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Nonlinear Regression-Based GNSS Multipath
Dynamic Map Construction and Its
Application in Deep Urban Areas

Yongjun Lee , Graduate Student Member, IEEE, Pai Wang , and Byungwoon Park , Member, IEEE

Abstract— GNSS signals are easily blocked or degraded
because of the dense presence of high-rise buildings in urban
areas, and positioning errors arising from reflected signals
amount to as much as hundreds of meters. Various conventional
GNSS techniques have been utilized to resolve this problem, but
applying them to urban environments has been difficult owing
to the complexity of the reflected signals and their unpredictable
and nonlinear variation to the signal receiving environments.
In this study, multipath maps were generated for dynamic users
at multiple positions on a road and a residual-based map selection
algorithm was implemented to solve the problem of user position
uncertainty in deep urban environments. GNSS data collected
over a period of 327 min were used to train the multipath
maps corresponding to 247 points near the 2.5 km stretch
of the Teheran-ro road in Seoul, South Korea. The proposed
system performed efficiently—it was verified to be capable of
constructing a multipath map with a radius of 25 m using
only 4 min of data. Moreover, it improved positioning accuracy
by 45 % horizontally and by 80 % vertically, enabling the
determination of the positional information of an urban vehicle
with a horizontal accuracy of 18 m during 99% of the duration
of a one-hour-long dynamic test. Due to the nonreliance of
the proposed method on prior information or implementation
of additional sensors, it is expected to be widely used for
constructing map-based multipath mitigation models as part of
intelligent transportation infrastructure in all cities in future.

Index Terms— Deep urban area positioning, global navigation
satellite system, multipath, non-line-of-sight error, support vector
regression.

I. INTRODUCTION

GLOBAL navigation satellite systems (GNSSs) are widely
used in positioning, navigation, and timing services [1]
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and are expected to be utilized as underlying technology in
intelligent transportation systems (ITS) [2]. With the growing
popularity of location-based services for citizens, e.g., smart
devices, car navigation, and autonomous vehicles, the use
of GNSS-based services has rapidly increased in densely
populated urban areas. However, despite the concentration
of GNSS-based services in urban areas, the signal recep-
tion environment in such regions is not favorable to GNSS,
which makes its performance inaccurate, unreliable, and not
robust. Satellite signals are consistently blocked, reflected,
and diffracted by densely packed skyscrapers, which induce
measurement errors known as multipath and non-line-of-sight
(NLOS) errors. Multipath and NLOS errors are distinguished
by whether a direct signal is received or not, and the error
margins resulting from the two types of reception are quite dif-
ferent [3]. As reflected signal errors are site-specific errors that
depend sensitively on surrounding environments and directions
of satellite reception, they are very difficult to mitigate or
model. In particular, the site-dependent nature of reflected
GNSS signals makes them a dominant source of error in urban
canyons—reflection against vehicles and buildings may cause
positioning errors exceeding 100 m in some cases [4].

Unlike common GNSS errors, multipath and NLOS errors
are site-dependent and cannot be eliminated using differential
techniques, such as real-time kinematic (RTK) or differen-
tial GNSS (DGNSS). Various techniques have been used to
achieve accurate and robust determination of positioning in
urban canyons, which has been one of the most challeng-
ing issues in the field of GNSS for a long time. Classi-
fication and exclusion of reflected signals is a commonly
implemented method. Increment of the number of GNSS
signal sources are substantially improving the accuracy of
conventional GNSS positioning even when reflected signals,
especially NLOS ones, should be identifed and excluded [5].
However, while reflected signals are usually of low strength,
this may not always be the case in an urban area. In fact,
signals reflected by windows of buildings, for instance, are
occasionally stronger, making strong NLOS signals difficult to
be distinguished from direct or LOS signals [6]. Techniques
based on consistency checks of range measurement redun-
dancy, e.g., receiver autonomous integrity monitoring (RAIM),
cannot be implemented in urban environments easily to detect
NLOS receptions either. This is because RAIM assumes that
no more than one failure is detected at a time, which is not
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true in urban environments—most signals received in an urban
canyon are easily corrupted by multipath and NLOS errors [7].
Smoothing techniques based on carrier phase variation [8],
[9] also enable more accurate positioning, but they require an
accurate absolute position solution and a sufficient number of
good signals for initialization [1], which are impractical and
challenging requirements in urban environments [6].

The growing interest in machine learning and the potential
of its application has also motivated several studies on its uti-
lization in GNSS [10]. Machine learning-based techniques are
tolerant of imprecise, partially incorrect, or uncertain data [11],
and have the potential to detect relationships between data
with high complexity, time variance, and nonlinearity that
could not be modeled using explicit equations in physics or
mathematics [12]. Compared to statistical methods, machine
learning-based techniques enable us to identify dependencies
in datasets whose underlying models have not been prop-
erly determined using exploratory analysis [10]. The most
recently studied machine learning-based urban positioning
technique was the multipath/NLOS signal classification tech-
nique. Machine learning-based techniques usually label the
data based on the output of the receiver correlator or satellite
measurement-based features and then classify the received
signal following training. The signal correlator output [13],
carrier-to-noise ratio (C/N0) obtained via right hand circular
polarized (RHCP) and left hand circular polarized (LHCP)
antennas [14], and satellite elevation angles have been used as
input features during training, and various machine learning-
based techniques such as neural network (NN), support vector
machine (SVM) [13], decision tree (DT) [14], and k nearest
neighbors [15] have been used to train the classification
process. Recently, extraction of more accessible features from
GNSS measurements has been attempted, and Doppler shift
has emerged as a key feature in the classifier.

Various studies have been conducted to improve urban
GNSS accuracy by combining machine learning-based classi-
fiers with conventional GNSS positioning systems to mitigate
the effect of reflected errors using probabilistic results obtained
from classifiers. For instance, shadow matching performance
was improved by excluding problematic satellites based on
satellite visibility trained using SVM [16]. A multi-feature
support SVM signal classifier was also suggested to improve
the weighting scheme for GNSS measurements [17]. Owing
to the advantage of better interpretation of the quality of
GNSS observations based on features identified by the SVM
classifier, the proposed weight scheme was observed to be
superior to the traditional weight scheme in terms of modeling
NLOS errors in GNSS measurements in urban environments.
A convolutional neural network-based NLOS discriminator
was also proposed to classify signals and modify the weight-
ing method based on NLOS probability [18]. However, this
method cannot ultimately eliminate reflected signal errors—it
merely unweights them. So, it cannot serve as a solution for
large multipath errors of hundreds of meters.

Machine learning-based techniques that estimate reflected
signal errors directly improve accuracy by eliminating
reflected signal errors without diminishing availability.
Multipaths were directly connected by applying the iterative

properties of satellite orbits to machine learning in [19].
The conclusions of the study demonstrated that training a
multipath estimation model using the multipath character-
istics based on the repetitive satellite orbit of each satel-
lite improves positioning accuracy compared to the general
smoothing technique in an open-sky environment. The study
modeled multipath signals based solely on the elevation
and the azimuth of satellites in an open-sky environment
instead of modeling urban multipaths based on complex and
nonlinear characteristics. Another study proposed two varia-
tions of an algorithm for a gradient boosting decision tree
(GBDT)-based pseudorange error prediction model based on
elevation angle, C/N0, and pseudorange residuals to improve
determination of position [20]. Its results demonstrated that
although multipath/NLOS signal exclusion improves accuracy,
it was sensitive to both the proximity and the geometri-
cal configuration of the receiver and signal reflectors or
blockers.

Multipath precomputation using 3D building information
and ray-tracing technique was introduced to reduce the NLOS
multipath impact [21]. While it was efficient enough to be run
on a smartphone, LOS multipath could not be calculated and
there is bound to be a difference between the theoretically
simulated value and actual multipath error. In our previous
work [22], a support vector regression (SVR)-based multipath
model was proposed using real GNSS data and the relative
geometry between users and satellites in deep urban areas.
We generated a multipath map based on the azimuth and
the elevation of each satellite using the directly extracted
and estimated GNSS multipath error. An application of the
error map to static users in deep urban areas exhibited a root
mean square (RMS) error of less than 20 m. The proposed
model was applicable to all multipath/NLOS/LOS signals
without requiring classification of signal types and it directly
eliminated ranging errors induced by the presence of reflection
signals in pseudorange measurements. Since the distinction
between multipath and NLOS error is meaningless for the
suggested method, we collectively refer to both errors induced
by these two reflected signals, i.e., LOS and NLOS signals,
as multipaths.

Based on the previous results, this study proposes to gen-
erate multiple multipath maps for a dynamic user and to
search an appropriate map despite user position uncertainty.
In addition, the error model modification technique based on
a building geometry is suggested to efficiently use the limited
amount of data for realistically training the reflection error
models. Training and test data were collected on roads in Seoul
with the highest concentration of high-rise buildings to ensure
the effectiveness of the model in environments with severe
reflection signal reception. Finally, the position availability and
accuracy of the error maps are also analyzed. The contributions
of this paper are:

1. Construction of multipath maps at multiple points for
dynamic users on straight roads and intersections in deep
urban area

2. Efficiency improvement by the suggested map modifica-
tion technique that enables small amount of GNSS data
to train realistic multipath error models
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3. Resolution of user position ambiguity when selecting a
valid map among the generated multiple multipath maps

The remainder of this paper is organized as follows.
In Section II, the multipath extraction methodology and model
training are described. In Section III, the GNSS multipath map
generation and adjustment algorithm for efficient dynamic map
construction is introduced. Further, a dynamic map selection
algorithm on the user side is presented and the field test results
in urban canyons are examined. Finally, Section IV presents
the discussion and conclusions.

II. METHODOLOGY

A. GNSS Observables and Multipath

GNSS code measurements represent the range obtained
by multiplying the propagation time of the signal from the
satellite to the receiver by the speed of light. The pseudorange
code measurement of the i th satellite at time t can be modeled
using (1).

ρi (t) = d i (t) +

(
B (t) − bi (t)

)
+ I i (t)

+ T i (t) + M i
+ ϵi

ρ (1)

where d denotes the distance between the receiver and the
satellite, and B and b denote the receiver and satellite clock
errors, respectively. I, T , and ϵρ denote the ionospheric error,
tropospheric error, and noise, respectively. The superscript
i indicates the pseudo-random noise (PRN) number of the
satellite.

A reflected signal can distort the GNSS correlation peak
generated by a direct signal, which can induce multipath
interference amouting to half of a ranging code chip—
approximately 150 m maximally [8]. On the other hand,
when an NLOS signal is received in the absence of a direct
signal, the receiver perceives it as the direct signal, inducing
errors with no upper limit that can easily be as much as
several kilometers. Thus, the ranges of the errors induced by
LOS multipath interference and NLOS reflected signals are
quite different; however, the two error terms are included in
measurements in the same format and cause positioning errors
in the same manner. In this paper, errors induced by both types
of reflected signals, i.e., LOS and NLOS signals, are referred
to as multipaths (M).

GNSS common errors in the pseudorange, that is, atmo-
spheric and satellite-related errors, can be mitigated via cor-
rection messages and pseudo-range correction (PRC, prc).
Reference station-free PRC is effective and convenient for
vehicles with wide mobility, and corrections (prcSB AS) from
a satellite-based augmentation system (SBAS) were used in
this study, as included in (2). Because multipaths are site-
dependent errors, the multipath error is still included in the
corrected pseudorange (ρ̃).

ρ̃i (t) = ρi (t) + prci
SB AS (2)

To provide accurate positional information to GNSS users in
urban areas, multipath errors should be properly modelled and
removed. Prior to multipath modelling, the multipath-induced
errors in the GNSS observations should be extracted. The

multipath for each satellite can be calculated using (3), and
calculation of the distance to the satellite (d̂ i ) based on
the rover’s calculated position, estimated clock biases of the
receiver (B̂), and the satellite (b̂i ) are necessary to extract the
multipath. If the rover’s position is not computed accurately,
the accuracy of the distance and the clock bias are affected in
the chain, resulting in inaccurate multipath error calculation
using (3). Therefore, the extracted multipath in urban areas
cannot be guaranteed to conform closely to reality.

M i (t) ≈ ρ̃i (t) − d̂ i (t) −

(
B̂ (t) − b̂i (t)

)
(3)

B. Multipath Extraction Methodology
Inaccurate determination of position in an urban area not

only results in inaccurate distance calculation, but also ulti-
mately induces inaccurate estimation of receiver clock error.
When an external reference device is used, the distance d̂ i can
be computed with relatively small errors, whereas the clock
bias B̂ (t) is not accurate owing to complications caused by
the associated multipath error and cannot be independently
computed based on the position of the external reference.
Our previous study demonstrated that the clock bias estimated
based on the least-square position, B̂ls (t), is too biased and
noisy to enable the extraction of unbiased multipath error from
GNSS observables in environments with severe reflected signal
reception [22].

Given that the multipath and clock bias estimation influence
each other, this study estimated clock bias using high-elevation
satellites with little risk of severe multipath error. The quasi-
zenith satellite system (QZSS), a dedicated regional Japanese
satellite system, is a good option for reliably estimating clock
bias with little interference from multipaths. Because the signal
from QZSS is transmitted from the near-zenith direction with
an elevation angle more than 70 ◦ in the Asia-Pacific region
[23], which can be reasonably assumed to be high enough for
the signal to remain unaffected by multipaths, receiver clock
bias can be calculated using (4).

B̂∗ (t) ≈ ρ̃∗ (t) − d∗ (t) + b∗ (t) (4)

where the superscript, ∗, denotes a high-elevation QZSS
satellite.

Now, replacing B̂ in (3) with B̂∗ obtained from (4)
enables the extraction of unbiased multipaths free from δ B̂ls ,
as described in (5).

M i (t) ≈ ρ̃i (t) − d i (t) −

(
B̂∗ (t) − bi (t)

)
(5)

QZSS was originally designed to complement the visibility
and performance of GPS in urban canyons. To effectively
improve satellite availability for the combined GPS+QZSS
system [24], the QZSS clock is synchronized to GPS time,
which enables QZSS clock bias estimates to be used for GPS
multipath estimation without any adjustment. However, to esti-
mate the multipath errors of other GNSS satellites than GPS or
QZSS, it is necessary to compensate for the clock difference
between GNSS and GPS/QZSS systems. After computing the
time difference, T OG N SS|Q Z SS , between the two systems with
respect to a nearby reference station, as described in (6), the
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multipath errors of other GNSSs can be obtained using (7).

T OG N SS|Q Z SS = BG N SS − B∗ (6)

M i
G N SS (t) ≈ ρ̃i (t) − d i (t)

−

(
B̂∗ (t) + T OG N SS|Q Z SS − bi (t)

)
(7)

C. Multipath Estimation Model Training

GNSS signals transmitted from satellites along the same
direction follow identical paths after being reflected against
obstacle surfaces near the user’s position. The multipath esti-
mation model proposed in this paper predicts multipath assum-
ing that the multipath distribution is determined by the relative
position of the satellite with respect to the prediction point.
The model is generally applicable to all satellites without
requiring prior classification of multipath/NLOS/LOS signal
types and is capable of predicting errors caused by reflected
signals of all received satellites Asumming that the user’s exact
position is known, the multipath error (M i

G N SS) is expressed
as a function of the elevation (El i ) and azimuth (Azi i ) angles
of the i-th satellite, as given by (8).

M i
G N SS = f (El i , Azi i ) (8)

The training data were taken to be {(x⃗1, y1) , . . . ,

(x⃗n, yn)} ∈ R2
×R, where the input data x⃗ is a set of elevation

and azimuth angles, and y denotes the multipath extracted
using Eqs. (5) and (7). The multipath estimation model is given
by (9):

f (x⃗) = ⟨w, x⃗⟩ + b (9)

where w ∈ R2 denotes the weighting vector, and b ∈ R
denotes the bias vector.

The multipath estimation model was trained using SVR,
which is a regression based on the SVM technique. SVM
solves binary classification problems by formulating them
as convex optimization problems, which entails estimating
the maximum margin separating hyperplanes. The general-
ization of SVM to SVR is accomplished by introducing an
ϵ-insensitive region around the function, called the ϵ-tube [25].
The optimization problem can be expressed by (10).

minimize
1
2

∥w∥
2
+ C

∑N

i=1
(ξ + ξ∗)

subject to


yi − ⟨w, xi ⟩ − b ≤ ϵ + ξ

⟨w, xi ⟩ + b − yi ≤ ϵ + ξ∗

ξ, ξ∗ > 0
(10)

where the constant C > 0 determines the tradeoff between
flatness (a small w) and the degrees to which the deviations
larger than ξ are tolerated, and ξ and ξ∗ are slack variables.
After solving the optimization problem [26], the regression
model can be expressed using (11):

f (x) =

∑N

i=1
wi K (x, pi ) + b (11)

where pi denotes a support vector, and K denotes a kernel
function. In this study, the Gaussian kernel given by (12) was
selected because of its ability to handle nonlinearity [18].(

xi , x j
)

= exp(−

∥∥x i − x j
∥∥2

2σ 2 ) (12)

Fig. 1. Multipath dynamic map generation points on teheran-ro (Seoul, South
Korea).

III. RESULTS AND DISCUSSION

A. Multipath Dynamic Map
Our previous study [22] suggested GNSS error mitigation

technique using a multipath map which is defined as a polar
contour-type map that indicates the estimated multipath for
each elevation and azimuth angle 360◦ around one site. The
estimated multipath on the map was trained using the relative
position information of the user and the satellite. The model
appropriately reflected the geometry of buildings near a static
user in a deep urban area, and thus GNSS data collected
over three hours—one hour each on three different days—
were effective in improving the accuracy of static positioning
in urban areas by 58.4 % horizontally and 77.7 % vertically,
achieving an accuracy of 20 m in deep urban areas in Teheran-
ro, Seoul [22]. The result showed the trained map was feasible
to effectively mitigate each satellite error based only on the
satellite elevation and azimuth angles in deep urban area
regardless its constellation.

However, when the mobility of vehicles is considered, the
multipath map at a static point becomes ineffective as an
ITS technology. To improve the GNSS accuracy of a vehicle
passing through the middle of an urban canyon, multipath
maps should be continuously constructed at multiple points
on the road, which is named as a multipath dynamic map.
Collecting data from the as many points with as long durations
as possible would enable the construction of a dynamic map
almost continuously. However, the associated increase in big
data can eventually lead to a significant increase in cost.
Therefore, this study focuses on finding an efficient method
that can be applied to resolve this problem practically in future
traffic systems.

First, it is necessary to design the spacing between the map
construction point effectively. Perception of a series of discete
maps as a continuous map is dependent on resolution, i.e.,
the distance over which the user can no longer distinguish the
difference between successive maps even when the spacing
between them is reduced further. Based on the 20 m RMS
error of the user’s horizontal position obtained in the previous
static multipath study, user position accuracy can be expected
to be slightly lower after the dynamic multipath map was
applied —between 25 m and 30 m, approximately. Assuming
that the horizontal positional error follows a Gaussian distri-
bution, 95 % of the user’s location would be distributed within
approximately 50 m of the actual value. Therefore, even if the
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Fig. 2. GNSS data collecting vehicle.

spacing between successive maps were taken to be less than
50 m, the user is highly likely to be unable to apply the map
that fits its position most closely. Thus, the spacing between
the reference points for map construction was taken to be 50 m
in this study.

The second requirement is the capability of constructing
dynamic maps based on a small amount of data. Further, the
data collecting vehicle must move continuously on the road
where the speed limit is 14 m/s (50 km/h), only 3.6 s can be
allocated to data collection for each map during a single run
unless waiting for a signal or slowing down traffic.

B. Multipath Dynamic Map Generation

We set multiple points to generate dynamic multipath maps
on several roads and intersection in the Gangnam-gu, Seoul,
near our target road, Teheran-ro. The target road was approx-
imately 2.5 km long and 50 m wide from the Samseong to
Gangnam subway stations and hosts several buildings that are
80 m or higher. The spacings between points corresponding to
successive maps were set as 50 m to maintain a valid range for
users using the dynamic multipath map. A total of 247 points
were set on the roads in Gangnam-gu, and 53 points were
located on the target road.

To collect the training data, a vehicle equipped with a
GNSS receiver and a reference system was used, as depicted
in Fig. 2. A U-blox ZED-F9P receiver was mounted
on the vehicle to receive and store multi-constellation
single-frequency pseudorange observables of GPS/GLONASS/
BeiDou/GALILEO/QZSS in receiver independent exchange
format. The mounted NovAtel SPAN-CPT equipment provided
a continuous true reference trajectory of the vehicle in the
National Marine Electronics Association (NMEA) format,
even when GNSS signal reception was compromised.

Seven training datasets were collected at different times on
different dates to construct the multipath estimation model at
each map generation point, as detailed in Table I. GNSS data
were logged over a period of 45 min approximately for each
data set, and data collected over a total duration of 327 min
were used for model training at 247 points.

Trajectories of seven training data and test data, and
247 map generation points are shown in Fig. 3. Training data
were collected from trajectories passing through various roads
in Gangnam-gu area to generate various maps with different
road directions, and test data were collected around the target

TABLE I
TRAINING DATASETS

Fig. 3. Data collection trajectories and map generation point.

road. The logged training data was used to train multipath
estimation model of the nearest generation point based on the
reference trajectory.

The logged training data sets were used to train multipath
estimation model and generate the multipath dynamic maps
at the 247 points. The size of collected data was not uniform
depending to the map generation point owing to partial traffic
jams and signal waiting. After make-up drivings at relatively
insufficient data collecting areas, the collected data sizes were
mostly evenly distributed over the 53 points in target road,
which is approximately 4.4 min data as illlustrated in Fig. 4.
Compared to our previous study [22], a single multipath map
for dynamic users was trained using only 2.5% of the 171 min
training data used for the previous static map construction.

As a consequence of the lower amount of data used for train-
ing, the total amount of the extracted multipath corresponding
to each pair of elevation and azimuth angles was also much
smaller compared to the previous study. Fig. 5 depicts the
distributions of the estimated multipath data used for static and
dynamic map learning at point #53. Even though more data
for 15 min at the point #53 were used compared to the other
points, the error distributions of the dynamic map looked very
different from those of the static map. While the training data
for the static map of the previous study were distributed as a
conglomeration of continuous lines, the data for the dynamic
map at point #53 were distributed as scattered dots, reflecting
the discontinuous collection of training data.

Despite the absence of data continuity, the geometrical
tendency of the estimated multipath could be ascertained from
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Fig. 4. Training data collected at each point on the target road.

Fig. 5. Comparison of estitmated multipath distributions for static (left) and
dynamic (right) map construction.

the scattered dots. Similar to the tendency inferred from the
continuous lines in the static multipath map, the multipath in
the southeast and northwest directions, where buildings were
located, was observed to be large. On the contrary, those in the
direction above the road were very small, similar to that in the
direction of the zenith. Despite being extracted from different
satellites at different times, multipath values at the same
point were similar, indicating the validity of the clock bias
separation from the observation obtained using Eqs. (4)–(7).
Thus, the multipath extracted via the proposed method is
the unbiased multipath error. As the proposed method is not
dependent on time or satellite constellation, data collected for
multi-constellation at various times are preferable to the data
for a single constellation collected continuously over a long
period. It is the reason why the multi-constellation GNSS data
for the map training were collected over 7 times separately,
which enabled to efficiently construct the multipath dynamic
map despite the short collection time of 4 min per single
map.

Therefore, the following method can be used to construct
an effective dynamic multipath map efficiently based on a
small amount of data. First, the unbiased multipath should
be extracted using the clock bias estimated using high ele-
vation angle satellites. Moreover, measurements from various
constellations collected over a long time interval or different
time should be obtained to form training data observed form
various satellite geometry.

Fig. 6. Empty spaces in the extracted multipath samples (left) and the
generated multipath Map (right).

Fig. 7. Adjustment of multipath map.

C. Dynamic Multipath Map Adjustment

Despite the extraction of unbiased multipath errors via
efficient data collection and time allocation, empty spaces were
inevitably created due to the lack of training satellite data.
The use of empty spaces as inputs to the SVR distorts the
trained model. The left skyplot depicted in Fig. 6 illustrates
the distribution of data used for learning the dynamic model
at point #53, and the right diagram depicts the multipath map
generated via nonlinear regression. According to the SVR
model, the highest peak of the multipath errors corresponded
to an azimuth of 347 ◦ and an elevation of 25 ◦, and the
surrounding multipath values decreased along the contour
lines, even when the elevation angles decreased. Considering
the geometrical arrangement of the actual buildings and their
effects on the reflected signal, this result is unreasonable

In general, the elevation angle should be inversely propor-
tional to the multipath [27], [28], [29]—thus, the severity
of map distortion due to the lack of data is greater at low
elevations than at high elevations. To rectify map distortion
at low elevations, the empty spaces were filled in with the
closest higher elevation data along the same azimuth. Fig. 7
depicts the modified multipath map obtained by adjusting the
map generated using the model trained with an insufficient
amount of data (left). The overlaps on the modified multipath
map corroborate the validity of the adjustment. While, prior to
adjustment, low multipaths were predict at some points where
satellite visibility was obviously blocked by buildings, this
issue was resolved by the modification.

Figs. 8 and 9 depict examples of the modified multipath
map at the points #1, #2, #11, and #12. As illustrated in Fig. 8,
point #1 was located next to the intersection and exhibited rel-
atively good visibility towards the east. The building geometry
at this point could be easily inferred from the multipath map
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Fig. 8. Examples of modified multipath map (Map #1 and #2).

Fig. 9. Examples of modified multipath map (Map #13 and #14).

that predicted a lower multipath error towards the east. On the
other hand, the map at point #2 revealed that the multipath
error was expected to be large in both the north-west and
south-east directions, which was supported by the overhead
image of the building geometry.

As depicted in Fig. 9, Point #13 was located in the
middle of an intersection with relatively good satellite vis-
ibility. The predicted multipaths were also mostly low, par-
ticularly over a cross-shaped zone contiguous with the road.
Although point #14 was adjacent to point #13, the predicted
multipath errors were high in the direction perpendicular
to the road. This is because of the presence of very tall
buildings—83–152 m in height—on that side that interfered
with the signal.

D. Dynamic Map Selection Algorithm

Following the creation of the dynamic map by combining
the multipath maps corresponding to 53 points on Teheran-
ro, a method is required to select the optimal map for each
user. This is not an easy task because the uncertainty of the
initial user position induces numerous candidates and iteration
processes in existing multipath technologies [30], such as ray
tracing or shadow matching. An appropriate iteration process
is required in the case of the dynamic map as well to identify
the optimal multipath map generated nearest to each vehicle’s
real position. If the exact position of the vehicle were known,

Fig. 10. Initially calculated user positions and multipath map generation
points on target road.

Fig. 11. Dynamic map selection algorithm on the user end.

then it would be possible to find the nearest optimal map
based on the solved position, however there would be no
need to apply a multipath map to the GNSS measurements
observed at the vehicle. The problem lies in the fact that
users in deep urban areas cannot calculate their positions
accurately using GNSS solely, and thus cannot determine the
maps that are optimal for them. As depicted in Fig. 10, vehicle
positions were often found to exhibit larger errors than the
spacing between successive multipath map generation points,
i.e., 50 m, with the maximum error being 180 m. As NLOS
multipath errors have no upper limit, it is impossible to predict
how far maps from the initially computed position should be
considered as candidates for the optimal map.

Thus, in severe multipath environments, all multipath maps
should be condiered as candidates for each user. An algorithm
for selecting a map under uncertain conditions is presented
in Fig. 11. As the real position of the user at time t is
not known in severe NLOS environments in urban areas, all
multipath maps are considered to predict the multipath of the
ith satellite at the user’s position, and the predicted multipath
error, M#n , is computed by inputting its elevation and azimuth
angle, El and Azi , to model #n. A conditional multipath-
free pseudorange, ρ̃m. f |#n , can be acquired using (13).
Using conditional multipath-free pseudoranges, the conditional
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Fig. 12. Determination of valid range of multipath map.

multipath-mitigated position, ˜⃗Xu|#n , can be estimated.

ρ̃i
m. f |#n (t) = ρ̃i (t) − M#n

(
El i (t), Azi i (t)

)
(13)

If the selected map #n was generated near the user’s

location, the conditional position, ˜⃗Xu|#n , should be recursively
placed near the point where the map #n was generated, X⃗#n .
Therefore, the conditional positions can be grouped as a valid
position candidate if the distance between ˜⃗Xu|#n and X⃗#n is
within a valid range, as described by (14).∣∣∣ ˜⃗Xu|#n − X⃗#n

∣∣∣ < T h (14)

Because the distance between successive maps was taken to
be 50 m, the effective radius of the map generated at X⃗#n is
25 m. If the distance between the generation point, X⃗#n , and
the user’s real position, X⃗u , is less than 25 m, the selected
map #n can be considered to be appropriate for the user.
Assuming that the calculated positive errors follow a Gaussian
distribution, an additional range should be considered due to
the error distribution to estimate the actual valid range, T h,
as depicted in Fig. 12. As the user RMSE of the dynamic map
was previously assumed to be 25 m and the 95 % error was
50 m, the valid range, T h, was taken to be 75 m.

The multipath mitigation is effective when its actual value at
a user side is close to the modeled one. While NLOS multipath
is not expected deviate much from the modeled one within
the designed range, LOS multipath needs further investigation
because it is caused by the interference between direct and
non-direct signals. The amplitudes of the direct and reflected
signals are combined, when they are in-phase to create a
constructive multipath interference. This increases the signal
intensity and creates a positive multipath error in the range-
domain. Conversely, when the out-phase of the direct and
reflected signals caused a destructive multipath interference,
a negative ranging error occurs, and the measured signal
strength decreased [31], [32]. Therefore, the user should detect
if the current multipath error is caused by the destructive
interference, because the modeled multipath map has been

Fig. 13. Measured C/N0 and the calculated nominal C/N0 function for
map #7.

constructed by the collected constructive multipath error data
set.

C/N0, a signal strength-related term, is one of the indicators
that can distinguish current multipath interference property.
In an open-sky environment, C/N0 is usually proportional to
the satellite elevation, but C/N0 with site-specific errors in an
urban environment cannot be characterized by the elevation
angle. In contrast, since the multipath is a site-specific error,
the nominal C/N0 function can be created when the measured
multipath errors are collected and processed at each point.

Figure 13 depicts a nominal C/N0 function modeled by the
measured C/N0 for map #7. The measured C/N0 for each
predicted multipath are marked with translucent purple dots.
The area with higher dot density is colored darker, and as a
result, the nominal C/N0 function of the orange line can be
generated aligned with the belt that is the darkest. If the gap
between the measured C/N0 at a rover side and the generated
nominal C/N0 function value is found to be large, it can be
regarded as a destructive multipath interference. Therefore, the
difference between the measured and norminal C/N0, which
is depicted as a black arrow in Figure 13, can be a metric to
distinguish which interference, constructive or destructive, has
induced the current multipath

If a current multipath received at a user is due to construc-
tive interference, the C/N0 of the received signal would be
near to the nominal C/N0, C/N0nom|#n , which is the generated
model function, f p in (15). Whereas the measured C/N0
will be much lower than the nominal value if a destructive
multipath interference occurred at the user side.

C/N0nom|#n(M#n) = f p(M#n) (15)

Figure 14 depicts the process of obtaining the nominal C/N0
function f p. First, satellite elevation and azimuth are used to
generate a multipath map #n, and a 3rd order polynomial
function, f p, is calculated using the multipath correction
(M i

#n) of the i-th satellite calculated from the multipath map #n
and the C/N0 measurement of the i-th satellite (C/N0i ).

To mitigate the influence of the unmodeled destruc-
tive multipath error, the corresponding satellite need to be
de-weighted.
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Fig. 14. Process of obtaining nomial C/N0 function.

The accuracy of site-specific unmodeled errors can be
adaptively adjusted using the difference between received
and modeled C/N0 values. In this work, a priori adaptive
model suggested by Zhang et al. [33] was used to model
the standard deviation of the multipath-mitigated pseudorange
residual error, σm. f . As shown in (16), valid measurements
with effectively mitigated multipath errors would be primar-
ily employed in positioning, whereas destructive interference
measurements with large model errors would be de-weighted.

σ 2
m. f.|#n = σ 2

C/N0 +

∣∣∣σ 2
C/N0 − σ 2

C/N0nom

∣∣∣
= 10−

C/N0
10 +

∣∣∣10−
C/N0

10 − 10−
C/N0nom (M#n )

10

∣∣∣ (16)

Fig. 15 depicts an application of the multipath map selection
algorithm on a user whose true position is located at a yellow
dot on the google map. The user modelled the multipath errors
for visible satellites using all the 247 maps and then get
the conditional multipath-free pseudoranges (ρ̃i

m. f |#n (t)) to

compute its conditional positions ( ˜⃗Xu|#n), which are marked
white dots in a white looped curve of Fig. 13 (a). Among
the 247 conditional positions, only two conditional positions,
˜⃗Xu|#53 and ˜⃗Xu|#54, were in the valid ranges of the multipath

map #53 and #54, green and red dotted circle of Fig. 13 (b).
In this way, the conditional position marked with green and red
dots in Fig. 13 (b) were selected as valid position candidates.

The residual vector (v̂) for the conditional position can be
expressed as (17).

v̂ = z − H ˜⃗Xu|#n (17)

where z and H represent the measurement vector includ-
ing ρ̃i

m. f |#n and navigation matrix, respectively. The residual

square sums of the two valid candidates, ˜⃗Xu|#53 and ˜⃗Xu|#54
were 83.4 m and 75.2 m for 20 visible satellites, respectively.
Finally, ˜⃗Xu|#54 which had the smallest residual sum was
decided to be the final position, X⃗u . Its actual horizontal
error was computed to be 1.4 m while the error of ˜⃗Xu|#53
was 17.5 m.

In contrast to the proposed method in this paper, shadow
matching and ray tracing methods assign candidate maps near
the initially calculated user positions based on 3-dimensional
(3D) building information and then exclude or compensate
for NLOS multipath errors. This requires an overwhelming
amount of computation. While the iteration process based on

Fig. 15. Example of application of map selection algorithm ((a) Distribution
of the computed conditional positions, (b) Valid ranges of multipath map #53
and #54, (c) Multipath map #53, (d) multipath map #54).

Fig. 16. Correctness of dynamically selected map.

3D building information should be performed independently,
the iteration to apply multiple dynamic maps can be processed
in parallel. The DGPS-CP [34], [35] method suggested in
our previous works can conduct parallel iteration processing,
which enables the projection of multiple multipath corrections
from each map into the position domain and the direct correc-
tion of the initially calculated position. Therefore, the iteration
process is not a hindrance to the application of dynamic
multipath maps for urban users.

E. Field Test Results
To verify the applicability of the algorithm in actual deep

urban areas, a dynamic field test was performed in Teheran-ro,
Seoul, Korea. The test data were collected over approximately
one hour from 6:40 UTC on July 1, 2021. The configuration
was identical to that during the collection of training data.

Corrections based on the selected multipath maps were
applied and 99.3 % of the entire dataset were determined to
be valid by (14). Among the positions determined to be valid,
64 % of the dynamically selected maps were the nearest maps
from actual positions of the vehicle as depicted in Fig. 16.
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Fig. 17. Horizontal positioning results for vehicle obtained using dynamic
multipath map.

Fig. 18. ENU positioning obtained using dynamic multipath map.

Even though 32 % of the selected maps were not the closest
ones but the second nearest ones, the user was mostly located
between the selected and the nearest maps, and thus choosing
either map would not have been wrong considering the error
in user position. The averages of user horizontal errors for
the nearest and second nearest map were 14.1 m and 17.5 m,
respectively, which means the performance gap of the two
cases was not seriously large.

The third nearest maps were selected during 4% of the test
period, which was considered as a wrong map selected in this
study. The average horizontal error for the wrong map case
was only 16.2m, however its maximum error was up to 46.3m.
Because of the large variance of the performance, the result is
difficult to be expected as reliable as those of the previous two
cases, but it is certain that the maximum error is to be limited
less than T h of 75 m. During the remaining less than 1.0% of
the test, the user failed to find its appropriate maps that passed
the validity test of the conditional position in equation (14)
despite searching all the generated maps.

Therefore, the results demonstrate that the residual-based
map selection algorithm was mostly effective in identifying a
valid map during the majority of the driving test.

Figs. 17 and 18 depict the vehicle’s positions in horizontal
and east-north-up (ENU) planes before and after mitigating the
errors by applying the corrections from the selected dynamic

TABLE II
ERRORS IN DYNAMIC MULTIPATH MAP POSITIONING

multipath maps. Before applying the dynamic multipath map,
the horizontal and vertical RMSEs of the original positioning
errors were 33.2m and 92.8 m, as summarized in Table II.
The performance inconsistency at each position was very
large owing to the site-dependent nature of multipaths; thus,
it was difficult to estimate consistent error levels for urban
positioning. The vertical errors were biased by -92.3 m, and
the maximum errors in the horizontal and vertical planes were
208.0 m and 569.4 m, respectively.

On the other hand, the dynamic multipath map and residual-
based selection algorithm improved the accuracy by 44.6 %
horizontally and 80.7 % vertically, enabling a horizontal
accuracy of 18.4 m and a vertical accuracy of 17.3 m. Further,
the vertical bias was removed, resulting in an average error
reduction of -9.3 m. The consistency of positioning perfor-
mance was also significantly improved—it could be predicted
within 45 m horizontally at most points, and the maximum
error of approximately 600 m in three dimensions was reduced
to less than 100 m. Considering that a 20 m horizontal RMSE
was achieved for a static user using training data collected
over 3 h, the method proposed in this study can be deemed
to be very efficient, using only 2.5 % of the data used in the
static case to improve the dynamic position accuracy in urban
areas to similar levels.

IV. CONCLUSION

This paper proposed an effective algorithm for mitigating
severe GNSS multipath errors for vehicles by constructing
a set of dynamic multipath maps and selecting a valid map
from it. The multipath map was generated based on multipath
error prediction models at multiple points on Teheran-ro
in Seoul, South Korea. As the error prediction model was
trained using the relative geometry between the user and the
satellites, it was capable of dealing with all kinds of reflected
signal errors, i.e., LOS multipath and NLOS signal errors,
without requiring prior classification. In addition, the model
was trained by insufficient data and adjusted based on the
geometrical arrangement of buildings and their effects on the
reflected signal. Moreover, a user-end algorithm was proposed
to reduce the risk of selecting an incorrect map corresponding
to the user position owing to the uncertainty of the user’s
location. After applying all the generated maps to the vehicle’s
observables, maps that satisfied the recursion condition of the
corrected position near the map generation point were selected.
The final maps were verified to be those with the minimum
residual error.
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To validate the proposed algorithm and evaluate its perfor-
mance in urban canyons, it was trained using total of 327 min
of data to generate 247 multipath maps and conduct a dynamic
test on a road named Teheran-ro in Seoul, South Korea with a
length of 2.5 km and a width of 50 m. The results of the
one-hour driving test revealed that the proposed algorithm
improved positional accuracy by 45 % horizontally and 80 %
vertically, yielding a horizontal RMS error of 18 m over 99 %
of the duration of the session. The performance is similar
to that in a static test, even though the model was trained
using only approximately 2.5 % of the data used in static map
construction.

The results obtained in this paper demonstrate that nonlinear
and site-dependent urban multipath errors can be modeled
without the help of additional information or sensors, such as
3D building information or cameras. The proposed multipath
map construction technique is so efficient that it can be trained
using only GNSS data collected over a mere 4 min over an
area with 25 m radius. Therefore, it is expected to be widely
used for constructing map-based multipath mitigating models
in all cities. This model would contribute to the determination
of the absolute position with an accuracy of 20 m immediately
after turning on the GNSS receiver in the middle of an
urban canyon. The instantaneous determination of absolute
position is expected to be an important and solid foundation for
integrating other sensors and information and for fitting data to
provide accurate positions to various intelligent transportation
systems in the future, such as smart mobility, drones, and even
unmanned aerial mobility.
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