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Abstract— Accurately predicting Origin-Destination (OD) pas-
senger flow can help metro service quality and efficiency. Existing
works have focused on predicting incoming and outgoing flows
for individual stations, while little attention was paid to OD
prediction in metro systems. The challenges are that OD flows
1) have high temporal dynamics and complex spatial correlations,
2) are affected by external factors, and 3) have sparse and
incomplete data slices. In this paper, we propose an Adaptive
Feature Fusion Network (AFFN) to a) adaptively fuse spatial
dependencies from multiple knowledge-based graphs and even
hidden correlations between stations and b) accurately capture
the periodic patterns of passenger flows based on the auto-learned
impact from external factors. To deal with the incompleteness and
sparsity of OD matrices, we extend AFFN to multi-task AFFN
to predict the inflow and outflow of each station as a side-task to
further improve OD prediction accuracy. We conducted extensive
experiments on two real-world metro trip datasets collected
in Nanjing and Xi’an, China. Evaluation results show that
our AFFN and multi-task AFFN outperform the state-of-the-
art baseline techniques and AFFN variants in various accuracy
metrics, demonstrating the effectiveness of AFFN and each of its
key components in OD prediction.

Index Terms— Metro system, origin-destination flow predic-
tion, adaptive feature fusion, multi-task.

I. INTRODUCTION

METRO is one of the most popular and efficient trans-
portation in metropolitan cities. More than 50% com-

muters chose metro as their daily transportation in most
cities. In Tokyo, New York, and Hong Kong, the proportion
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of metro commuters is even higher (80%-90%) [1]. With
rapid urbanization and increasing population, metro systems
are facing high dynamic travel demands, and thus need to
timely optimize service operations such as scheduling elas-
tic timetables [2], [3] and planning flexible skip-stop lines
[4], [5], which requires accurate origin-destination (OD) pas-
senger flow predictions.

Most existing works have focused on predicting Inflow and
Outflow in metro stations (IO prediction) [6], [7], [8], [9],
[10] in individual stations for metro management [11], [12]
and emergency response [13], [14]. Only a few works predict
the number of metro trips between each origin-destination
station pair [15], [16]. Although OD prediction has been well
studied for taxi or ride-hailing systems, i.e., predicting the
number of taxi trips from each origin region to the destination
region [17], [18], [19]. These techniques, however, cannot be
applied directly to the metro as the stations are connected
by sparse metro lines other than dense road networks where
Euclidean distances can roughly approximate road distances.
Therefore, we are motivated to study how to accurately predict
citywide OD flow on sparse metro networks.

OD prediction for a citywide metro system is challenging
with the following facts. 1) High temporal dynamics and
complex spatial correlations. OD flow in metro systems is
highly dynamic, especially during peak hours. The number of
OD trips could change dramatically in a short time. In spatial
dimension, two stations may have similar temporal OD flow
patterns by locating at a short distance, having a similar urban
function in the neighboring region, or by some other shared
hidden features that cannot be explicitly depicted. It is essential
to capture these complex spatial and temporal dependencies in
a comprehensive and simultaneous manner. 2) Periodic pattern
and external factors. OD flow has shown obvious periodic
patterns in days and weeks. Meanwhile, it is also affected by
external factors such as weather conditions and holidays that
may impede periodicity. Existing literature models periodic
patterns and external factors independently [17], [20], [21],
but fails to capture the impact of external factors on periodic
patterns. 3) Incomplete and sparse OD matrices. Metro trips
are usually long and span many time steps, e.g., ≥ 30 minutes.
We can only get the complete origin-destination information
when passengers tap-out at their destination station but cannot
know the destinations of the passengers yet on their journeys,
so the realtime OD matrix lacks unfinished trips. Moreover,
OD matrices are usually sparse. Very few origin-destination

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3253-2493
https://orcid.org/0000-0001-9172-6955


XU et al.: AFFNs FOR OD PASSENGER FLOW PREDICTION IN METRO SYSTEMS 5297

station pairs cover most of the OD trips, whereas most OD
pairs have few trips between them. Such an incomplete and
sparse input poses difficulties for accurate prediction.

To address these challenges, we proposed an Adaptive
Feature Fusion Network (AFFN) to adaptively fuse the 1) spa-
tial dependencies between stations with multiple aspects of
knowledge and even hidden correlations and 2) periodic
patterns with the auto-learned impact from external factors.
More precisely, we propose Enhanced Multi-Graph Convo-
lution GRU (EMGC-GRU) to encode spatial dependencies
between stations using multiple knowledge-based graphs and
an attention-based graph for hidden correlations. Graph con-
volutions are within each GRU layer to capture temporal
dynamics. Periodic OD flow is then weighted by the attention
weights learned from external factors and fused into realtime
prediction by EMGC-GRU with a gating unit. To cope with
the incompleteness and sparsity of OD matrices, we extend
AFFN to multi-task AFFN to predict the inflow and outflow of
each station as a sub-task. IO prediction is a much easier task
since IO matrices are more dense and complete and strongly
correlated with OD prediction. Consequently, sharing the IO
prediction network helps improve OD prediction accuracy.

In summary, our contributions are:
• An Enhanced Multi-Graph Convolution Gated Recurrent

Unit (EMGC-GRU) is designed to exhaustively capture
spatial correlations predefined in multiple knowledge-
based graphs and auto-learned hidden attention-based
correlations between stations within GRUs.

• An external factor-based attention module is proposed to
collaboratively integrate periodic data flow with attention
weights learned from external factors to improve the
prediction accuracy.

• An asymmetric multi-task Adaptive Feature Fusion Net-
work (AFFN) to mutually predict OD flow and IO flow
with a task-shared IO encoder and a task-shared exter-
nal factor-based attention further improve OD prediction
accuracy.

• Evaluations on two real-world datasets show that our
AFFN and multi-task AFFN outperform the state-of-the-
art baseline techniques and AFFN variants in terms of
the prediction errors, demonstrating the effectiveness of
AFFN and each of its key components in predicting OD
flow.

The rest of this paper is organized as follows: Section II
discusses related work, Section III introduces key concepts and
formally defines prediction problems. Section IV proposes our
adaptive feature fusion network, and we extend it to multi-task
AFFN in Section V. We present evaluation in Section VI and
conclude this paper in Section VII.

II. RELATED WORK

In this section, we discuss related works and techniques in
travel demand estimation and passenger flow prediction.

A. Demand Estimation

Passenger flow or travel demand is the aggregation of
individual trips made during a reference period [22], which
is an essential task in public transportation planning and

operation [23], [24]. In the early stage of demand estimation,
the travel data is usually collected through survey campaigns,
and therefore the data collection cost is relatively high. The
primary objective of researchers is to accurately determine the
demand for passengers for a particular mode of transport.
As summarized in [25], passenger demand estimation can
be achieved through direct, dis-aggregated, and aggregate
estimation approaches.

1) Direct Estimation Approaches: This type of approaches
[26], [27] take location-specific sample surveys to count the
total number of passengers. A certain percentage of passengers
are randomly selected to collect information on their trip.
However, due to the massive amount of information that needs
to be collected, these approaches can only be applied to
estimate current demand and cannot be conducted in real time.

2) Dis-Aggregated Estimation Approaches: This kind of
approaches are model-based approaches [28], [29], [30], [31],
[32], [33] that involve three main steps: 1) model specification,
i.e., defining the functional form, 2) model calibration, i.e.,
tuning model parameters, and 3) model validation, i.e., veri-
fying its statistical quality) [22]. A good demand estimation
model is the outcome of a trial and error process which can
perfectly reproduce the original data. Depending on how the
training data is acquired, dis-aggregated estimation approaches
can be further categorized into Reveal Preference or
RP-based approaches [28], [29], [30], and Stated Preference
or SP-based approaches [31], [32], [33]. Dis-aggregated esti-
mation methods can be used for current demand estimation or
future demand simulation.

3) Aggregated Estimation Approaches: To improve the esti-
mate of origin-destination passenger flows, aggregated esti-
mation approaches are proposed, which use aggregate travel
demand information contained in traffic counts to calibrate the
initial estimate of the demand model [22]. These methods aim
to identify an origin-destination matrix that minimizes the gap
between estimated and observed passenger flows on network
links (i.e., traffic counts). Generally, these methods require
an implicit or explicit estimation of the assignment matrix,
which describes the O/D flow fractions using each link on the
network [34]. Some researchers assume that the assignment
matrix is independent of the passenger flow and can be
provided directly by calculating the path cost [35] or learned
as a joint task for O/D demand prediction [36]. However,
other researchers argue that the assignment matrix and the
traffic flow are mutually dependent, and a variety of congestion
network methods [34], [37], [38], [39], [40] are proposed. The
aggregated estimation approaches make it possible to obtain
efficient estimates of demand estimation with traffic counts.
However, the resulting estimation is always affected by a non-
negligible error, mainly related to the inherent difficulty of
obtaining the precise assignment matrix.

Generally, the more data the survey collects, the more
accurate the passenger demand estimation will be. However,
in most real cases, we cannot obtain a large amount of data
effectively with a limited survey budget. Due to the limited
data volume and model representational capability, demand
estimation methods can hardly meet the requirement for
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accurate realtime prediction of passenger flows in large-scale
metro systems.

B. Passenger Flow Prediction

With the generalization of the Automatic Fare Collection
(AFC) systems and electronic sensors (such as loop detectors
and video surveillance), passenger travel data can be obtained
automatically and efficiently in real time [41]. With the avail-
ability of vast amounts of historical and realtime travel data,
researchers tend to pay more attention to discovering hidden
patterns in the observed data and predicting future passenger
demand. Predicting the OD flow in metro systems is a typical
spatial-temporal prediction problem. In this section, we will
discuss existing prediction techniques for modeling temporal
and spatial-temporal dependencies in predicting traffic states
or human movements, and how these techniques integrate
periodic patterns, external factors, and other correlated tasks.

1) Modeling Temporal Dependencies: Statistical methods
such as Historical Average (HA) and Autoregressive Integrated
Moving Average (ARIMA) [42], [43] have been widely used
to predict simple time-series data with fewer dynamics and a
few features such as sales or stocks data [44]. More advanced
machine learning techniques such as Support Vector Regres-
sion and Random Forest have been proven more effective in
predicting more dynamic time series data with more features
such as passenger flow [45] or road traffics [46]. However,
these shallow machine learning models require craft features
from domain experts, which may not be sufficient to capture
complex temporal patterns from raw data sequences [47].
Simple deep feed-forward neural networks [48], [49], [50],
[51] have also been used to predict traffic flows on high-
ways or metro lines. These methods may be able to encode
high-dimensional traffic features, but fail to capture tempo-
ral dependencies of input data sequences. To model tem-
poral dependencies, Recurrent Neural Networks, including
GRU [52] and LSTM [53] introduce various gates, such as the
forget gate and update gate, to explicitly determine how the
past data affect the current prediction and thus perform the best
among non-recurrent networks. However, despite temporal
dependencies, OD flows also have spatial dependencies, such
as locations of stations, connectivity, and similarity between
stations, all of which have an impact on the future number of
OD trips. Therefore, we then discuss techniques for modeling
spatial-temporal dependencies.

2) Modeling Spatial-Temporal Dependencies: Convolu-
tional Neural Networks (CNN) have been integrated into
recurrent networks to capture spatial-temporal dependencies in
sequential data such as crowd flows [54], travel demands [55]
and road traffics [56]. An innovative network unit ConvL-
STM [57] integrates spatial convolution into temporal gating
and has been used to predict origin-destination taxi trip
demands [18], [58]. These CNN-based techniques focus on
Euclidean spatial dependencies and perform convolution on
neighboring regions, but fail to consider strongly correlated
locations that are far away. Such non-Euclidean spatial depen-
dencies are fairly common in the data flow from network-based
systems such as metro or bike-sharing systems.

To model non-Euclidean correlations, Graph Convolutional
Networks [59] have been integrated into recurrent networks
for spatial-temporal graph prediction tasks [60], such as
road traffic prediction [61], travel demand predictions for
bikes [62] and taxis [63], and passenger flow prediction
in MRT [10]. Non-Euclidean spatial correlations, such as
road network topology [61] and metro line connectivity [10]
between locations are represented by graphs. Even non-spatial
correlations are also encoded as the input graphs, such as
function similarity [63] and trip interactions [62]. In these
graphs, information on each node is updated by aggregating
neighboring nodes. As location correlations could be multi-
aspect, multiple knowledge-based graphs have been integrated
to have a more comprehensive representation. For exam-
ple, [62] combines distance graph, interaction graph, and
correlation graph for bike-sharing systems; [63] integrates
neighborhood graph, function similarity graph, and transporta-
tion connectivity graph for ride-hailing systems; and [64]
builds hyper-graphs to encode high-order topology relation-
ships between metro stations and pedestrian travel patterns of
multiple time steps. These methods integrate multiple graphs
either by summing up the adjacency matrix of each graph
with weights [62] or by doing convolution on each graph
independently and then summing the output encoded graph
features [63], [64]. A more advanced way is using Relation
Graph Convolution Network (RGCN) [65], which aggregates
weights of multiple graphs at each convolution layer and
adds a self-loop to maintain the aggregated node’s own
information [16]. These techniques artificially build multiple
knowledge-based graphs to learn the local spatial-temporal
features of input data flows, except [16] which adopts another
fully-connected network to capture global spatial-temporal
dependencies. However, there could be hidden correlations
between metro stations that knowledge-based graphs cannot
explicitly represent, so we adopt graph attention network
(GAT) [66] to learn the correlations between stations automat-
ically. The features auto-learned by GAT are then integrated
with that of multi-knowledge graph-based RGCN to improve
the comprehensiveness of feature representation.

3) Integrating Periodic and External Factors: Human flows
in a city have shown periodic patterns in days or weeks.
Existing works have utilized such periodic patterns to improve
prediction accuracy. They usually extract an extra periodic
data flow, such as the number of passengers at the same time
every day or week, and feed it into an independent predic-
tion network such as naive convolution network [20], deep
residual network [17], [21], and graph convolution network
with temporal attention [61]. Those periodic features are then
fused with the realtime spatial-temporal features learned by
the same network [17], [20], [21], [61]. Modeling periodic and
realtime data flows with the same network may not be effective
as the two types of data flows have different patterns. For
example, periodic data flow fluctuates from day to day with
random noises, while the realtime data flow usually has a clear
increasing or decreasing trend within a short time period.

External factors such as weather conditions [67], air qual-
ity [68], day of the week [55], holidays [69] and events [69]
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TABLE I
KEY MATHEMATICAL NOTATIONS

also have an impact on human flows. A naive way is
to concatenate those factors directly with input data flows
[8], [18], [70], [71] for further spatial-temporal representa-
tion learning, which would introduce more noises in model-
ing spatial or temporal dependencies. Another common way
is to concatenate the embedded factors with the encoded
spatial-temporal features at the last step to make a predic-
tion [9], [17], [21], [55], [68]. This way does not explicitly
model the implicit correlations between historical data flow
and its corresponding external factors.

Unlike existing methods that consider periodic and external
factors separately, we integrate external factors into periodic
data flow with an attention model, as we have observed that
1) the passenger flow to be predicted is usually close to
historical observations at the same time in the past days with
small fluctuations if the passenger flow has a clear periodic
pattern, and 2) external factors such as weekdays, holidays,
and weather conditions affect the fluctuations of periodic
passenger flow.

4) Integrating Other Tasks: Multi-task learning has been
proven effective in improving the performance of all tasks as
long as the tasks are strongly correlated [72]. There have been
works that apply multi-task learning to mutually predict the
inflow and outflow of passengers [73], [74], travel demands of
multiple transportation modes [75], taxi demands of multiple
city zones [76], as well as bus arrivals and the passenger
getting on and off flows [77]. To predict the citywide OD
flow, inflow and outflow predictions have been used as side
tasks in [17] and [78] for taxi systems, as the inflow is
actually a sum of the OD flows to all destinations, and the
outflow equals the sum of OD flows from all origins. These
two multi-task networks are symmetric in that both the OD
prediction task and IO prediction task share the same input and
network architecture. Instead, we adopt an asymmetric multi-
task architecture, considering different prediction difficulties
and a focused objective—OD prediction. We use a shared
encoder that takes IO flow as input and learns supplementary
features across the two tasks to support OD flow prediction.

III. PROBLEM FORMULATION

This section presents the key concepts and formally defines
Origin-Destination flow prediction problems. Essential math-
ematical notations used in this paper are listed in Table I.

Fig. 1. Example of OD flow, IO matrix, and OD matrix. (a) illustrates an
example of origin-destination flow between 5 metro stations at time step t .
Blue dotted arrows indicate the number of OD trips starting at their origins and
arriving at their destinations within one time step. (b) shows the corresponding
IO matrix (left) and OD matrix (right). In OD matrix, the first 5 columns
record passenger counts traveling to each of the 5 destination stations (in
red). The last 5 columns record passenger counts traveling from each of the
5 origin stations (in blue). IO matrix sums up the first 5 columns of OD
matrix along each row as the inflow in its first column, and sums up the last
5 columns of OD matrix along each row as the outflow in its second column.

A. Key Concepts

1) Trip: A trip records a passenger starts at an origin metro
station o within to-th time step and arrives at a destination
station d within td -th time step. We denote a trip by a
quadruple ⟨o, d, to, td

⟩.
2) IO Flow: We count the number of passengers enter-

ing a metro station over time as Inflow, and the number
of passengers exiting the station over time as Outflow.
Let S+

i,t and S−

i,t denote passenger counts entering and
exiting station i within time step t , respectively. Namely,
S+

i,t = |{⟨o, d, to, td
⟩ | o = i, to

= t}|, and S−

i,t =

|{⟨o, d, to, td
⟩ | d = i, td

= t}|. We use an IO matrix, denoted
by St , to record all the In & Out passenger counts in time step
t for all the stations. As demonstrated in Fig. 1(b), each row
of the IO matrix corresponds to a station. The first column
records the inflow S+

i,t and the second column records the
outflow S−

i,t within time step t . IO Flow, denoted by S, is a
sequence of IO matrices over time, i.e., S = {S1, S2, · · · , St }.

3) OD Flow: We count the number of passengers traveling
from origin (O) stations to destination (D) stations over time as
OD Flow. Specifically, we use two matrices, [T t

i,d ] to represent
passenger counts departing at station i at time step t to des-
tination station d, 1 ≤ i, d ≤ n, [T t

i,o] to represent passenger
counts from origin station o and arrive at station i at time step
t , 1 ≤ o ≤ n. Namely, T t

i,d = |{⟨i, d, to, td
⟩ | to

= t}| and
T t

i,o = |{⟨o, i, to, td
⟩ | td

= t}|. As demonstrated in Fig. 1(b),
we concatenate the two matrices to formulate an OD matrix,
denoted by Tt = ([T t

i,d ], [T t
i,o]), to capture the departures and

arrivals of the OD trips within one time step [17]. OD Flow,
denoted by T , is then represented by a sequence of OD
matrices over time, i.e., T = {T1, T2, · · · , Tt }.

4) External Factors: Environmental factors, including
weather conditions and air quality, affect commuters’ choices
of transportation modes and thus affect both IO flow and OD
flow of metro systems [45], [61], [68]. A pouring rain may
lead commuters to change or cancel their travel plans, thus
affecting the distribution of metro ridership [79]. Meanwhile,
cold weather and heavily polluted air impede passengers’
occasional travels [68]. In addition, both IO flow and OD
flow show different spatial and temporal patterns for holidays,
weekends, and working days [6], [80]. Therefore, we consider
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the four external factors — weather conditions, air quality,
holidays, and days of the week — in predicting OD flows.

B. Problem Definition

Given the historical OD flow, IO flow, and external factors,
we aim to predict the OD matrix in the next time step.
Formally,

Problem 1 (OD Prediction): Given historical OD flow
Tt−1 = {T1, T2, · · · , Tt−1}, and external factors Et−1 =

{E1, E2, · · · , Et−1}, the objective is to learn a prediction
function fOD to accurately predict the OD matrix, denoted
by T̂t , at the next time step t, i.e.,

T̂t = fOD(Tt−1, Et−1). (1)
Since IO flow equals the sum of OD flows from all

destination stations (inflow) and all origin stations (outflow),
the two flows are highly correlated. Moreover, IO prediction
is a relatively easy task with less sparse input data than OD
prediction [6], [55], [68]. Therefore, we hypothesize that a
neural network that can accurately predict IO flow can also
help with OD prediction. We formulate IO prediction as a
side-task for OD prediction, i.e.,

Problem 2 (Mutual Prediction): Given OD flow Tt−1 =

{T1, T2, · · · , Tt−1}, IO flow St−1 = {S1, S2, · · · , St−1}, and
external factors Et−1 = {E1, E2, · · · , Et−1}, the objective is
to learn a prediction function f to mutually predict both OD
flow, denoted by T̂t , and IO flow, denoted by Ŝt , at the next
time step t, i.e.,

[T̂t , Ŝt ] = f (Tt−1,St−1, Et−1). (2)

IV. ADAPTIVE FEATURE FUSION NETWORK
FOR OD PREDICTION

In this section, we propose an Adaptive Feature Fusion
Network (AFFN) (see Fig. 2(a)) to predict Origin-Destination
passenger flow between metro stations. AFFN firstly takes
a realtime OD flow from time step t − q to t − 1, i.e.,
{Tt−q , Tt−q+1, · · · , Tt−1}, as input and predicts an OD matrix
estimation T ′

t at time step t with enhanced multi-graph convo-
lution gated recurrent units (Section IV-A). Then a sequence of
periodic OD matrices at the same time step t in the past days
are integrated with external factors such as weather conditions
and day of the week to calibrate the estimation T ′

t with an
attention-based module (Section IV-B). Finally, a gating unit
is used to output the final prediction T̂t . In the following,
we will describe the details of predicting realtime OD flow
and integrating periodic and external factors.

A. OD Prediction With Realtime Data Flow

We first introduce our basic model to predict the OD matrix
at time step t only with the observed OD flow from time step
t−q to t−1. Given a sequence of past OD matrices, predicting
the OD matrix is a typical spatial-temporal prediction problem,
in which each entry of the OD matrix (namely, passenger count
from a specific origin station to a specific destination station)
does not only depends on past passenger counts but also
neighboring stations. While we can use sequence models such

as GRU [52] to capture temporal dependencies, we still need
to model the complex spatial correlations between stations.

An intuitive way to represent the correlation between metro
stations is using a graph, in which each node represents a
station, and each edge represents a specific correlation between
stations. The correlation could be multi-aspect in terms of
different transportation and urban domain knowledge. For
example, two stations could be closely correlated if they
have similar historical OD flow patterns or locate in regions
with similar functionality. This motivates us to build multi-
ple knowledge-based graphs and adopt a Relational Graph
Convolution Network [65] (RGCN) to integrate the multi-
ple correlations between stations. Furthermore, there could
be hidden correlations that can not be captured by domain
knowledge directly, so we adopt another Graph Attention
Network [66] (GAT) to capture hidden correlations between
stations. The two knowledge graph-based and attention graph-
based convolutions are integrated into two GRUs to capture
temporal dependencies of the input realtime OD flow, respec-
tively. Then, the output hidden states of the two GRUs are
concatenated by a fully connected layer to produce the final
hidden state. We call such a unit Enhanced Multi-Graph Con-
volution GRU (EMGC-GRU), and two layers of EMGC-GRU
are stacked as the encoder for processing the realtime OD
flow. We adopt another graph convolution layer as a decoder to
output the OD matrix estimation at time step t . Next, we define
five knowledge graphs and introduce spatial-temporal repre-
sentation learning with multi-knowledge graphs. And then, the
attention-based graph and the prediction network architecture
are presented.

1) Spatial-Temporal Representation Learning With Multiple
Knowledge-Based Graphs: We define five knowledge-based
graphs to represent different kinds of correlations between
metro stations. The nodes in each of the five graphs represent
metro stations, and the edges represent topology connectivity,
OD connectivity, region functional similarity, inflow similarity,
and outflow similarity, respectively.

Topology Graph Gτ models the physical topology of the
metro system, in which each edge represents whether the two
stations (i.e., nodes) are adjacent and directly connected by
a metro line. We define the weight matrix of edges as (0,1)-
Matrix, in which the value is set to 1 if there is an edge
between two nodes and vice versa.

OD Graph Gc takes the accumulated number of passengers
traveled from a node (i.e., a station) to another node in a
period as the weight on edge. A large weight from station
si to station s j shows a close correlation between the two
stations and indicates that a large number of passengers could
also travel from station s j to si in the future.

Functional Similarity Graph G f models the similarities
between stations in terms of their region functions (e.g.,
commercial, residential, etc.). Two stations located in regions
with similar city functions may have similar temporal patterns
in passenger flow. We represent the region function of a station
by a vector of POI counts in each category1 within a circle

1We obtained POI data from AutoNavi Map Platform that has 14 categories,
including food service, shopping, residential, etc.

https://lbs.amap.com/
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Fig. 2. Adaptive Feature Fusion Network (AFFN) Architecture for OD Prediction. (a) AFFN takes the realtime OD flow {Tt−q , Tt−q+1, · · · , Tt−1} as
input, encodes it with multiple knowledge-based graphs and attention-based graph within EMGC-GRU, and outputs an estimation T ′

t at time step t with
a decoder called OD Predictor. T ′

t is then concatenated with periodic OD matrices {Tt−p∗η , · · · , Tt−2η , Tt−η} and weighted by attentions learned from
corresponding external factors {Et−p∗η , · · · , Et−η , Et }. A gating unit is used to output the final prediction T̂t . (b) Enhanced Multi-Graph Convolution GRU
(EMGC-GRU) integrates the five knowledge-based graphs with a relation graph convolution (RGCN) and graph attention module (GAT) within two GRU
units, respectively. The two hidden states HR

k and HA
k at time step k, (t −q ≤ k ≤ t −1), are fused by a fully connected (FC) network and output an enhanced

representation Hk .

with a radius of 2 km [81]. The function similarity between
stations i and j , denoted by W f (i, j), is calculated by cosine
similarity [82] of the two POI count vectors P(i) and P( j).
Namely, W f (i, j) = P(i)·P( j)/||P(i)||||P( j)||. We calculate
function similarity for each pair of stations as the weight on
each edge of the graph G f .

Inflow Similarity Graph Go and Outflow Similarity
Graph Gd both model the correlations between stations in
terms of inflow similarity and outflow similarity, respectively.
Given two time sequences of inflow (or outflow) of any
two stations, the similarity is measured by Dynamic Time
Warping (DTW) [83]. The more similar the two sequences,
the smaller value of DTW. Specifically, for inflow similarity
(Go), we quantify the weights on edges by taking Wo(i, j) =

exp
(

− DTW
(
S̄+(i), S̄+( j)

))
, in which, S̄+(i) and S̄+( j)

denote the average inflow of each time step per day in station
i and j separately, DTW calculates dynamic time warping of
the two sequences. We map the value of DTW to a range (0,1]
with an exponential function to have a larger weight (→ 1)
for two similar inflows and a smaller weight (→ 0) for two
different inflows. The outflow similarity Gd is calculated in
the same way.

Integrating Multiple Graphs with RGCN. While graph
convolution networks (GCNs) only learn feature representa-
tions for a single graph, we adopt Relational Graph Con-
volution Network (RGCN) [65] to integrate the multiple
knowledge-based graphs to learn a unified representation.
In RGCN, a node aggregates over neighboring nodes in each
graph first, then sums up the aggregated node feature rep-
resentations over multiple graphs. Unlike the classical RGCN
that aggregates neighboring nodes based on a problem-specific
normalization constant, we further consider different weights
on edges in multiple graphs to help the network converge more

quickly [16]. In each convolution layer l, we apply weight2

Wg(i, j) between station i and j of knowledge-based graph g
to the graph convolution operation on each station i and sum
up over all the knowledge-based graphs g ∈ G, namely,

hl+1
i = σ

( ∑
g∈G

∑
j∈Ng(i)

Wg(i, j) ⊙ U l
ghl

j + U l
0hl

i

)
, (3)

where hl
i is the hidden feature representation of station i in

layer l, σ(·) denotes sigmoid activation function, G is set of
the five knowledge-based graphs, Ng(i) is set of neighboring
stations of station i in graph g, and U l

g and U l
0 are trainable

parameters of graph g and layer l in graph convolution.
To integrate the station correlations with temporal depen-

dencies of OD flows, we further iteratively update the hidden
state representation hl

i of station i with Gated Recurrent Units
(GRUs). In time step k, t − q ≤ k ≤ t − 1, let HR

k ∈ Rn×d

denote the hidden feature representations of all the n stations
with d features in the last layer of RGCN (denoted by R),
Rk, Zk, H̃k denote the reset gate, update gate and candidate
activation in GRU, respectively. Hidden feature representation
HR

k is updated by

Rk = σ(Ur Tk + Uhr Hk−1 + br ),

Zk = σ(UzTk + Uhz Hk−1 + bz),

H̃k = tanh(Uh Tk + Rk ⊙ Hk−1 + bh),

HR
k = Zk ⊙ Hk−1 + (1 − Zk) ⊙ H̃k, (4)

where Tk is the input OD matrix at time step k, Ur , Uz , Uh ,
Uhr , and Uhz are trainable GRU parameters between reset gate
Rk and input Tk . br , bz and bh are the bias parameters. Hk−1 is

2All weight matrices are normalized by row to avoid convolution failure.



5302 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 5, MAY 2023

Fig. 3. The number of OD trips per hour between two popular metro stations from April 1 to May 10, 2014, in Nanjing. (a) visualizes the number of trips
for all 40 days, and we can see obvious periodic patterns in days and weeks. (b) plots the number of trips in each hour of eight days, and we can see that
the day-to-day OD flows are almost repetitive. (c) plots the number of trips in every morning hour (8:00 - 9:00), we can see the periodic data flow fluctuates
randomly, and external factors Weekends (green) and Holidays (red), have a significant impact on the number of trips.

an enhanced hidden feature representation calculated by Eq. 5
at previous time step k − 1.

2) Spatial-Temporal Representation Learning With Graph
Attention Network: The five predefined knowledge-based
graphs may not be enough to capture all possible correlations
between stations, and there could be hidden correlations that
cannot be explicitly represented. Therefore, we adopt a graph
attention network (GAT) [66] to learn the hidden correlations
automatically. Unlike RGCN, GAT automatically learns differ-
ent importance on graph edges and does not need a predefined
graph structure. We adopt the most general network struc-
ture [66] that assumes there are edges between every two nodes
(i.e., stations) and automatically learns edge weights to capture
hidden dependencies. Similar to RGCN-GRU that combines
RGCN with GRU to capture spatial-temporal dependencies,
we iteratively update the hidden feature representation learned
from GAT using GRUs in each time step. GAT-GRU finally
outputs hidden features HA

k at time step k. And then, the
output features are concatenated with the hidden features from
RGCN-GRU.

3) Integrate Knowledge-Based and Attention-Based Feature
Learning: We concatenate the two hidden feature representa-
tions HR

k learned from RGCN-GRU and HA
k learned from

GAT-GRU with a fully-connected layer, denoted by FC(·),
as the final hidden state Hk at time step k, i.e.,

Hk = FC(HR
k ⊕ HA

k ), (5)

where ⊕ denotes the concatenation operation.
Fig. 2 (b) demonstrates how the features from knowledge-

based graph convolution and features from attention-based
graph convolution are fused and updated within each gated

recurrent unit. Since GAT-GRU improves the comprehensive-
ness of representation by RGCN-GRU, we call the whole unit
Enhanced Multi-Graph Convolution GRU (EMGC-GRU).

4) Prediction Network Architecture: We construct two lay-
ers of EMGC-GRU units as the encoder (see Fig. 2(a),
bottom) and employ a GCN as the decoder to output the
initial prediction T ′

t (see OD Predictor in Fig. 2(a)). The first
layer sequentially takes OD matrix Tk at each time step k,
t − q ≤ k ≤ t − 1, as input, and its output hidden state
is then fed into the second layer for a higher level feature
learning. We stacked only two layers of EMGC-GRU to avoid
over-smoothing and keep a low computational complexity.
The decoder GCN decodes the hidden feature Ht−1 of time
step t − 1 into an initial prediction T ′

t , which will be further
calibrated with periodic OD flow and external factors in the
next section.

B. Integrating Periodic OD Flow and External Factors

OD flows usually have very obvious periodic patterns, such
as morning or evening peak hours(see Fig. 3(a)). Fig. 3(b)
further plots the number of OD trips per hour over eight
days, and we can see OD flows are almost repetitive each day.
Such a periodic pattern can help improve prediction accuracy.
Existing works [17], [20], [21], [61] usually explicitly extract
periodic data flows such as OD matrices at the same time of
past days and directly feed them into a sub-network to predict
the OD matrix of the same time in the next day. However,
the network for processing realtime OD flow may not work
well for periodic data as it may not have clear monotonic
trends or patterns. For example, we can see the number of
OD trips fluctuates a lot randomly every morning in Fig. 3(c).
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Fig. 4. External Factor-based Attention Module. Periodic external factors
Et−p∗η, · · · , Et−η, Et are firstly embedded for a more dense representation,
then similarities between each external factor in past p days to the current
external factor are calculated by a fully connected layer U (·, ·). The SoftMax-
normalized similarities are then applied to corresponding OD matrix in the
same day. Finally, the weighted periodic OD matrices are aggregated with a
1 × 1 convolution layer into a single OD matrix prediction T ′′

t .

Such irregular fluctuations impede the prediction accuracy.
Fortunately, we also observe that those fluctuations are usually
affected by external factors, such as weekends, holidays, and
weather conditions. For example, in Fig. 3(c), we found that
the numbers of OD trips at the same time are close to each
other on weekends and are slightly smaller on holidays. This
motivates us to integrate external factors with periodic OD
matrices to improve the prediction accuracy.

1) External Factor-Based Attention Module: We adopt an
attention mechanism to model how external factors affect the
number of OD trips in different days. Specifically, to calibrate
the previous OD matrix estimation T ′

t at time step t , we ref-
erence periodic OD matrices at the same time step in past p
days, i.e., Tt−p∗η, · · · , Tt−2η, Tt−η. Note that in the days with
similar external factors, the OD flows could be similar to each
other. Therefore, we calculate the attention of external factors
Et at time step t towards the external factors at the same
time step in the past days,3 denoted by Et−p∗η, · · · , Et−2η,
Et−η. The attention weights are then applied to each periodic
OD matrix, and the weighted OD matrices over p days are
aggregated as the calibrated prediction T ′′

t .
Fig. 4 demonstrates a more detailed computation flow. Peri-

odic external factors are first fed into a fully connected layer
to embed high-dimensional raw features in more dense vector
representations. Then we use another fully connected layer,
denoted by U (·, ·), to learn the attention weights, denoted by
at ′ , of external factors at time step t to those in each of the
past p days, t ′ ∈ {t − p∗η, · · · , t −2η, t −η, t}, and normalize
attention weights with SoftMax function, namely,

at ′ =

exp
(

U
(
Ue Et ⊕ Ue Et ′

))
∑

t ′′∈{t−p∗η,··· ,t−η,t} exp
(

U
(
Ue Et ⊕ Ue Et ′′

)) , (6)

3We assume that external factors do not change within one time step (15
minutes in our experiments), and assign Et = Et−1.

where Ue are shared embedding parameters, mapping raw
external factor features to denser vector representations. The
attention weights are applied to each of the periodic OD
matrices Tt−p∗η, · · · , Tt−2η, Tt−η and T ′

t . Finally, the weighted
periodic OD matrices are aggregated by 1 × 1 convolution to
form the calibrated prediction T ′′

t .
2) Gating With Calibrated Predictions: Calibrating with

periodic flows may improve the prediction accuracy for pas-
senger flows with obvious periodic patterns. However, predic-
tions directly using realtime data flows could be more accurate
for data with weak periodic patterns. Therefore, we apply a
gating unit to automatically tune how much the prediction
relies on periodic information (T ′′

t ) or realtime OD flow (T ′
t ).

The final prediction T̂t takes a trade-off between two kinds of
predictions with a trainable gate weight matrix β, i.e.,

T̂t = β ∗ T ′
t + (1 − β) ∗ T ′′

t . (7)

C. Loss Function

We define a loss function to minimize the error between the
predicted OD matrix T̂t at time step t and the ground truth Tt .
Metro operators usually need to pay more attention to the OD
pairs with high traffic volume. To train a network focusing
on those OD pairs, we add a mask, denoted by 2od, with a
threshold of θod to the loss function, i.e.,

arg min
φ
L =

n∑
i=1

2n∑
j=1

2od(i, j) · |Tt (i, j) − T̂t (i, j)|, (8)

where φ is a set of all the trainable parameters, 2od is a 0-1
matrix that masks on each entry in Tt that is smaller than
threshold θod. When j ∈ [1, n], i and j denote the indices of
origin and destination stations in the OD matrix, respectively,
and when j ∈ [n+1, 2n], j −n and i denote the indices of the
origin and destination stations, respectively (see Fig. 1(b)).

V. MULTI-TASK NETWORK FOR MUTUAL PREDICTION

After integrating the periodic pattern and external factors
with realtime OD prediction, it is still challenging to achieve
a high prediction accuracy for two main reasons: 1) Sparse
OD matrix. The OD matrix of the Xi’an metro system with a
total of 160 stations only has a density of 13.27%, namely,
only 13.27% of OD pairs have non-zero passenger flow.
2) Incomplete data. Passengers usually have long trips that
may span multiple time steps. We can only get the full
origin-destination information when passengers swipe cards at
their destination station, but we cannot know the destinations
of the passengers yet on their journey. Hence, the realtime
OD matrix lacks unfinished trips. In contrast, IO flow is
much more dense and complete and has been proven easy
to predict with relatively high accuracy [17]. Given that IO
matrix is actually a summation of OD matrix over each origin
station and destination station, respectively, (see Fig. 1(b)),
we hypothesize that a network that can accurately predict IO
flow can also help OD prediction. Therefore, we propose a
multi-task network to predict IO and OD flow mutually.



5304 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 5, MAY 2023

Fig. 5. Multi-Task Adaptive Feature Fusion Network. The network consists
of two AFFNs for IO prediction (Left) and OD prediction (Right) tasks. The
task-shared Co-IO Encoder takes the realtime IO flow as input but outputs
task-shared features for both IO Predictor and OD Predictor. The two tasks
also share the attention weights learned from the same external factors.

A. Multi-Task Network Architecture

Fig. 5 depicts the architecture of our multi-task network.
The network consists of two Adaptive Feature Fusion networks
(AFFNs) for IO prediction (Left) and OD prediction (Right)
tasks, respectively. Similar to single task OD prediction in
Fig. 2(a), each AFFN component firstly takes realtime IO (or
OD) matrix sequence as input and learns a task-independent
feature representation with our Enhanced multi-graph convolu-
tion GRU layers (EMGC-GRU), denoted by IO Encoder or OD
Encoder. IO Predictor (or OD Predictor) with a single GCN
layer decodes the representations to a prediction estimation
S′

t or T ′
t . Then the prediction estimation is calibrated with a

sequence of periodic IO (or OD) matrices and external factors
by an attention-based model and a gating unit. The network
finally outputs the IO prediction Ŝt and OD prediction T̂t .

To improve the performance of the OD prediction task,
we build another Co-IO Encoder module consisting of EMGC-
GRUs. It also takes the realtime IO flow as input, but outputs
task-shared features for both IO Predictor and OD Predictor,
so that the relevant and denser inflow and outflow can be fused
with OD matrices to improve the performance of OD Predictor.
The two tasks also share the external factor-based attention
component. Namely, the attention weights are updated based
on the two prediction tasks to capture the periodicity shared
by both IO and OD flows.

B. Loss Function

We first define two task-independent loss functions to min-
imize the error between predicted IO matrix Ŝt and its ground
truth St and the error between predicted OD matrix T̂t and its
ground truth Tt , respectively, i.e.,

L1 =

∑n

i=1

∑2

j=1
2io(i, j) · |St (i, j) − Ŝt (i, j)|,

L2 =

∑n

i=1

∑2n

j=1
2od(i, j) · |Tt (i, j) − T̂t (i, j)|, (9)

Fig. 6. The structures of metro systems in our experiments. (a) and (b) are
full system in Xi’an and Nanjing, respectively, (c) and (d) are simple metro
systems extracted from Nanjing.

where 2io and 2od are 0-1 matrices that mask on each entry
in St and Tt that are smaller than thresholds θio and θod,
respectively.

Note that IO flow is actually a summation of OD flows
over origin and destination stations. Maintaining this correla-
tion in mutual prediction would be beneficial for improving
prediction accuracy. To achieve this, we define cross-task loss
functions to minimize the error between the summation of the
predicted OD matrix over each destination

∑n
j=1 T̂t (i, j) and

the actual inflow St (i, 1) for each origin i , as well as the error
between the summation of the predicted OD matrix over each
origin

∑2n
j=n+1 T̂t (i, j) and the actual outflow St (i, 2) for each

destination i , i.e.,

L3 =

∑n

i=1
|St (i, 1) −

∑n

j=1
T̂t (i, j)|,

L4 =

∑n

i=1
|St (i, 2) −

∑2n

j=n+1
T̂t (i, j)|, (10)

The final loss function of our multi-task AFFN is to
minimize the weighted sum of all the loss items, i.e.,

arg min
φ
L = λ1 ∗ L1 + λ2 ∗ L2 + λ3 ∗ (L3 + L4), (11)

where λ1, λ2 are weights of two task-independent losses,
respectively, and λ3 is a weight for cross-task losses.

VI. EXPERIMENTS

We conducted experiments on two real-world metro datasets
and compared our proposed prediction network with a set of
baseline algorithms as well as our network variants with dif-
ferent components. In the following, we first present datasets,
baseline algorithms, evaluation metrics, and implementation
settings and then discuss experimental results.

A. Experiment Settings

1) Datasets: Trip datasets. We evaluated the performance
of our model on two real-world metro trip datasets collected
from two city-scale metro systems in Nanjing and Xi’an,
China, respectively. Table II summarizes the basic statistics of
these two datasets. Passenger trips in each dataset are recorded
by their tap-in and tap-out activities from the automated fare
collection (AFC) system. Each full trip record contains the
passenger’s origin station ID, destination station ID, arrival
time, and departure time. We count the number of passengers
entering and exiting each station every 15 minutes as IO flow,
and the number of passengers traveling between two stations
every 15 minutes as OD flow.
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TABLE II
STATISTICS OF METRO TRIP DATASETS IN NANJING AND XI’AN

We chose Nanjing and Xi’an metro systems to evaluate
the effectiveness of our model on metro systems at different
scales. Nanjing Metro (2014) contains 55 stations, which is
a small-scale metro network with a single loop (as shown
in Fig. 6(b)), and Xi’an Metro (2020) contains 160 stations
which is a complex, large-scale metro network with multiple
loops (as shown in Fig. 6(a)). Namely, there will be more
OD pairs connected by multiple paths in Xi’an dataset. It is
worth noting that multiple paths connecting the same OD pair
may have different travel time, which may affect the temporal
propagation for the OD flows and hence further affect the
prediction accuracy. To study how our model performs with
or without loops, we extracted two simpler metro systems,
i.e., Unique Path and Isolated Line from Nanjing Metro (see
Fig. 6(c) and 6(d)), in which every OD station pair only has
one path. We model and predict the subset of trips along the
selected metro lines.

External factor datasets. We consider weather conditions,
air quality, holidays, and weekdays as external factors in the
experiments. The weather condition dataset is collected from
China Meteorological Data Service Centre [84]. It contains
weather conditions every hour, including barometric pressure,
wind speed, temperature, precipitation, visibility, weather, etc.
The air quality dataset is collected from the Air Quality Online
Monitoring and Analysis Platform [85]. It contains daily air
quality including AQI, quality level, and indicators of P M2.5,
P M10, C O2, SO2, N O2 and O3. We use one-hot coding to
transform the non-numeric features into binary vectors and
Min-Max normalization to scale all the values into the range
[0, 1]. We concatenate the feature vectors of the four factors
every 15 minutes to formulate a sequence of external factor
vectors as the other input of prediction networks.

2) Baseline Methods: We first compare AFFN with basic
statistical models (HA & ARIMA) to demonstrate the dif-
ficulty in capturing high temporal dynamics of input OD
and IO flows. Then, we compare AFFN with basic deep
learning models (MLP & GRU) to verify how spatial-temporal
networks are superior to classic models. Finally, AFFN is com-
pared with the state-of-the-art deep models (TGCN, DCRNN,
GWN, STGCN, ASTGCN, and PVCGN) to demonstrate the
advantages of our models in spatial-temporal representation
learning and integrating external factors.

• Historical Average (HA) directly averages the historical
observations of the last q time steps as the prediction of
the next time step.

• Autoregressive Integrated Moving Average (ARIMA) [86]
fits time series data with a linear combination of recent
observations and lags of the recent forecast errors. It has
been widely used for forecasting time series.

• Multiple Layer Perceptron (MLP) [87] is the simplest
deep neural network and has been used for traffic predic-
tion [50], [88]. It consists of multiple layers of neurons
in a feed-forward way. In the experiment, we use three
fully-connected layers and re-shape the sequence of input
OD (or IO) matrices into a new input vector by flattening
each matrix and concatenating them in chronological
order.

• Gated Recurrent Unit (GRU) [52] is the most basic
recurrent neural network with a gating mechanism to
model the temporal dependencies of the time series data.
It has been proven to be effective in predicting traffic [89]
and crowd flow [21].

• Temporal Graph Convolutional Network (TGCN) [90]
integrates a graph convolution network (GCN) into gated
recurrent units (GRUs) to model road network topology
and spatial dependencies between stations.

• Diffusion Convolutional Recurrent Neural Network
(DCRNN) [91] is a deep learning model designed for
predicting traffic flow, which captures the spatial depen-
dency using bidirectional random walks on the graph
and the temporal dependency using the encoder-decoder
architecture with scheduled sampling.

• Graph WaveNet (GWN) [92] is a novel graph neural net-
work, which learns a novel adaptive dependency matrix
for capturing hidden spatial dependencies through node
embedding and takes a stacked dilated 1D convolution
component for learning long-range temporal dependency.

• Spatial Temporal Graph Convolutional Network
(STGCN) [93] integrates graph convolution and gated
temporal convolution in multiple convolutional blocks.
In each block, two temporal gated convolution layers
are used to capture temporal dynamics, and a graph
convolution layer is used to capture spatial dependencies.

• Attention Based Spatial-Temporal Graph Convolutional
Network (ASTGCN) [61] adopts a spatial-temporal atten-
tion mechanism to learn the dynamic spatial-temporal
correlations of traffic data. Spatial attention is used to
model the complicated spatial correlations between dif-
ferent nodes, and temporal attention is used to capture
the dynamic temporal correlations between time steps.

• Physical-Virtual Collaboration Graph Network
(PVCGN) [16] builds multiple knowledge-based graphs
to model physical connectivity, ridership connection, and
flow similarity between stations and uses a unified graph
convolution gated recurrent unit for spatial-temporal
feature learning. Unlike PVCGN, we integrate multiple
knowledge-based graphs with the relational graph
convolution network and use an extra graph attention
network to capture hidden correlations between stations.

To further verify the effectiveness of the key components
and the usefulness of the input features, we also compare
AFFN with the following variants.
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• AFFN-NG removes the GAT-based module in
EMGC-GRU (see Fig. 2(b)) to verify whether the
Graph Attention Network (GAT) is effective in capturing
the hidden correlations between stations.

• AFFN-NP removes the module for capturing periodic
patterns, and predicts based on the realtime flow only.

• AFFN-AC removes external factors but fuses periodic
flows by learning static correlation weights (i.e., auto-
correlation) between periodic OD (or IO) matrices [94].

• AFFN-SA also removes external factors but fuses periodic
flows with self-attention weights, determined by similar-
ity [95] between periodic OD (or IO) matrices.

3) Evaluation Metrics: We evaluate the performance of the
prediction methods with Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE), i.e.,

MAE =
1
N

N∑
t=1

|Tt − T̂t |,

MAPE =
1
N

N∑
t=1

|Tt − T̂t |

Tt + ϵ
,

RMSE =

√√√√ 1
N

N∑
t=1

(Tt − T̂t )2,

where T̂t is predicted OD matrix at time t , Tt is the actual
OD matrix at time t , N is the total number of predictions,
and ϵ is a small positive number to avoid division by zero.
Note that MAE, MAPE and RMSE are error matrices of all
OD pairs, we took the average value of each error matrix as
its final numeric metric.

4) Implementation and Hyperparameter Settings: Experi-
ments were conducted on a Linux server with an Intel (R) Core
(TM) i9-10940X CPU @ 3.30GHZ and NVIDIA GeForce
RTX3090 GPU 24GB card. We split each of the two datasets
into a training set with trips in the first 60% days, testing
sets with trips in the last 20% days, and validation sets with
the rest trips. In the network training, Adam [96] is used for
optimizing trainable parameters with a batch size of 8. The
learning rate is set to 0.001, and the training epoch is 100.
A validation-based early stopping mechanism [97] is applied
to avoid over-fitting by stopping the training process when the
MAE of validation does not decrease in ten successive epochs.

The input realtime OD (or IO) flow has a sequence length
q = 6, i.e., consists of six sequential OD matrices. The input
periodic data flow has a sequence length p = 7. Namely,
we calibrate the initial prediction with periodic OD matrices
and external factors in the past seven days. Both AFFN
and multi-task AFFN share the same set of network hyper-
parameters. Specifically, in EMGC-GRU, the number of units
in RGCN and GAT layers and the number of attention heads
in the GAT layer are summarized in Table III. The embedding
size of external factors is set to 10. gelu [98] is used as the
activation function in all modules to avoid gradient explosion
while accelerating convergence. In loss functions, the mask
thresholds θod = 15 and θio = 150. Namely, we focus
on predicting popular OD pairs with at least 15 OD trips

TABLE III
HYPER-PARAMETER SETTINGS IN EMGC-GRU

TABLE IV
OD PREDICTION PERFORMANCE COMPARISON ON BOTH DATASETS

per 15-minute time step and popular stations with at least
150 passengers in or out per time step. We also set weights for
each loss component in Eq. 11 as λ1 = 1, λ2 = 1, λ3 = 0.5 to
assign higher weight on task-independent prediction loss to
achieve higher prediction accuracy, but less weight on the
cross-task loss to avoid a local optimum solution.

B. Experiment Results

In this section, we compare performance of our proposed
network AFFN (Fig. 2(a)) versus 1) the baseline methods to
evaluate effectiveness in modeling spatial-temporal dependen-
cies of OD flows as well as IO flows, 2) the multi-task AFFN
to verify how IO prediction helps with OD prediction, and
3) the variants of AFFN to evaluate the effectiveness of GAT
in EMGC-GRU units and the external factor-based attention
module. In the rest of this section, we also validate the
effectiveness of AFFN in different structural metro systems,
give a visual analysis of the prediction results, and demonstrate
the runtime efficiency of our proposed models.

1) AFFN Versus Baseline Methods: Table IV summarizes
OD prediction performances of comparison methods on both
Nanjing and Xi’an datasets. Overall, our model AFFN per-
forms the best among all the methods in terms of prediction
MAE, MAPE, and RMSE on both datasets. i) The simplest
deep model MLP significantly outperforms the statistic model
HA4 in all metrics on both datasets. This demonstrates the
superiority of deep models. ii) With the recurrent network
capturing the temporal dependencies of OD flows, GRU
outperforms MLP with nearly 1% smaller MAPE. iii) By
modeling spatial dependencies with graphs, graph convolu-

4ARIMA fails to model the high dimensional OD matrices, so we excluded
it from the baseline methods in the OD prediction task.



XU et al.: AFFNs FOR OD PASSENGER FLOW PREDICTION IN METRO SYSTEMS 5307

TABLE V
IO PREDICTION PERFORMANCE COMPARISON ON BOTH DATASETS

TABLE VI
AFFN VERSUS MULTI-TASK AFFN ON NANJING DATASET

tional networks generally outperform simple recurrent net-
works. DCRNN, GWN, STGCN, TGCN, PVGCN, and our
single-task AFFN have more than 0.31% lower MAPE than
that of GRU on both datasets. However, ASTGCN fails to
capture spatial and temporal dependencies with its attention
mechanism and thus performs worse than MLP. iv) Compared
with DCRNN, GWN shows a slight improvement in MAE on
both datasets, which can be attributed to the use of an adaptive
adjacency matrix. v) With multiple knowledge-based graphs
to model non-spatial correlations between stations, PVCGN
performs the best among all the baseline methods. vi) Our
proposed model AFFN outperforms PVCGN by further inte-
grating the periodic OD flow and external factors.

In addition, although the Xi’an metro (2020) has a larger
scale and more complex network than the Nanjing Metro
(2014), the MAEs of the AFFN prediction results on Xi’an
dataset are close to that on Nanjing dataset. It is worth
noting that while AFFN has a higher MAPE on Xi’an, that
is mainly because there are more stations in Xi’an dataset
and many more OD pairs, so the OD matrix is more sparse.
In summary, AFFN can be applied to OD flow prediction tasks
for metro systems of different scales with stable and reliable
performance.

To further evaluate the effectiveness of our AFFN network,
we compare the performance of all the methods on predicting
IO flow, see Table V. Overall, IO flow is easier to predict
compared to OD flow, as the prediction error MAPE of each
method is much smaller than that in OD prediction. Similar
to OD prediction, we can observe that deep learning mod-
els outperform statistical models (HA and ARIMA), models
explicitly capturing spatial-temporal dependencies are superior
to simple networks, and modeling non-spatial station corre-
lation with knowledge-based graphs improves the prediction

TABLE VII
AFFN VERSUS MULTI-TASK AFFN ON XI’AN DATASET

TABLE VIII
COMPARISON BETWEEN AFFN AND ITS VARIANTS FOR OD PREDICTION.

P, E DENOTE PERIODIC FLOWS AND EXTERNAL
FACTORS, RESPECTIVELY

TABLE IX
COMPARISON BETWEEN AFFN AND ITS VARIANTS FOR IO PREDICTION

TABLE X
PERFORMANCE OF AFFN ON DIFFERENT METRO NETWORKS

accuracy. Our network AFFN achieves the best prediction
performance among all the methods on both datasets.

2) AFFN Versus Multi-Task AFFN: We compare the perfor-
mance of AFFN versus our multi-task AFFN on both datasets
(see Tables VI and VII). Multi-task AFFN outperforms the
AFFN in predicting both OD flow and IO flow on Nan-
jing dataset (Table VI). On Xi’an dataset, multi-task AFFN
achieves a better performance than AFFN in predicting OD
flow but has a similar performance in predicting IO flow
(Table VII). This demonstrates that the relatively easy but
closely correlated IO prediction task helps with improving
OD prediction accuracy. This is because the shared Co-IO
Encoder generates a more robust IO feature representation
that supplements the incompleteness of OD flows. Also, the
cross-task loss function adds constraints on OD predictions
that can further improve prediction accuracy.

3) AFFN Versus Its Variants: We compare AFFN with its
variants without graph attention module, inputs Periodic flow
(P), and External factors (E). Tables VIII and IX summa-
rize the comparison results on the two datasets, respectively.
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Fig. 7. Visualization of attention weights on external factors. The darker
red, the higher weights have been learned.

We can conclude that, in both datasets, i) GAT module is
effective in capturing hidden correlations between stations
as AFFN performs much better than AFFN-NG without
the GAT module. ii) Integrating both periodic flows and
external factors improves the prediction accuracy, as AFFN
performs much better than AFFN-NP, which makes pre-
dictions solely based on the realtime input flows. iii) By
integrating periodic flows with static weights, AFFN-AC
performs the worst in terms of MAE. iv) By integrating
periodic flows with self-attention weights, AFFN-SA per-
forms much better than AFFN-NP, demonstrating the effec-
tiveness of the attention weights in integrating periodic flows.
We also observe that AFFN-SA achieves the lowest RMSE
in OD prediction tasks on both datasets, further demon-
strating the effectiveness of self-attention on periodic flows.
v) However, AFFN-SA still performs worse than AFFN in
general, demonstrating the necessity of integrating external
factors.

To further understand how the external factor-based atten-
tion mechanism works in AFFN, we visualize two sets of
attention weights randomly selected from the testing Nanjing
and Xi’an datasets on IO prediction task. Fig. 7 visualizes the
attention weights on the IO flows in periodic time segments
(7:30 AM and 5:30 PM in two datasets, respectively) in last
7 days, for the query time segment (prediction) in July 1st and
January 10th in two datasets, respectively. We can see that the
higher attention weights have been assigned to the periodic
time segments with similar external factors, i.e., working days
and weather conditions. In Fig. 7(a), all periodic time segments
on weekdays have higher weights than that on weekends, with
the prediction query on Tuesday. Among them, Thursday has
the highest weight, contributing the most to the prediction
on Tuesday, due to the same weather condition (rainy) on
both days. In Fig. 7(b), higher weights have been assigned
to periodic time segments on weekends, as the prediction
is on Sunday. The two cases demonstrate that the external
factor-based attention module has successfully captured the
hidden correlation between external factors and passenger
flows.

4) Effectiveness on Different Metro Networks: To verify the
effectiveness of AFFN on different metro networks, we com-
pare its prediction performance on trip datasets from metro
systems Unique Path (Fig. 6(c)) and Isolated Line (Fig. 6(d))

Fig. 8. Visualizations of ground truth OD matrix (Left) versus predicted OD
matrix by Multi-Task AFFN (Right) on two datasets.

to that from Nanjing. Table X summarizes the performance
on both OD and IO prediction tasks. We observe that AFFN
performs the best on the simplest metro network with a single
line. With more lines, the prediction accuracy becomes worse.
It is even more challenging to predict the flows in systems
where some OD station pairs are connected by multiple paths.
However, the performance differences are relatively small, e.g.,
less than 0.05 and 3.62 in MAE in OD and IO prediction tasks,
respectively. This demonstrates that our AFFN is scalable and
can be applied to more complex metro systems.

5) Visual Analysis on Prediction Results: For a better under-
standing of the prediction quality, we visualize the predicted
OD matrix using a heatmap where the column represents the
origin stations and the row represents the destination stations
(see examples in Figs. 8(a) and 8(b)). The color of each
grid entry represents the number of OD trips, the more red,
the more OD trips. Fig. 8(a) visualizes the heatmap of the
predicted OD matrix from 7:30 to 7:45 AM on June 24, 2014,
in Nanjing, and Fig. 8(b) visualizes the predicted OD matrix
from 5:45 to 6:00 PM on January 7, 2021, in Xi’an. We can
see that most OD pairs have nearly zero trips, even in morning
and evening peak hours. Only very few OD pairs have a large
number of trips. Such a sparsity makes OD flows hard to
predict. Yet our OD predictions are pretty close to the ground
truth for both popular and non-popular OD pairs. We also plot
the IO prediction results to further study IO prediction quality.
Figs. 9(a) and 9(b) visualize predicted inflow and outflow from
June 20 to June 26, 2014, in Nanjing South Station, Nanjing,
respectively. Fig. 9(c) and 9(d) visualize predicted inflow and
outflow from January 5 to January 11, 2021, in Dayanta
station, Xi’an, respectively. Overall, the predicted inflow and
outflow curves fit the ground truth well. However, obvious
prediction errors occur when predicting local traffic peaks,
which is pretty common in predicting time series since the
local peaks are usually hard to predict [90].
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Fig. 9. Visualizations of ground truth IO flow (blue) and predicted IO flow
(red) by Multi-Task AFFN in Nanjing South Station, Nanjing and Dayanta
Station, Xi’an, respectively.

TABLE XI
COMPARISON OF RUNNING TIMES OF DEEP MODELS ON

TWO TASKS AND TWO DATASETS

6) Runtime Efficiency: We compare the running time of
different deep learning models for OD and IO prediction on
two datasets in Table XI. We observe that the running time
of all models for each OD flow prediction is higher than that
of the IO flow prediction. Xi’an dataset takes longer time to
predict than Nanjing. PVCGN is the most time efficient with
small scale neural networks among the compared models. Our
models (both AFFN and multi-task AFFN) take longer time
to predict because of the larger scale neural networks, but are
still in acceptable milliseconds, supporting realtime prediction.

VII. CONCLUSION

We proposed an Adaptive Feature Fusion Network (AFFN)
to predict origin-destination passenger flow in a citywide
metro system. To exhaustively capture the complex spatial
and temporal dependencies in OD flows, we first devel-
oped an enhanced multi-graph convolution-gated recurrent
unit (EMGC-GRU) that fuses the predefined correlations
modeled by multiple knowledge-based graphs and the auto-
learned attention-based hidden correlations between stations
within GRUs. An external factor-based attention module is
then developed to accurately capture the periodic pattern
by integrating the periodic data flow and external factors.
To further improve prediction accuracy, we also proposed
an asymmetric multi-task framework to predict OD flow and
IO flow mutually. Evaluation results show that our proposed

methods outperform the state-of-the-art spatial-temporal pre-
diction techniques in terms of various prediction errors on two
real-world metro trip datasets.

Future works include 1) extending the one-step prediction
model to a multi-step prediction model, 2) predicting more
fine-grained passenger flow by fusing more detailed local trip
information [51], such as passenger movements and waiting
time within the stations, collected from surveillance cameras or
other sensors, 3) studying how our proposed model performs in
more complex metro systems, such as those containing circular
lines and multi-line shared track structures, and 4) improving
the prediction accuracy by fusing other non-metro trips such
as bus and taxi trips.
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