed based on the
spectral graph theory and compute over the whole graph at
once, and spatial-based methods that perform the convolution
operator only on a subset of nodes that are considered as the
neighbors of the target node. Spatial-based methods are more
efficient as they do not need the whole graph to be analyzed at
once and, therefore, are appropriate for large-scale problems
and real-time applications.

3) Spatial-Temporal GNNs: As it is also illustrated in
Figure 6, this class of GNNs, which are the most popular class
in traffic forecasting studies [8], try to put together the benefits
of both recurrent and convolutional component of graph neural
networks in order to simultaneously capture the spatial and
temporal interdependencies. This could bring a huge advantage
in a wide range of transportation problems, since in most
cases they deal with spatial data points that not only have
interactions with each other but also show correlations with
previous time slots. Spatial-temporal graph neural networks
(ST-GNN) have been extensively used in traffic state and travel
demand prediction tasks.

4) Graph Autoencoders and Adversarial GNNs: These
generative models are unsupervised learning frameworks with
an encoding-decoding structure. The encoder module encodes
the graph into a latent space (latent representation) and the
decoder tries to reconstruct a new graph similar to the initial
one from this latent space. Integrating graph convolutions and
recurrent units in the encoding and decoding steps could add
great flexibility to graph autoencoders. Graph auto-encoders
could also be used for multi-step prediction tasks in order to
avoid error propagation in relatively long-term time horizons.
Adversarial techniques could also be used for training the
graph auto-encoders, making them robust against adversarial
attacks. Sun et al. [16] reviewed strategies for adversarial
learning on graph data.

5) Graph Reinforcement Learning: Combining reinforce-
ment learning with graph neural networks could also be
interesting, especially in graph learning tasks, where specific
strategies or policies are desirable. Although integrating
reinforcement learning into GNNs could be really helpful
in solving many transportation problems, this area has been
mainly overlooked and needs special attention. One interesting
area that could be targeted by graph reinforcement learning
methods is goal-oriented graph construction [17], in which the
structure of the graph is not determined in advance and should

be learned based on specific target objectives. This could
also be beneficial when improving or modifying the current
structure of pre-defined graphs. In this specific example,
an agent tries to find the most optimum graph structure by
trial and error based on a pre-defined policy or objectives. The
applications of reinforcement learning in GNN frameworks,
as an arguably missed-out class of GNNs, are more discussed
in Section VI.

After a brief introduction to different types of graphs
and the taxonomy of graph neural networks, in the next
section, we briefly review the current surveys on graph
neural networks and then those focusing specifically on the
transportation domain. Thereafter, we justify the need for
a new perspective on current research utilizing GNNs and
highlight the contributions of this survey.

IV. RELATED SURVEYS

In this section, we briefly overview the related surveys
on GNNs. These surveys can be categorized as general
surveys and transportation-related surveys. General surveys
are covering GNNs in a broad range of applications, while
transportation-related ones only focus on one or several
domains related to transportation engineering, such as traffic
forecasting.

A. General Surveys on GNNs

Zhang et al. [18] presented one of the first surveys on GNNs,
but focused only on graph convolutional neural networks
(GCNs). Their survey covered various aspects of GCNs,
including their mathematical foundations, model architectures,
and different variations and extensions of GCNs. The novelty
of their study is two folded. Firstly, they introduced a
taxonomy of GCNs based on the type of graph filtering
operations, which can be broadly categorized as spectral-based
and spatial-based methods. Secondly, they categorized GCNs
based on their application domains, identified as computer
vision, natural language processing, and science. They also
discussed recent models in each category and identified several
research directions based on the surveyed studies, including
developing deeper GCNs, developing dynamic GCNs, and
applying multiple-graph convolutional networks.

Wu et al. [12] argued that previous surveys on the general
topic of GNNs included only some of the GNNs and reviewed
a limited number of studies. Therefore, they provided a
comprehensive review of GNNs, together with descriptions
of representation models, comparisons between different
GNN models, and summarizing the developed algorithms.
Also, they introduced a new taxonomy of GNNs, namely,
RecGNNs, ConvGNNs, GAEs, and STGNNs. Furthermore,
they categorized the applications of GNNs (computer
vision, natural language processing, traffic forecasting, and
recommendation systems) and proposed suggestions for future
research on GNNs by focusing on the depth of GNN models,
scalability of GNNs, heterogeneity in GNNs, and dynamicity
of GNNs, which were not highlighted comprehensively in
previous surveys.
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Fig. 6. Taxonomies of GNNs in the literature and the taxonomy used in this survey (denoted by transparent big ellipses).

Zhang et al. [15] reviewed different deep learning methods
on graphs and identified two new classes of models
not addressed in previous surveys: graph reinforcement
learning (Graph RL) models, and graph adversarial methods.
Accordingly, they proposed a new taxonomy of GNNs based
on model structures and training strategies, which consists
of RecGNNs, GCNs, GAEs, Graph RL models, and graph
adversarial methods. The development history of each class
of GNNs was also reviewed and the differences between them
were discussed in detail. Finally, the future directions and open
research areas were identified mainly considering different
graph types, complex model structures, and the interpretability
and robustness of GNN models.

Finally, Zhou et al. [13] provided a novel and different
taxonomy of GGNs by focusing on classic GNN structures
and building upon different computational modules used in
the GNN frameworks. These computational modules, at the
higher level, include propagation, sampling, and pooling. The
propagation module is responsible for the transmission of
information between nodes; sampling is usually combined
with the propagation module in large graphs to facilitate the
transition of information in large graphs; and pooling is used
for producing coarsened representations of a graph or reducing
the number of nodes by extracting and pooling the information
from nodes. They also proposed a general and novel pipeline
for designing GNN frameworks based on the graph types, loss
function designs (node-, edge-, and graph-level learning tasks),
and the investigated computational modules. Finally, they

systematically categorized the applications of GNNs based
on the explicit or implicit structural relations of the data.
Robustness and interoperability of GGN models, pre-training
the graph, and using complex graph structures are enumerated
as open research areas in this survey.

B. Transportation-Related Surveys

As was discussed briefly in the literature, almost all previous
transportation-related surveys are focused on traffic forecasting
problems. In this section, we briefly overview these studies to
identify their main contributions. Ye et al. [7] were among
the first researchers who conducted a survey of the studies on
graph neural networks in the traffic domain. They associated
different traffic problems with different research directions
and tried to identify suitable deep learning algorithms that
could be applied to specific traffic prediction problems.
Moreover, they discussed how to build graphs and define their
adjacency matrices from different traffic datasets. Interestingly,
as one of their recommendations for future research directions,
they encouraged developing GNNs for other transportation
problems other than traffic state prediction, which also
highlights the importance of the current survey. Also, they
argued that most of the current studies in the traffic domain
utilize spectral graph convolution networks or diffusion graph
convolution networks and suggest utilizing more diverse deep
learning techniques in GNN-based frameworks.

Rico et al. [19] took a slightly different approach to
reviewing the GNN models for traffic forecasting. They first
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classified GNN models into four main types, namely, recurrent
GNNs, convolutional GNNs, graph attention networks (GAT),
and graph autoencoders. Then, they discussed the literature
per each GNN category, and summarized the state-of-the-art
in traffic forecasting based on the scope of the studies (freeway,
urban area), traffic variable predicted (speed, flow, or volume),
and data types (loop detectors, or floating car data). Moreover,
popular Python libraries and traffic datasets were introduced.

Jiang et al. [8] presented the most comprehensive survey
on GNNs for traffic forecasting by reviewing more than
200 studies (including conferences and pre-prints) between
the years 2018 and 2020. The literature in this survey
is classified into four main groups, including traffic flow,
traffic speed, traffic demand, and other studies. In the next
step, different types of traffic graphs and adjacency matrices
based on different traffic states (flow, speed, and demand)
and sensors are recognized and discussed, which has not
been discussed in such detail in previous surveys. Also,
they introduced a more comprehensive taxonomy of GNNs,
which consisted of recurrent GNNs, graph attention networks,
graph convolutional networks, diffusion graph convolutions,
graph autoencoders, GraphSAGE, and message-passing neural
networks. They enumerate several unmentioned challenges in
utilizing GNNs, including heterogeneous datasets, multi-task
performance, practical implementation challenges, and model
interpretation.

Bui et al. [20] focused only on spatial-temporal graph neural
networks (ST-GNN) for traffic forecasting. The uniqueness
of their study is two-folded. Firstly, they put forth a new
taxonomy of ST-GNNs by dividing the existing models
into four classes, namely graph convolutional recurrent
neural network, fully graph convolutional network, graph
multi-attention network, and spatial-temporal graph structure
learning. Secondly, they conducted comparative experiments
using selected benchmark datasets (METRLA [6] and
UVDS [21]) to evaluate the performance of the representative
models of each category.

After reviewing the existing surveys on GNNs in the
transportation domain, it is apparent that almost all surveys
have focused on the applications of GNNs for traffic
forecasting. Although Ye et al. [7] and Jiang et al. [8]
have mentioned some studies apart from traffic forecasting,
their main focus and categorization have been again based
on traffic forecasting problems, and the number of studies
beyond traffic forecasting in these papers is insignificant and
categorized as others. However, there has been a growing
amount of research in recent years utilizing GNNs in other
areas of transportation than traffic forecasting. Connected
and autonomous vehicles, intersection management, safety
studies, and shared mobility systems are among the newly
trended areas that have been overlooked in previous studies
and require more investigation. Moreover, most of the current
studies on traffic forecasting have focused on node-level
tasks, which is not surprising due to the type of data and
goal in traffic forecasting problems. This has led previous
studies and surveys to overlook other interesting learning
tasks on graphs, such as link estimation and prediction and
graph learning. Therefore, in this survey, we also aim to

open new discussions on the application of GNNs on edge-
level and graph-level tasks, which we believe are the missing
pieces of the puzzle in the current studies utilizing GNNs
in the transportation domain. Finally, previous studies have
mainly focused on the GNN structures and computational
modules in graph neural networks. Although this perspective
is important for understanding the mechanism of different
GNN-based frameworks and identifying the technical gaps
in developing new frameworks, reviewing the current studies
based on their transportation contexts could also be equally
important because different transportation problems require
different sets of data with different characteristics, and
computational cost and accuracy needs. Therefore, the GNN-
based frameworks developed for traffic forecasting problems
do not necessarily fit the needs of other problems. Moreover,
categorizing the current studies on GNNs based on their
targeted transportation domain helps us to identify the areas
that need more exploration and formulate domain-specific
needs and challenges.

In the next section, we conduct a comprehensive review on
studying utilizing GNNs in different domains of transportation.
These domains include traffic forecasting, demand model-
ing, autonomous vehicles, intersection management, parking
management, urban planning, and transportation safety. Also,
as some of the areas themselves cover a wide spectrum of
studies, we sub-categorize the studies wherever needed.

V. GNNS IN TRANSPORTATION

In this section, we try to categorize the studies utilizing
GNN-based deep learning frameworks for intelligent trans-
portation systems based on their applications in the relevant
transportation sector. We aim to recognize how GNNs have
evolved in different domains of transportation and then identify
the research gap and future research direction in each category.
We start with the traffic forecasting problem as it has been
arguably the most popular area among researchers.

A. Traffic Forecasting

Traffic forecasting has always been among the most
interesting topics in intelligent transportation systems studies.
It aims at predicting traffic characteristics (such as speed,
flow, or density) in a short or long future time horizon
in order to aid different ITS applications [22], such as
advanced traffic management and control systems to travelers’
information systems and shared, connected, and autonomous
mobility systems operations. Accordingly, during the last three
decades, a vast majority of studies in the area of intelligent
transportation systems have focused on traffic forecasting and
prediction [23], [24].

During the last decade, real-time measurements of traffic
variables using emerging sensors have shifted traffic fore-
casting efforts towards data-driven methods, and numerous
attempts have been made to develop flexible, large-scale,
and real-time traffic forecasting models [22], [25], especially
using deep learning methods [23], [26]. However, traditional
deep learning models may neglect some interesting prop-
erties of transportation networks. For instance, most recent
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studies on traffic forecasting using traditional deep learning
architectures, have used convolutional operators to consider
spatial dependencies among data points, while due to the
special characteristics of transportation networks, the spatial
correlations are not necessarily distributed in Euclidean space.
In other words, two data points might be spatially close in
Euclidean space but interact independently when considering
traffic operations [4] in a transportation network based on the
network connectivity/proximity. This is where GNNs change
the game. Incorporating graph structures into deep learning
frameworks allows GNNs to harness the power of artificial
intelligence on graph data. Therefore, in recent years, there
have been a growing number of studies incorporating GNNs
for the purpose of traffic forecasting. In this section, we review
the studies using GNNs in traffic forecasting problems and try
to identify the shared and common modeling insights in these
studies in order to identify current research directions, as well
as open research areas.

One of the first attempts to utilize graph neural networks
in traffic forecasting was the work of Shahsavari [5].
He proposed a graph-oriented model for considering spatial-
temporal correlation amongst traffic sensor observations in a
transportation network. In this framework, nodes correspond
to the sensor locations (and corresponding features are
extracted including traffic flow, density, and speed), and
edges represent spatial interrelations forced by the network
topology (such as length, capacity, and direction). Finally,
a GNN model is trained in a supervised learning approach
to predict short-term future traffic conditions. Later in 2017,
Li et al. [6] incorporated the recurrent units into GNNs
and developed a diffusion convolutional recurrent neural
network model (DCRNN) for traffic forecasting problems.
They modeled spatial dependencies in traffic networks as a
diffusion process on a directed graph by proposing diffusion
convolution and considered temporal dependencies using
diffusion convolutional gated recurrent units by replacing the
matrix multiplication in gated recurrent units with diffusion
convolution. Also, for multi-step forecasting, a sequence-
to-sequence learning framework was developed. Comparing
the results with some benchmark models (historical average
(HA), ARI M Acal , Vector auto-regression, support vector
regression, feed-forward neural network (FNN), and fully-
connected long-short-term-memory (FC-LSTM)), they showed
that the performance of their model is promising on the
METR-LA and PeMS-BAY datasets.

STGCN (spatial-temporal graph convolutional network)
was proposed [27] for traffic forecasting by incorporating
the convolution operator in the GNN model. STGCN
consists of two spatial-temporal convolutional blocks (ST-
Conv), followed by a fully connected layer. Each ST-Conv
block itself includes two temporal gated convolution layers
(for considering temporal correlations) that surround one
spatial graph convolutional layer (for considering spatial
dependencies). They tested their model on two real-world
datasets, and the results indicated the satisfactory performance
of their framework compared to baselines (HA, linear support
vector regression (LSVR), auto-regressive integrated moving

average (ARIMA), FNN, FC-LSTM [28], and DCRNN) in
terms of training time, ease of convergence, number of
parameters, flexibility, and scalability.

By utilizing a new gated attention network (GaAN),
Zhang et al. [29] built the graph gated recurrent unit (GGRU)
for traffic forecasting that enjoys multi-head attention-based
aggregator with additional gates on the attention heads.
By using multiple attention heads, they were able to
explore features in different representation subspaces, which
provided them with more modeling power. Their GGRU
model outperformed the baselines (FC-LSTM, GCRNN, and
DCRNN), but it showed to be incapable of considering link
features.

Later, Zhao et al. [30] integrated gated recurrent units
and graph convolutional networks and proposed T-GCN,
a temporal graph convolutional network for traffic prediction,
which is designed to capture the topological structure of traffic
networks while considering spatial dependencies using a GCN.
Also, similar to DCRNN, GRU is used for capturing temporal
dependencies in traffic data.

Shin and Yoon [31] proposed a multi-weight traffic graph
convolutional (MW-TGC) network model, which utilizes
multi-weighted adjacency matrices for combining multiple
features, including speed limit, distance, and the angle
between two road segments. In this model, a spatially isolated
dimension reduction operation is applied to the combined
features to learn their dependencies and reduce the output
size to a level that is computationally feasible. Moreover,
the sequence-to-sequence model with LSTM units is used
to learn temporal relationships from the multiweight graph
convolution. Results of experiments on two study sites with
varying geospatial configurations demonstrated that MW-TGC
outperformed other state-of-the-art graph convolution models,
including TGC-LSTM [4], STGCN [27], and Seq2Seq [28] on
both sites.

To consider the dynamic temporal dependencies (i.e., short-
term, daily, and weekly), Guo et al. [32] developed an
attention-based spatial-temporal graph convolutional network
model, which consisted of three independent components
(for hourly, daily, and weekly time intervals). Each compo-
nent itself is comprised of several spatial-temporal blocks
consisting of spatial and temporal attention mechanisms for
capturing dynamic spatial-temporal correlations, followed by
graph convolutions for capturing spatial patterns and standard
convolutions for describing temporal features.

Inspired by graph attention networks and encoder-decoders,
Pan et al. [33] proposed ST-MetaNet, a spatial-temporal meta
graph attention network for multi-step traffic forecasting. Their
model is composed of an encoder-decoder each of which
consists of four components: 1) RNN for embedding the
sequence of historical data, 2) Meta-knowledge learner for
learning meta-knowledge from nodes and edges attributes,
3) Meta-GAT for capturing diverse spatial correlations from
meta-knowledge of all nodes and edges, and 4) Meta-RNN for
capturing temporal correlations from meta-knowledge of all
nodes. They tested their framework on two real datasets for
taxi flow prediction and traffic speed prediction and concluded
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their model could beat the baselines (HA, ARIMA, GBRT,
Seq2Seq, GAT-Seq2Seq, and DCRNN).

Cui et al. [4] proposed the traffic graph convolutional long-
short-term memory neural network (TGC-LSTM) model for
network-wide prediction of traffic states. They added two
regularization terms to the model’s loss function (an L1-
norm on graph convolution weights and an L2-norm on
graph convolution features) to enhance the interpretability
of their model. Moreover, by introducing the neighborhood
matrix and the free flow reachability matrix, they defined
the k-order traffic graph convolution (TGC) in order to
consider both graph edge properties (e.g., the distance between
sensing locations) and high-order neighborhood in the traffic
graph. Their experiments showed that their proposed model
could outperform state-of-the-art traffic forecasting baselines
(ARIMA, SVR, FNN, LSTM, DCRNN [6], Conv+LSTM,
spectral graph convolutional LSTM (SGC+LSTM), and
localized SGC-LSTM). Also, Their proposed model was able
to identify the influential roadway segments in traffic networks,
which is regarded as an aspect of the interpretability of a deep
learning model.

Wu et al. [34] enumerated two shortcomings in previous
studies and propose the Graph WaveNet model for addressing
these challenges. The two challenges they tried to address were
1) using a fixed graph structure and 2) using RNNs and CNNs
for capturing temporal dependencies, which hinders modeling
long-range temporal sequences. Graph WaveNet consists
of several spatial-temporal layers. Each layer is comprised
of a gated temporal convolution module followed by a
graph convolution layer. Graph WaveNet learns an adaptive
dependency (adjacency) matrix and assembles the standard
graph convolution with dilated casual convolution to learn the
graph structure dynamically and handle long sequences. The
effectiveness of Graph WaveNet was evaluated by comparing it
to the baselines (ARIMA, FC-LSTM, WaveNet [35], DCRNN,
GGRU [29], and STCGN [27]).

To address the multi-step (and relatively long-term)
prediction of traffic conditions, Zheng et al. [36] proposed
GMAN, a graph multi-attention network, which adopts a
spatial-temporal encoder-decoder architecture coupled with a
transform attention layer between the encoder and decoder.
GMAN aimed at addressing three common challenges in traffic
forecasting: 1) dynamic spatial correlation, which means near
locations in the traffic network graph are not necessarily highly
correlated, 2) nonlinear temporal correlations, which means
traffic conditions at one-time step are not always correlated
with the traffic conditions in most recent time intervals,
and 3) error propagation, which means small errors in each
time step might amplify when we predict further into the
future. In comparison to ARIMA, SVR, FNN, FC-LSTM [28],
STGCN [27], DCRNN [6], and Graph WaveNet [34], GMAN
showed to perform better, especially in predicting the farther
future.

Wu et al. [37] also tried to consider a dynamic and
flexible graph structure instead of assuming a fixed one.
Their framework consists of three main components: 1) a
graph learning layer, which adaptively extracts the adjacency

matrix, 2) graph convolution modules, specifically designed
for directed graphs, for considering spatial dependencies
among variables, and 3) temporal convolution modules,
each of which consists of two dilated inception layers for
handling large sequences. These modules utilize modified
1D convolutions for extracting sequential patterns of time
series data. They compared their model with baselines for
both single-step (autoregressive, VAR-MLP [38], Gaussian
Process [39], RNN-GRU, LSTNet [40], TPA-LSTM [41]) and
multi-step (DCRNN, STGCN, Graph WaveNet, ST-MetaNet,
GMAN, and MRA-BGCN [42]) forecasting, and reported the
overall competence of their proposed framework ).

Chen et al. [43] argued that previous traffic forecasting
models only consider limited and static external factors into
account. Therefore, they proposed AARGNN, an attentive
attributed recurrent GNN, for considering multiple static and
dynamic factors during the traffic forecasting process. More
specifically, they considered road network topology, driving
distance, points of interest (POI), road physical properties, and
incident data as the link-level features; traffic state data as the
node-level feature, and weather and data information as the
graph-level features. They also used an attention mechanism
to identify the contribution of each factor to the prediction
task. They achieved better accuracy in comparison to state-of-
the-art models such as DCRNN, TGC-LSTM, and GMAN.
There have been several other studies employing different
types of graphs and mechanisms for traffic forecasting in
recent years. As the number of studies is significantly high,
we just here summarize some of these studies that proved to
have more novelty and have been cited by other researchers
more frequently. For a comprehensive review of current studies
on traffic forecasting, readers are referred to [19] and [8].

A summary of studies on traffic forecasting using graph
neural networks is presented in Table II. The studies are
categorized based on their spatial and temporal modules, graph
structure, number of nodes, baselines with which they have
been compared, learning design, and features/factors that have
been considered by the model.

Although a great deal of research in the transportation
domain has been focused on traffic forecasting, there are still
open research areas that need further investigation. Arguably,
the real-world applicability of proposed models is one of the
most important questions that need to be answered. Almost
all previous studies have been developed and evaluated based
on a relatively small network (sub-network) of a real urban
transportation network. Based on the design of the framework,
increasing the number of nodes in the graph may exponentially
or linearly increase the complexity of the framework and the
computational costs. Therefore, one important future research
direction would be evaluating the applicability of current
GNNs in real-world large networks.

Moreover, most graphs in the traffic forecasting domain
are defined based on the topology of the network and take
into account parameters such as connectivity, distance, and
proximity. It would be beneficial to also consider other
features and factors, such as land use and functional similarity
of regions and links, presence of public transport stops
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and stations, presence and types of intersections and other
bottlenecks, and so on. This also helps to visualize the
connections among the nodes in the graph in a more realistic
manner.

Transfer learning could also benefit the applications of
GNNs in traffic forecasting problems. Considering that many
urban areas suffer from insufficient historical traffic data for
training deep learning models, transfer learning could speed
up the development of graph-based deep learning models in
such areas. Nevertheless, the transferability of GNN-based
frameworks for traffic forecasting has not yet been extensively
studied and requires special attention. It is not practical to train
every model for new cities or areas from the scratch, even if
the required historical data would be available.

Evaluating the performance of traffic forecasting models
when facing missing or noisy data and their robustness against
unexpected events has not been extensively studied, while
such disruptions in data collection endeavors are common in
urban data sensing. Similarly, most of the currently developed
models are trained and tested based on normal and periodic
traffic patterns, and their performance under irregular traffic
patterns has not been reported.

Using multiple sources of data for improving traffic
prediction accuracy and robustness is another interesting
research area that has been mainly neglected in previous
studies. More flexible graph types, such as heterogeneous
and multiplex graphs could be utilized to accommodate
heterogeneous traffic data coming from different sensors (such
as traffic loop detectors, cameras, and connected vehicles,
to name a few).

Finally, graph-level prediction can be encouraging for traffic
management and decision-making purposes. For instance,
different areas of a city can be considered as graphs (or
sub-graphs) and aggregated congestion indices could be
predicted in short-term and mid-term time intervals. These
indices can aid urban planners and decision-makers to adopt
real-time strategies for regulating traffic congestion within
different regions of a city, and due to their aggregated nature,
these types of models will probably not suffer from high
computational costs.

All in all, GNNs have shown to be promising for traffic
forecasting due to their high flexibility in capturing multi-
dimensional, dynamic, and non-Euclidean patterns in traffic
datasets, and it seems they will play a major role in future
traffic forecasting endeavors.

B. Demand Prediction

Demand prediction is another area of interest among
researchers and decision-makers in transportation and urban
planning. Traditionally, travel demand forecasting was almost
done for mid-term or long-term decision-making and
transportation systems developments [44]. However, with
the advent of modern modes of travel, such as shared
or on-demand mobility systems, short-time travel demand
prediction has increasingly drawn the attention of researchers
[45], [46], [47]. A great variety of methodologies, including
time series analysis methods to machine learning and deep

learning frameworks, have been used for travel demand
modeling. Recently, the use of GNNs in travel demand
prediction has opened doors for considering complex and
dynamic non-Euclidean spatial-temporal dependencies in
large-scale travel demand prediction. In the following, the
studies in various domains that have utilized GNNs for travel
demand estimation and prediction are briefly introduced and
discussed.

1) Ride-Hailing Services: The emergence and evolution
of Ride-hailing services (such as Uber and Lyft) have
dramatically changed people’s travel behavior. The rapid
adoption of these services has posed numerous challenges
for transportation planners, researchers, and decision-makers
because there has been little information about the changes in
travel behaviors and patterns originated by such technologies.
On the other hand, accurate prediction of travel demand
and patterns is crucially important for transportation network
companies (TNC) as they need these data for their vehicle
dispatching and distribution. Accordingly, a great deal of
research has focused on forecasting travel demand for (shared)
ride-hailing services [48], [49], [50]. In this section, we focus
on studies using graph neural networks for demand prediction
in ride-hailing service contexts.

Bai et al. [51] proposed a framework, namely spatial-
temporal graph to sequence model (STG2Seq) for multi-step
city-wide passenger demand forecasting. They defined the
connectivity in the graph according to the similarity of the
passenger demand patterns (instead of geographic locations).
Also, their framework consisted of two separate encoders
(long-term and short-term) that operated simultaneously
to make multi-step predictions without using RNNs. This
approach prevents the accumulation of errors and information
oblivion. The long-term encoder comprises a series of gated
graph convolution modules (GGCN) and considers previous
long-term timesteps aiming to capture the historical spatial-
temporal patterns. The short-term encoder, however, is used for
integrating the predicted demand for the purpose of multi-step
prediction using a short-term sliding window over previously
predicted demands. They evaluated their framework using
three real datasets and by comparing against HA, ordinary
linear regression (OLR), XGBoost [52], DeepST [53], ResST-
Net [54], DMVST-Net [55], ConvLSTM [56], FCL-Net [57],
FlowFlexDP [58], DCRNN [6], and STGCN [27].

Geng et al. [50] utilized a spatial-temporal multi-graph
convolutional network (ST-MGCN) to consider multiple spa-
tial correlations (such as neighborhood, functional similarities,
and network connectivity) for region-level ride-hailing demand
forecasting. They evaluated the performance of the framework
on two real datasets and reported on average ten percent of
improvement in error reduction compared to baseline models
(HA, LASSO, auto-regressive model [59], gated boosted
machine [60], ST-ResNet [54], DMVST-Net [55], DCRNN [6],
and ST-GCN [27]).

Unlike many similar previous studies that had focused on
zone-based demand prediction, Hu et al. [61] proposed a graph
embedding-based multi-task learning (GEML) framework for
predicting the origin-destination matrix in a ride-hailing
service context. A grid embedding part, which considers
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TABLE II
AN OVERVIEW OF MOST CITED STUDIES UTILIZING GNNS FOR TRAFFIC FORECASTING, WHICH HAS BEEN USED AS BENCHMARKS IN OTHER STUDIES

non-overlapping grids of equal sizes, is for capturing spatial
correlations in the whole region. The flows from one grid to
the others are modeled by inspiring from message passing and
neighborhood aggregation functions in graph convolutions,
and the grids embeddings are learned by aggregating the
features of the connected grids (connectivity is defined as
geographical closeness and passenger flows between the
grids). Afterward, a multi-task learning framework considers
a sequence of multiple embedding vectors for each grid in
the past for capturing temporal patterns. In the last step,
by defining a transition matrix, the OD matrix for the study
area is estimated. Comparing the proposed model with the
baselines (HA, LSTM, LSTNet [40], and GCRN [62] on
two real ride-hailing datasets, they concluded that their model
could outperform the baseline models.

Guo et al. [63] also proposed a deep learning framework
called spatial-temporal encoder-decoder residual multi-graph
convolutional network (ST-ED-RMGC), to predict the OD-
based demand for on-demand ride-sourcing services. However,
they used a different approach for defining the OD graph,
where each vertex in the graph represents an OD pair, and
each edge represents the connections between OD pairs. Their
framework is composed of two encoders for spatial and
temporal encoding; the spatial encoder consists of several

RMGCs, and the temporal encoder utilizes an LSTM model.
The decoder part also uses several RMGCs to transform
the encoded information into an output OD graph. They
evaluated their framework on a real dataset and compared its
performance to the baselines including HA, XGB, multi-layer
perceptron (MLP), GBDT, RF, LASSO, LSTM, Spatial LSTM,
a multi-graph convolution network (MGC), and encoder-
decoder multi-graph convolution network (ED-MGC), and a
residual multi-graph convolution network (RMGC).

By constructing multiple interpretable virtual graphs,
Jin et al. [68] developed a framework called DMVST-
VGNN (a deep multi-view spatial-temporal virtual graph
neural network) to forecast citywide ride-hailing demand
that overcomes the limitations of spatial data sparsity in
fine-grained prediction. In order to improve the learning
capabilities of long sequences, both long- and short-term
temporal dynamics were considered in this framework.
In particular, the DMVST-VGNN utilized structures of 1D
CNN for the purpose of short-term temporal dynamics
modeling, multi-graph attention neural network for the purpose
of spatial dynamics modeling, and transformer networks
for the purpose of long-term temporal dynamics modeling.
DMVST-VGNN demonstrated superior performance in the
experiments compared with some state-of-the-art baseline
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models, such as ST-ResNet, DCRNN, Graph Wavenet, Multi-
GCN, and ST-MGCN.

Huang et al. [69] proposed DMGC-GAN (a dynamic multi-
graph convolutional network with a generative adversarial
network) in which they combined GANs and GNNs in order
to predict OD-based ride-hailing demand. Their approach
involved developing the temporal multi-graph convolutional
network (TMGCN) layer containing different dynamic OD
graphs to capture their spatial topologies in time and using
GAN structure to overcome the high sparsity of OD demand
data. The experimental results on the real-world ride-hailing
demand dataset from the Manhattan district, New York City
demonstrated that the proposed model in this study performed
the best against nine baseline models such as T-GCN and
TMGCN.

In another study, a multi-task matrix-factorized graph neural
network model (MT-MF-GCN) has also been proposed by
Feng et al. [70] in order to predict both zone-based and
OD-based demand simultaneously in ride-hailing services.
Two major components make up the proposed model; the
GCN basic module, which captures the spatial correlations
among zones via a mixture-model graph convolutional
network, and the matrix factorization module, which is
utilized for multi-task predictions of zone-based and OD-based
demand. The study demonstrated that the proposed model
outperformed the state-of-the-art baseline methods, such as
GraphSAGE, GEML, and ST-GCN, in both zone- and OD-
based predictions using real-world data from Manhattan and
Haikou.

2) Bike Sharing Systems: In recent years, shared bike
systems have become popular in many cities around the
globe. Generally speaking, these systems could be grouped
into dock-based and dockless systems. In dock-based systems,
the bikes are taken and returned to predetermined stations,
while in dock-less systems, travelers are free to leave the bike
everywhere they want. In either of these systems, predicting
the travel demand is crucially essential for proper distribution
and rebalancing of bikes to serve the near future demand.
For instance, in a dock-based system, inappropriate demand
prediction might lead to empty stations against overcrowded
stations. In the last decade, several studies have paid attention
to bike-sharing system travel demand prediction [71], and in
recent years, GNN-based frameworks have drawn the attention
of researchers due to their ability to incorporation spatial-
temporal dependencies in large-scale.

In an early attempt, Lin et al. [72] proposed GCN-DDGF a
graph convolutional neural network with a data-driven graph
filter for capturing pairwise correlations between bike-sharing
stations and learning the graph structure instead of assuming
a predefined structure. They developed four variants of the
proposed model (GCN) by employing four types of predefined
adjacency matrices, including spatial distance matrix, demand
matrix, average trip duration matrix, and demand correlation
matrix. They concluded that their proposed data-driven filter
can capture some hidden correlations among stations that were
not revealed by any of the predefined adjacency matrices.

Chai et al. [73] proposed a multi-graph convolution neural
network model for station-level bike flow (demand) prediction.

Their framework consists of three successive layers: 1) a
multiple graph generation layer (for considering heterogeneous
and multiple inter-station relationships), followed by 2) a
multi-graph convolution layer that consists of a graph fusion
part for merging different graphs into one graph, and 3) a
prediction network that is composed of an LSTM encoder-
decoder for temporal correlations and a fully connected
network for confidence estimation. The bike-sharing system in
this study is represented as a weighted graph, in which weights
represent the strength of relations between stations based on
three the distance between stations, interaction (flows) between
two stations, and the correlation between inflow and outflow
at stations. They evaluated their model using two real datasets
and the baseline models (HA, ARIMA, SARIMA, gradient
boosting regression tree, and LSTM) and reported around 25%
reduction in prediction error.

Xiao et al. [74] proposed an end-to-end deep learning
framework based on STGCN. Their framework consists of
two spatial-temporal convolution units followed by a fully
connected layer. Each spatial-temporal unit is comprised of a
spatial convolution layer based on a graph convolutional neural
network, surrounded by two temporal convolution layers
constructed based on the gated convolutional neural network
for representing temporal dependencies (similar to [27]). They
evaluated the performance of their framework by comparing
its performance in predicting pick-up and returning demand
with simple RNN, LSTM, and GRU models, and their
results indicated their framework outperformed the baseline
on both picking-up and returning demand prediction. Also, the
time needed for training their model was significantly lower
compared to the baselines.

By incorporating historical bike-sharing trip data, land-
use data, weather data, and users’ personal information,
Ma et al. [75] proposed a spatial-temporal graph attentional
long short-term memory (STGA-LSTM) to predict the pick-up
and drop-off demands of shared bikes. The spatial information
was mined using the combination of GCN and attention
mechanism, and the temporal information was explored by
using the combination of LSTM and attention mechanism.
Furthermore, in order to construct the graph of bike-sharing
stations, the authors used the demand connections among
those stations. A learnable adjacency matrix was also used
in the model for facilitating the construction process and
describing the relationship between stations. Based on real
data from Nanjing bike-sharing systems, the proposed model
was evaluated and proved to be more accurate and efficient
compared to baseline models, including the graph-based model
GC-LSTM.

Another study by Li et al. [76] proposed a data-driven
spatial-temporal graph neural network, called STGNN-DJD,
to solve the bike demand and supply prediction problem by
integrating two spatial-temporal graphs referred to as the flow-
convoluted graph and the pattern correlation graph. These
graphs were used to represent the flow relationships between
stations at various time slots and the dynamic demand-supply
patterns between stations, respectively. A graph neural network
was then employed to generate embeddings for docked
bike prediction based on flow-based and attention-based
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aggregators. A comparison of the proposed model with other
baseline models, including GCNN, MGCNN, ASTGCN, and
STSGCN revealed that it performed better than the other
baseline models.

3) Passenger Flow Prediction: Passenger flow prediction in
public transportation systems, such as subways and bus rapid
transit systems, has gained special attention from researchers
in the transportation demand modeling area [77], [78].
Accurate prediction of passenger flows is crucially important
for the real-time management of transit systems, as well as
mid-term and long-term planning for the development of these
systems. Among many applied methods, deep learning-based
methods have drawn the special attention of researchers in
this area [77], [78], [79], [80]. Due to the graph-like structure
of public transportation networks (such as metro and bus
networks), graph neural networks have also formed a new
family of methods for predicting passenger flows in transit
systems. This section briefly reviews the state-of-the-art in
using GNNs in passenger flow prediction.

Although numerous studies using GNNs for passenger flow
predictions exist in the literature, to the best of our knowledge,
the early studies go back to no sooner than 2018. Li et al. [81]
proposed a graph convolution neural network model by
combining graph modeling to consider the interrelations
between subway stations and CNN for the spatial-temporal
modeling of passenger flow features. By separating the inflow
and outflow volumes, they constructed two-channel graph
matrices for different time scales and then integrated these
matrices and extracted the spatial-temporal features using
CNNs. Evaluating their model on a real subway dataset
and comparing its performance with the baseline models
(ARIMA, SARIMA, HA, vector auto-regressive (VAR), a fully
connected station-temporal deep neural network (ST-ANN),
ST-Res-Net [54]), they concluded their modeling framework
could significantly improve the passenger flow prediction
accuracy.

Han et al. [82] proposed STGCNmetro (spatial-temporal
graph convolutional neural networks for metro) to predict
inflow and outflow passenger counts citywide. They first
defined the metro network as an undirected graph and captured
the spatial-temporal dependencies among adjacent stations
using stereogram graph convolution. They then constructed
a deep GCN structure by stacking multiple GCN layers to
capture the spatial-temporal dependencies between distant
stations. The historical passenger flows are divided into
recent, daily, and weekly patterns in order to consider time-
varying temporal patterns. These three outputs are fused to
compute the loss function. They compared their model with
the baselines (multi-variate linear regression (MLR), LSVR,
Bayesian regression, principal component analysis coupled
with k-nearest neighbors (PCA-KNN), non-negative matrix
factorization KNN (NMF-KNN), LSTM, and CNN) on a
real-world dataset and reported Superior performance of their
model.

Peng et al. [83] proposed a dynamic graph structure
G = f (V, E, W, A, t), where V refers to stations, E refers
to a directed relationship between stations at time t, W refers
to the weights of the edges at time t, and A refers to

the inflow and outflow of the stations. By this definition,
they tried to model the dynamic traffic station relationships
over time as spatial-temporal incident dynamic graphs based
on historical passenger flow in the stations. Then, the
developed dynamic-GRCNN, which is a dynamic graph
recurrent convolutional neural network model, to learn the
spatial-temporal features representations. They also sampled
the training data based on short-term, mid-term, and long-
term observations to capture the periodicities and trends
in passenger flows. Validating their framework on several
datasets (subway, bus, and taxi) and comparing their results
with the baselines (HA, ARIMA, SARIMA, VAR, ST-
ANN, DeepST [53], ST-ResNet [54], AttConvLSTM [84],
DMVST-Net [55], DCRNN [6], STGCN [27], T-GCN [30],
and GCNN [81]), they reported performance beyond the
baselines.

Instead of constructing the passenger flow prediction graph
solely based on the network topology, Liu et al. [85]
proposes two new inter-station relationships: 1) inter-station
flow similarity, which means two metro stations with similar
passenger flow evolution patterns; and 2) inter-station flow
correlation, which means the correlation between inflow or
outflows between two stations (determined by historical OD
distribution of ridership). Based on this, they proposed a
physical-virtual collaboration graph network (PVCGN) that
constructs three graphs based on the physical topology of
the network, inter-station flow similarities, and inter-station
flow correlations. Next, these graphs are integrated into a
collaborative gated recurrent module (CGRM). In the final
step, a seq2seq model is used for sequential forecasting
of passenger flow at the next several time intervals. They
compared their model’s performance on two real datasets
of subway systems with the baselines (HA, random forest,
GBDT, MLP, LSTM, GRU, ASTGCN [32], STG2Seq [51],
DCRNN [6], GCRNN, Graph-WaveNet [34]) and reported the
superiority of the proposed PVCGN.

Chen et al. [86] incorporated a stacked bidirectional
unidirectional LSTM network with a GCN and proposed the
GCN-SBULSTM framework. They built a structured graph of
the metro network with a k-hop matrix consisting of travel
distance, flow volume, and station adjacency. The SBULSTM
module is designed to simultaneously consider backward and
forward temporal dependencies. Unlike many previous studies,
the output of the GCN and SBULSTM modules are parallelly
calculated and concatenated to avoid the distortion of temporal
patterns (which occurs in ordinary sequential CNN-LSTM
frameworks). Finally, they validated the effectiveness of their
methodology using three ridership datasets over the state-
of-the-art baseline models: LSTM, CNN, GCN, DMVST-
NET [55], CNN-LSTM [80], SRCNs [87], SBULSTM [88],
DCRNN [6], STGCN [27], Graph-WaveNet [34], and
PVCGN [85].

For predicting passenger flow in urban transit, He et al. [89]
proposed an approach referred to as the multi-graph
convolutional-recurrent neural network (MGC-RNN). the
multi-graph in this study represents the inter-station cor-
relations impacted by different factors, such as points
of interest (POI) information, network structure, network
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distance, operational information, and recent flow correlation.
Afterward, multiple GCNs are used to extract correlations
from each graph. Moreover, this study utilizes LSTM_encoder-
decoder architectures to extract temporal dependencies based
on exogenous factors such as national public holidays, and
days of week.

Wang et al. [90] attempted to use the hypergraph concept
with hyper-edges to take into account the connection between
different stops of the same line. Specifically, this study
utilized two types of hypergraphs: primary hypergraphs and
advanced hypergraphs. The primary hypergraph pictured the
fundamental topology of a metro network and was constructed
with stations as vertices and lines as hyperedges, connecting
stations on the same track. The Advanced Hypergraph revealed
additional spatial information regarding the OD pattern of
passengers in different time zones, including daily, weekly, and
hourly. A real-world experiment was conducted on the metro
datasets of Beijing and Hangzhou in China and the authors
demonstrated that their model outperformed some state-of-the-
art non-graph and graph-based methods, including DCRNN [6]
and STGCN [27].

4) Multi-Modal Demand Prediction Studies: multi-modal
modeling of transportation demand is another interesting area
in demand prediction, in which the interactions between the
demands of different modes of transportation are considered.
Despite its great importance in urban demand modeling, only
a few studies have addressed this class of demand modeling
problems. Ke et al. [91] attempted to predict multimodal ride-
hailing demand, arguing that demands for different modes
are correlated, and historical observations of demand for one
mode can help predict the demand for other modes. They
approached the problem by using a number of multigraph
convolutions (MGC) that were used to predict the demand
for each mode separately. Additionally, multitask learning
modules were utilized to share knowledge across multiple
MGC networks. A real ride-hailing dataset for Manhattan that
included solo and shared ride demand was used to evaluate
the performance of the proposed framework.

Using a different approach, Liang et al. [92] proposed a
multi-relational spatial-temporal graph neural network (ST-
MRGNN) capable of predicting multimodal demand with
heterogeneous spatial units. The authors introduced a multi-
relational graph neural network (MRGNN) to capture cross-
modal spatial dependencies using inter-modal and intra-model
graph convolutions. Also, an attention-based aggregation
module is used for summarizing different relationships. The
performance of the proposed method has been evaluated using
the data of subway and ride-hailing in New York City, which
demonstrated improved performance over existing methods
like STGCN [27], Graph-WaveNet [34] and MGCN [50].

5) General Studies: Graph neural networks have also
been used for travel demand prediction on traditional
problems. Hu et al. [93] proposed an end-to-end learning
framework to forecast stochastic origin-destination (OD)
matrices by addressing two main challenges: data sparseness,
and spatial-temporal correlations. They addressed the data
sparseness problem by factorizing the sparse OD matrix
into two small dense matrices with latent features from the

source and destination regions. Also, to address the spatial-
temporal correlations, they combined graph convolutions with
recurrent neural networks to simultaneously model spatial
and temporal correlations, respectively. Finally, the two dense
matrices are multiplied to achieve the full predicted OD
matrix. They validated their model on two real trajectory
datasets by comparing with the baselines, including RNN
using GRU gates [94], multi-task representation learning
(MR) [95], naive histograms (NH), Gaussian process regres-
sion (GP) [96], multi-variate vector auto-regression [97], and
reported that their model outperformed all baselines on both
datasets.

A summary of the studies in travel demand prediction
is presented in Table III. The studies are categorized based
on their prediction type, learning design, the nature of their
adjacency matrix, the spatial and temporal modules, the
number of nodes in their case study, compared models, and
extra features. Also, modules and mechanisms incorporated in
each modeling framework are included in the table.

Reviewing the GNNs used for travel demand forecasting
reveals that most of the current studies have focused only
on one mode of transportation, while graph neural networks
provide a great opportunity for multi-modal transportation
demand modeling [91], [92]. This is important because there
are high correlations among the travel demands between
different transportation modes, and focusing on just one mode
might not be the most appropriate approach. Also, graph neural
networks could be used for unraveling the spatial-temporal
inter-correlation among travel demands of different public
transportation modes (bus, subway, and rile-hailing systems).

In addition, most of the studies on public transportation
have been focusing on metro passenger flow prediction.
Metro networks have special characteristics, which make them
different from bus networks. For instance, bus transportation
usually shares a significant portion of its route with vehicular
traffic, which itself is a highly dynamic phenomenon and
can greatly affect the performance of buses within the
network. This will also influence the capacity and demand
of transportation systems, which has been mainly neglected
in previous studies. Also, bus networks are usually more
interconnected (more stops and routes) with more sparse
data compared to metro systems. This makes the modeling
endeavor for bus systems much more complex. This is
where GNNs can play an important role, but their power in
considering highly complex public transportation networks has
not yet been fully investigated.

The treatment of missing and sparse data in this domain
is also noteworthy, given the fact that there are many large
networks of transportation in the cities in which there is always
a substantial amount of missing or sparse data (especially in
bus networks). This issue requires further investigation

Finally, an integral part of graph models is temporal
modeling. The problem with the temporal modeling of GNN-
based models is that most models have to take into account
an equal time interval all over the network. This leads to
considering the same behavior for stops or stations with
different headways of the transportation mode, which is not the
case in reality. Accordingly, it would be beneficial to consider
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these differences into account when developing the temporal
modules of GNN frameworks in future studies.

C. Autonomous Vehicles

Autonomous vehicles, also known as automated vehicles
or self-driving cars [98], are expected to play an important
role in the future of smart cities. Since the first Grand
DARPA Challenge in 2004 and its subsequent challenges
in 2005 and 2006 [99], learning-based methods have shown
promising ability in dealing with the complexity of urban
environments, and therefore, many research institutes and
industrial companies initiated utilizing machine learning (ML)
methods for the operation and control of autonomous vehicles.
In recent years, GNNs have also been widely used in different
applications of AVs, and in this subsection, we review the
mainstream of these studies. As different sub-systems in an
autonomous vehicle play specific roles, this section is also
subdivided into three main sub-sections, namely, perception,
motion prediction, and motion planning.

1) Perception: The perception mechanism is the first and
one of the most challenging parts of designing and developing
autonomous vehicles. This module aims at detecting and
classifying objects surrounding the ego vehicle. Two main
tasks for assuring the safe operation of autonomous vehicles
are semantic segmentation and classification, and object
detection and tracking [100]. Semantic segmentation is the
task of clustering and assigning a particular class to a
set of pixels in a picture or a point cloud. Point clouds
are efficient 3D representations of real-world objects and
have become increasingly popular in recent years with
different applications, including the navigation of autonomous
vehicles. These representations (measurements) are usually
made by 3D sensors or Light Detection and Ranging (LiDAR)
technology and are crucially important in object detection
and identification of AVs’ motion planning. Traditional deep
learning methods often convert point clouds to 3D voxel grids
(voxels are similar to pixels in 2D images) or a collection of
images in order to prepare them for being fed into deep neural
networks. However, these methods have shown to be inefficient
due to information loss and computational costs [101], and
many researchers have argued that graph representation of
point clouds is an efficient yet accurate method to deal with
such data. In the following, we overview the studies that
utilized GNNs for point cloud or image segmentation and
object detection, focusing on AVs.

Te et al. [101] were among the firsts who utilized graph
neural networks analyzing point clouds. They considered the
feature of points in a point cloud as signals on the graph
and updated the Laplacian matrix of the graph in each layer
of their model, RGCNN, according to the corresponding
learned features to adaptively capture the structure of dynamic
graphs. Moreover, they added a graph-signal smoothness
function to regularize the learning process. RGCNN consists
of two main parts, one for feature extraction using graph
convolution, and the other for segmentation and classification
using MLP and a combination of max pooling and MLP,
respectively. They evaluated the performance of their model

by using the ShapeNet part dataset [102] and comparing it
to the state-of-the-art baselines (VoxNet [103] (Classification
only), ShapeNet (Segmentation Only) [102], PointNet [104],
PointNet++ [105], and SyncSpecCNN (for segmentation
only) [106]) and reported competitive performance with lower
computational complexity.

Later, in an attempt to recover the topological information
from point clouds, Jakub et al. [107] developed DGCNN,
a dynamic graph convolution neural network, by utilizing
a simple operator called EdgeConv. EdgeConv is used to
dynamically construct k-NN graphs in each layer of the
network. It generates edge features describing the relationships
between a point and its neighbors. EdgeConv can consider
local neighborhood information, and, at the same time, can
be applied to learn global shape characteristics. They also
compared the performance of their framework with popular
baselines, such as PointNet [104], PointNet++ [105], and
concluded that GNNs can significantly improve the semantic
segmentation accuracy over CNN-based approaches.

Jin et al. [108] argue that applying convolution operators to
point clouds is not efficient because point clouds are not evenly
distributed over grids. Therefore, they proposed a GNN-based
framework, namely Point-GNN, for object detection from
LiDAR data. They first translated the point clouds into a graph
and then utilized graph neural networks for predicting the
category and shape of the objects belonging to each node of the
graph. They compared their method with the state-of-the-art
models on both the 3D and Bird’s Eye View object detection
datasets and reported an overall superior performance.

Baghbani et al. [109] explain that previous machine learning
approaches that learn semantic representations from HD maps
have two shortcomings: their rasterization process results in
more or less information loss, and using a 2D convolution
might be insufficient for capturing the complex topologies
of maps. As an example, lane pairs of opposite directions
have completely different semantic meanings, although they
are spatially close together, and this is where GNNs could be
utilized. In their proposed method, a lane graph is constructed
instead of rasterizing the HD maps to avoid information loss,
and thereafter, a graph convolutional network is employed to
consider the complex topological interactions.

Zhao et al. [110] proposed a convolutional vicinity
aggregation graph neural network (CVA-GNN) for point cloud
classification. Convolutional vicinity abstraction (CVA) is a
module that extracts features from the points’ vicinity in a
hierarchical way. The extracted features are then translated
into graph embeddings. The novelty of this module is that it
considers the inter-relations at two levels: between successive
neighbors in the convolution layer and between all neighbors
at the aggregation level. They reported superior performance
in the classification task compared to the state-of-the-art
baselines on the ModelNet40 dataset, which is a popular
reference dataset in point cloud classification.

Zou et al. [114] presented a multi-task Y-shaped graph
neural network, MTYGNNN, for exploiting 3D point clouds.
MTYGNN has two branches for performing the classification
and segmentation tasks in point clouds at the same time.
To increase the accuracy of the segmentation task, the
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TABLE III
AN OVERVIEW OF MOST CITED STUDIES UTILIZING GNNS FOR DEMAND PREDICTION, WHICH HAVE BEEN USED AS BENCHMARKS IN OTHER STUDIES

classification prediction is then combined with the semantic
features. They applied their framework to several datasets and
reported superior performance compared to popular baseline
models, RGCNN [101], DGCNN [107], and LDGCNN [115].

AGNet was proposed [116] by using an attention-based
feature extraction module called AGM, which constructs
a topology structure in the local region and aggregates
the important features using an attention-pooling operation.
In this framework, the local feature information is extracted
by constructing a topological structure, which facilitates
better extracting of the spatial information with different
distances.

Some other researchers have also utilized GNNs for
other applications in the perception subsystem or AVs.
Meyer et al. [117] employed graph neural networks for
analyzing raw radar data coming from autonomous vehicle
sensors. They argued that utilizing radar data that is robust
to adverse weather conditions can improve the redundancy
and robustness of the perception task. They used graph neural
networks because radar signals fade into adjacent cells and
are not propagated just locally. In this way, they presented
a network for turning the raw radar data into 3D objects.
They reported a 10 percent improvement in object detection
accuracy.

To wrap up, GNNs have shown promising performance
in cloud point analysis and the perception subsystem of
AVs. They facilitate the handling of sparse and irregular
point cloud data and take into account the interrelations
between neighboring points in point clouds or pixels in
images. However, many of the algorithms developed in the
literature are trained and tested on datasets for non-urban
environments, and their applicability in complex urban areas
is still under question. More comprehensive studies are needed
to test the accuracy and applicability of developed algorithms
in urban environments, especially when experiencing severe
lighting and weather conditions. Also, most of the studies
focusing on urban areas have utilized bird-eye view pictures
or videos, while in real-world scenarios, such information and
pictures are not usually available. Therefore, it is essential to
develop and test future models on images from the vehicle’s
perspective.

In addition, extracting the topological information about
road infrastructure and reasoning about the semantic infor-
mation of such infrastructures (such as lane direction, traffic
signal status, signs’ meaning, etc.) is of great importance.
Previous attempts in recognizing traffic signs and signal state
detection are mainly made using CNNs, and if GNNs are going
to be implemented in image recognition and classification
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tasks, such more in-depth analyses should be also included via
utilizing solely GNNs or in combination with traditional CNN-
based modules. Moreover, studies show that the GPU power
needed for graph-based semantic segmentation algorithms
is higher than traditional methods [118]. This is especially
important for their application in the AV industry in terms
of implementation costs and real-time applications in highly
complex urban environments, such as intersections where real-
time processing of information is crucially important.

Finally, combining different sources of data (such as images
and point clouds) for semantic segmentation and improving the
robustness of the results may be beneficial. Multi-dimensional
and heterogeneous graphs could be used for such purposes.
Also, the applicability of the developed models when the
sensor outputs are noisy or faulty has not been extensively
studied and is crucial for real-world application data-driven
algorithms.

2) Motion Prediction: Motion prediction or trajectory
prediction is concerned with predicting the future trajectories
for the surrounding objects of an autonomous vehicle. These
objects could be other vehicles, cyclists, and pedestrians.
Motion prediction plays a crucial role in the safe operation
of autonomous vehicles, and therefore has become one of
the most popular topics in recent years [119]. Due to
the complexity of the problem and the high number of
objects, especially in urban areas, deep learning methods
have constituted the main research line in this field. And not
surprisingly, GNNs are becoming popular in the area thanks
to their ability in unraveling complex interrelations between
objects.

Li et al. [120] argued that the previous RNN and CNN-
based methods for trajectory prediction only focus on one
vehicle and ignore the interactions among adjacent objects.
Therefore, they constructed an undirected graph of the ego
vehicle and its neighboring objects, in which each object is
a node in the graph. Edges in this graph are defined in two
ways. Firstly, objects that are at a certain distance from the
ego vehicle are connected to each other (spatial connection).
Secondly, each object is connected to itself in the past and
future time steps (temporal connection). By applying a graph
convolutional model and a two-layer encoder-decoder LSTM
model, they achieved a 30 percent improvement in the state-
of-the-art motion prediction performance and five times less
computational time.

Casas et al. [121] proposed SpAGNN, a spatially-aware
graph neural network model for simultaneous object detection
and behavior forecasting. They built a fully connected
directed graph of the actors in the scene and employed a
3-layer MLP for message passing. The bi-directionality allows
their model to capture the asymmetric relationships between
pairs of vehicles (for example, the follower and the leader
vehicles have different impacts on each other). Moreover,
they developed a probabilistic relational behavior forecasting
model, inspired by Gaussian Markov random field Gaussian
MRF) and utilizing graph neural networks.

Jeon et al. [122] aimed at developing an efficient
and scalable framework that preserves a high prediction
performance for a large number of vehicles. To this end, they

proposed SCALE-Net based on edge-enhanced graph neural
network (EGNN) [123]. EGNN updates the node feature
using an attention mechanism induced by edge features of the
neighboring nodes. However, they state that their model still
cannot consider the road structures.

In a later work, Casas et al. [124] aimed to characterize
the joint distribution over motion forecasts of multi-actors
using an implicit latent variable model (ILVM). In order to
overcome some challenges such as roads’ complex geometries,
the environment’s partial observance, and the variable number
of actors in the scene, they utilized an interaction graph,
in which nodes are the actors in the scene. They then leveraged
GNNs to encode the scene into a latent space (learning a
distributed latent representation of the scene), and afterward,
decoded the latent samples into socially consistent trajectory
forecasts. They reported state-of-the-art performance in motion
forecasting and capturing complex interactions.

Mo et al. [125] combined RNN with GNN to develop a
new method for trajectory prediction. The RNN is utilized to
model the historical and dynamic features of vehicles, and
GNN is used to capture the interaction among them. Also,
a third RNN-based module serves as a decoder and jointly
considers the historical dynamics and the interaction feature
among vehicles for making predictions.

Sheng et al. [126] applied a GCN for capturing spatial
interactions among neighboring vehicles, and a CNN for
tackling temporal correlations among features. The spatial-
temporal features are encoded-decoded via a GRU network
in their framework. Singh and Rajeev [127] also employed
a multi-scale GNN coupled with an LSTM-based encoder-
decoder to fulfill the trajectory prediction task.

Among different tools, the attention mechanism has been
one of the most popular ones applied to many of the
GNN-based frameworks in the motion forecasting of AVs.
Chen et al. [128] utilized the attention mechanism to
consider the varying social interaction between vehicles in
the scene. Carrasco et al. [129] utilized a graph attention
network for considering the varying interactions amongst
agents toward developing a socially aware and consistent
trajectory prediction. Attention-GCN [130] was developed by
applying an attention mechanism for considering the mutual
influence between close pedestrians. The basic idea in this
model is that close pedestrians have more influence on each
others’ decisions. Zhou et al. [131] employed a double-
attention mechanism; the first one aiming at capturing the
spatial interactions among all agents–and the second one for
considering the temporal movement patterns of each agent in
the past. Monti et al. [132] applied a double attention-based
GNN to consider each agent’s future goals, as well as the
interaction among different agents. Similarly, Li et al. [133]
employed a double-attention mechanism on a dynamic spatial-
temporal GNN to consider the historical and future features
obtained from the state, relation, and context information. State
here refers to the position, velocity, and heading information of
the agents, relation refers to the relative information between
each pair of agents, and contextual information is extracted
from local occupancy density maps and local velocity field
for each agent.
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In addition to different deep learning tools and modules,
different graph types have been employed to improve the
performance of the developed frameworks. Kumar et al. [134]
constructed a hypergraph in which nodes are composed of
traffic actors and traffic elements (stop signs and traffic
lights) in the scene. Jo et al. [135] employed a hierarchical
GNN to consider the impacts of unobserved maneuvers in
multi-agent trajectory prediction. Lu et al. [136] utilized the
concepts of dynamic and heterogeneous graphs to capture
the varying road conditions and interactions among vehicles.
Tang et al. [137] aimed at studying the temporal dependencies
at different time scales. To this end, they developed a
multi-scale spatial-temporal GNN that utilizes stacked layers
of temporal convolution networks and graph convolution
networks, followed by an LSTM-based encoder-decoder for
trajectory generation.

Despite the ubiquitous application of GNNs in the motion
prediction of AVs, constructing the graph of agents in the
scene is still an open research area. The first challenge is to
identify the agents and objects that have a significant influence
on the ego vehicle or interacts with each other resulting
in an influence on the ego vehicle. Especially in an urban
area, with multiple agents (vehicles, cyclists, and pedestrians),
identifying the nodes is very demanding. Moreover, unlike
many other transportation applications where the number of
nodes is usually fixed through time, the influencing agents
vary with time, and therefore, we are usually facing a dynamic
graph. In this regard, utilizing dynamic, heterogeneous, and
multi-dimensional graphs could improve the performance of
GNN-based motion prediction models, but their application
has been very limited in this field.

Another challenging task in motion prediction using GNNs
is identifying and weighing the interactions among vehicles.
In many of the current endeavors, interactions are weighted
based on their distance from the ego vehicles and this distance
is independent of the location of surrounding objects and the
speed of the ego vehicle. However, in real-world scenarios, the
ego vehicle is usually more influenced by its direct leader(s)
in the same lane and less influenced by the preceding vehicles.
Moreover, these interactions greatly depend on the speeds
of the vehicles and the road structure and properties. These
are the factors that should be considered in future studies
for improving the accuracy of motion prediction tasks using
GNNs. For instance, reinforcement learning can be utilized
for learning the edges and weighting them in such complex
environments.

Finally, GNNs can only capture the correlations among
agents. Therefore, they are not appropriate in their current
form to capture causal relationships or for causal learning.
However, in urban areas, due to the complexity and diversity
of different scenarios, it is really hard to train the model for
every possible scenario, and therefore, using a model that is
trained solely based on observed correlations might not be safe
and accurate in new unobserved scenarios even in the same
environment. Accordingly, it is important to investigate the
possibility of causal learning in GNN applications, which has
been mostly neglected in current research.

3) Motion Planning: Another component in the operation
of autonomous vehicles is motion planning. Motion planning
is responsible for the safe and smooth maneuvers of the
ego vehicle while avoiding the static and dynamic obstacles
and agents in the scene. owing to its importance, numerous
studies have focused on this level of autonomous vehicles’
operation, and a wide range of tools and methods have been
applied by researchers, from model predictive control (MPC)
to deep learning-based algorithms, and end-to-end frameworks
[138], [139]. Although GNNs have been recently used
in the motion planning of in-door robots and unmanned
aerial vehicles (UAVs) and have shown superior performance
[140], [141], [142], their application in the motion planning of
autonomous vehicles in the real-world situations has been yet
relatively limited. In the domain of the autonomous vehicle,
Hugle et al. [143] proposed Graph-Q for the control of
autonomous vehicles in urban and multi-agent scenarios by
considering the interactions among different vehicles in the
scene in form of a graph. For constructing the graph, they
followed two approaches: the first approach, called close-agent
connection, only connects each ego-vehicle to its leader in the
same, left, and right lanes. The second approach, which is
called all-close connection, connects all close vehicles (to the
ego vehicle) to their followers in the same, left, and right lanes.
Edge weights in the two scenarios are calculated based on the
direct distance between pairs of vehicles. They also applied
the Deep Scene-set algorithm [143] to extend the application
of Graph-Q to multiple input types and sizes (such as vehicles,
lane markings, and signs).

Hart and Knoll [144] utilized graph neural networks in
the actor-critic (AC) reinforcement learning method to take
the advantage of GNNs in unraveling the interaction among
vehicles. In order to evaluate the performance of GNNs,
they conducted the same experiments with conventional deep
neural networks and concluded that GNNs can handle varying
numbers of vehicles in different scenarios and improve the
generalizability of the model.

Jin and Han [145] utilized relation learning on graphs to
identify ghost objects (false positive detected objects). Their
idea is that in a normal driving scene, all vehicles are affected
by their neighbors, so the behavior of real vehicles is more or
less logical, while the behavior of ghost vehicles is not.

Chen et al. [86] proposed a deep reinforcement learning-
based model by integrating graph convolutional networks and
deep Q network (GCQ) to enable multiple AVs in a scene to
collaboratively make lane-changing decisions. The graphical
structure of the AV network comprises two layers: 1. a local
network that is a star graph, including the ego vehicle and its
surrounding human-driven vehicles; 2. and a global network,
in which the nodes are all AVs on the road. The AV gathers
information from both human-driven and autonomous vehicles
and sends the information only to autonomous vehicles in
the network. The proposed framework claimed to be able to
address the dynamic-number agent problem (DNAP), fuse the
multi-source information from cooperative sensing, do safe,
efficient, collaborative lane changes, and be robust against
traffic density changes.
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Cai et al. proposed DiGNet [146] and DQ-GAT [147] for
scalable self-driving policy learning, where a graph attention-
based network is used to process the heterogeneous traffic
information. The idea here is to enable the autonomous vehicle
to learn the driving task for generic driving scenarios by
unraveling the interactions among agents instead of being
trained for a specific scenario. To this end, they designed a
two-layer graph attention network, in which nodes include the
state features of the agents in the scene, and their features are
updated through the self-learning attention mechanism. The
difference between DiGNet and DQ-GAT is that in the former,
a supervised method is used for controlling the autonomous
vehicle, while in the latter, the derived features vector is
processed within two separate MLPs to generate the advantage
functions and the state value in D3QN algorithm [148], and
an RL method is utilized to control the vehicle. They argue
that their model is generalizable to unseen traffic conditions
and have conducted experiments in a wide variety of seen and
unseen scenarios.

Finally, Klimke et al. [149] utilized GNNs for developing
a cooperative motion planning of multiple vehicles at urban
intersections. By using the graph representation of the
vehicles, they were able to deal with the dynamic number
of vehicles in the scene. Comparing their method with a
first-in-first-out method and traffic governed by static priority
rules, they reported significant improvement in outflow and
the number of stops at the intersection.

Reviewing the studies on utilizing GNNs in motion planning
of AVs, arguably the most important open research area
is developing generalizable driving policies utilizing GNN-
based frameworks (usually coupled with RL or imitation
learning). only a few studies have focused on and tried
to address the generalizability and transferability of motion
planning algorithms considering the unique nature and
different characteristics of transportation networks.

Moreover, coupling GNNs with RL could be promising
in motion planning applications. Most existing multi-agent
reinforcement learning studies focus on a single AV or a fixed
number of AVs. The versatility of GNNs in capturing the
interactions among a dynamic number of objects, together with
the ability of RL to achieve optimal control strategies without
the need for expert demonstration, is a great opportunity to
overcome major challenges in multi-agent motion planning of
AVs in complex urban areas.

Finally, most of the current studies in the literature for
motion planning focus on safety-relevant effects. Therefore,
the impacts of learning-based motion planning algorithms on
the efficiency of traffic networks have not extensively been
studied [150]. For instance, few studies have evaluated the
performance of motion planning algorithms on string stability
and congestion mitigation in urban or motorway scenarios.
GNNs, due to their ability in considering the interactions
among vehicles, can greatly benefit this research area through
cooperative and joint planning for a group of AVs.

Table IV summarizes the main findings from the studies
on motion prediction and planning of autonomous vehicles
utilizing GNNs. The extracted information includes the graph
type and its adjacency matrix, the experimental datasets and

baseline models being used in each study, the types of nodes
in the graph, and spatial-temporal modules of the GNN
framework.

D. Intersection Management

Efficient management of intersections is crucial to alle-
viating traffic congestion and improving safety. Traditional
approaches in intersection management used fixed timing
plans based on historical demand data. With the advent of
modern data collections tools, adaptive traffic signal control
methods emerged utilizing various approaches emerged,
from metaheuristics algorithms to mixed-integer program-
ming to computational intelligence and machine learning
algorithms [151], [152], [153]. However, the presence of
different road users and the complex interactions between
adjacent intersections still put forth serious challenges when
dealing with real-world networks of intersections. Recently,
reinforcement learning-based approaches for traffic signal
control and intersection management have been increasingly
popular [153], [154] because they are able to learn directly
from the observed environment without making explicit and
unrealistic assumptions with regard to traffic conditions and
environmental factors [154].

Many recent studies on reinforcement learning for traffic
signal control, use neural networks or convolutional neural
networks to extract features from the network; however, such
vector representations of traffic networks cannot guarantee the
extraction of geometric features of the road network because
the interactions between intersections are not necessarily
extended in Euclidean space. Therefore, some researchers have
started adopting graph-based neural networks for modeling
and managing intersections. Nishi et al. [155] were among the
first who proposed a reinforcement learning-based approach
using graph neural networks for addressing such problems in
a multiple intersection network. Their model uses the GCNN
method proposed by [156] to automatically extract geometric
network features. Multiple stacked layers are used to extract
features in a graph based on distant vertices rather than only
using one layer to extract all features at once. Thereafter,
a reinforcement learning algorithm learns the policy for
managing the intersection. They evaluated their method on
a six-intersection network and reported that their model was
able to reach almost the same policy with 50% less run time.
Also, their model was able to deal with more dynamic traffic
demands.

Wei et al. [157] proposed CoLight, utilizing graph
attentional networks for network-level cooperation of traffic
lights. In order to solve the conflicts in learning the
influences of neighbors on the target intersections, they
utilized an index-free model learning with parameter sharing,
in which they take the average over influences of all
neighboring intersections with the learned attention weights,
instead of using fixed indexing for the neighbors. Moreover,
they evaluated their RL model for signal coordination
for the first time on a real-world large-scale network
(including 196 intersections) and compared the performance
of their model with fixed-time [158], Max Pressure [159],
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CGRL (an RL-based method) [160], individual RL [161],
oneModel [162], Neighbor RL [163], and GCN [155], and
concluded that their model outperforms all baselines with
regard to average travel time.

Li et al. [164] developed a deep imitation learning
framework based on graph neural networks for traffic signal
control of multiple intersections. The input data is divided into
two classes: state data indicating the traffic state variables,
and strategy data that include the control strategy based on
specific state data. GCN is used for unraveling the spatial-
temporal traffic demand features. The whole road network
is transformed into an undirected graph with intersections
as nodes and roads as edges of the graph. They also use
a masking method to let the model know about missing
data and sensor working state; i.e., for each sensor, the data
dimension is doubled to incorporate the working status of the
sensor (as a binary status). Their structure consists of several
LSTM models for each intersection (handling variable-length
sequences and extracting temporal features), followed by a
GCN, using the outputs of LSTMs to link the intersections
with each other and to model the network as a whole. In the
end, the GCN is followed by several deep neural networks
(each for one intersection) to generate unique traffic signal
control plans for individual intersections. They evaluated the
performance of their model using simulation with real-world
data and reported about a 7% reduction in waiting time, time
loss of vehicles, and throughput.

Hu et al. [165] proposed GPlight, a deep reinforcement
learning framework for dynamically controlling the phase
and duration of traffic lights at intersections. This framework
utilizes GNNs for short-term prediction of traffic states
in multiple intersections and employs the predicted traffic
states combined with current traffic conditions for controlling
the intersection traffic lights. For this purpose, they used
a weighted undirected graph to represent the network of
intersections. The traffic flow prediction module consists of
two spatial-temporal convolution blocks, followed by a fully-
connected neural network. The convolution block themselves
are composed of a spatial graph convolution layer surrounded
by two temporal gated convolution layers. Finally, a deep Q-
Network, combining Q-learning and deep neural networks,
is used to control the traffic light at the intersection. Comparing
the results of their algorithm with baselines (fixed time, Max
Pressure [159], CoLight [157], and PassLight [166]), they
concluded that GPlight is able to increase the throughput and
reduce the delay at the studied intersections.

Yang et al. [167] identified three major shortcomings
in multi-agent deep reinforcement learning algorithms for
intersection control: transferring learned policies to diverse
traffic networks, dynamically tackling the time-varying
number of vehicles in the network, and capturing hetero-
geneous features of objects in the network. To overcome
these drawbacks, they proposed IHG-MA, an Inductive
Heterogeneous Graph Multi-agent Actor–critic algorithm, for
multi-intersection traffic signal control. They defined the
traffic network as a heterogeneous graph, in which there
are different types of nodes and links. Node types in this

graph include the type of objects that could be the traffic
signal controller (TSCer), intersection, lane, and vehicle.
Accordingly, there are four types of relationships, namely,
TSCer-control-intersection, lane-connect-intersection, vehicle-
traverse-intersection, and vehicle-traverse-lane. The proposed
algorithm conducts representation learning using a proposed
IHG algorithm, and policy learning using a proposed MA
framework. The aim is to design an algorithm to encode
heterogeneous features for each TSCer and its neighbors
and then learn the corresponding embeddings, compute the
Q-value and the corresponding policy for each SDRL agent,
and finally optimize the whole algorithm via the Q-value and
policy loss using a decentralized multi-agent framework. They
evaluated their proposed algorithm based on both synthetic
and real-world datasets and compared with baselines (Max-
pressure control [168], CoLight [157], MetaLight [169],
MA2C [162], and IG-RL [170]) and concluded that their
algorithm outperforms the state-of-the-art algorithms in terms
of average intersection delay, average queue length and
average travel time.

Zhong et al. [171] argued that recent studies using RL
for coordinating traffic signals have drawbacks as they either
design the state of the agents heuristically or model the
traffic states deterministically. To address these issues, they
proposed TSC-GNN (Traffic Signal Control via Probabilistic
Graph Neural Networks), which aims to consider traffic
uncertainties while learning the latent representations of agents
and calculating the Q-value. They achieved this goal by
variationally clustering latent representations of adjacent inter-
sections with attention coefficients. This mechanism enables
Bayesian inference in their proposed algorithm. TSC-GNN is
comprised of three main parts: a graph attention module for
identifying the importance of intersections inter-correlations
(the same as [157]), a variational graph inference module
for learning latent representation of intersections (instead of
assuming a deterministic representation), and a module for
predicting Q-value. Finally, they compared the framework with
baselines (fixed time [158], Max Pressure [159], CGRL [160],
Individual RL [161], OneModel [162], Neighbor RL [163],
GCN [155], and Co-Light [157]) on two real datasets, and
concluded that their model outperforms the state-of-the-art.

Yoon et al. [172] argued that previous RL methods were
unable to adapt to unseen and unexperienced conditions, and
therefore, proposed a transferable control policy based on RL
and GNNs. To this end, they represented the traffic states as
graphs and then trained them by utilizing GNNs. Learning
the relationships between features across intersections enabled
them to transfer partially-trained policies to inexperienced
situations. To validate their argument, they conducted a
test and compared the performance of their model with a
conventional DQN model for scenarios where training data
had not been available. The results indicated that the GNN
model performed significantly better than the conventional
DQN model on inexperienced data and covered a wider region
of the search space.

Deep graph Q-network (DGQN) [173] was proposed to
alleviate the limitations of value-based RL methods for
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TABLE IV
AN OVERVIEW OF MOST CITED STUDIES UTILIZING GNNS FOR AUTONOMOUS VEHICLES, WHICH HAVE BEEN

USED AS BENCHMARKS IN OTHER STUDIES

application in large-scale networks with a high number of
traffic signals. In specific, the authors developed a graph-
based Q-network to efficiently capture the spatial-temporal
dependencies in a large network. In addition, they devised a
parametrized adjacency matrix to take the effects of congestion
propagation into account. With this framework, they could
outperform both state-of-the-art RL algorithms and fixed-
signal operation.

Lastly, Wang et al. [174] developed MetaSTGAT, a spatial-
temporal graph attention neural network for considering
the spatial-temporal correlations among intersections and
implementing an adaptive traffic signal control. They also
utilized a meta-learning method for GNN with generation to
adapt the designed framework to dynamic traffic flow.

Despite the growing number of research in utilizing
GNNs in multi-intersection control and management, the
applicability of such methods for real-time signal control is
under question. Most of the current studies do not report
their run time. This is especially important for intersections
because a short delay in processing the information could
result in significant delays or even unsafe situations. Also, the
robustness of such frameworks against missing or noisy input
data (due to detector failure) has not yet been investigated
in the literature. Intersections are commonly important urban
bottlenecks and any disruption in their operation may result in
gridlock.

Moreover, the generalizability of the developed frameworks
should be explored in irregular traffic conditions, such as
holidays or during peak/off-peak hours. Finally, many of the
developed frameworks would fail to converge in real-world
large-scale networks [173] with hundreds of intersections.
Applying multi-agent RL and incorporating an attention
mechanism for identifying the most influential intersections
may improve the scalability of GNN-based frameworks in
traffic signal control problems.

E. Parking Management

A significant portion of traffic congestion, especially in
urban areas, is caused by cars looking for parking places.
Therefore, appropriate management of parking spaces could
alleviate a great portion of traffic congestion. Different
strategies could be adopted for properly managing parking
areas, from accurately predicting the parking demand to
the development of new parking spaces. In this subsection,
we review the studies on parking management that utilized
GNNs as part of their methodology.

Yang et al. [175] leveraged a GNN-based framework for
block-level parking occupancy prediction. They leveraged
GCNs to extract the spatial relationships of traffic flow in
large-scale networks. Their framework consists of three main
modules: GCN, LSTM, and decoders. Input features (parking
meter transactions, traffic conditions, and weather conditions)
are fed into GCN, followed by LSTM to explore the temporal
correlations. Finally, the output is distributed over city blocks
using a decoder layer. They compared the performance of
their model with baselines, including the latest observation,
historical average, support vector regression, Kalman filter,
MSTARMA [176], LASSO, and LSTM, and showed that their
framework outperforms all baselines by a significant margin.

Zhang et al. [177] proposed SHARE (semi-supervised
hierarchical recurrent graph neural network) for addressing
the missing data issue in parking availability. They utilized
a hierarchical graph convolution module and a recurrent
neural network model to capture the spatial and temporal
dependencies, respectively. The graph convolution module
itself is comprised of a contextual graph convolution
block for capturing local spatial dependencies, and a
soft clustering graph convolution for modeling the global
autocorrelations. They used an approximation module for
estimating missing parking availability data by fusing a
propagating convolution block and a temporal module through
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an entropy-based mechanism. Finally, comparing with the
baselines (logistic regression, GBRT [52], GRU [178],
Google-Parking [179], Du-Parking [180], STGCN [27],
DCRNN [6], CxtGNN (SHARE without parking availability
approximation), CAGNN (without soft clustering module),
they concluded that SHARE is able to outperform previous
modeling framework for parking availability prediction in 15,
30, and 45-minute intervals.

Similarly, Wu et al. [181] also aimed at recovering parking
availability missing data. They proposed G-RGAN, the graph
recurrent generative adversarial net, by embedding GCN
and GRU into the generator and discriminator modules of
Generative Adversarial Networks. The idea is to use the
GCN for capturing the spatial correlation between the parking
lots, and the GRU for modeling the temporal ones. They
defined the structure of the generator and discriminator in
an almost symmetry way to balance the ability of the model
to learn and grow. In the training process, they first fed real
data into the discriminator and got a Score of S. Then, the
generator was fed with noise sequential data, and sequential
data X was generated. This generated X data was fed
into the discriminator, and a new score for the generated
X was calculated as SG . Next, the loss is calculated and
the parameters are modified using gradient descent. Finally,
they compared the performance of the model with some
simpler variants of the framework, including GAN, RGAN,
G-GAN, and G-RGAN; and concluded that the G-RGAN
could outperform all other variants of their model.

Zhao et al. [182] developed a system for real-time
city-wide parking availability prediction based on parking
transaction data and contextual information. To this end,
they integrated the inflow and duration prediction models
in order to achieve the outflow information for different
time slots. In this way, they could achieve a framework
for real-time parking availability prediction. The inflow
prediction model consists of LSTM modules followed by
multiple graph convolutional networks for capturing physical
and semantic similarities between nodes, which are parking
blocks. The contextual information (such as weather) is
also entered into the framework through LSTM modules to
enable exploring the temporal correlations. They evaluated
the performance of their model on a four-month real-world
dataset against state-of-the-art baselines. The baselines include
HA, ARIMA [183], SVR [184], LASSO, backpropagation
neural network (BPNN), stacked autoencoder (SAE) [185],
GRU, LSTM, Du-Parking [180], and a model based on their
own framework but only using a single convolutional neural
network for considering the physical adjacency of parking
blocks (and ignoring the semantic correlations between
parking blocks). They argue that their model is capable of
outperforming the state-of-the-art by 43% in terms of relative
error.

Xiao et al. [186] proposed a hybrid spatial–temporal
graph convolutional network (HST-GCN) for on-street parking
availability prediction. The hybrid refers to integrating an
attention mechanism called distAtt into their modeling
framework for capturing long-term spatial correlation in
conjunction with a spatial-temporal convolution block for

capturing instantaneous spatial-temporal correlations. They
compared the performance of their model with linear and deep
learning models, including HA, ARIMA, LSTM, DCRNN [6],
STGCN [27], and ASTGCN [32], and their results showed
that their proposed framework could perform the best in all
evaluation metrics (MAPE, MAR, and RMSE).

After reviewing the studies on parking management and
prediction, the lack of studies in this area is apparent. More
advanced frameworks are needed by considering time-of-day
and day-of-week variations for parking availability prediction.
Also, all studies have only focused on one type of parking
facility, while there are different types of parking lots in an
urban area, from on-street parking spaces to public parking lots
and commercial centers’ parking areas. The ability of more
flexible GNNs, such as heterogeneous and multi-dimensional
graph neural networks, can empower decision-makers to
handle the real-time management of multiple parking types
at the same time. Also, the only situational variable that has
been employed in previous studies is the weather conditions.
However, land use patterns and commercial/non-commercial
temporal activity patterns could be of even more importance
in parking management and prediction studies.

F. Urban Planning

Urban planning studies cover a wide range of domains,
from land-use modeling to urban development, and network
resiliency. In this subsection, we conduct a review of the
existing studies using GNNs to solve urban planning problems.
These studies cover various areas, including urban knowledge
discovery, transportation resiliency, roads attribute inference,
and human activity pattern exploration.

Zhang et al. [187] built an urban knowledge graph in order
to develop an end-to-end framework for large-scale urban
studies. They employed convolutional graph neural networks
to analyze the structured prior knowledge in urban areas
for prediction and decision-making purposes. Their general
framework, which is called UKG-NN, conducts an automatic
feature extraction at three levels, namely global, propagation,
and local level. Afterward, this information is fused and fed
into a graph neural network. One of the main features of their
framework is its relative interpretability based on propagation
graph features. They applied their framework to two real-world
studies, optimal store placement and traffic incident inference,
and reported improved performance compared to traditional
methods such as random forest, support vector classification
Huff Gravity Model, and Geo-spotting.

Zhu et al. [188] utilized GCN for predicting the
characteristics of geographical places in urban areas. The
idea of using GNNs in this study is that the attributes
of a place have correlations with the characteristics of the
places to which it is connected. Therefore, they constructed a
graph of different places, in which nodes represent the places
themselves and attributes are the features of the nodes. Also,
the edges represent the connections between different places.
They utilized their framework to predict the attributes of some
places based on their observed characteristics and contextual
information.



8870 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 8, AUGUST 2023

Wang et al. [189] developed an end-to-end deep learning
model utilizing diffusion graph neural networks for predicting
spatial-temporal patterns of transportation resilience under
extreme weather conditions in urban road networks. Traffic
speed is considered the measure of network resiliency, thus
the goal of the framework is to predict network-wide speed.
The transportation road network is represented as a weighted
directed graph with sensors as nodes of the graphs and the
evaluation is done using urban big data, including traffic speed
data, meteorological data, and weather forecasting data. The
overall structure of the proposed model is very similar to [6].
Firstly, the urban data (meteorological, weather forecast, and
traffic speed) are fed into a spatial-temporal graph as features
of its node for different time horizons. Then, a diffusion
convolutional recurrent mechanism is employed in both the
encoder and decoder parts of the prediction model. Finally,
the traffic speed is predicted as the graph signals in the last
part. Based on the results, they concluded that aggregated data
of precipitation events related to transportation systems could
be used for modeling transportation resilience under extreme
weather conditions even when facing a sample imbalance
problem (for instance, due to a lack of historical disaster data).
Moreover, to evaluate the performance of their model in the
speed prediction task, they compared their speed prediction
results with some baselines, including GCRNN, S2S-Att,
Seq2Seq, Bi-LSTM, Bi-GRU, LSTM, and GRU, and argued
that their framework could outperform competitors in terms of
accuracy.

He et al. [190] utilized graph neural networks for road
attribute inference (such as lane count and road type) from
satellite images. The problem with using satellite imagery data
is that, sometimes, a significant portion of a road might be
occluded due to trees or buildings beside the road. GNN here
is employed to capture the spatial correlation of features along
the roads (e.g., assuming that the number of lanes remains
the same in a specific link) with the aim to compensate for
occlusion in satellite images. They compared the performance
of their model with a CNN image classifier on two datasets
and reported better accuracy in terms of the “number of lanes”
and “road type” identified. Also, they concluded that their
framework, called RoadTagger, is generalizable to city-scale
graphs.

Hu et al. [191] developed a geo-semantic framework for
exploring the relationship between traffic interaction and urban
functions (i.e. commercial, public, and traffic roads). They first
translated the data from taxi trajectories and transportation
road segments into words and sentences (building a so-
called Road-trajectory corpus) and then learned a geo-semantic
embedding representation using Word2Vec with the aid of
point-of-interests (POI) data. Finally, based on the extracted
embedding features, a graph convolutional neural network
is utilized to predict the social functions of road segments.
They compared the performance of their model with linear
regression, KNN, SVM, and random forest and reported
significant improvements over the baseline. The novelty of
their methodology is that they have incorporated intermediate
GPS records of taxi trajectories, such as the movement flows

and traffic states, into their learning procedure instead of
relying solely on drop-off and pick-up information. Secondly,
They have used a GCNN to improve the classification accuracy
based on the fact that moving vehicles in urban areas are
restricted to the road network, and adjacent roads have
interactions with each other.

Li et al. [192] employed graph neural networks in
conjunction with recurrent neural networks to predict the
intensity of human activities using mobile phone data across
a country. They constructed three separate graphs for this
purpose. The first graph is a distance graph in which the
edges represent the geographical distance between the cell
phone towers. The idea is based on Tobler’s first law of
geography [193], stating that geographical distance affects
the similarity of two different places. The second graph is
based on the movement of people between spatial cells,
and the third graph is based on the phone call interaction
records (an indication of social interactions between the cells).
Finally, using a graph transformation step and with the aid of
graph convolutional networks, they were able to integrate the
physical and social interactions between spatial units in the
studied area to capture dynamic spatial interaction patterns
and predict future activity intensity variation. They compared
their method with several deep learning (e.g., ASTGCN, and
LSTM), machine learning (KNN and GBDT), and time series
(ARIMA) prediction models and concluded that their deep
learning framework is able to outperform all baselines in terms
of prediction error and stability.

In general, the ability of GNNS in taking into account the
spatial and temporal dependencies among data points makes
them very useful for urban planning and management studies.
However, the application of GNNs in urban studies is relatively
new and has been yet limited. Many relevant applications
can be imagined for GNNs such as urban dynamics, which
includes the development of cities and the dynamic flow of
socio-economic activities; social segregation analysis, which
concerns the differentiation of different urban areas from the
social and demographic points of view; and urban sensing,
which aims at identifying different land uses and social
activities based on social media or volunteered user data [194].

Nevertheless, one specific limitation for many of the urban
planning studies is the availability of high-fidelity data.
Traditionally, many studies only relied on aggregated statistics,
which had the issue of not being updated for long periods.
Recently, new sources of data, such as social media and other
user-generated data, are being used for many smart urban
studies. Although this has the benefit of accessing an almost
real-time collection of data, these data types have been shown
to be a biased representation of the population. For instance,
the users of social media are usually the younger generations
with higher income levels [195]. Therefore, future research
should take into account such partialities to prevent inaccurate
estimation of urban dynamics.

Finally, the interpretability of GNNS, like many other
deep learning methods, is still under question, especially
compared to traditional linear and statistical spatial regression
methods. As the aim of many urban planning studies is to aid
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the policy-makers with their decisions, developing a black-
box framework without explaining which factors correlate
to/causes the changes might not be beneficial to practical
applications.

G. Transportation Safety

The safety of transportation systems has always been one of
the hottest research areas. Safety measures could be evaluated
from various aspects, either psychological view or technical
aspects. In any approach, identifying the areas with high risks
of accidents and incidents could help us with identifying
the hotspots for future improvements. Therefore, a great
deal of research in the transportation domain has focused
on locating the areas with higher safety risks or accident
prediction, and a wide range of prediction tools has been
employed for this purpose, from traditional statistical tools
to data-driven methods [196], [197], [198]. In this section,
we conduct a review of the existing studies concerned with
the safety analysis of transportation networks utilizing graph
neural networks.

Zhang et al. [199] developed a traffic risk forecasting
framework utilizing two social media and remote sensing
datasets. Traffic risk forecasting refers to the risk of occurring
accidents in urban areas evaluated at a fine-grained level;
for example, intersections or off-ramps. They introduced
GraphCast, a multi-modal graph neural network framework,
which consists of three main parts: 1) a GNN module
for learning the dynamics of traffic accidents from social
media data, 2) an attention mechanism for learning the
spatial correlation of traffic accidents based on multiple GNN
instances, and 3) an optimized learning process that jointly
optimizes the parameters of the two networks for GNN
and attention modules. The graph nodes in the framework
are the cells for which there have been traffic accident
reports. The weighted edges are defined based on the
similarity of visual features obtained from remote sensing
data. The Twitter and Google Map Satellite Imagery data
were used for model training and the Vehicle accident report
data as the ground truth. The baseline models used in
this study include linear regression, Ridge regression [200],
Gaussian Process, Bayesian Automatic Relevance Determi-
nation [201], Multilayer Perceptron, W&D [202], LSTM,
and GRU.

In order to improve the spatial-temporal granularity of
accident predictions, Zhou et al. [203] proposed a differential
time-varying graph convolution network to capture the
dependencies within traffic variations at multiple spatial scales
and different temporal steps. They divided the study area into q
regions and m sub-regions and then constructed the undirected
urban graph based on these sub-regions. They also defined
two types of features for the nodes of the graph: 1) static
features that consist of the characteristics of the transportation
road network in each sub-region, and 2) the dynamic traffic
features, which are defined as the weighted summation of
the number of accidents and their severity in each sub-
region. The final aim of the model is to predict the dynamic
features at all regions and sub-regions for r time steps in

the future. In order to account for non-euclidean relationships
between sub-regions, the authors use a differential time-
varying graph neural network (DT-GCN) encoder, including
an affinity matrix. The affinity between two sub-regions is
defined based on static road network features, dynamic traffic
states, and the transition of traffic flows between sub-regions.
The term “differential” in DT-GCN refers to the idea of
feeding differential images into the GCN based on the fact
that the occurrence of accidents is more related to variations
in traffic states. Finally, They employed an LSTM encoder and
a context-guided LSTM for encoding and decoding features
in the short and long term. The purpose of using CG-LSTM
is to incorporate contextual factors like weather information
to enhance the spatial representations in the hierarchical
LSTMs. The performance of their framework is evaluated
using two real datasets and baseline models including
ARIMA, LSTM, Hetero-ConvLSTM [204], STGCN [27],
STG2seq [51], STSGCN [205], STDN [206], DFN [207],
MTPSO [208].

Chandar et al. [209] employed graph neural networks
for capturing complex and nonlinear inter-relations in high
dimensional feature space in order to predict the safety
index for a road. They used the alerts recorded by buses
on the studied road to define a measure of proneness to
accidents. Moreover, they included other features related to
time, location, and weather. They followed a batch processing
schema in which each batch consists of 20 graphs (one graph
per bus), and nodes of the graph are individual alert events for
a specific bus on the road on a specific day. The edges of the
graph handle the order of the events, thus considering a time-
series nature for the events in each graph. The labels for each
node in the graph are defined based on the accident proneness
on a scale of 1-5. The novelty of their proposed structure is
that it uses a sequence of trainable graphs. Comparing their
method with baselines, including logistic regression, feed-
forward neural network, and LSTM, they could achieve a
performance competency of more than 50%.

DSTGCN (deep spatial-temporal graph neural network)
was proposed by Yu et al. [210] to predict the risk of
a traffic accident at the level of road segments. They
collected a wide range of features, including weather
conditions, traffic flows, road structures, Point Of Interest
(POI) distributions, and traffic accident records. Thereafter,
a ST-GNN is used to unravel the dependencies of mech-
anisms that cause traffic accidents. They reported superior
performance compared to traditional methods, such as linear
regression and SVM, as well as state-of-the-art deep learning
algorithms.

Huang et al. [211] proposed a gated graph convolutional
multi-task (GGCMT) framework for city-wide traffic accident
prediction. They divided the study area into squares of the
same size and constructed a weighted graph of these virtual
regions. The risk factor for each region is calculated based on
the number and severity of accidents in that area. The weights
over the links in the graph are defined based on the similarity
of the risk factors between the regions. Finally, a gated graph
convolutional neural network is utilized to predict the accident
risk factor for multiple time steps in the future.
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Despite the great potential of GNNs for transportation and
traffic safety studies, their application in this domain has been
relatively limited. One important characteristic of GNNs that
makes them suitable for safety investigations is their ability
in exploring correlations in non-euclidean space. Almost all
previous statistical and machine learning methods in safety
analysis would use aggregated data only over neighboring
regions or links. However, due to the complexity of land
uses in urban areas, this aggregation and assumption for
correlation exploration are not realistic. For instance, the type
of accidents at the entrance gates of cities are usually similar,
while they are the farthest points within a city. Similarly,
the type and severity of accidents in an intersection could
be totally different from its adjacent links or roundabouts.
GNNs provide a great opportunity for traffic safety analysts
to consider different accident types, their severity, the specific
locations, their connection with external factors such as traffic
states and weather conditions, and their correlations within an
urban area by going beyond distance-based measures.

VI. DISCUSSION AND OPEN RESEARCH AREAS

Although a great deal of research in recent years has
focused on developing and applying machine learning and
deep learning on graph-type data, there are still areas that need
more investigation. In this section, we briefly discuss several
challenges as well as open issues that are worth considering
for future studies based on the current review of the literature
and the state-of-the-art in graph neural networks.

A. Graph Construction in Graph Neural Networks

In general, GNNs begin by generating or constructing
graphs as their first step. The process of producing a
graph concerns defining the nodes and the edges between
those nodes. Although many previous studies and surveys
have neglected the importance of problem-specific graph
generation, the appropriate construction of a graph highly
depends on the type of problem. In this sub-section, we briefly
overview different options for defining the graphs from two
main perspectives: nodes, and adjacency matrices.

1) Nodes: In many traditional traffic forecasting problems,
defining the nodes in the graph was considered the most
obvious step in graph construction. For instance, many studies
would consider the location of the detectors as the nodes of
the graph. This was the same for many public transportation
and passenger flow prediction studies, where the locations of
stops were considered as nodes of the graphs. However, some
researchers utilized novel approaches for defining the nodes in
their studies and achieved superior performance. For instance,
Ma et al. [212] tried to identify the locations of bus stops
and intersections in a city by using a density-based clustering
algorithm instead of relying on labeled stops.

The introduction of GNNs to other areas than traffic
forecasting complicates the problem even more. For instance,
defining the nodes in AVs is really important and challenging.
Identifying the agents that interact with each other and have
an influence on the driving behavior of the ego vehicle is
not a straightforward task. Many researchers consider the

agents/vehicles within a certain distance from the ego vehicle
as the nodes of the graph, but assuming a fixed distance is not
consistent with reality because the interaction among vehicles
highly depends on their speed and the complexity of the
environment (e.g., urban areas or motorways). Moreover, the
number of nodes in these graphs is not static, and traditional
GNN algorithms might not be efficient for tackling such
graphs.

As another example, in ride-hailing and shared-mobility
systems with no explicit stations, identifying the nodes of the
graph is a non-trivial task that can have significant impacts
on the final results. The development of public transport
systems and other urban infrastructure greatly depends on the
partitioning of cities. Therefore, exploring the most suitable
zoning strategies, and accordingly, building or learning the
most meaningful graph structure in terms of vertices is of great
importance. In summary, the authors would like to emphasize
the importance of node definition in graphs in GNNs, which
they believe has been overlooked in many transportation-
related studies concerning GNNs.

2) Adjacency Matrix: As mentioned previously, the connec-
tivity between nodes is reflected in the network’s adjacency
matrix. Defining a suitable adjacency matrix could be even
more complicated than defining the nodes in a graph.
Adjacency matrices can have simple or complex, multi-
dimensional definitions depending on the problem context and
the network in which they are defined. As an example, studies
in the traffic forecasting domain have usually employed the
simple adjacency matrix that is derived from the real-world
transportation network properties, which most of the time is
distance or connectivity [4], [30], [32]. However, some other
studies in traffic forecasting have tried to learn the adjacency
matrix instead of pre-defining it [37], [64], [65]. Typically,
this approach uses the main and basic network data, such
as the distance matrix, as the initial adjacency matrix, and
then updates this matrix during the training process. This is
due to the fact that these studies take into account that the
spatial relationships between roadways are likely to change
over time, and a fixed adjacency matrix is not capable of
accurately reflecting those spatial relationships.

Contrary to traffic forecasting studies, which usually
consider a single adjacency matrix, many demand prediction
studies consider a number of different aspects with regard to
the relationship between the nodes. In some studies, only one
aspect is taken into consideration when making the adjacency
matrix [75], [82], [93], while in others, different aspects are
combined in a weighted manner [61], [85], [93], [212]. Some
others also use the multi-graph concept instead of combining
the multiple adjacency matrices into one matrix [49], [63],
[73], [113]. In this subsection, we provide a list of different
approaches for defining adjacency matrices in various studies:

• Distance: One way to encode the connection between
stations is simply through the spatial distance. There are
several ways to construct a distance matrix, including
using spatial distances [61] or spherical distances [82]
using known latitudes and longitudes, network-
based distances [86], and even network-based travel
time [72], [89].
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• Demand: This matrix is more commonly used in demand
or flow-based studies [49], [93]. A historical urban
traffic record between two or more nodes can provide
considerable information for constructing an adjacency
matrix. A demand matrix, also known as an interaction
matrix [73], is a measure of the flow/interaction
between two nodes based on records of their demands/
flows.

• Connectivity: spatial-temporal predictions require consid-
eration of the transportation system as well. In theory,
regions that are geographically distant but are easily
accessible may be correlated with one another. There
are several types of connectivity, which are either
caused by roads such as motorways and highways,
or by public transportation, such as subways. A con-
nectivity matrix, also called “physical matrix” [85],
is a kind of adjacency matrix that has been used in
several studies to demonstrate such associations between
nodes [86], [112], [113].

• Neighborhood: This kind of adjacency matrix is suitable
for graphs whose nodes have been defined as zones or
grids [50], [63]. In this situation, adjacent zones often
interact with each other, and a connection between them
should be considered. As an example, it is likely that
the increase in traffic in one region will have effects
on its neighboring regions as well. The neighborhood
matrix has been designed to take into account this type
of relationship in the network.

• Functional Similarity: In making predictions about a
node’s value, it is intuitive to refer to other nodes that
have functionally similar characteristics to the target node
or that are in the same functional zone. There have been
some studies suggesting that the “functionality” matrix,
or the “social functionality” matrix, could be defined
using a combination of density and categories from POI
data [50], [212], or even by using information about land
use for the nodes [63]. As a result, the similarity between
the two related nodes in each cell is taken into account
in the calculation of each cell in this matrix.

• Correlation: It is also possible to construct the edges of
a graph based on the correlation among the features of
the nodes. In this regard, a correlation matrix, which
has been given different names in different studies
including “mobility pattern”, “demand correlation”, and
“flow correlation”, is defined based on the assumption
that nodes with similar patterns of one value can correlate
with each other [63], [85], [86], [89]. For example,
demand for two bus stops located far apart, but both near
large shopping centers, can be correlated, and a rise in
demand at one bus stop could mean an increase in demand
at another bus stop.

• Geographic: This matrix has been also referred to as
network structure correlation matrix [89]. Analysis of
a traffic or transportation network can consider several
geographic factors so that the target value patterns of
two nodes with the same characteristic are likely to be
the same. Depending on the concept of the network,
these features may differ; for example, for a traffic

network, they may be the length, width, and number of
intersections of the road. Public transportation systems
can also have several geographical features, including
degree and distance, opening dates, and distance to the
city center of stops/stations [89], [212].

• Operational Information Correlation: This notion is
more applicable in the transit networks like metro or
bus networks. The theory is based on the assumption
that stations/stops with similar operational patterns
might also be correlated. Specific information regarding
line headways during peak hours and off-peak hours,
or fleet capacity, are considered part of each public
transportation’s operational characteristics to make this
kind of adjacency matrix [212].

To conclude, one of the most important steps in many
studies is the specification of the type of adjacency matrix
that will result in more accurate and reliable predictions.
Additionally, it is important to note that there is no guarantee
that a model that considers all the matrices outlined above will
perform well, so the most optimal model should be determined
by checking all the combinations of the matrices in different
ways. Furthermore, there are dynamic adjacency matrices,
which can be adjusted based on the weather, holidays, or other
variables, and they can be applied depending on the network
of interest. A further point to consider in this regard is the use
of graph neural networks for the purpose of link prediction as
a means of constructing adjacency matrices in the presence of
insufficient data about the network under investigation. A final
point that can assist in making an accurate graph is the concept
of a hypergraph. The hypergraph represents non-pairwise
relationships between vertices by utilizing hyperedges. This
means that hypergraphs can be used to represent the inherent
relationship between data of higher-order [90]. As an example,
hypergraphs could be useful in a metro or bus network,
in which many stops share the same route or line, or when
several bus stops are located in a city’s downtown area where
the demand for them is all correlated.

B. Loss Function Design and Type of Learning

After reviewing the current studies utilizing graph neural
networks, it appears that most of the current studies have
focused on node-level learning, aiming to predict the feature
over the nodes of a graph. However, as discussed throughout
the paper, other interesting–yet overlooked–learning tasks
could also benefit intelligent transportation systems. For
instance, edge-level learning on graphs could be utilized for
predicting values over edges or to explore the relationships
between nodes. As an example for the former application,
in the example of an AV in a multi-agent scene, assuming
that we are considering a set of agents around the ego vehicle
as the candidate inter-related agents (nodes of the graph),
the edge-level learning task could aim for predicting the
presence of any interactions between the ego vehicle with
other agents, and also between the agents themselves. Also,
as an example of the former application of edge-level learning,
one might be interested in predicting travel times along the
links or the strength of relationships between data points in a
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transportation network. Utilizing edge-level tasks in predicting
link features (like travel time) is more intuitive compared to
the current methods that assume the links as the nodes of the
graph and ignore the presence/properties of intersections as
one of the main causes of bottlenecks in urban transportation
networks.

Similarly, graph-level tasks have been mainly neglected in
previous studies. This class of tasks allows us to predict a
value for the whole graph based on the features of its nodes
and edges. For instance, a safety index could be predicted for
an intersection based on the interactions of the vehicles within
the intersection in real-time. As another example, a congestion
level index can be calculated based on the speed/number of
vehicles detected at data collection sites. These indices could
be also computed for sub-regions of a city to facilitate the
quick analysis of different regions of the city.

C. Extending the Applications of GNNs

Although GNNs have been used in various transportation
problems, from traffic forecasting to travel demand modeling
and autonomous vehicle operations, there is still great potential
to apply graph neural networks to new problems. Multi-modal
transportation demand modeling is one of these areas where
GNNs can make significant contributions. In a multi-modal
network, not only are there correlations between data points
of one travel mode but also strong correlations could be
observed between data points of different modes of travel.
For instance, adjacent bus and metro stations are expected
to experience similar patterns of demand, especially in peak
hours, although not being connected to each other. Also,
today, with the development of multi-modal transportation
systems, a significant portion of the demand is usually shared
between two or more modes of travel. Passengers using
shared scooters might use the bus network to fulfill their trip,
or travelers may use the bus and metro within the same trip.
Separating the demand for different modes of travel, which
is a common practice in travel demand modeling, makes it
impossible to consider these micro-interactions into account.
Moreover, intermodal shifts during adverse weather conditions
or other abrupt and unexpected situations can be of great
importance. For example, during rainy days, a significant
deal of public transportation demand might shift towards
ride-hailing systems or private cars. Therefore, considering
the inter-correlations and interactions between these multi-
modal points is really important in prediction tasks. Multi-
dimensional and heterogeneous graphs have great potential for
dealing with such problems.

Multi-scale and multi-level prediction tasks can also be
considered in future modeling endeavors. Decision-makers are
usually interested in national indices, and at the same time,
some indices at finer levels for important cities. In these
situations, the interactions between cities could be defined
as one scale, and the interaction within the intended cities
could be modeled at another scale using such types of
graphs.

Last but not least, hyper-graphs and dynamic graphs seem
to be the next game changers in the applications of GNNs

in transportation. Although a few studies have employed such
graphs, these types of graphs, due to their great flexibility
in defining and connecting vertices, could be used in many
transportation problems. One example could be utilizing
dynamic graphs for considering time-varying correlations or
when the number of active objects (nodes) changes over
time. Also, using hyper-graphs allows considering multiple
correlations among more than two nodes in a graph. This is
especially attractive in modeling public transportation routes
or a series of intersections in an urban corridor. All in all, more
complex graph structures might be utilized for addressing
more complex transportation problems, and researchers are
encouraged to go beyond using the generic GNNs, which
have been the most popular types of graphs in intelligent
transportation systems studies.

D. Integrating New Paradigms Into GNNs

As also indicated in previous studies [8], [20], most of the
current studies on GNNs have utilized spatial-temporal graph
neural networks. Although a few studies have employed novel
mechanisms like attention modules and adversarial networks,
there is still a great opportunity to go beyond ST-GNN,
especially for real-time, large-scale, and multi-step prediction
tasks, where we usually face sparse data, computational
limitations, and long-term prediction needs.

Moreover, new paradigms in deep learning such as
deep reinforcement learning (DRL) and semi-supervised
learning could be integrated into current GNN frameworks.
Specifically, DRL can be employed for graph learning tasks,
where a reward function is defined for learning the best
structure of a graph that yields to the highest reward according
to the problem-specific strategy. Semi-supervised learning
might also be used for situations where there are not sufficient
training data for training the GNN frameworks. This is
a common issue in many traffic forecasting and demand
modeling problems.

E. Generalizability

The generalizability of a model refers to its ability to
perform well in unseen situations (the situations that were not
available in the training step). This is really important in many
transportation problems, and ironically, these unseen situations
are usually those that are more important compared to normal
situations based on which the models are trained. For instance,
training a path planning model for autonomous vehicles based
on regular driving data could result in unsafe maneuvers
in critical situations and corner cases for which there had
not been enough data during the training process (this is
because crashes are rare events compared to regular driving).
As another example, traffic forecasting models should perform
well in adverse and unexpected weather conditions or in
special events. Accordingly, investigating the generalizability
of GNNs is an important issue and should be considered during
the development of such models. However, according to the
current literature review, it seems that this important property
has been mainly overlooked.
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F. Efficiency

One of the biggest challenges with GNNs in real-world
applications, especially in the transportation domain, is their
ability to handle large amounts of data in high-dimensional
graphs in real-time. Most of the current studies have focused
on the performance of their proposed framework mostly in
terms of accuracy and error minimization, and few studies
have tried to demonstrate the run-time efficiency of the
proposed frameworks in real-world applications. Although the
conducted experiments indicate promising results of GNNs,
it is also important to compare the proposed frameworks
with the baseline models in terms of run time and other
efficiency measures. In addition, current studies mostly have
utilized a relatively small sub-network of real urban networks
in their study, while for real-world applications of GNNs,
it is important that these models are capable of handling
large amounts of data on large graphs of urban networks. The
challenge is actually to develop GNN frameworks to enable
the maximum possible performance while being flexible to
handle flexible graph sizes. Utilizing GNN accelerators and
efficient software frameworks that enable parallel processing
of GNNs can also be helpful. Previous works have also
demonstrated that software-hardware cooperation could hugely
benefit the efficiency of GNN frameworks [14]. The graph
awareness approach, which means being aware of the graph
characteristics like its size and input features dimension, has
proved to be useful for speeding up GNNs [213], [214].

G. Data Heterogeneity

One big challenge for developing accurate and efficient
GNN-based frameworks in the transportation domain is data
heterogeneity. Transportation data usually come from different
sensors, are accompanied by noise, have a time-varying and
dynamic nature, and are of different types. Most of the
current studies have utilized only one source of transportation
data while accommodating the data coming from different
types of sensors, and dealing with imprecise and noisy
measurements can be considered in future studies. Also,
integrating data fusion into the prediction tasks using graph
neural networks [215] can improve the robustness of the
predictions.

H. Interpretability

One of the drawbacks of many deep learning methods,
in spite of their promising performance, is their relatively
low interpretability. Although in some domains, the model
performance and its prediction accuracy might be more
important, in the transportation domain, which is closely
concerned with decision-making and what-if analysis, inter-
pretability is crucially important. It is not surprising that
many decision-makers and urban planners prefer to apply
even less accurate models that are instead more interpretable
just because they prefer to understand how the model
is working and how they can test and evaluate different
policies using interpretable, predictive models. Moreover,
interpretability helps to understand the mechanism behind

prediction, which could facilitate identifying the model
deficiencies and improving its performance in edge-case
scenarios.

To make the long story short, for any deep learning
model (with no exception for GNNs) to be applicable
and attractive for real-world applications, interpretability
should be guaranteed at least to some degree. Although
several attempts have been made to make deep learning
models more interpretable, this area is still an open issue
and requires specific attention. Few studies utilizing GNNs
for transportation prediction purposes have evaluated the
interpretability of the proposed framework, which makes this
area an open one for future research.

I. Transfer Learning

Transfer learning means applying a model that is trained
for a specific task to another task (or as an initial model for
another task). It is common in many areas of deep learning,
especially in image recognition and classification, but has not
been adequately discussed and investigated in previous studies
on GNNs in the transportation applications domain. Transfer
learning is essential in intelligent transportation applications
because, in many situations, there is not enough data for
training a deep learning model from scratch, and using a
pre-trained model could be of great benefit. For instance,
A model might be trained with traffic data from loop detectors
in a specific city with enough detectors and then could
be used as a base framework for another city with more
sparse data or less frequent traffic data. As another example,
models trained based on the data from a specific mode (road
traffic counts) might be used for prediction purposes in other
contexts or for other travel modes (such as public transporta-
tion passenger flow prediction or shared mobility demand
forecasting).

VII. CONCLUSION

Graph neural networks have shown promising for in
intelligent transportation applications and therefore have been
widely used in different fields of transportation. Although
there have been a few review studies on GNNs in the
transportation domain, they have mainly focused on traffic
prediction problems and overlooked some interesting areas,
such as autonomous vehicle’s operation, transportation safety
analysis, intersection management, and urban planning studies.
Moreover, previous surveys and studies have addressed a
relatively narrow field of GNN applications, which is known
as node-level learning tasks; whereas, edge-level and graph-
level learning tasks in GNNs can greatly benefit intelligent
transportation systems. Therefore, this survey aims to open
the discussion toward broader applications of GNNs and
demonstrate the overlooked research areas and learning
approaches in utilizing graph neural networks for intelligent
transportation systems. To this end, different applications of
GNNs in the general domain of intelligent transportation
systems were reviewed. The reviewed studies were categorized
based on their transportation problem in order to explore
problem-specific research gaps and challenges. We found out
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that although a great number of studies have used GNNs,
they are still limited to utilizing a specific functionality
of GNNs and further research is needed to fully harness
the power of GNNs in the transportation domain. Also,
it turned out that there are still many challenges to address
and interesting areas to investigate for enabling real-world
applications of GNNs. Making GNN models more efficient,
interpretable, generalizable, and able to handle heterogeneous
data on large graphs are identified as the main challenges
facing their real-world applications. Also, graph learning, link
prediction/estimation, transfer learning, graph reinforcement
learning, extending GNNs to a wider transportation systems
application, such as multi-modal travel demand prediction,
and utilizing more complex graph structures, such as
heterogeneous graphs and hypergraphs, were identified as
research directions that are worth consideration for future
studies.

APPENDIX A PUBLIC DATASETS
AND OPEN-SOURCE CODES

Reviewing the literature, it seems there are valuable sources
of public datasets and openly accessible codes that can be used
by researchers for model evaluation and comparison purposes.
Moreover, these datasets could also be used for evaluating
the generalizability of the models across different contexts.
In this section, we aim to introduce the popular public
datasets and open-source codes that have been used/introduced
in previous studies, as well as new datasets we believe
are worth considering in future studies. Also, we try to
categorize the datasets based on their transportation context
and applications and the open-source codes based on their
programming languages and platforms.

A. Public Datasets

In this section, we categorized different public datasets
that have been used (or have the potential to be used)
by researchers for development, evaluation, or comparison
purposes.

1) Traffic Data:
• METR-LA

METR-LA, together with the PeMS dataset, is prob-
ably the most frequently referenced dataset in traffic
forecasting problems, at least in studies using deep
learning methods and graph neural networks. The dataset
includes the traffic data (speed and volume) collected
by loop detectors of highways of Los Angeles county,
USA. The dataset used by [6] includes 207 detectors
from March 1st to June 30th in 2012 and has been
frequently used by researchers in traffic forecasting as
a benchmark dataset. This dataset could be downloaded
at https://github.com/liyaguang/DCRNN.

• PeMS Datasets
Performance Measurement Systems (PeMS) Dataset
collected by California Transportation Agencies
(https://pems.dot.ca.gov) is another popular public
dataset in traffic forecasting studies. PeMS data (volume,
speed, occupancy, vehicle miles traveled, delay, etc.)

are gathered via more than over 44000 detectors that
report data every 30 seconds. The traffic flow (volume
data) is aggregated in different time resolutions (i.e.
5 min, hourly, daily, and monthly) and the speed data
is aggregated in 5-minute intervals. Different subsets of
PeMS dataset have been used by different researchers,
and in the following, the most frequently-cited sub-
datasets are introduced:

– PeMS-BAY
This dataset which was used by [6] is the other
benchmark dataset in many studies. The dataset
includes traffic data from 325 sensors in the Bay
Area in California. The time slot used by [6]
includes a six months interval from 1 January
2017 to 30 June 2017. The dataset is acces-
sible at https://github.com/liyaguang/DCRNN and
https://zenodo.org/record/4263971.

– PeMSD3
This dataset is collected in North Central Area
in California and the subset has been used
in [216], [217], and [218]. The dataset used in [217]
includes the data from 358 sensors from 1 Septem-
ber to 30 November 2018 and is accessible
at https://github.com/Davidham3/STSGCN, and the
dataset used in [218] is from July 10th to August 9th
for years 2011 to 2017 and could be downloaded at
https://github.com/AprLie/TrafficStream.

– PeMSD4
The dataset contains the data in San Francisco
Bay Area. The dataset has been used in [219]
(325 sensors from 1 January 2017 to 31 March
2017), The time period used in most studies
includes 307 sensors from January 1st to February
28th, 2018 [220], [221] and is downloadable at
https://github.com/Davidham3/ASTGCN.

– PeMSD7, PeMSD7(M), and PeMSD7(L)
The dataset contains the traffic data from dis-
trict 7 of California (Los Angeles) and different
time slots of the dataset have been utilized by
researchers. the dataset used in [27], [221], and [220]
includes the data for 228 sensors on the weekdays
of May to June 2012. The dataset could be
accessed via https://github.com/Davidham3/STGCN.
Ge et al. [219] used the data from selected
204 sensors and the time slot between 1 January
to 31 March 2018. Choi et al. [222] employed the
data from May and August 2018. The dataset used
in [217] includes the data obtained from 1047 sensors
between 1 July 2019 and 30 September 2019.

– PeMSD8
This dataset depicts San Bernardino, California. The
dataset used in [221], [222], and [220] contains
the data from July to August 2016 obtained from
170 sensors on eight roads. The data is accessible at
https://github.com/Davidham3/ASTGCN.

– PeMS-SF
This dataset includes 440 daily records that
describe the occupancy rate (between 0 and 1)
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for different lanes in San Francisco Bay area in
the USA. The dataset has been downloaded from
the California Department of Transportation PEMS
website, http://pems.dot.ca.gov, and includes the
period from 1 January 2008 to 30 March 2009. The
samples are aggregated at 10-minute intervals. This
dataset is accessible via UC Irvine Machine Learning
Repository at https://archive.ics.uci.edu/ml/machine-
learning-databases/00204.

• LOOP - Seattle Loop Dataset
This data is collected via inductive loop detectors in
Seattle. The dataset contains the speed data aggregated
at 5-minute intervals from freeways I-5, I-405, I-90, and
SR-520 for 2015. This dataset has been introduced and
used by Cui et al. [4] and could be downloaded at
https://github.com/zhiyongc/Seattle-Loop-Data.

• Q-Traffic Dataset
The Q-Traffic dataset was collected by Baidu and
includes a query sub-dataset, traffic speed sub-dataset,
and road network sub-dataset. The query sub-dataset is
a travel time dataset and contains the starting time-
stamp, coordinates of the starting location, coordinates
of the destination, and estimated travel time (minutes).
The data is collected in Beijing, China between April 1,
2017, and May 31, 2017. The traffic speed sub-
dataset contains the speed data for the same time
interval for 15,073 road segments covering approximately
738.91 km [223]. This dataset could be downloaded at
https://ai.baidu.com/broad/introduction?dataset=traffic.

• Shanghai Speed Data
This dataset is the speed data-driven from taxi
trajectories in Shanghai, China from 1 April
2015 to 30 April 2015. The speed data has been
aggregated in 10-minute intervals and is accessible via
https://github.com/xxArbiter/grnn.

• Virginia Traffic
This dataset includes the traffic volume measured
every 15 minutes at 36 sensor locations along two
major highways in Northern Virginia/Washington D.C.
capital region. The dataset is accessible via the UC
Irvine Machine Learning Repository at https://archive-
beta.ics.uci.edu/api/static/ml/datasets/608.

• Los-loop
The dataset that is collected in Los Angeles contains
the traffic speed data from 207 sensors from 3/1/2012
to 3/7/2012. Traffic speeds are aggregated in 5-
minute intervals and the dataset is downloadable from
https://github.com/lehaifeng/T-GCN.

• Guangzhou Traffic Dataset
The dataset consists of 214 anonymous road segments
within two months from August 1, 2016, to Septem-
ber 30, 2016, at 10-minute intervals, collected in
Guangzhou, China [224]. The dataset is accessible at
https://zenodo.org/record/1205229#.YbfMOVmhW3A.

• UVDS
UVDS dataset includes 104 sensors in Daejeon City,
South Korea. The dataset includes three months and the
data are aggregated in 5-minute intervals [21].

2) Taxi and Ride-Hailing Systems:
• NYC TLC Trip Record Data (NYC Taxi)

The NYC TLC Trip Record Data is one of the most
popular datasets in travel demand studies and has been
utilized by many researchers [63], [72], [93], [225], [226].
This dataset includes three sub-datasets:

– The yellow and green taxi trip records including
pick-up and drop-off dates/times and locations, and
driver-reported passenger counts. The data has been
collected and provided by the NYC Taxi and
Limousine Commission (TLC). The yellow taxi trip
records include the period from 2009 to the present,
and the green taxi trip records start from July 2012.

– For-Hire Vehicle (“FHV”) trip records that include
pick-up and drop-off date/time and taxi zone location
ID. This dataset includes the trip records from
2015 to the present.

– High Volume FHV trip records include the trip
records (pick-up/drop-off location and time) for High
Volume For-Hire Vehicles from February 2019 in
New York City (NYC). The data also indicate
whether the trip has been a shared trip or not. TLC-
licensed FHV businesses that currently dispatch or
plan to dispatch more than 10,000 FHV trips in
New York City per day under a single brand, trade,
or operating name, referred to as High-Volume For-
Hire Services (such as Uber Pool, Lyft Line, etc.).
The NYC TLC Trip Record Dataset is acces-
sible at https://www1.nyc.gov/site/tlc/about/tlc-trip-
record-data.page.

• TaxiBJ This dataset contains the inflow and outflow
demands for taxis collected in Beijing, China. Beijing
has been divided into 32*32 grids and the flows have
been aggregated into 30-minuted time intervals. The data
are provided in four different time slots: 1) 1st Jul.
2013 to 30th Otc. 2013, 2) 1st Mar. 2014 to 30th Jun.
2014, 3) 1st Mar. 2015 to 30th Jun. 2015, 4) 1st Nov.
2015 to 10th Apr. 2016, and is openly accessible at
https://github.com/TolicWang/DeepST. This dataset has
been used for model evaluation by Bai et al. [227].

• TaxiSZ
The dataset that consists of speed data is derived from
taxi trajectories in Shenzhen, China from 1 January
2015 to 31 January 2015. The data is aggre-
gated in 15-minute intervals and was introduced
by Zhao et al. [30]. The dataset is available at
https://github.com/lehaifeng/T-GCN.

3) Ride-Hailing Services:
• DiDi GAIA Open Data

This dataset is provided by the Chinese corporation
DiDi Chuxing and contains different types of data (for
instance, travel time and trajectories) for different cities
and time slots. The data can be openly accessible at
https://outreach.didichuxing.com/research/opendata.

• NYC Citi Bike
The Citi Bike program in New York City, USA,
which is operated by NYC Bike Share system
generates data, including trip records, a real-time
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TABLE V
MOST POPULAR PUBLIC DATASETS UTILIZED FOR GNN STUDIES

feed of station status, and monthly reports.
The trip history data is available from 2013 at
https://s3.amazonaws.com/tripdata/index.html.

4) Public Transport Data:
• SHMetro

This dataset is derived from transaction records of the
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TABLE VI
A LIST OF OPEN-SOURCE CODES THAT COULD BE UTILIZED AS BENCHMARKS FOR GNN STUDIES

Shanghai metro from 1 July 2016 to 30 September
2016. The aggregated inflow and outflows for each
metro station at provided at 15-minute time intervals
for 288 metro stations. The dataset is accessible via
https://github.com/ivechan/PVCGN.

• HZMetro
This dataset is again from the transaction data from the
Hangzhou metro system in China. The dataset contains
the inflow and outflows for 80 metro stations aggregated
at 15-minute intervals in January 2019. The dataset is
accessible via https://github.com/ivechan/PVCGN.

• Hangzhou Metro The dataset is 25-day subway
credit card data records from 1 January 2019 to
25 January 2019 belonging to 81 subway stations of
the Hangzhou Metro system in China. This dataset
could be downloaded at tianchi.aliyun.com/competition/
entrance/231708/information.

5) Autonomous Vehicles:

• Waymo Open Dataset
Waymo open dataset includes a Motion and a Perception
dataset. The motion dataset is comprised of 103,354
segments each containing 20 seconds of object tracks
at 10Hz, and the HD map data for the covered area.
The perception dataset contains independently-generated
labels for data coming from the Waymo autonomous car’s
lidar and camera sensors. This dataset can be downloaded
at https://waymo.com.

• KITTI
This dataset has been gathered in and around the city
of Karlsruhe, Germany using a vehicle equipped with
several RGB and monochrome cameras, a Velodyne
HDL 64 laser scanner, and an accurate RTK-corrected
GPS/IMU localization unit. The dataset can be down-
loaded at http://www.cvlibs.net/datasets/kitti.

• nuScenes
The nuScenes dataset has 3D bounding boxes for
1000 scenes (the 20s long at 2Hz frequency) collected
in Boston, the US, and Singapore. This dataset includes
28130 samples for training, 6019 samples for validation,
and 6008 samples for testing. The data comes from
32-beam LiDAR, 6 cameras, and radars with complete

360◦ coverage. The dataset can be downloaded at
https://www.nuscenes.or

• Lyft Level 5
This dataset includes two sub-datasets for motion
planning and perception. The motion dataset includes the
logs of over 1,000 hours of movement of various traffic
agents, and the perception dataset includes human-labeled
3D bounding boxes of traffic agents and an underlying
HD spatial semantic map. The data can be downloaded
at https://level-5.global/data.

• Berkeley BDD Data
This large dataset consists of 100K driving videos
collected from more than 50K rides. Each video is
40-second long and 30fps. More than 100 million
frames in total. The dataset could be used for object
detection and tracking. The link to the dataset is
https://www.bdd100k.com.

• PandaSet
This dataset combines the data from different sources
(LiDAR, Camera, and On-board GPS/IMU) for object
detection and segmentation purposes. The data can
be downloaded at https://scale.com/resources/download/
pandaset.

6) Other Datasets:
• NGSIM This NGSIM dataset was collected under the

Next Generation Simulation (NGSIM) project by Federal
Highway Administration at the US Department of
Transportation. The whole dataset consists of four sub-
datasets: I-80 and I-101 datasets gathered from freeways,
and Lankershin and Leachtree gathered from two arterial
corridors). The data was collected with the aim to
support the development of algorithms for driver behavior
at microscopic levels and has been extensively used
by researchers in driver behavior modeling and traffic
microsimulation studies [228]. It includes the trajectories
of vehicles

A summary of the above-mentioned datasets is presented
in Table V.

B. Open-Source Codes

In this section, we introduce the open-source codes that have
been provided by researchers in the reviewed studies. Also,
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we provide some information about the codes in Table VI
such as the transportation domain, programming framework,
and link to the code). This could be helpful either for model
development or performance comparison for future studies.
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