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DeepTrip: A Deep Learning Model for the
Individual Next Trip Prediction With Arbitrary

Prediction Times
Pengfei Zhang , Haris N. Koutsopoulos , and Zhenliang Ma

Abstract— The increasing availability of travel trajectory data
allows for a better understanding of travel behavior. In the
individual mobility analysis, the problem of next trip predic-
tion assumes a central role and is beneficial for applications
such as personalized services and mobility management. This
paper addresses the next trip prediction problem with arbitrary
prediction times (the time when the prediction is made). This
problem has not been studied adequately in the literature and
it is important for applications driven by system events, such as
proactive travel recommendations under disruptions or crowding
in transport systems. It predicts an individual’s next trips
given their historical trip sequences and the prediction time.
We formulate the next trip prediction problem as on-board
and off-board predictions depending on an individual’s travel
status (i.e. on-board/off-board). Using historical/real-time travel
trajectories, a DeepTrip model is proposed based on a trip
sequence-to-sequence deep learning structure coupled with an
attention mechanism. A novel overlapped embedding method
is proposed to represent continuous travel attributes capturing
simultaneously the categorical and numerical feature informa-
tion. We also develop a random-sampling training algorithm to
learn the impact of the prediction time. The model is validated
using trip data in urban rails. The results show that DeepTrip
outperforms statistical-based models by more than 10% in
terms of accuracy and other deep learning models by 2%-3%.
The impact analysis shows that different representations are
appropriate for the two prediction cases (on-board/off-board),
and the prediction performance does not monotonically improve
as the prediction time approaches the next trip.

Index Terms— Next trip prediction, individual mobility, deep
learning, metro systems.

I. INTRODUCTION

INDIVIDUAL mobility studies how humans move within
a network or system [1]. Understanding and predicting
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individual mobility is essential and beneficial for many appli-
cations in areas such as urban planning [2], [3], personalized
recommendations [4], and Intelligent Transportation System
(ITS) [5]. Individual mobility prediction can be generally
defined as follows: given a series of spatiotemporal records
S = [r1, r2, . . . , rn], referred to as individual mobility records
hereafter, predict the next mobility records rn+1. Depending on
different prediction tasks, ri can be a timestamped location in
GPS trajectory data (next location prediction), or a trip record
with origin/destination times/locations (next trip prediction).

Depending on the application context, the individual mobil-
ity prediction can be categorized into two classes: customer
event triggered and system event triggered. In the customer
event-triggered mobility prediction, rn+1 is predicted when
mobility record rn is collected. For example, in personalized
recommendations, once the latest mobility record (rn) of an
individual is observed, the next possible visiting location
and time (rn+1 = (ln+1, tn+1)) are predicted so that rec-
ommendations about the predicted location could be timely
pushed [6]. The individual mobility prediction triggered by
a system event may take place at any time serving a certain
system purpose. In this case, the time when the prediction is
made (prediction time) is important. Personalized information
provision is increasingly becoming an important service of
smart transportation systems. With the ability to predict users′

mobility at arbitrary times, transportation authorities could
target the affected users in certain situations and provide
them with relevant information. For example, the model may
predict the potentially affected passengers after an incident
takes place in a metro system. Disruption information could
then be pushed only to these users. Also, operators could
identify potential travelers during the morning peak before-
hand and provide them with incentive schemes [7] to reduce
system congestion during peak hours. Compared to the tradi-
tional information system (e.g., distributing the information
on the website or pushing the information to all users),
the prediction-based personalized information provision can
improve the information relevance and accessibility, as well
as reduce the communication cost.

The customer event-triggered mobility prediction is defined
as: given a sequence of an individual’s historical mobility
records [r1, r2, . . . , rn], predict their next travel record rn+1
immediately after rn is observed. Different from that, the
system event triggered mobility prediction is defined as:
given a sequence of an individual’s historical mobility records
[r1, r2, . . . , rn], predict the next travel record rn+1 at time
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t ≥ tn . The customer event-triggered mobility prediction prob-
lem has been widely studied in areas such as recommendations
for points of interest (e.g. dining/tour) [8] and next trips in
public transport [9]. However, to the best of our knowledge, the
system event triggered individual mobility prediction problem
in which the prediction time is arbitrary has not been addressed
in the literature. The customer event-triggered mobility predic-
tion problem is a special case of the system event-triggered
prediction problem when the prediction time is set as tn .

The system event-triggered individual mobility prediction
problem is challenging in the following aspects:

• It is challenging to model the prediction time capturing
these impacts. Figure 1a shows the definition of the
individual mobility prediction problem. Existing studies
predict the mobility attributes given the individual’s travel
sequence. As discussed, including arbitrary prediction
time in the prediction is essential for online applications.
We model the problem as predicting the next trip given
both the travel sequence and the prediction time infor-
mation. Figure 1b is an example of such case. Assume
this individual has two travel patterns for work-to-home
trips starting at 16:00 and 19:00, respectively. Given that
the last trip (trip n) happens at 8 o’clock in the morning,
predicting at t1 ≤ 16:00 has to consider that the next trip
may take place at 16:00 or 19:00. However, predicting at
t2 > 16 : 00 could utilize the additional information that
the trip at 16:00 did not happen. Thus the next trip will
probably be the 19:00 trip.

• The mobility sequence has varied types of data associated
with it, including discrete (e.g. labeled metro stations) and
continuous data (e.g. trip time). The continuous time data
in existing studies is discretized into intervals [9], [10].
However, this approach suffers from the interval length
and boundary issues. For example, 8:59 AM and 9:01
AM are represented by two different classes if time is
discretized into hourly intervals starting on one hour.

• Given information on the travel sequences of an individ-
ual, capturing the complex spatiotemporal and historical
dependencies, as well as selecting the most relevant
sequences (context-aware) for prediction is not straight-
forward.

The paper proposes a deep learning-based framework,
DeepTrip, to model the system event-triggered individual
mobility prediction problem that overcomes limitations in the
existing literature. The main contributions are:

• Development of a deep natural language processing
(NLP) based model structure to predict, at arbitrary pre-
diction times, individuals’ next trips given their historical
trip sequences. The model can also deal with arbitrary
prediction horizons (when the next trip happens) not
necessarily daily.

• Development of novel data representation methods for
discrete and continuous attributes of trip sequences, using
an overlapped embedding model for temporal data rep-
resentation. The model captures both the categorical and
numerical features of temporal information.

• Development of a random-sampling training algorithm
coupled with a pairwise time-pointer mechanism to cap-
ture the impact of the arbitrary prediction time.

• Empirical analysis to validate the model using smart card
trip data from a busy urban railway system and comparing
with state-of-the-art models, as well as systematically
explore the impacts of data representations and prediction
time on model performance.

The remainder of the paper is organized as follows.
Section II reviews relevant literature on individual mobil-
ity focusing on problem definition, data representation, and
prediction models. Section III defines the problem, proposes
the DeepTrip model and details the prediction methodology.
A case study using smart card data from an urban railway
system is performed in section IV. The model performance
is validated by comparing it with state-of-the-art models.
The impacts of the data representation and prediction time
are investigated. Finally, section V concludes the paper and
discusses further studies and applications.

II. LITERATURE REVIEW

Various studies have shown that individual mobility, in gen-
eral, can be predicted depending on mobility characteristics
[11], [12], [13]. For example, Song et al. [11] used an entropy
measurement and showed that 93% of human mobility can
be potentially predicted in terms of the next location using
mobile call and dial data. The rapid advancements in learning
algorithms facilitate urban mobility prediction development.
We reviewed the literature from three perspectives: Problem
setting, data representation, and prediction models.

A. Problem Setting

The problem of individual mobility prediction has
been studied under different contexts. Early studies focus
on the individual next location prediction. For example,
Calabrese et al. [6] assume that the human mobility behavior
is periodic over time with a period T and predict the location
at time t based on the sequence of locations at times t − T ,
t − 2T , etc. Many studies apply a Markov Chain model and
predict the next location based on transition probabilities of
candidate locations [14], [15], [16]. Recently, some studies are
reported on predicting both the next locations and times. The
prediction is triggered by a customer event, which is predicting
the next travel record right after the most recently recorded trip
(location and time) are observed. For example, Gidófalvi and
Dong [8] propose a continuous time Markov model to predict
individual departure times and destinations.

The aforementioned models focus on the next location
prediction, however, very limited attention has been paid
to the next trip prediction (origin, destination, and times).
Zhao et al. [9] developed a mobility n-gram model to predict
passengers’ next trips in transit systems using AFC data. The
approach divides the prediction into two sub-tasks: trip making
prediction and trip attributes prediction, modeled using logistic
regression and n-gram models, respectively.

Different from these problems, this paper formulates the
individual mobility prediction problem with arbitrary predic-
tion times (when the prediction is made) and the prediction
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Fig. 1. Individual mobility prediction and the importance of prediction time information.

horizon that may go beyond the end of the calendar day. Such a
model can be useful for applications driven by system events,
such as proactive travel recommendations under disruptions
or crowding in transport systems. The model, for a given
prediction time, predicts the individual next trips given the
individual’s historical trip sequences. The problem studied
in this paper generalizes existing problems that assume a
prediction time defined by the end of the last trip, and a
prediction horizon constrained by the end of the day.

B. Data Representation

Mobility records contain the spatial-temporal travel
attributes of trips, e.g. origin, destination, departure time,
etc. Properly representing these attributes is critical for indi-
vidual mobility prediction. The spatial travel attributes are
usually represented using a grid-based system. For exam-
ple, Calabrese et al. [6] divided the geographical space into
labeled grids and allocated GPS records to the corresponding
grids based on their coordinates. Feng et al. [10] aggregate
GPS records with the proximity in space and time into one
proxy record. Instead of directly using the location informa-
tion, Gambs et al. [15] mined Point of Interest (POI) data
to represent the corresponding travel locations. POI is found

to be more informative than location information. They can
capture the underlying travel activities and purpose, and thus
improve the individual prediction performance.

Representing temporal information is generally challeng-
ing. Ideally, the temporal information representation includes
both categorical and numerical features. The categorical fea-
tures refer to the semantic relationship between time points
regardless of the magnitude of the time difference, while the
numerical features capture the chronological dependencies,
particularly for discretization boundaries. Regarding temporal
information representation, the simplest form used in the
literature is based on the order of visiting different locations,
regardless of the difference of these times [14], [15], [16].
For representations incorporating time attributes, two main
approaches are commonly used. The first considers only
the time of day but ignores the date. For example, Feng
et al. [10] divided the day into 24 one-hour intervals. The
drawbacks of such representation are: a) the proper interval
width is hard to determine; b) the representation is sensitive
to interval boundaries (two close time points on the two sides
of the interval boundary are treated as very different). Several
methods have been proposed to address these issues, including
entropy-based and error-based discretization [17]. Although
these methods could figure out a more reasonable division of
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the time domain, boundary and interval width issues still exist.
The second approach uses timestamp records with both date
and time information. The timestamp records are transformed
into a sequence of ordered integers [8]. The limitation of
both approaches is that the numerical feature of time is over-
represented, not well representing the temporal heterogeneity
of mobility activities. For example, the same mobility activity
may start/end with a time difference from day to day. Using the
exact timestamp value may cause the model to treat the same
activity differently, thus degrading the prediction performance.

We propose a novel overlapped embedding model to capture
both categorical and numerical features of time attributes
and automatically switch between them given the prediction
context. The structure fits well with the nature of the studied
mobility prediction problem.

C. Prediction Models

The individual mobility prediction models in the literature
can be categorized as statistical and deep learning-based
models.

The statistical models have been widely used and they
model the mobility sequence dependencies using probabilistic
methods, such as the Markov chain and its variations [15],
[18], [19], decision trees [20], and natural language mod-
els [21]. For example, Gambs et al. [15] developed a n Mobil-
ity Markov Chain (n-MMC) model to predict the next location
based on n previous visited locations. The n-MMC model
exhibits a promising performance when n = 2. Increasing the
number of looking back intervals has no significant improve-
ment if k > 2. Mathew et al. [18] proposed a hybrid approach
to predict the next location using GPS data by combining
Hidden Markov Models (HMMs) and location clustering. The
individual visited locations are clustered and then fed into
the HMMs. Zhang et al. [19] developed a group-specific
mobility modeling framework and predict the next visiting
location based on Geo-tagged social media data. Monreale
et al. [20] proposed a T-pattern tree model, a decision tree-
based model, which learns from a previously extracted concise
representation of mobility behaviors using GPS trajectory data.
Hsieh et al. [21] developed a time-aware language model
(T-gram) to predict the next location using check-in data.

Despite their performance, the statistical-based prediction
models can only capture the transition probability of mobility
patterns in a static manner (calibrated or learned from the
training data). They are limited in utilizing longitudinal depen-
dencies, such as periodical regularity. Deep learning-based
individual mobility prediction methods have emerged in recent
years [10], [22], [23]. They not only capture the high-order
spatial-temporal dependencies but also learn the longitudinal
and periodic features, thus providing a better performance
compared to statistical models. For example, Feng et al. [10]
proposed the DeepMove model, a sequence-to-sequence model
structure coupled with an attention mechanism filtering his-
torical sequences, to predict an individual’s next visiting
location. The results show that DeepMove outperformed the
MMC model by more than 10% in terms of accuracy. Rossi
et al. [22] combined a Long-Short-Term-Memory (LSTM)

network and an attention module to predict the next destination
of taxis. Recently, newly emerged deep sequential models
have been incorporated into deep learning-based mobility
prediction models. Xue et al. [24] proposed a transformer-
based model, MobTCast, to predict the traveler’s next visiting
location; Tao et al. [25] combined the transformer model with
reinforcement learning to predict the individual’s mobility for
long-term. Other prediction scenarios have also been studied.
Zhao et al. [26] studied the casual trip prediction in the metro
system, and Zhou et al. [27] focused on the sparse trajectory
prediction and trajectory classification.

The DeepTrip model proposed in this paper predicts the
individual next trip attributes under the system event-triggered
context with a deep learning-based framework.

III. METHODOLOGY

A. Problem Definition

Table I summarizes the notations used in the paper.
Let the time domain be denoted by T and be modeled as

the ordered set of non-negative natural numbers N+. A trip
tr of an individual can be characterized by a tuple of the
related attributes where tr = (a1, a2, . . . , ap). ai denotes the
i th attribute. In this study, we use 4 attributes—start time to,
origin o, destination d , and day of the week w, to formulate
the attribute tuple where tr = (to, o, d, w). Note that extra
attributes could also be added to the attribute tuple if available.
Also, we do not include end time td of a trip into the tuple
since td is mainly dominated by the system and not the
individual’s mobility behavior, predicting td is out of the scope
of this study.

The trip sequence of an individual u is defined as a chrono-
logical list of u’s last n recorded trips where Su,n = [tr1, tr2,

. . . , trn] = [(to,1, o1, d1, w1), . . . , (to,n, on, dn, wn)], where
trn denotes the recorded trip at time instance n, i.e. the last
observed trip of u. The trip start times are irregularly spaced
but temporally ordered where to,1 < to,2 < · · · < to,n ∈ T.

Let R = {R1, R2, . . . , Rm} denote the set of the visited
stations in the metro system. For an individual, oi , di ∈ R,
∀i ∈ 1, 2, . . . , n. Let W = {1, 2, . . . , 7} denote the set of the
days of the week, i.e. from Monday (1) to Sunday (7). For an
individual, wi ∈W , ∀i ∈ 1, 2, . . . , n.

Based on the individual’s travel status, the mobility pre-
diction problem is divided into two sub-problems: off-board
prediction and on-board prediction. The off-board predic-
tion problem is informally defined as predicting each travel
attribute of the following trip.
• Problem 1. Off-Board Prediction: Given an individual u,

its trip sequence history Su,n up to time instance n, and
prediction time tpred where td,n < tpred < to,n+1, predict
the origin on+1, destination dn+1, start time to,n+1, and
day of the week wn+1 of the next trip.

Subsequently, the on-board prediction problem is informally
defined as predicting the destination of the current trip (the
prediction time is between the start time and completion time
of a trip).
• Problem 2. On-Board Prediction: Given an individual u,

its trip sequence history Su,n , partial information of trip
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TABLE I
NOTATION

Fig. 2. Illustration of the off-board and on-board prediction problems. Off-board prediction is conducted in the interval between the last trip trn and the
next trip trn+1; on-board prediction during a trip.

n+1, (to,n+1, on+1, ?, w) and prediction time tpred where
to,n+1 < tpred < td,n+1, predict the destination dn+1 of
the current trip.

Figure 2 illustrates the off-board and on-board prediction
problems. The prediction time tpred is the time when the
prediction takes place. Off-board refers to the scenario that
the individual has already finished his/her last trip (trn) when
the prediction is conducted, while on-board means that the
prediction is made during the individual’s next trip (trn+1).
Note that the prediction objective and available information
are different in these two problems.

B. Model Framework

Figure 3 presents the proposed model framework, DeepTrip,
consisting of three modules: travel feature extraction module,
sequence pattern learning module, and prediction module.

• Travel feature extraction module. It takes individual trip
sequences S as inputs and projects them into feature
vector sequences. Different approaches are developed to
extract discrete and continuous sequence features. Specif-
ically, the discrete sequence attributes (i.e. origin, destina-
tion, and day of the week) are projected into vectors using
the embedding function. An overlapped embedding model
is proposed to project the continuous trip attributes (i.e.

trip time), capturing both their categorical and numerical
features.

• Sequence pattern learning module. It learns the sequen-
tial dependencies of individual trip sequences using a
sequence-to-sequence structure with a multi-head atten-
tion mechanism. It processes the historical and real-time
trip sequences separately (i.e. SVh and SVc ), and projects
them using the corresponding historical/real-time GRU
networks. The multi-head attention layer looks up the
historical trip sequence and finds the most relevant trip
sequence cn to the next trip prediction based on the cur-
rent trip sequence information hn and the prediction time
point tpτ . Finally, the selected historical trip sequences,
real-time trip sequence, and the prediction time point are
concatenated into a vector [cn, hn, tpτ ], serving as inputs
to the prediction module.

• Prediction module. The prediction module includes a
fully-connected neural layer with a softmax activation
function. It takes as inputs the projected trip sequence
vectors of all individuals and outputs the predicted infor-
mation of the off-board of an individual.

The proposed DeepTrip structure provides a unified frame-
work for dealing with both on-board and off-board prediction
problems, by formulating model inputs differently. For the
off-board prediction, the input for an individual u is the trip
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Fig. 3. Overview of the proposed framework. DeepTrip takes an individual’s trip sequence Su as input, divided into historical and recent sequences. Semantic
features of the travel attributes and sequential dependency are captured by the travel feature extraction and sequential pattern modeling modules. The attributes
of the next trip are predicted based on the combination of all the extracted features.

sequence Su . For the on-board prediction, oi+1, to,i+1, wi+1
are known. Therefore, the input for individual u is Su =

[(tr1, o2, to,2, w2), . . . , (trn , on+1, to,n+1, wn+1)].

C. Travel Feature Extraction Module

Trip attributes are represented by different data types, i.e.
discrete and continuous. o, d, and w are categorical data
(e.g. station number), while to is continuous. Existing studies
represent the time to using hourly time intervals, e.g. 7:00-
8:00 am [10], [22]. Let the time instance t0

i ≤ to,i ≤ t24
i ∈ T

be the starting time of trip i , which is between 0:00 AM and
24:00 PM of a day. The hourly interval representation of to,i
is:

hourly(to,i ) = int (
to,i − t0

i

t24
i − t0

i
× 24) (1)

where hourly(to,i ) is the hourly representation of trip start
time, and int (·) the floor function.

Although the hourly representation achieves good model
performance, it suffers from potential risks of losing important
features in temporal information. Theoretically, temporal infor-
mation includes both categorical and numerical features. The
categorical feature refers to the semantic relationship between
time points regardless of the magnitude of the time difference.

For example, the time difference between 7:30 AM and 8:30
AM or 6:30 AM are both 1 hour. However, the mobility pattern
at 8:30 AM is more similar to that at 7:30 AM compared to
that at 6:30 AM, since 7:30 and 8:30 AM are in the morning
peak while 6:30 AM is off-peak. The discrete representation
can capture such categorical features well. However, it ignores
the numerical feature of the temporal information and is
limited in capturing chronological dependencies. For example,
with the hourly interval representation, the interval difference
between 8:59 AM and 9:01 AM is the same as that between
8:01 AM and 9:59 AM. However, conceptually the mobility
pattern differences for these two cases could be substantial.
The numerical feature is important for capturing temporal

information, particularly for times around category boundaries.
In the following, we develop 4 alternative strategies represent-
ing trip attributes.

1) Embedding representation: Following the word2vec idea
[28], the categorical data is first represented using a one-hot
format and then transformed into a dense vector using a
one-layer linear neural layer. Compared to the direct one-hot
representation, the Euclidean distance between dense vectors
captures the semantic similarity and thus is more informative.
For each trip attribute that has a discrete form, an embedding
module is built to represent the raw data.

Continuous data can also be represented using the embed-
ding function after discretization, e.g. hourly interval repre-
sentation of to. After discretization, the temporal domain is
transformed into a finite number of points with each point
being well-trained during the training phase. Therefore, the
model with such a representation can fully capture the seman-
tic relationship between points. However, this representation
has two important drawbacks: a) the discretization interval
width is arbitrary and hard to determine. A large interval
width may lose feature variability within an interval while
a small one may decrease the signal-to-noise ratio (i.e. same
features are likely to be separated into different intervals due
to noise); b) the data near the interval boundary is discretized
into different categories although they are very close.

The requiring strategies are developed to represent contin-
uous trip attributes, especially the temporal information:

2) Normalized representation: the normalized representation
of to,i is:

normali ze(to,i ) =
to,i − t0

i

t24
i − t0

i
(2)

The normalized representation is a non-floor version of
the hourly interval representation, in which the time to is
transformed into a value between 0 and 1. The drawback
of the normalized representation is that it only considers the
numerical feature but lacks the categorical feature.
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Fig. 4. Structure of the projection model.

3) Projection representation: The representation based on
the projection model deals with the limitation of the previous
approach by transforming the continuous data into a dense vec-
tor representation that captures both numerical and categorical
features without discretized operations.

Figure 4 shows the projection model structure. It consists
of two parts. First, time is transformed using the normalized
representation. Second, a Multi-layer fully-connected Neural
Network with a Rectified Linear Unit (ReLU) activation
function takes the normalized value as input and projects it
into a multi-dimension dense vector.

Theoretically, a neural network is a universal approxima-
tor [29], and thus capable of capturing both categorical and
numerical features of the time information. The projection
process in Figure 4 is mathematically written as:

t ′ = normali ze(t) (3)
out1 = ReLU (t ′W1×K ) (4)

out i+1 = ReLU (out i W K×K ), for i = 1, 2, . . . , N (5)

where t ′ is the normalized value of time t , W1×K and W K×K
the weight matrices of stacked linear layers and out i the output
of the i th linear layer. K is a hyper-parameter that controls the
dimension of the output dense vector, and N is the number of
neural layers.

Although the projection model captures both the categorical
and numerical features of time, it may over-represent numeri-
cal features. In the problem studied in the paper, the numerical
feature of time is informative when the time points are close
indicating similar mobility patterns even if they may belong
to different categories (e.g. the above-mentioned 8:59 AM and
9:01 AM case). However, when the time points are further, the
mobility patterns are mostly dominated by categorical features
other than the numerical difference. In addition, the projection
model utilizes the original data which may lead to complex
optimization hyper-planes. Thus it is prone to fall into local
optimum solutions [30].

4) Overlapped embedding representation: To address issues
in the projection representation, we propose a novel overlapped
embedding model to capture the categorical and numerical
features of time and automatically switch between them in
the training process, to the one that better fits the nature of
the mobility prediction problem. A sliding window, with an
interval width lw and a step ls , is used to divide the day into
T overlapped time intervals {I1, I2, . . . , IT }, where Ii is the
i th interval. Then, the time point t is represented as a vector

Fig. 5. Example of overlapped representation of time points with ls = 5 min-
utes and lw = 1 hour.

V with dimension T using the following rule:

vi =

{
1, if t belongs to Ii

0, otherwise
(6)

where vi is the i th element of v.
Figure 5 shows an example of the overlapped embedding

representation. The sliding window width is 1 hour and the
step is 5 minutes. Given the T overlapped time intervals
starting at 7:00 AM, the time point 7:07 AM is represented as
[1, 1, 0, 0, . . . ] and 7:14 AM as [1, 1, 1, 0, . . . ]. Since 7:07
and 7:14 are very close to each other, only two cells of the
represented vectors are different.

After encoding the continuous data using the overlapped
representation, the encoded data is then fed into a linear layer
(Figure 3) to transform it into a dense vector. The overlapped
representation has three main advantages:

• It captures the mechanism of how the time variables
capture mobility similarities. If the two time points are
close, then most of the activated cells (i.e. cells with value
1) in the corresponding vectors overlap indicating similar
features. As the distance between the two time points gets
larger, the number of overlapped cells decreases until 0
(disjoint vectors). The categorical feature is gradually
dominating the numerical feature, only the categorical
feature contributes to the prediction.

• It is flexible and has less information loss compared to the
commonly used one-hot encoding method. As discussed
before, lw in the one-hot encoding can not be too small
(impact on signal-to-noise ratio), but loss of information
if it is too large. In the overlapped representation, lw
and ls are used to control the signal-to-noise ratio and
information loss separately. Even a small value of lw, e.g.
5 minutes can be used, without introducing much noise.

• It is more robust to noise compared to one-hot encoding,
especially for small interval length lw. For a feature
variable with observation noise, the one-hot encoding is
prone to assign it to the wrong category if the interval
lw is small. However, the overlapped representation is
robust even with a small interval length (e.g. 5 minutes
lw instead of 1 hour in Figure 4).

In summary, all the categorical data, e.g. origin station,
is represented by the embedding module. The continuous
trip attributes are represented by either of the above four
models. After the feature extraction, the original trip sequence
is transformed into a sequence of dense vectors. In the case
study in Section IV, we compare their performance in detail.
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D. Sequence Pattern Learning Module

The essence of the next trip prediction is modeling the
sequential pattern of an individual’s trip sequence. Recurrent
Neural Networks (RNN) are widely used to model sequential
patterns of time series data. However, they suffer from the
vanishing gradient problem for long sequence time series
data [31]. We use the Gated Recurrent Unit (GRU) [32]
to model the individual’s trip sequence. GRU is a variant
of Long-Short Term Memories (LSTM) and it has fewer
parameters than LSTM and thus converges faster [33].

In terms of the information to be used for prediction, both
the real-time and historical trip patterns are important, since an
individual’s next trip is highly related to recent trips and the
long-term dependency of trips captures the weekly/monthly
travel regularity. Given the different roles real-time and his-
torical travel patterns may play in prediction, an individual’s
whole trip sequence is divided into two sub-sequences: real-
time trip sequence Sc = [trk, trk+1, . . . , trn] and historical
trip sequence Sh = [tr1, tr2, . . . , trk−1]. These sequences are
processed differently with all the real-time trip sequences Sc
being used for prediction. However, instead of directly using
the whole historical trip sequence Sh , only the ones that are
most relevant to the current trip pattern are identified and used
(contributing to the next trip prediction).

To model the interaction between historical/real-time
trip sequences, we adopt a seq2seq model [34] coupled
with multi-head attention and pairwise time-pointer mech-
anisms [35]. The seq2seq model uses an encoder-decoder
structure consisting of two GRU networks. The encoder GRU
(historical GRU network in Figure 3) takes SVh as input and
outputs the hidden state vector hh

i corresponding to each vector
vi in SVh . The decoder GRU (real-time GRU network in
Figure 3) takes SVc as input. It not only outputs the hidden
state vector step by step but also passes the hidden state vector
to the encoder GRU at each step as a query to generate a
context vector (i.e. a vector containing the relevant historical
trip information) through a multi-head attention module.

1) Multi-Head Attention: The multi-head attention module
consists of a set of single attention modules (Figure 6). The
single attention module has been widely used in Natural
Language Processing (NLP) applications, such as Machine
Translation [36]. It generates a context vector cn as a weighted
sum of all the hidden states encoded by the encoder GRU
(Equation 7). The weights capture the similarity between each
encoder hidden state vector hh

i and the last decoder hidden
state vector hc

n , i.e. the hidden state vector corresponding to
trip trn .

We adopt the general similarity form described in [34]. The
attention weights are estimated through a Feedforward Neural
Network (FNN) followed by a softmax activation function.

cn =

k−1∑
i=1

wi hh
i (7)

wi = so f tmax(hh
i WAhc

n) (8)

where W A is a linear projection layer, hh
i WAhc

n represents
the general similarity. wi is the multi-head attention weight

of each historical hidden state vector hh
i corresponding to hc

n .
A larger weight value indicates a higher similarity. k − 1 is
the length of the historical trip sequence and cn the context
vector of the current time step.

The single attention module captures a limited semantic
subspace of an individual’s travel pattern (i.e. single trip
attribute). A trip is characterized by multiple trip attributes.
To capture the multi-aspect dependencies by trip attributes,
we utilize a multi-head attention mechanism to model the
joint interaction among different semantic subspaces of an
individual’s travel patterns. The multi-head attention module
has N parallel single attention modules (or heads). The final
context vector c′n is generated as a weighted sum of all the
context vectors from single attention modules:

r = so f tmax(Wq · hh
k−1) (9)

cn =

N∑
m=1

rm · cm
n (10)

where Wq ∈ RN×d represents the linear projection layer, hh
k−1

is the last hidden state of encoder GRU, N is the number of
attention head, cm

n is the context vector generated from mth
head (attention module), rm is the weight of cm

n .
A critical issue of the multi-head attention is that it leads to a

redundancy problem, that is, all heads may eventually capture
similar aspects of travel patterns. To avoid this problem,
a penalty term is added to the final loss function. The penalty
term penalizes the attention redundancy across different heads
and forces different heads to focus on different travel patterns.
It is calculated in two steps. First, for each head m, the average
attention weight of each historical trip is calculated:

δm
p =

1
M

M∑
t=1

wm
t,p (11)

where M is the sequence length of the decoder GRU, wm
t,p

the attention weight of the pth encoder hidden state over the
t th decoder hidden state. δm is the attention vector of the mth

head, where δm
= [δm

1 , δm
2 , . . . , δm

M ]
T . δms from each head are

concatenated to construct a matrix 1 = [δ1, δ2, . . . , δN
].

Then, the penalty term is calculated as follows:

Lp = ||1 ·1
T
− I ||2F (12)

where ||·||F is the Frobenius norm and I an identity matrix
with size N × N . This formulation penalizes the similarity
between attention vectors from different heads and forces the
Euclidean norm of each attention vector to be close to 1.

Finally, the total loss function is:

L = λLpred + (1− λ)Lp (13)

where, Lpred is the loss function of the mobility prediction
task. λ is a hyper-parameter that controls the weight of each
loss, with λ ≥ 0.

2) Pairwise Time-Pointer: For the next-trip prediction prob-
lem, the prediction time information (the time when the
prediction is made) is important to narrow down the solution
space in order to improve the accuracy and efficiency of the
prediction (as illustrated in Figure 1). It is challenging to
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Fig. 6. Structure of the multi-head attention module.

Fig. 7. Structure of pairwise time-pointer. The red bars represent the duration time of each trip, and the green bars the gap between two trips.

model the prediction time and incorporate it into the training
process since the prediction time is dynamic and random (i.e.
the next trip prediction can be made at any time in a day).
Also, different prediction times provide different information
for predicting the next trip given recent trips. We propose
a pairwise time-pointer mechanism to enable the multi-head
attention model to better select the relevant historical trips by
making the best use of the prediction time. This mechanism
also facilitates the model training process by systematically
simulating the random prediction times in practice.

Figure 7 illustrates the pairwise time-pointer definition. The
timeline shows the sequence of trips for an individual. The red
section indicates the duration of a trip and the green section
the gap between consecutive trips. The pairwise time-pointer
is composed of two sequences of time information, including
the trip gap time sequence and the randomized prediction time
sequence.

The off-board time-pointer is {tp1
g, tp2

g}, where tp1
g =

[g1, g2, . . . , gn] is a sequence of gap times between consec-
utive trips and gi = to,i − td,i−1. Each element of the gap
time sequence tp1

g is normalized to [0, 1] and concatenated
with its corresponding trip vector vi to formulate a new vector
(vi , gi ), which serves as the input to the GRU networks. The
prediction time tp2

g is generated as tp2
g = p × (to,n+1 − td,n)

where p is a random value from the uniform distribution
u(0, 1). It simulates a prediction conducted at a specific time
point between td,n and td,n+1. In the training process, the
randomized prediction time tp2

g is concatenated to hc
n and fed

into the attention module.
By using the time-pointer, each training sample instance

(i.e. trip sequence) is treated as conducting a prediction at the
given prediction time tp2

g . After convergence, a large amount
of prediction time points and the corresponding trip sequences
are simulated. Ultimately, the model will automatically learn
the best use of the prediction time in predicting the next trip.

The on-board time-pointer {tp1
τ , tp2

τ } in the sequence learn-
ing module behaves similarly to the off-board case. The
only difference is that the on-board time-pointer captures the
on-board trip attributes. Specifically, tp1

τ is the sequence of trip
duration times tp1

τ = [τ1, τ2, . . . , τn], where τi = td,i − to,i ;
and tp2

τ ∈ [to,n+1, td,n+1) is randomly sampled to simulate
the prediction time when an individual is on-board his/her
n + 1 trip.

E. Prediction

The output vector of the real-time GRU module hn , the
context vector from the multi-head attention module cn , and
the prediction time tp2 are concatenated into a new vector
(hn, cn, tp2). The prediction module takes as input the vector
(hn, cn, tp2) and outputs the predicted next trip information.
The prediction module is a NN network, consisting of a
stack of FNN layers. The cross-entropy loss is used as the
performance metric of the prediction task Lpred :

Lpred = −log

(
ex[True]∑

j ex[ j]

)
(14)

where ex[True]/
∑

j ex[ j] denotes the output probability of the
true class (e.g. the real origin station of the next trip) after
softmax.

F. Training Algorithm

Three DeepTrip models are trained to predict on+1, dn+1,
and to,n+1 in the off-board prediction and one DeepTrip
model to predict dn+1 in the on-board prediction. The training
algorithm for the on-board and off-board predictions is the
same except for the input trip sequence representations (as
mentioned in section III-B). Algorithm 1 summarizes the
off-board DeepTrip model training process. Note that in the
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on-board case, tp1
g and tp2

g in Algorithm 1 are replaced by
tp1

τ and tp2
τ , respectively.

Algorithm 1 Training Algorithm for DeepTrip (Off-Board)
Input: Set of trip sequences U
Output: Trained model for ai prediction
1: // constructing training set
2: U∗← ∅
3: for each training sample S in U do
4: calculate normalized tp1

g;
5: Sh, Sc ← divide(S);
6: U∗← (Sh, Sc, tp1

g);
7: end for
8: // training phase
9: while epoch < M AX_E P OC H do

10: count ← 0;
11: pred ← ∅;
12: for each instance (Sh, Sc, tp1

g) in U∗ do
13: SVh ← f eatureExtraction(Sh);
14: SVc ← f eatureExtraction(Sc);
15: for each vector vi in SVh do
16: vi ← (vi , gi )

17: end for
18: for each vector vi in SVc do
19: vi ← (vi , gi )

20: end for
21: H Sh ← encoder(SVh )

22: H Sc ← decoder(SVc )

23: random sample tp2
g ∈ [td,n, to,n+1);

24: cn ← multi Attn(H Sc[−1], tp2
g, H Sh);

25: pn ← concatenate(H Sc[−1], cn);
26: out ← so f tmax(F N N ( pn));
27: pred.append(out);
28: count ← count + 1;
29: if count = B AT C H_SI Z E then
30: calculate L = λLpred + γLp;
31: count ← 0;
32: pred ← ∅;
33: if criteria is met then
34: stop training; output trained model;
35: else
36: update model parameters θ ;
37: end if
38: end if
39: end for
40: end while

IV. CASE STUDY

We evaluate the proposed framework using the automated
fare collection (AFC) data from an urban metro system. The
system currently consists of 11 railway lines, serving 91 heavy
rail stations and 68 light rail stops. It serves over 5 million
trips on an average weekday. For the urban heavy rail lines,
trip transactions are recorded when passengers enter and exit
the system, providing information about the tap-in and tap-
out stations and corresponding timestamps. Individual trip data

using the urban heavy railway (metro) from January 1st to
March 31st in 2018 is used.

To validate the model performance, we select a random
panel of 20,000 individuals who made at least 90 trips during
the studied period (i.e. one trip per day on average). The trip
attribute tuple includes origin station o ∈ [0, 90], destination
station d ∈ [0, 90], day of the week w ∈ [0, 6], and
tap-in time to ∈ [0, 23]. These attributes are represented as
categorical variables for comparison with the state-of-the-art
models in the literature. Note that for DeepTrip, we use the
proposed overlapped embedding to represent to. Each trip can
be characterized by a trip attribute tuple (o, d, to, w), and
the individual’s trip sequence is captured by these tuples in
chronological order.

To increase the size of the training sample, We utilize a
sliding window of width n to generate the trip sequence sample
instances from the individual’s trip sequence. Specifically,
given an individual’s trip sequence Su = [tr1, tr2, . . . , trN ],
each trip sequence sample Ssample is generated as Ssample =

[tri , tri+1, . . . , tri+n−1] with i ranging from 1 to N − n + 1.
Accordingly, an individual with N trip records results in
N − n + 1 trip sequence sample instances. For each sample
instance, the prediction time information is generated based on
the random-sampling method, i.e. randomly choosing a time
point between the last two trips.

These trip sequence sample instances are used as model
input in the case study. We use a window width n = 70 as
95.2% of the individuals in the panel have less than 70 trips per
month. The width 70 adequately captures the periodic features
of an individual’s travel behavior (both weekly and monthly
patterns). Finally, 1,386,872 trip sequence sample instances are
generated. Samples generated from 80% of the individuals are
used for training and the rest 20% for testing. For each sample,
the travel attributes of the last trip (i.e. o, d, and to) are set as
the prediction target.

The experiments are designed to validate the proposed
DeepTrip model performance by comparing the results with
the results from state-of-the-art statistical and deep learning
models, as well as explore the impact of feature representa-
tion and prediction time information on the DeepTrip model
prediction performance. We use the fraction of the correctly
predicted trip attributes as the performance metric to evaluate
the model prediction accuracy:

Accuracy =
Nright

Ntotal
(15)

where Nright represents the number of sample instances with
the correct prediction, and Ntotal denotes the total number of
sample instances.

A. Model Validation and Performance Comparison

We build 3 DeepTrip models for o, d, and to prediction,
respectively. The model structures are the same, the only
differences are the output and the training target.

We compare the proposed DeepTrip model with 4 base-
line models in the literature: the Mobility Markov Chain
model [15], the Mobility N-Gram model [9], the Deep-
Move [10] model, and the MobTCast [24] model. The Markov
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TABLE II
MODEL CHARACTERISTICS

Chain and N-Gram models are classic statistical models, while
DeepMove and MobTCast are deep learning-based models.
The main differences between these models are summarized
in Table II. The prediction target represents the model′s predic-
tion outputs, either the next trip (multi-attributes) or location
only. The temporal representation is the data representation
method for the temporal information of trips. The prediction
time represents the model’s ability to capture the prediction
time information and make predictions at arbitrary times.

Besides evaluating the whole test set (i.e. overall evalua-
tion), each model is verified under 3 more scenarios, which
are defined based on the length of the gap time gn+1 between
the start time of the predicted trip and the previous trip end
time.

• Short-term prediction: gn+1 < 2h;
• Medium-term prediction: 2h ≤ gn+1 < 24h;
• Long-term prediction: gn+1 ≥ 24h.

To make a consistent comparison across the different mod-
els, the following settings are used:

a) Mobility Markov Chain model. The first-order Markov
Chain model showed the best prediction performance
among other Markov Chain model structures;

b) Mobility N-gram model. The settings of the mobility
N-gram model were identical to the ones used by the
authors [9];

c) MobTCast. MobTCast is a transformer-based model,
2 layers of transform blocks are used which achieve the
best performance;

d) DeepMove. The hyper-parameter settings are shown in
Table III. For a fair comparison with the DeepTrip model,
added the gap time information between consecutive trips
tp1 into the DeepMove model.

f) DeepTrip. The off-board DeepTrip model is used in
this evaluation since its input trip tuple has the same
formulation as the above models. The DeepTrip model
used the same hyper-parameter settings as the DeepMove
(Table III). The results of DeepTrip in Table IV is the
mean value of the accuracy under the prediction time
ranging from 1% to 100% of the gap time gn+1.

Table IV compares the prediction results of the next trip
attributes by prediction gap times. Generally, all models
perform better for medium-term prediction than short- or
long-term predictions. This could be attributed to the travel
regularity and training sample size. The medium-term scenario
exhibits the best results since most commuting trips are within
24 hours from the last trip, which is more regular and provides
large samples for the model to learn.

TABLE III
SETTINGS FOR DEEPMOVE AND DEEPTRIP

TABLE IV
PERFORMANCE EVALUATION

Among those models, the deep learning-based models out-
perform the statistical-based methods by around 10% for
predicting o and d and 5% for to. Surprisingly, The MobTCast
model exhibits marginal performance improvement compared
to the GRU-based DeepMove model in the next trip prediction.
This is different from the model comparison results for the
GPS-based location prediction problem in [24]. It indicates
that a large model (MobTCast) may not necessarily perform
better than a small model (DeepMove). The possible reasons
could be two-fold: 1) the MobTCast model size (or capacity)
is much redundant for the studied problem that could be prone
to the overfitting issue; 2) the studied problem and dataset have
regular mobility patterns, which results in low model uncer-
tainty and thus favor a small deep learning model. We provide
further experimental analysis and literature evidence to support
these arguments in the supplementary information file.

The proposed DeepTrip model outperforms the DeepMove
model, increasing the accuracy by around 2%. These results
indicate that incorporating the prediction time information
plays an important role in predicting individual mobility.
Also, it can be seen that the improvement in the accuracy
of predicting to (around 3%) is higher than the other two
trip attributes. That is because the prediction time information
provides a hard constraint on the candidate tap-in times given
the fact that the next tap-in event will happen later than the
prediction time.

B. Ablation Experiment

To evaluate the effectiveness of each module contained
in the proposed DeepTrip model, we conduct the ablation
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TABLE V
ABLATION EXPERIMENT RESULT

experiment which evaluates the model performance by gradu-
ally incorporating the modules:
• GRU: use one single GRU.
• Seq2seq: use the seq2seq structure which contains an

encoder GRU and a decoder GRU.
• Seq2seq+Attn: Seq2seq structure combined with the

attention module.
• DeepTrip: incorporates the random-sampling training

method into Seq2seq+Attn, which is the original form
of DeepTrip.

Table V summarizes the ablation experiment results. In gen-
eral, the DeepTrip model outperforms all its variants in pre-
dicting the next trip attributes. The GRU model yields the
worst performance, as inputting the whole sequence into one
single GRU makes it indiscriminate of the history and recent
travel patterns which would mislead the model in sequential
pattern learning. The prediction performance slightly improves
when the Seq2seq structure is used which separates the history
and recent travel pattern information. The incorporation of the
attention module boosts the performance (1.3% for o, 2.4%
for d , and 2.9% for to) over Seq2Seq. The reason is that the
attention module offsets the GRU’s poor ability to handle long
sequences. The DeepTrip model achieves the best prediction
performance by taking advantage of the Seq2seq+Attn model
and using the prediction time information. Incorporating the
prediction information improves the model performance by
1-3% for each attribute compared to not. In all, the results
highlight the importance of the attention mechanism and the
prediction information in the DeepTrip model.

C. Impact of Data Representation

The data representation (discrete or continuous) is impor-
tant for prediction. We evaluate the impact of the different
representation approaches (normalized, embedding, projection,
and overlapped) on the DeepTrip model prediction accuracy.
The first three approaches are commonly used in the literature
and the overlapped model is proposed to capture both the
categorical and numerical features of the continuous variable
(i.e. to).

Table VI summarizes the prediction results with the different
representation models. The With_pred scenario incorporates
the prediction time information, while the No_pred does not.
The o, dof f , and to are the origin station, destination station,
and tap-in time in the off-board prediction, while the don is
the destination station in the on-board prediction.

The results show that the models using the prediction time
information perform better than those without using such
information, particularly for predicting the next trip time to

TABLE VI
PREDICTION PERFORMANCE OF THE DEEPTRIP MODEL WITH DIFFERENT

REPRESENTATIONS OF to

(3%) and next day of travel w (8%). Compared to the off-
board prediction, the prediction time information contributes
much less to the on-board prediction.

Comparing different representation models, the normalized
representation performs the worst due to its poor ability in
modeling the categorical feature of the temporal information.
The overlapped representation performs the best in predicting
to and don . These two attributes are sensitive to the temporal
information representation as the model predicts exactly the
time point to and the on-board destination prediction don is
influenced by the departure time. For to prediction, an inap-
propriate representation of time may predict two closed time
points to two different time intervals. For don prediction,
a slight difference in the departure time may probably result in
different destinations. The proposed overlapped representation
captures both the categorical and numerical features of the
temporal information that better fits the next trip prediction
problem characteristics. However, the overlapped representa-
tion performs slightly worse in predicting o and dof f than
the projection and embedding representations. This is partly
because the off-board prediction of origin/destination stations
is less sensitive to temporal information and thus hardly
benefits from the overlapped representation. Instead, it may
get worse due to the fact that more parameters are introduced.

D. Impact of the Prediction Time Information

The contribution of incorporating prediction time informa-
tion varies depending on the prediction context. For example,
if the prediction is conducted just few minutes after the end
of the last trip, the prediction time adds little information and
hence, does not improve the accuracy of the prediction of
the next trip. However, if the prediction time is far from the
last trip ending time, it benefits the prediction by filtering out
certain candidate trips.

We assess the impact of prediction time information on
model performance as follows: First, we train the DeepTrip
models for all trip attributes for the on-board and off-board
problems. Then, we simulate the actual prediction for different
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Fig. 8. Prediction performance as a function of different percentages of
prediction time. dof f and don represent the prediction of d in off-board and
on-board scenarios, respectively.

values of tp2
g = p × (to,n+1 − td,n) and tp2

τ = p × (td,n+1 −

to,n+1), with p ranging from 0% to 100%. p = 0% means
that the prediction time is equal to the end of the nth trip,
while p = 100% means that the prediction time is equal to
the start time of the next trip (i.e. n + 1th trip). Figure 8
shows the prediction accuracy for o, d, and to predictions
as a function of the prediction time. We also trained the
corresponding DeepMove models as a benchmark for the
analysis. The DeepMove prediction accuracy is also shown
in Figure 8.

Figure 8 shows that the prediction accuracy of DeepTrip
keeps increasing with the increase of p, i.e. the time gap
between the prediction time point and the previous trip ending
time (off-board prediction) or the current trip starting time
(on-board prediction). The DeepTrip model performs slightly
worse than the DeepMove model in the beginning when the
prediction is made immediately after the last trip is finished
(or tap-in). A possible reason could be that the prediction time
hardly provides useful information for the next trip prediction
when it is close to the end of the last trip. In such cases, from
an algorithmic perspective, the DeepTrip model trained using
the less important prediction time information is less efficient
than the DeepMove model with no such information.

The DeepTrip model outperforms the DeepMove model
when the p exceeds 20%, reaches its peak when the p
is around 70-86%, and then starts to drop after that. The
performance degradation for p close to 1 can be attributed
to the fact that the correct next trip may be filtered out if
the prediction time is too close to the tn+1

b . Figure 9 provides
an example to illustrate the potential impact of prediction time
information. It shows the actual distribution of the start time of
the next trip. When the prediction time is close to the last trip
(i.e. t1

pred ), the DeepTrip algorithm could filter out impossible
candidate trips without affecting the likelihood of the next trip.

Fig. 9. Illustration of the impact of prediction time information.

However, if the prediction time is t2
pred , the next trip tr i pn+1

would be filtered out given its small probability to happen,
which may lead to a false prediction result.

V. CONCLUSION

This paper presents an individual next trip prediction
framework. The deep learning-based structure facilitates cap-
turing multi-dimensional mobility patterns. The proposed
time-pointer mechanism and random-sampling training algo-
rithm simulate the prediction time information during the
training phase. Compared with both classical machine learning
models and state-of-the-art deep learning models, the proposed
framework improves performance. The prediction accuracy is
around 81% for origin locations, 62% for destination locations,
and 47% for trip origin starting times, a 2-3% increase from
the current SOTA model. This indicates that incorporating
prediction time information is essential for the next trip predic-
tion. We also propose variants of trip attribute representation
to broaden the generalization ability of the framework. Four
alternative strategies are proposed to extract the temporal
information from different representation forms and evaluated.

The case study based on real-world data provides valuable
insights. The prediction accuracy increases as the prediction
time approach the departure time of the next trip. Our empiri-
cal results indicate that the best prediction performance could
be obtained when the prediction time is around 80% of the
off-board/on-board time. The model can also predict the next
trips happening across days, not necessarily daily.

There are a number of promising directions for fur-
ther research. Developing models that could capture the
domain-specific information (e.g., the spatial similarity of
activities) is an interesting direction. The proposed framework
mainly focuses on frequent passengers since the advantage
of the deep learning-based framework is based on mining
complex long-term mobility features. Predicting infrequent
users’ mobility patterns is a challenging problem that may
be worth exploring.
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