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Safety-Compliant Generative Adversarial Networks
for Human Trajectory Forecasting

Parth Kothari and Alexandre Alahi

Abstract— Human trajectory forecasting in crowds presents
the challenges of modelling social interactions and outputting
collision-free multimodal distribution. Following the success
of Social Generative Adversarial Networks (SGAN), recent
works propose various GAN-based designs to better model
human motion in crowds. Despite superior performance in
reducing distance-based metrics, current networks fail to out-
put socially acceptable trajectories, as evidenced by high col-
lisions in model predictions. To counter this, we introduce
SGANv2: an improved safety-compliant SGAN architecture
equipped with spatio-temporal interaction modelling and a
transformer-based discriminator. The spatio-temporal modelling
ability helps to learn the human social interactions better while
the transformer-based discriminator design improves temporal
sequence modelling. Additionally, SGANv2 utilizes the learned
discriminator even at test-time via a collaborative sampling
strategy that not only refines the colliding trajectories but also
prevents mode collapse, a common phenomenon in GAN training.
Through extensive experimentation on multiple real-world and
synthetic datasets, we demonstrate the efficacy of SGANv2 to
provide socially-compliant multimodal trajectories.

Index Terms— Trajectory forecasting, generative adversarial
networks, transformers, multimodality.

I. INTRODUCTION

FORECASTING the motion of pedestrians in crowds is
essential for autonomous systems like self-driving cars

and social robots that will potentially co-exist with humans.
To successfully predict how humans navigate in crowds,
a forecasting model needs to tackle three crucial challenges:

(1) Modelling social interactions: the model should learn
how the trajectory of one person affects another person;

(2) Physically acceptable outputs: the model predictions
should be physically acceptable, i.e., not undergo collisions;

(3) Multimodality: given the history, the model needs to
be able to output all futures without missing any mode.

The objective of multi-modal trajectory forecasting is to
learn a generative model over future trajectories. Generative
adversarial networks (GANs) [1] are a popular choice of gen-
erative models for trajectory forecasting as they can effectively
capture all possible future modes by mapping samples from
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Fig. 1. Given the history (solid), a forecasting model needs to account
for social rules of human motion when predicting collision-free multimodal
futures (dash). SGANv2 learns social interactions using spatio-temporal
interaction modelling and refines unsafe outputs via collaborative sampling
strategy.

a given noise distribution to samples in real data distribution.
Gupta et al. [2] proposed Social GAN (SGAN), GANs with
social mechanisms, to learn human interactions and output
multimodal trajectories. Following the success of SGAN,
recent works [3], [4], [5], [6] have proposed improved GAN
architectures to better model human interactions in crowds.
Indeed, these designs have been successful in reducing the
distance-based metrics on real-world datasets [3]. However,
we discover that they fail to model social interactions i.e., the
models output colliding trajectories.

The failure to output collision-free trajectories can be
attributed to the fact that the current discriminator designs
do not fully model human-human interactions; hence they are
incapable of differentiating real trajectory data from fake data.
Only when the discriminator is capable of differentiating real
data from fake data, can the supervised signal from it be mean-
ingful to teach the generator. To tackle this issue, we propose
two architectural changes to the SGAN design: (1) Spatio-
temporal interaction modelling to better discriminate between
real and generated trajectories. (2) A transformer-based dis-
criminator design to strengthen the sequence modelling capa-
bility and better guide the generator training. Equipped with
these structural changes, our proposed architecture SGANv2,
learns to better model the underlying etiquette of human
motion as evidenced by reduced collisions.

To further reduce the prediction collisions, SGANv2 lever-
ages the trained discriminator even at test time. In particular,
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TABLE I

HIGH-LEVEL COMPARISON OF PROPOSED ARCHITECTURE AGAINST SELECTED COMMON GENERATIVE MODEL-BASED FORECASTING MODELS

we perform collaborative sampling [10] between the generator
and discriminator at test-time to guide the unsafe trajectories
sampled from the generator. Additionally, we empirically
demonstrate that collaborative sampling not only helps to
refine trajectories but also has the potential to prevent mode
collapse, a phenomenon where the generator fails to capture
all modes in the output distribution.

We empirically validate the efficacy of SGANv2 in out-
putting socially compliant predictions on both synthetic and
real-world trajectory datasets. First, we shed light on the
shortcomings of the current metric commonly used to measure
the multimodal performance, namely Top-20 ADE/FDE [2].
Specifically, we demonstrate that a simple predictor that out-
puts uniformly spaced predictions performs at par with the
state-of-the-art methods when evaluated using only Top-20
ADE/FDE. To counter this limitation, we propose an alternate
evaluation scheme to better measure the socially-compliant
multimodal performance of a model. We demonstrate that
SGANv2 outperforms competitive baselines on both synthetic
and real-world trajectory datasets under the new evaluation
scheme. Finally, we demonstrate the ability of collabora-
tive sampling to prevent mode collapse on the recently
released Forking Paths [11] dataset. Our main contributions
are:

1) We propose SGANv2, an improved SGAN architecture
that incorporates spatio-temporal interaction modelling in
both the generator and the discriminator. Moreover, our
transformer-based discriminator better guides the learning
process of the generator.

2) We demonstrate the efficacy of collaborative sampling
between the generator and discriminator at test-time to
reduce prediction collisions and prevent mode collapse
in trajectory forecasting.

II. RELATED WORK

Human trajectory forecasting in crowds has been an active
area of research [7], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29] for
various applications like autonomous systems [30], [31], [32],
[33] and advanced surveillance [34]. In this section, we review
model designs that learn social interactions and output socially
compliant multimodal outputs. Table I provides a high-level
overview of how SGANv2 architecture differs from selected
generative model-based designs.

A. Spatio-Temporal Interaction Modeling

The seminal work of Social LSTM [7] proposed to learn
spatial interactions in a data-driven manner with a novel
social pooling layer. Following the success of Social LSTM,
various designs of data-driven interaction modules have been
proposed [2], [9], [15], [16], [18], [20], [28], [35], [36], [37],
[38], [39], [40], [41], [42] to effectively model interactions in
crowds. For a detailed taxonomy on the designs of interaction
modules, one can refer to Kothari et al. [43]. In this work,
we highlight the importance of modelling both the spatial and
temporal nature of social interactions.

Architectures that model dynamics of entities in spatio-
temporal tasks have been well-studied. Structural-RNN [44],
a specialized RNN design, proposed to model dynamics in
spatio-temporal tasks like human-object interaction and driver
maneuver anticipation. Specific to motion forecasting, several
works consider the temporal evolution of spatial human inter-
actions using recurrent mechanisms [14], [42], [45], graph
convolutional networks [15], [46] as well as transformers [18].
However, many recent works advocated performing spatial
interaction modelling only at the end of observation [2], [3],
as this strategy did not impact the distance-based metrics
and saved computational time. In this work, we study the
importance of spatio-temporal interaction modelling from the
perspective of reducing the collisions in model outputs.

B. Multimodal Forecasting

Neural networks trained using L2 loss are condemned to
output the average of all possible outcomes. To tackle this,
one line of work proposes L2 loss variants [14], [47], [48],
[49] capable of handling multiple hypotheses. However, these
variants fail to penalize low quality predictions, e.g., samples
that are far away from the ground truth and undergo collisions.
Thus, training using these variants can result in high diversity
but low quality predictions.

Another line of work utilizes generative models [2], [3],
[6], [8], [9], [50], with Variational Autoencoders (VAEs)
and Generative Adversarial networks (GANs) being the most
popular, to model future trajectory distribution. VAE models
in trajectory forecasting [8], [9] employ a loss objective
based on different variants of the euclidean distance. Such a
formulation leads to low quality samples especially when the
predictions are uncertain [51]. In contrast, the discriminator
of the GAN framework acts as a learned loss function that
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Fig. 2. Our proposed SGANv2 model: Our model consists of three main parts: the spatial interaction embedding module (SIM), the generator (G) and the
discriminator (D). At each time-step, for each pedestrian, the SIM outputs the motion embedding and the spatial interaction embedding. G encodes the input
embedding sequence using the encoder LSTM to obtain the latent representation. The latent representation along with the sampled noise vector z is used
to generate multimodal predictions using the decoder LSTM. D inputs the stacked embedding sequence of real (or fake) trajectories, encodes it using the
transformer architecture to obtain the real (or fake) score.

naturally penalizes the low quality samples under the adversar-
ial training objective i.e., penalty is incurred on the generator
if a sample does not look real [1]. Thus, we choose GANs as
our generative model as they can effectively produce diverse
and high-quality modes by transforming samples from a noise
distribution to samples in the real data.

C. GANs in Trajectory Forecasting

SGAN [2] used an LSTM encoder-decoder with social
mechanisms within the GAN framework [52] to perform mul-
timodal forecasting. Following the success of SGAN, various
GAN-based architectures have been proposed to better model
multimodality in crowds [3], [6], [53] as well as on roads [54],
[55]. Li [53] proposed to infer the latent decisions of the
agents to model multimodality. Kosaraju et. al. [3] proposed
to introduce two discriminators: a local discriminator for the
local pedestrian trajectories, similar to [6] and [2], and a global
discriminator that accounted for the spatial interactions. All
these works exhibit two common design choices: (1) they
do not perform spatio-temporal interaction modelling within
the discriminator, (2) they utilize a recurrent LSTM-based
discriminator.

It is crucial to equip the discriminator with the ability
to model spatio-temporal interactions. Therefore, SGANv2
performs spatio-temporal interaction modelling within the
discriminator, along with the generator. Transformers [56]
have been shown to outperform RNNs in almost all sequence
modelling tasks, including trajectory forecasting [17], [57].
Therefore, we design our discriminator using the transformer
and demonstrate that it better guides the generator training.
Giuliari et al. [17] do not take into account social interactions
leading to high collisions in the outputs. The spatio-temporal
transformer design of STAR [18] is most closely related to

the design of our discriminator. However, as discussed above,
their L2 loss training objective can fail to effectively model
multimodality. Further, in contrast to previous transformer and
GAN-based works, SGANv2 performs test-time refinement
that leads to further collision reduction, discussed next.

D. Test-Time Refinement

This refers to the task of refining model predictions at test-
time. Lee et al. [8] propose an inverse optimal control based
module to refine the predicted trajectories. Sun et al. [58] refine
trajectories using a reciprocal network that reconstructs input
trajectories given the predictions. However, they rely on the
strong assumption that both forward and backward trajectories
follow identical rules of human motion. We propose to refine
trajectories by performing collaborative sampling between
the trained generator and discriminator [10]. This technique
provides theoretical guarantees with respect to moving the
generator distribution closer to real distribution.

E. Mode Collapse

This is the phenomenon where the generator distribution
fails to capture all modes of target distribution. SGAN col-
lapses to a single mode of behavior. Social Ways [59] utilizes
InfoGAN that overcomes this issue albeit on a toy dataset.
We empirically show that the collaborative sampling technique
in SGANv2 overcomes mode collapse on the more-diverse
Forking Path dataset [11].

III. METHOD

Modelling human trajectories using generative adversarial
networks (GANs) has the potential to learn the underlying
etiquette of human motion and output realistic multimodal
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predictions. Indeed, recent GAN-based trajectory forecast-
ing models have been successful in reducing distance-based
metrics, however they suffer from high prediction collisions.
In this section, we present SGANv2, an improvement over
the SGAN architecture to output safety-compliant predic-
tions. On a high level, we propose three structural changes:
(1) Spatio-temporal interaction modelling within the discrim-
inator and generator to better understand social interactions,
(2) Transformer-based discriminator to better guide the gen-
erator, (3) Collaborative sampling mechanism between the
generator and discriminator to refine the colliding trajectories
at test-time. Our proposed changes are generic and can be
employed on top of any existing GAN-based architecture.

A. Problem Definition

Given a scene, we receive as input the trajectories of all peo-
ple within the scene denoted by X = {X1, X2, . . . Xn}, where n
is the number of people in the scene. The trajectory of a person
i , is defined as Xi = (xt

i , yt
i ), for time t = 1, 2 . . . Tobs and

the future ground-truth trajectory is defined as Yi = (xt
i , yt

i )
for time t = Tobs + 1, . . . Tpred . The objective is to accurately
and simultaneously forecast the future trajectories of all people
Ŷ = Ŷ1, Ŷ2 . . . Ŷn , where Ŷi is used to denote the predicted
trajectory of person i . The velocity of a pedestrian i at time-
step t is denoted by v t

i .

B. Generative Adversarial Networks

GANs consist of two neural networks, namely the generator
G and the discriminator D, which are trained together in
tandem. The objective of D is to correctly identify whether
a sample belongs to the real data distribution or is generated
by the generator. The objective of G is to produce realistic
samples which can fool the discriminator. G takes as input
a noise vector z sampled from a given noise distribution pz

and transforms it into a real looking sample G(z). D outputs
a probability score indicating whether a sample comes from
the generator distribution pg or the real data distribution pr .
Training GANs is essentially a minimax game between the
generator and the discriminator:
min

G
max

D
Ex∼pr [log(D(x))] + Ez∼pz [1 − log(D(G(z)))]. (1)

C. Interaction Modeling Designs

Modelling social interactions is the key to outputting safe
and accurate future trajectories. In this work, we argue that
current works do not model interactions between agents suffi-
ciently within both the generator and discriminator leading to
large number of prediction collisions. Here, we differentiate
between the notion of performing spatial interaction mod-
elling and performing spatio-temporal interactions modelling.
On one hand, an architectural design is said to perform spatial
interaction modelling if it models the interaction between
pedestrians at a single time-step only. For instance, SGAN
performs spatial interaction modelling within the generator as
it encodes the neighbourhood information only once, at the end
of the observation. On the other hand, an architectural design
is said to perform spatio-temporal interaction modelling if

it performs the spatial interaction modelling at every time-
step (from t = 1 to t = Tpred ) and the temporal evolution
of the interactions are captured using any sequence encoding
mechanism, e.g., an LSTM or a Transformer. We empirically
demonstrate that spatio-temporal interactions modelling within
both the generator and the discriminator are essential to output
safer trajectories.

D. SGANv2

We now describe our proposed model design in detail (see
Fig. 2). Our architecture consists of three key components: the
Spatial Interaction embedding Module (SIM), the Generator
(G), and the Discriminator (D). SIM is responsible for spatial
interaction modelling while the G and D perform temporal
modelling. Thus, G and D in congregation with SIM per-
form spatio-temporal interaction modelling (STIM). In partic-
ular, SIM performs motion embedding and spatial interaction
embedding for each pedestrian at each time-step. G encodes
the embedded sequence through time and outputs multimodal
predictions using an LSTM encoder-decoder framework. D,
modelled using a transformer [56], inputs the entire sequence
comprising the observed trajectory X and the future prediction
Ŷ (or ground-truth Y), and classifies it as real/fake.

1) Spatial Interaction Embedding Module: One important
characteristic that differentiates human motion forecasting
from other sequence prediction tasks is the presence of social
interactions: the trajectory of a person is affected by other
people in their vicinity. SIM performs the task of encoding
human motion and human-human interactions in the spatial
domain at a particular time-step. We embed the velocity v t

of pedestrian i at time t using a single layer MLP to get the
motion embedding vector et

i given as:
et

i = φ(v t
i ; Wemb), (2)

where φ is the embedding function with weights Wemb .
The design of SIM is flexible and it can utilize any spatial

interaction module proposed in literature [3], [43]. It embeds
the spatial configuration of the scene and outputs the inter-
action embedding pt

i for pedestrian i at time-step t . We then
concatenate the motion embedding with the spatial interaction
embedding, i.e., st

i = [et
i ; pt

i ], and provide the concatenated
embedding st

i to the G (or the D). The input embedding is
constructed using the ground-truth observations from [1, Tobs],
and generator predictions from [Tobs + 1, Tpred ].

2) Generator: Within the generator, the encoder LSTM
encodes the input embedding sequence provided by the SIM.
The encoder LSTM helps to model the temporal evolution of
spatial interactions in the form of the following recurrence:

ht
i = LST Menc(h

t−1
i , st

i ; Wencoder), (3)

where ht
i denotes the hidden state of pedestrian i at time t ,

Wencoder are the weights of encoder LSTM that are learned.
The output of the LSTM encoder for each pedestrian at the

end of the observation period represents his/her observed scene
representation. Similar to SGAN, we utilize this representation
to condition our GAN for prediction. In other words, SGANv2
take as input noise z and the observed scene representation to
produce future trajectories that are conditioned on the past
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observations. The decoder hidden-state of each pedestrian is
initialized with the final hidden-state of the encoder LSTM.
The input noise z is concatenated with the inputs of the
decoder LSTM, resulting in the following recurrence for the
decoder LSTM:

ht
i = LST Mdec(h

t−1
i , [st

i ; zi ]; Wdecoder), (4)

where Wdecoder are the weights of decoder LSTM.
The decoder hidden-state at time-step t of pedestrian i is

then used to predict the next velocity at time-step t + 1.
Similar to Alahi et al. [7], we model the next velocity as
a bivariate Gaussian distribution parametrized by the mean
μt+1 = (μx , μy)

t+1, standard deviation σ t+1 = (σx , σy)
t+1

and correlation coefficient ρt+1:

[μt , σ t , ρt ] = φdec(h
t−1
i , Wnorm), (5)

where φdec is an MLP and Wnorm is learned.
3) Discriminator: The social interactions between humans

evolve with time. Therefore, we design our discriminator to
perform spatio-temporal interaction modelling. Also, in recent
times, transformers [56] have become the de-facto model for
modelling temporal sequences, replacing recurrent architec-
tures [17], [18]. Therefore, we design the discriminator as a
transformer to perform the temporal sequence modelling of
the output provided by SIM.

The discriminator takes as input Trajreal = [X, Y] or
Trajfake = [X, Ŷ] and classifies them as real/fake. The discrim-
inator has its own SIM, which provides the spatial interaction
embedding st

i for each pedestrian i at each time-step t in
the input sequence. Instead of passing st

i through an LSTM
(similar to the generator), we stack these embedded vectors
together to form an embedded sequence Si for each pedestrian
i (similar to an embedded sequence obtained after embedding
word tokens in the field of natural language [56]):

Si = [s1
i ; s2

i ; . . . s
Tpred
i ]. (6)

This sequence Si is given as input to the encoder of the
transformer proposed in [56]. The ability of transformers to
capture the temporal correlations within the spatial interaction
embedding lies mainly in its self-attention module. Within
the attention module, each element of the sequence Si is
decomposed into query (Q), key (K) and value (V). The matrix
of outputs is computed using the following equation [56]:

Attention(Q, K , V ) = softmax

(
QK T

√
dk

)
V , (7)

where dk is the dimension of the SIM embedding st
i . The

output of the attention layer is normalized and passed through
a feedforward layer to obtain the latent representation of the
input sequence, denoted by Ri :

Ri = max(0, Ai ∗ W1 + b1) ∗ W2 + b2, (8)

where the weights W1, W2, b1, b2 are learned, ∗ represents
matrix multiplication and Ai denotes the normalized repre-
sentation of the output of the attention module. We utilize the
last element of Ri , as the representation of the input sequence.
This embedding gets scored using an MLP φd to determine if
the sequence is real or fake.

Fig. 3. Illustration of trajectory refinement using collaborative sampling.
The trained discriminator provides feedback to improve the generated samples
during test-time.

E. Training

As mentioned earlier, SGANv2 is a conditional GAN model.
It takes as input noise vector z, sampled from N (0, 1), and
outputs future trajectories Ŷ conditioned on the past observa-
tions X. We found the least-square training objective [60] to
be effective in training SGANv2:

min
G

L(G) = 1

2
Ez∼pz [(D(X, G(X, z)) − 1)2], (9)

min
D

L(D) = 1

2
Ex∼pr [(D(X, Y ) − 1)2]

+ 1

2
Ez∼pz [(D(X, G(X, z)))2]. (10)

Additionally, we utilize the variety loss [2] to further
encourage the network to produce diverse samples. For each
scene, we generate k output predictions by randomly sampling
z and penalize the prediction closest to the ground-truth based
on L2 distance.

Lvariet y = min
k

‖Y − G(X, z)(k)‖2
2. (11)

Following the strategy in [43], the generator predicts only
the trajectory of the pedestrian of interest in each scene and
uses the ground-truth future of neighbours during training.
During test time, we predict the trajectories of all the pedes-
trians simultaneously in the scene. All the learnable weights
are shared between all pedestrians in the scene.

F. Collaborative Sampling in GANs

The common practice in GANs is to sample from the gen-
erator and discard the discriminator during test time. However,
our trained discriminator has knowledge regarding the social
etiquette of human motion. We can utilize this knowledge to
refine the bad predictions proposed by the generator. We define
a prediction as bad if the pedestrian of interest undergoes
collision in the model prediction. We propose to refine such
trajectories by performing collaborative sampling [10] between
the generator and discriminator, as demonstrated in Fig. 3.
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TABLE II

QUANTITATIVE EVALUATION OF VARIOUS METHODS ON ETH-UCY. ERRORS REPORTED ARE TOP-K ADE/FDE (IN M) AND COLLISION (IN %). ONLY
OBSERVING THE TOP-20 METRIC (AS DONE BY PREVIOUS WORK) CAN LEAD TO INCORRECT CONCLUSIONS. WE SHOW THAT A HIGH-ENTROPY

UNIFORM PREDICTOR IS HIGHLY COMPETITIVE WITH RESPECT TO STATE-OF-THE-ART METHODS IN MULTIMODAL FORECASTING USING

TOP 20 METRIC. SEE TABLE IV FOR A MORE INFORMATIVE EVALUATION

To summarize collaborative sampling for the case of trajec-
tory forecasting, our goal is to refine the generator prediction
using gradients from the discriminator without updating the
parameters of the generator. We leverage the gradient infor-
mation provided by the discriminator to continuously refine the
generator predictions of the pedestrian of interest i through the
following iterative update:

Ŷ m+1
i = Ŷ m

i − λ∇LG (Ŷ m
i ), (12)

where m is the iteration number, λ is the stepsize, LG is
the loss of the generator in Eq. 9. The authors demonstrate
that the above iteration process theoretically, under mild
assumptions, shifts the learned generator distribution towards
the real distribution [10]. The trajectories are updated till either
the discriminator score goes above a defined threshold or the
maximum number of iterations is reached.

IV. EXPERIMENTS

In this section, we highlight the ability of SGANv2 to
output socially-compliant multimodal futures. We evaluate the
performance of our architecture against several state-of-the-
art methods on the ETH/UCY datasets [61], [62] and on the
interaction-centric TrajNet++ benchmark [43]. Additionally,
we highlight the potential of collaborative sampling to prevent
mode collapse on the Forking Paths [11] dataset. We evaluate
two variants of our model against various baselines:

• SGANv2 w/o CS: Our GAN architecture compris-
ing of a transformer-based discriminator that performs
spatio-temporal interaction modelling.

• SGANv2: Our complete GAN architecture in combina-
tion with collaborative sampling at test-time.

A. Evaluation Metrics

1) Top-K Average Displacement Error (ADE): Average l2
distance between ground truth and closest prediction (out
of k samples) over all predicted time steps.

2) Top-K Final Displacement Error (FDE): The distance
between the final destination of closest prediction (out of
k samples) and the ground truth final destination at the
end of the prediction period Tpred .

3) Prediction collision (Col) [43]: The percentage of col-
lision between the primary pedestrian and the neighbors
in the forecasted future scene.

Fig. 4. 20 uniformly spread predictions (solid) of a handcrafted predictor
conditioned on the last observed velocity (dotted).

B. Limitations of Current Multimodal Evaluation Scheme

Current multimodal forecasting works utilize metrics that
measure model performance at the individual level such as the
top-k ADE/FDE [2], [14]. This metric evaluates the quality of
the predicted distribution per pedestrian; and does not measure
the interaction between different pedestrians. Further, the value
of k is very high (k = 20 being most common). Almost all
the recent works [2], [3], [14], [17], [24] in human trajectory
forecasting utilize the Top-20 ADE/FDE metric [2] to quantify
multimodal performance. We argue that measuring multimodal
performance based solely on this metric can be misleading.

The Top-20 ADE/FDE metric can be easily cheated by
predicting a high entropy distribution that covers all the
space but is not precise [63]. We empirically validate this
claim by comparing state-of-the-art baselines against a sim-
ple hand-crafted uniform predictor (UP). UP takes as input
the last observed velocity of each pedestrian and outputs
20 uniformly spread trajectories (see Fig 4). UP outputs
20 predictions using the combination of 5 different relative
direction profiles [0, 25, 50,−25,−50] (in degrees relative to
current direction of motion) and 4 different relative speed
profiles [1, 0.75, 1.25, 0.25] (factors of the current speed).

Table II compares the performance of recent state-of-the-
art methods [14], [15], [17] and UP on ETH-UCY datasets.
It is apparent that by observing the Top-20 metric only, UP
seems to perform better (or at par) against the state-of-the-art
baselines. If we note the prediction collisions, it is apparent
that UP is not a good multimodal predictor. This corroborates
our conjecture that a high entropy distribution can easily cheat
the Top-20 metric leading to incorrect conclusions.

C. Multimodal Evaluation Scheme

To counter the above issues with current multimodal evalu-
ation strategy, we propose to set k to a lower value in our
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Fig. 5. Illustration of collaborative sampling at test-time to reduce model collisions in both TrajNet++ synthetic and real-world datasets. Given a generator
prediction of the pedestrian of interest (blue) that undergoes collision with the neighbours (red), our discriminator, equipped with spatio-temporal interaction
modelling, provides feedback based on its learned understanding human-human interactions. Consequently, the resulting refined prediction (green) does not
undergo collision and in some cases, is closer to the ground-truth (black).

experiments; as a lower k is a better proxy for likelihood
estimation for implicit generative models [63]. Specific to our
problem, we will demonstrate that when k is low (k = 3), the
uniform predictor due to a lack of modeling social interactions
performs poorly compared to interaction-based baselines [14],
[15]. Further, to measure the interaction-modelling capability,
we focus on the percentage of collisions between the primary
pedestrian and the neighbors in the forecasted future scene.

D. Synthetic Experiments

We first demonstrate the efficacy of our proposed architec-
tural changes in SGANv2 compared to other generative model
designs in the TrajNet++ synthetic setup. We observe that
SGANv2 greatly improves upon the Top-3 ADE/FDE metric
with a lower collision metric compared to training a model
using only variety loss (see Table III).

Next, we utilize collaborative sampling technique to refine
trajectories that undergo collision at test-time. The trained dis-
criminator provides feedback to the colliding samples which
helps to reduce the collisions. For each colliding predic-
tion, we perform 5 refinement iterations with stepsize 0.01.
We observe that this scheme greatly reduces the collision rate
by ∼70%. The first row of Fig 5 illustrates the ability of
collaborative sampling to refine predictions in the synthetic
scenario.

E. Real-World Experiments

Next, we evaluate the performance of our SGANv2 archi-
tecture in real-world datasets of ETH/UCY and the TrajNet++
benchmark. For ETH/UCY, we observe the trajectories for

TABLE III

QUANTITATIVE EVALUATION ON TRAJNET++ SYNTHETIC

DATASET. ERRORS REPORTED ARE TOP-3 ADE/FDE (IN M) AND

COLLISION (IN %). SGANV2 WITH COLLABORATIVE SAMPLING
GREATLY REDUCES THE MODEL PREDICTION COLLISIONS

WITHOUT COMPROMISING ON THE DISTANCE-BASED

METRICS. *UNIMODAL METHODS

8 times steps (3.2 seconds) and show prediction results for
12 (4.8 seconds) time steps. For TrajNet++, we observe the
trajectories for 9 times steps (3.6 seconds) and show prediction
results for 12 (4.8 seconds) time steps.

Table IV provides the quantitative evaluation of various
baselines and state-of-the-art forecasting methods on the
ETH/UCY dataset. We observe that SGANv2 outputs safer
predictions in comparison to competitive baselines with-
out compromising on the prediction accuracy. Our Top-3
ADE/FDE are on par with (if not better than) state-of-the-
art methods while our collision rate is significantly reduced
thanks to spatio-temporal interaction modelling. It is further
interesting to note that Trajectory Transformer [17] and the
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TABLE IV

QUANTITATIVE EVALUATION OF OUR PROPOSED METHOD ON ETH/UCY DATASETS. WE OBSERVE THE TRAJECTORIES FOR 8 TIMES STEPS
(3.2 SECONDS) AND SHOW PREDICTION RESULTS FOR THE NEXT 12 TIME STEPS (4.8 SECONDS). ERRORS REPORTED ARE

TOP-3 ADE / FDE (IN M), COL (IN %). SGANV2 IMPROVES IN COLLISION METRIC WITHOUT

COMPROMISING ON THE DISTANCE-BASED METRICS. *UNIMODAL

TABLE V

QUANTITATIVE EVALUATION OF OUR PROPOSED METHOD ON

TRAJNET++ REAL-WORLD DATASET. ERRORS REPORTED ARE
TOP-3 ADE/FDE (IN M) AND COLLISION (IN %). SGANV2
IN COMBINATION WITH COLLABORATIVE SAMPLING (CS)

IMPROVES IN COLLISION METRIC WITHOUT

COMPROMISING ON THE DISTANCE-BASED
METRICS. *UNIMODAL

simple uniform predictor (UP) that performed the best on
Top-20 ADE/FDE in Table II are not among the top per-
forming methods when evaluated on the more-strict Top-3
ADE/FDE. Next, we benchmark on the TrajNet++ with
interaction-centric scenes with a standardized evaluator that
provides a more objective comparison [43].

Table V compares SGANv2 against other competitive base-
lines on TrajNet++ real-world benchmark. The first part of
Table V reports simple baselines and the top-3 official sub-
missions on AICrowd made by different works literature [23],
[24], [43]. SGANv2 performs at par with the top-ranked
PECNet [24] on the Top-3 evaluation while having 3x lower

collisions demonstrating that spatio-temporal interaction mod-
elling is key to outputting safer trajectories.1 Additionally,
we utilize the open-source implementation of three additional
state-of-the-art methods (denoted by †) and evaluate them
on the TrajNet++ benchmark. Compared to these compet-
ing baselines, SGANv2 improves upon the Top-3 ADE/FDE
metric by ∼10% and the collision metric by ∼40%.

We perform collaborative sampling to refine trajectories that
undergo collision in real world datasets. For each colliding
prediction, we perform 5 refinement iterations with stepsize
0.01. We observe that this procedure reduces the collision rate
by ∼30% on both ETH/UCY and TrajNet++. The trained dis-
criminator understands human social interactions, and provides
feedback to the bad samples, and consequently helps to reduce
collisions. The second row of Fig 5 illustrates a few real-world
scenarios where collaborative sampling demonstrates the abil-
ity to refine generator predictions that undergo collisions.
In conclusion, we observe that SGANv2 beats competitive
baselines in generating socially-compliant trajectories without
compromising on the distance-based metrics.

F. Ablation: Interaction Modeling

In Table VI, we empirically demonstrate that modelling
interactions is the key to reducing prediction collisions.
We consider the performance of different variants of our
proposed SGANv2 architecture based on the interaction mod-
elling schemes within the generator and discriminator. It is
apparent that modelling interaction within both the generator
and discriminator is necessary to output safe multimodal
trajectories.

G. Multimodal Analysis

In this final experiment, we demonstrate the potential of
collaborative sampling to prevent mode collapse in trajectory

1PECNet performs spatial interaction modelling once at end of observation.
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Fig. 6. Qualitative illustration of effectiveness of collaborative sampling on Forking Paths [11]. (b) Training models using variety loss [48] leads to uniform
output distribution. (c) Training using SGAN objective [2] leads to mode collapse while (d) InfoGAN [6] helps to mitigate the mode collapse issue. (e) SGANv2
helps to cover all the modes, and in combination with (f) collaborative sampling, we can successfully recover all modes with high accuracy.

TABLE VI

INTERACTION MODULES OF SGANV2. ERRORS REPORTED ARE TOP-3
ADE/FDE (IN M) AND COLLISION (IN %). MODELLING INTERACTIONS

GREATLY REDUCES COLLISIONS ON TRAJNET++

generation. We utilize the sample scene ‘Zara01’ from the
Forking Paths dataset. We choose this scene as the multimodal
futures of the ‘Zara01’ scene is only affected by social
interactions, and not physical obstacles. It forms the ideal test
ground to check the multimodal performance of forecasting
models. In this experiment, we observe the trajectories for
8 times steps (3.2 seconds) and show prediction results for
13 (5.2 seconds) time steps.

Fig. 6 qualitatively illustrates the performance of a GAN
model trained using variety loss [2], [48] and other GAN
objectives on the chosen scene. As there are 4 dominant modes
in the scene, we chose k = 4 for the variety loss. The model
trained using variety loss (Fig. 6b) ends up learning a uniform
distribution, i.e., high diversity and low quality, as there
is no penalty on the bad samples during training. Variety
loss only penalizes the sample closest to the ground-truth.
SGAN training [2] (Fig. 6c) results in mode collapse, i.e., low
diversity and high quality as standard GAN training is highly
unstable. Social Ways [6] proposed infoGAN objective [66] to
mitigate the mode collapse issue. The InfoGAN improves upon
SGAN, however, it still fails to cover all the modes (Fig. 6d).

Empirically, we found that training SGANv2 with the gra-
dient penalty objective (Fig. 6e), proposed in [67], provides a
better mode coverage compared to InfoGAN, but the resulting
distribution is still not accurate. As shown in Fig. 6f, our
proposed collaborative sampling at test-time helps to improve
the accuracy of the SGANv2 predictions, recovering modes

TABLE VII

COMPUTATIONAL TIME COMPARISON AT INFERENCE PER SCENE FOR

VARIOUS FORECASTING DESIGNS. THE ADDITIONAL COMPUTA-
TIONAL TIME FOR SGANV2 CORRESPONDS TO THE SAMPLE

REFINEMENT PROCESS THAT OCCURS FOR FIVE ITERATIONS

with low coverage. The trained discriminator guides the gen-
erated samples to these modes. Thus, we see that collaborative
sampling is not only effective in refining trajectories at test
time, but also can help to prevent mode collapse.

H. Computational Time

Speed is crucial for a method to be used in a real world set-
ting like autonomous vehicles where you need accurate predic-
tions about pedestrian behavior. We provide the computational
time at inference for our method against baseline unimodal
LSTMs with and without interaction modelling. All the run
times have been benchmarked on a single NVIDIA 2080 Ti
GPU. We provide the run time per scene (averaged over all
the scenes in the TrajNet++ real world benchmark).

The runtimes of D-LSTM and SGANv2 without collabo-
rative sampling are similar as the multiple future predictions
in the latter case can be generated in parallel, albeit at the
cost of additional memory complexity. The relatively higher
computational time of collaborative sampling corresponds to
the sample refinement process based on the gradients from the
discriminator. Nevertheless, the absolute computational time
of collaborative sampling (77ms per scene) is suitable for
real-time applications like autonomous systems.

V. CONCLUSION

We presented SGANv2, an improved SGAN architecture
equipped with two crucial architectural changes in order to
output safety-compliant trajectories. First, SGANv2 incorpo-
rates spatio-temporal interaction modelling that can help to
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understand the subtle nuances of human interactions. Sec-
ondly, the transformer-based discriminator better guides the
generator learning process. Furthermore, the collaborative
sampling strategy helps leverage the trained discriminator dur-
ing test-time to identify and refine the socially-unacceptable
trajectories output by the generator. We empirically demon-
strated the strength of SGANv2 to reduce the model collisions
without comprising the distance-based metrics. We addition-
ally highlighted the potential of collaborative sampling to
overcome mode collapse in a challenging multimodal scenario.

Our work aims at expanding the current horizon of tra-
jectory forecasting models for real-world applications where
humans’ lives are at risk, such as social robots or autonomous
vehicles. Accuracy, safety, and robustness are all mandatory
keywords. Over the past years, researchers have focused their
evaluation on distance-based metrics. Yet, if we compare the
methods on the safety-critical “collision” metric, we observe a
difference in performance above 50%. Hence, we believe that
one should focus more on this metric and develop methods
that aim for zero collisions.
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