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Charging Network Design and Service Pricing for
Electric Vehicles With User-Equilibrium Decisions

Amir Mirheli and Leila Hajibabai , Member, IEEE

Abstract— This paper aims to investigate the electric vehi-
cle (EV) charging network design and utilization management
considering user-centric decisions. A hierarchical formulation is
developed with the EV charging network design and demand-
driven pricing scheme in the upper level and users’ charging
decisions to minimize their own travel costs and charging
expenses in the lower level. The model aims to minimize the
facility deployment cost and maximize the charging income of
the network operator while minimizing the user-centric costs.
We have converted the proposed bi-level formulation into an
equivalent single-level model using the lower-level objective
function as complementary equations. Then, we have developed
an iterative active-set based solution technique to determine
the strategic decisions on charging network design. To partially
overcome the computational burden, the arc travel times are
estimated using a macroscopic fundamental diagram concept.
The proposed integrated methodology is applied to a hypothetical
and an empirical case study to evaluate its performance and
solution quality. The numerical results indicate that the proposed
algorithm can solve the problem efficiently and outperform a
system-level bi-level optimization benchmark. Our experiments
show a CPU time of 2.3 hr for the proposed approach compared
to 173.1 hr of the benchmark. Finally, a series of sensitivity
analyses has been conducted to study the impact of input
parameters on the solutions and draw managerial insights.

Index Terms— Bi-level, active-set, pricing, hierarchical, electric
vehicle, network design.

I. INTRODUCTION

ELECTRIC mobility services promise significant sus-
tainability benefits by reducing environmental pollution

caused by the transportation sector. While EVs and accompa-
nied automation breakthroughs are predicted to trigger a sig-
nificant transformation of transportation systems, the market
share of EVs and plug-in hybrids remains small, i.e., 2.1%
in 2019 [1]. Large-scale adoption of electric mobility is ham-
pered by a variety of factors among which, inadequate public
charging infrastructure and the absence of user-responsive
charging services (e.g., access to desired charging slots and
locations considering travel and charging expenses) play a
major role. In other words, EV’s limited on-board battery
capacity, inappropriate location of charging facilities, limited
adaptability of market prices to the underlying demand, and
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Fig. 1. Interactions of EV charging facility utilization and travel flow.

long wait times on top of the already lengthy charging times
discourage customers from wide usage of the existing technol-
ogy, especially for long trips or trip chains. The diversity of
EV users’ preferences (e.g., toward charger location, charging
price, waiting time to get served) exacerbates the challenge.
While fast chargers can provide enough energy within an hour
of charging time for several short trips, their infrastructure can
be very costly, e.g., $50K or more per charger [2]. This affects
the physical capacity (i.e., number of chargers) of fast charging
facilities. Thus, there is a need to locate charging facilities
with optimal capacities and dynamically allocate resources to
users with time-variant prices and minimal wait times over the
usage periods, while maximizing the utilization of facilities.
The dynamic pricing scheme will facilitate the utilization of
charging facilities given demand variations over time. For
instance, a high price at a low-demand location does not help
with attracting customers, while an extremely low price at a
high-demand area may not be profitable to the agency either.
This motivates a demand-driven pricing scheme based on the
perspectives of both agency (e.g., profitability) and customers
(e.g., charger availability and cost). Figure 1 presents the
inter-relationship between EV charging facility design and
EV users’ charging choices. The optimal plan shall satisfy
the charging demand and regulate the utilization of charging
facilities to accommodate both users’ and charging network
operators’ objectives and help expand the market share of EVs.

This paper explores EV charging network design and uti-
lization management accounting for user-centric decisions.
Currently, EV charging prices are set by the charging oper-
ator and are not necessarily coordinated across various loca-
tions in a region or a city nor over time (i.e., prices can
change temporally but often not via an algorithm). A dynamic
demand-driven pricing scheme can support the utilization of
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charging facilities given the perspectives of charging operators
and users. A hierarchical formulation is developed with the
charging network design and demand-driven pricing scheme
in the upper level and EV users’ charging decisions in the
lower level. The model aims to minimize facility deployment
and operating costs as well as user-centric costs. The proposed
framework will determine solutions for charging facility loca-
tions along with dynamic charging prices and resource alloca-
tions to users. Note that power distribution network constraints
are not included in this study. It is assumed that the power
grid can provide the required electricity to charging locations.
The proposed methodology is applied to hypothetical and
real-world case studies to evaluate its performance and draw
managerial insights. The numerical experiments confirm the
solution quality of the proposed algorithm in comparison to
an exact benchmark approach.

The exposition of the paper is as follows. The next section
reviews the literature in the context of EV charging and
route planning. Section III presents a mathematical formu-
lation for the joint optimization of network design and
time-variant pricing of charging facilities with equilibrium
decisions. Section IV explains the proposed approach to solve
the problem and Section V illustrates the numerical results.
Finally, Section VI summarizes the findings and discusses
future research directions.

II. LITERATURE REVIEW

Existing literature on the EV charging present EV operations
under pre-defined versus unknown charging locations. While
the first category considers EV travel and charging decisions
solely with existing charging facilities, the latter aims to
further facilitate the charging logistics by incorporating the
charging network design (i.e., location and capacity) into EV
route optimization models. The relevant literature to this study
cover (i) charging location and route planning models and
(ii) user-centric and equilibrium models.

A. Charging Location and Route Design Models

Literature presents research efforts on deterministic EV charg-
ing location models such as Ghamami et al. [3] that have
used a fixed-charge facility location model to find the opti-
mal location and capacity of plug-in electric vehicle (PEV)
charging lots. Additionally, Zheng and Peeta [4] have intro-
duced an auxiliary network based on the EV travel range
limitation, with arc lengths less than a defined threshold.
The problem aims to find the optimal charger locations that
minimize the total facility installation costs considering fixed
demand and station capacity. A Benders decomposition is
applied to find the solution with a small optimality gap. Later,
Li et al. [5] have implemented the government strategy to
promote the EV use by minimal infrastructure development
using a bi-level model structure. The upper level captures
the government’s infrastructure decisions, while the lower
level aims to minimize the operating cost of EV compa-
nies through their optimal fleet composition and route plan.
A hybrid heuristic approach is used to solve the problem
that includes (i) a variable neighborhood descent to select
charging facility locations and (ii) a scatter search to determine

the route plan. The traffic conditions are not incorporated
into the routing decisions and the system-level optimality of
scatter search is not verified. Besides, a series of studies has
focused on flow-capturing location models that aim to install
a fixed number of charging facilities to maximize the flows
on paths with charging stations [6], [7], [8], [9]. Berman
and Larson [10] have introduced a charging facility location
problem for PHEVs as a generalization of the flow re-fueling
location problem. Their arc-cover model aims to maximize
vehicles-miles-traveled (VMT) using electricity considering
both EV and PHEVs. A benders decomposition is used to
solve the problem that is improved by Pareto-optimal cut
generation schemes. Lee and Han [11] have also extended the
flow re-fueling location model using a probability function that
captures the impact of various factors such as road conditions
on travel range. The model is solved by a combined Bender-
and-Price method that integrates benders decomposition and
column generation techniques. This study does not account
for the impact of traffic congestion on network travel times.

Literature also presents studies that capture the impact of
stochasticities (e.g., random demand or stochastic user behav-
ior) on network design models. For instance, Li et al. [12]
have formulated the EV sharing locations with corresponding
EV fleet size into a stochastic model under the dynamic
demand and non-linear vehicle charging duration. A contin-
uum approximation approach is used that splits the problem
into smaller neighborhoods and approximates each by an
infinite homogeneous plane. In addition, Faridimehr et al. [13]
have developed a two-stage stochastic model, where the first
stage determines the location and number of charging stations
and the second stage assigns the EVs to their preferred
charging lots (based on their willingness to walk) to maximize
the expected access to public charging facilities. The model
includes uncertainties in EV demand flows, charging patterns,
arrival and departure times, travel purposes, and preferred
walking distances. A sample average approximation method
is used to generate a large number of scenarios (i.e., location
and capacity of charging stations) in the two-stage stochastic
program. Large-scale cases are solved using heuristics, where
their solution quality is not verified. Later, Xie et al. [2] have
proposed a multi-stage chance-constrained model to find the
location and number of chargers considering the actual trip
demand. The model aims to minimize total cost including
the (i) fixed and variable charging facility installation and (ii)
penalty cost if BEV trips are not completed due to the range
limitation. A genetic algorithm is applied to solve the problem,
where the system-level optimality is not guaranteed. Further-
more, Hua et al. [14] have developed an integrated charging
network design and fleet operation policy for one-way EV
sharing services. A multi-stage stochastic model is proposed
to address the time-varying uncertain demand using a Monte
Carlo sampling technique. A tree search algorithm is used to
solve certain scenarios based on demand levels to facilitates
finding solutions.

B. User-Centric and Equilibrium Models

A school of research also accounts for user-centric factors
and equilibrium decisions [15], [16], [17], [18]. For instance,
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[19] have developed a bi-level model structure with charging
facility deployment in the upper level and user-equilibrium
(UE) traffic assignment subject to travel range limitation in
the lower level. Feasibility of all paths are checked based on
the sufficiency of battery level to complete all travels using
range auxiliary variables. This study defines the cost function
based only on the length of traversing paths, where user-centric
factors (e.g., charging price) are overlooked. Additionally,
He et al. [20] have developed a strategic planning model to
determine the optimal plug-in hybrid electric vehicle (PHEV)
charging facility locations. The study shows that PHEV inter-
actions, for travel time and charging cost minimization, results
in an equilibrium condition on traffic flow, charging price, and
power flow distribution. An active-set algorithm is employed
to solve the problem. The strategic charging facility design
does not fully satisfy the time-variant demand, particularly in
high-demand neighborhoods. Moreover, [21] have developed
a bi-level program that aims to minimize the total travel time
and charging facility deployment cost with a UE assignment
for a mixed EV and internal combustion engine vehicle traffic.
The proposed model is solved using the cross-entropy method
that randomly samples the location of charging facilities and
update them iteratively to push the solutions toward optimality.
The study does not account for the EV users’ perspectives on
charging price, waiting time, or so forth. Similarly, [22] have
formulated a multi-type recharge facility location problem as
a bi-level program. The upper level aims to minimize the total
travel cost under limited roadway capacity expansion budget
and provisions of EV charging facilities. The lower level
represents the UE traffic assignment for internal combustion
engine vehicles and EVs. This study has applied a genetic
algorithm procedure to find the solution for roadway capacity
expansion decisions and recharge facility sites. He et al. [23]
have also proposed a bi-level tour-based formulation to opti-
mize the charging network design. The network equilibrium
model also accounts for BEV users’ risk-taking attributes
given their SOC and limited driving range. To calculate the
required energy on each path, the traversing distance is used
independent of traffic flow. An iterative approach based on
genetic algorithm is used to tackle the model complexity
due to tour enumerations. Furthermore, He et al. [24] have
developed a bi-level program to determine the optimal charg-
ing network design considering the driving range limitation
and required charging duration by a path-based equilibrium
traffic assignment. Rather than the amount of flow captured by
charging facilities, the objective function models the maximum
flow that can use charging facilities en-route. The proposed
model does not consider multiple charging attempts in long-
distance trips. Furthermore, [25] have explored the competi-
tiveness of charging lanes for charging in motion by analyzing
equilibrium choice of charging facilities given (i) number
and capacity of charging stations, (ii) length of charging
lanes, and (iii) charging prices at both types of facilities in a
long traffic corridor. The study aims to minimize social costs
versus agency profits. On the other hand, [26] have identified
the location of wireless charging facilities and incorporated
stochastic UE in a FCLM. Besides, [27] have formulated a
bi-level model to maximize the demand coverage of BEVs

in the upper level and analyze a stochastic UE in the lower
level.

C. Summary

Studies on electrified mobility investigate strategic or opera-
tional factors concerning range-constrained travel behaviors,
charging network design, charging network operator perspec-
tives, or electric vehicle user preferences. The existing models
either (1) assume a fixed charging price in each time interval
regardless of the location of chargers; (2) define the cost
function based only on the length of traversing paths, ignor-
ing user-centric factors (e.g., price, wait time); (3) account
for operator perspectives and user behaviors independently
without seeking an equilibrium solution; (5) assume charg-
ers are always available; (6) consider travel times as fixed
and independent of traffic impacts on routing decisions; or
(7) frequently apply solution techniques that do not sufficiently
balance the computational efficiency and solution quality
(e.g., meta-heuristics) when dealing with complex multi-level
models.

While the existing literature also presents models that incor-
porate emission considerations [28], extreme fast charging
technologies [29], battery swap studies [30], charge schedul-
ing [31] in car-sharing systems [32], intercity travels [33],
among other innovative solutions (e.g., see [34], [35], [36],
[37]), our paper specifically focuses on the charging location
and pricing design given a set of user-centric factors. The
main contribution of this paper is developing an integrated
framework for the facility location design and dynamic pricing
of EV chargers under UE decisions. A stochastic queuing
theory is utilized to establish a linear relationship between each
facility’s occupancy and physical capacity. The problem is
formulated as a bi-level optimization program, where network
design and management decisions are modeled in the upper
level and user response (with respect to charging prices, loca-
tions, and wait times to get served at the facilities) are captured
in the lower level. The objective is to minimize (i) facility
deployment and charging costs and (ii) user costs including
travel and charging expenses. The bi-level formulation is con-
verted into an equivalent single-level program, following the
redefinition of binary location decision variables as continuous
variables, by transforming the lower-level objective function to
complementary equations. The problem is then solved using
an active-set methodology that determines the EV charging
facility allocation plan. Additionally, to partially reduce the
computational complexity of finding UE flows, a macroscopic
fundamental diagram (MFD) concept, incorporated into the
method of successive average (MSA), is implemented to esti-
mate the arc travel times, instead of using highly non-linear arc
performance functions. Finally, to evaluate the quality of the
solutions, a benchmark solution technique is implemented that
generates theoretical bounds to the proposed bi-level problem.

III. MODEL FORMULATION

This section introduces a bi-level model, where the upper level
aims to minimize the costs associated with charging network
design and maximize the revenue obtained from chargers. The
lower level aims to minimize the user-centric costs on travel
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TABLE I

DEFINITION OF SETS, VARIABLES, AND PARAMETERS

and charging expenses. Table I presents the notations used in
the model formulation.

We introduce the spatial and temporal elements of the
problem, as follows. Let T denote the number of discrete time
periods in the planning horizon and � = {0, 1, · · · , T − 1}
represent the set of all time periods at which charging deci-
sions are made. The transportation network is defined by
G(N, A), with N as the set of nodes (including the candidate

nodes for charging facilities) and A as the set of arcs. Here,
A−

i ⊂ A and A+
i ⊂ A define the set of inbound and outbound

network arcs to and from node i ∈ N , respectively.
We define decision variable yi ∈ {0, 1} to represent the

charging facility deployment decisions at node i ∈ N . Accord-
ingly, decision variable ηi ∈ Z denotes the physical capacity
(i.e., number of EV chargers) of a facility installed at node
i . The decision variable pt

i determines the charging price of
facility i at each time t . We let state variable f t

i capture
the occupancy of each charging facility at node i ∈ N over
time t ∈ �. Besides, we let xt,od,i

a represent the EV flow,
visiting charging facility at node i ∈ N at time t ∈ �, on arc
a = (i, j) ∈ A from o ∈ O to d ∈ D, where O and D denote
the sets of origins and destinations, respectively. To capture
the UE traffic flow, a non-negative variable zt,od

a is defined to
represent the flow of arc a on od ∈ O D at time t . Besides,
v t

a denotes the aggregated flow on arc a at time t . The user-
centric demand θt

od follows a H (σ t
od) form that is an inverse

demand function of the equilibrium disutility σ t
od for demand

on od ∈ O D at time t . Thus, |θt
od | = H (σ t

od) represents
the set of users who travel from o ∈ O to d ∈ D at time t
[38], [39].

Finding a vacant charger at each node i within ν cruising
time can be presented by an Erlang C formula in queuing
theory as a stochastic chance logic, similar to [2]. We define
φ to represent the waiting time at charging facility i as a
function of facility’s occupancy f t

i and physical capacity ηi .
Function φ( f t

i , ηi ) helps find the waiting time based on EVs’
arrival rate and their expected service time. The Erlang C
formula expresses the probability ζ of being served in a pre-
defined time-window by forming a queue of EV users; i.e.,
ζ(φ( f t

i , ηi ) ≤ ν)t
i , where ν represents the cruising time-

window. We define a targeted service level by

ζ(φ( f t
i , ηi ) ≤ ν)t

i ≥ κ, ∀i ∈ N, t ∈ �, (1)

which defines a lower bound κ for the probability of finding a
vacant charger at i within ν cruising time. Each facility (with
ηi chargers) serves a queue with an expected service time θ
and EV arrival rate ξ t

i at time t . Hence, the left-hand side of
(1) can be expanded as

ζ(φ( f t
i , ηi ) ≤ ν)t

i = 1 − (ξ t
i θ)ηi

ηi !
� (ξ t

i θ)ηi

ηi !

+ (1 − ξ t
i θ

ηi
)

ηi−1�
q=0

(ξ t
i θ)q

q!
�−1

× e−(ηi−ξ t
i θ)νθ−1

,

∀i ∈ N, t ∈ �, (2)

which establishes a non-linear relationship among ηi , ξ t
i , θ ,

and ν. Equation (2) can be illustrated as a step function
using the available information on θ and the targeted service
level. The feasible region of charging facility capacities (e.g.,
0 ≤ ηi ≤ ηmax ) will be divided into equal sub-regions,
and a new set of binary variables will be defined for the
maximum occupancy of charging facility on each sub-region.
For instance, Figure 2, hypothetically, shows the relationship
between each facility’s maximum occupancy and physical
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Fig. 2. Relationship of maximal occupancy and number of chargers.

capacity with 95% probability to find a vacant charger within
10 min.
The step function presented in Figure 2 can be defined as
piece-wise linear functions. However, it introduces additional
binary variables to the problem that makes it more challenging.
Without loss of generality, we utilize a linear function to
capture the impact of waiting time on maximal occupancy
assuming that waiting time can be reduced if there is always
a vacant charging spot. Thus, Figure 2 introduces a new upper
bound for maximal occupancy based on the capacity of each
facility, as

f t
i ≤ �i ηi , ∀i ∈ N, t ∈ �, (3)

where �i represents the slope of the linear approximation
function that provides an upper bound on facility i ’s occu-
pancy. Note that the newly defined upper bound is less than
ηi by defining �i ≤ 1, ∀i ∈ N , which limits the number of
served users to restore the vacant charging spot at all time
steps.

The integrated charging facility design and management
scheme is modeled into a bi-level mathematical optimization
program, where charging facility manager’s perspective is
formulated in the upper level, as follows.

min
y,η, p

�
i∈N

�
ηi Ci − α

�
t∈�

�
a∈A

�
od∈O D

pt
i x t,od,i

a

�
, (4a)

subject to li yi ≤ pt
i ≤ l �i yi , ∀i ∈ N, t ∈ �, (4b)

f t
i = f t−1

i −
�

od∈O D

�
a∈A+

i

x t,od,i
a

+
�

od∈O D

�
a∈A−

i

x t,od,i
a ∀i ∈ N, t ∈ � \ {0}, (4c)

�
od∈O D

�
a∈A−

i

x t,od,i
a ≤ ηi − f t−1

i , ∀i ∈ N,

t ∈ � \ {0}, (4d)

f t
i ≤ ηi , ∀i ∈ N, t ∈ �, (4e)

θt
od = H (σ t

od) = gt
od − b σ t

od ,

∀od ∈ O D, t ∈ �, (4f)�
i∈N

ηi Ci ≤ B, (4g)

ηi ≤ M yi , ∀i ∈ N, (4h)

ηi ≤ ηmax , ∀i ∈ N, (4i)

yi ∈ {0, 1}, ∀i ∈ N. (4j)

The upper-level objective function (4a) simultaneously (i) min-
imizes the EV charging facility installation cost and (ii) max-
imizes the revenue gained by charging payment collections.
Parameter Ci represents the unit installation cost for a single
EV charger deployed at node i ∈ N . And, α is a positive coef-
ficient representing the operation period of a facility (e.g., the
number of operating days annually). Constraints (4b) define a
lower bound li and upper bound l �i for charging price pt

i at
time t , if a charging facility is available at node i , i.e., yi = 1.
Constraints (4c) represent the flow conservation, i.e., state tran-
sition functions on facility occupation. Constraints (4d) show
that demand flow should not exceed the available capacity at
node i , calculated by excluding the existing occupancy prior
to time t from physical capacity at node i . Constraints (4e)
ensure that the occupancy of each facility at node i at time
t is less than the facility’s physical capacity. Constraints (4f)
represent the inverse demand function, obtained from [40], that
capture the impact of charging prices on the charging demand.
The equilibrium disutility σ t

od represents the minimum cost
imposed to EV users due to (1) charging price pt

i at charging
facility i ∈ N and time t and (2) travel time from origin
o ∈ O to charging facility i and beyond (i.e., final destination
d ∈ D). Note that σ t

od is identical for all EV users on the
same od ∈ O D at time t . The term gt

od is the intercept of
the demand curve for EV travellers with od ∈ O D at time t
Additionally, budget constraints on EV charger deployments
are shown by (4g). Constraints (4h) ensure that EV chargers
can only be available at node i if there is an open facility at i .
We let M be a large positive constant. Constraints (4i) define
a limit ηmax for physical capacity of each charging facility.
Finally, constraints (4j) shows the charging facility deployment
decisions are binary variables.

The lower-level problem represents the EV user reactions to
total costs (i.e., travel time and charging expenses) that affect
their facility selection. Travel time on arc a ∈ A follows an
increasing function of aggregated EV flow v t

a , i.e., Rt
a(v

t
a).

We define non-negative auxiliary variables uod
i and u�od

i at
each node i ∈ N to represent the driving range constraints.
Variable uod

i denotes the maximum distance traveled from the
last visited charging facility at node i on a path with od ∈
O D. Additionally, u�od

i is a dummy variable that is zero at
facilities. The feasible travel paths are defined based on the EV
driving range. Binary variable ct,od

a identifies the arcs located
on feasible paths, where ct,od

a = 1 if arc a is on a feasible path
containing od ∈ O D at time t , or 0 otherwise. To address the
EV driving range limitation and ensure that the users travel
on feasible paths, i.e., within their maximum driving range
unless there is (at least) a charging facility en-route, we use
the following equations (also see [19]). EVs are assumed to
start their travels with an ample initial SOC to reach charging
facilities and that they leave the facilities with sufficient SOC
to arrive at their final destinations.

zt,od
a ≤ M ct,od

a , ∀a ∈ A, od ∈ O D, t ∈ �, (5a)

uod
j ≥ u�od

i + μa − M (1 − ct,od
a ),

∀a = (i, j) ∈ A, od ∈ O D, t ∈ �, (5b)

uod
i ≤ L, ∀i ∈ N, od ∈ O D, (5c)
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u�od
i ≥ uod

i − M yi , ∀i ∈ N, od ∈ O D, (5d)

u�od
i ≤ uod

i + M yi , ∀i ∈ N, od ∈ O D, (5e)

u�od
i ≤ M (1 − yi ), ∀i ∈ N, od ∈ O D, (5f)

uod
i ≥ 0, u�od

i ≥ 0, ∀i ∈ N, od ∈ O D, (5g)

where μa > 0 represents the length of arc a ∈ A and
L denotes the driving range limit. Constraints (5a) enforce
EV flow to choose arcs that are located on the feasible
path. Constraints (5b) ensure the auxiliary variable uod

j is
updated for all j ∈ N and od ∈ O D based on the dis-
tance μa traveled on the feasible path. Then, constraints (5c)
ensure that EVs will not violate their driving range.
Constraints (5d)-(5e) confirm that uod

i = u�od
i if there is no

facility at node i . Constraints (5f) impose u�od
i = 0 when there

is a facility at node i ; here, M represents a large positive value.
And, constraints (5g) indicate the non-negativity of uod

i and
u�od

i . Finally, user behaviors on the choice of charging facilities
are captured by

min
v,x,z

�
t∈�

�
a∈A

�� v t
a

0
Rt

a(ω)dω + γ
�
i∈N

�
od∈O D

pt
i x t,od,i

a

	

(6a)

subject to (5a) − (5g) and

v t
a =

�
od∈O D

zt,od
a , ∀a ∈ A, t ∈ �, (6b)

xt,od,i
a ≤ zt,od

a , ∀a = (i, j) ∈ A,

od ∈ O D, t ∈ �, (6c)�
a∈A+

i

zt,od
a −

�
a∈A−

i

zt,od
a =

⎧⎪⎪⎨
⎪⎪⎩

θt
od , ∀i ∈ O

−θt
od , ∀i ∈ D

0, o.w.

∀od ∈ O D, t ∈ �, (6d)

xt,od,i
a ≥ 0, zt,od

a ≥ 0, ∀a = (i, j) ∈ A,

od ∈ O D, t ∈ �, (6e)

v t
a ≥ 0, ∀a ∈ A, t ∈ �. (6f)

The lower-level problem aims to minimize the individ-
ual users’ costs, including their travel time and charging
expense following an equilibrium condition. It shows that
users choose shortest routes that include charging facilities
en-route. Function Rt

a(ω) captures the impact of traffic flows
on arc travel times. Parameter γ is the cost-to-monetary value
conversion factor. Constraints (5a)-(5g) represent EV driving
range limit to ensure users drive on paths that are within
their maximum range given their SOC. Constraints (6b) define
the aggregated arc flows at each time t . Constraints (6b)-(6f)
represent an equilibrium traffic assignment for EV users
on sub-networks with feasible paths, where destinations are
within EVs’ maximum driving range unless there is at least
a charging facility en-route, for each origin-destination pair.
Therefore, the lower-level problem represents the routing
and charging behavior of EV users by tracking their SOC.
In particular, constraints (6c) show the flow feasibility; they
ensure that the charging demand at node i , i.e., the start node

of arc a = (i, j), does not exceed the flow passing through
arc a at time t . Note that flow xt,od,i

a indicates the portion
of EV users who get charged at i ∈ N , which unilaterally
affects objective function (4a) and (6a) until no improvement
can be achieved. Constraints (6d) illustrate the conservation
of user flows at each node i ; i.e.,

�
a∈A+

i
zt,od

a = �
a∈A−

i
zt,od

a

unless i is either the origin or destination of user demand.
Finally, constraints (6e) and (6f) show the non-negativity of
travel flows.

Let us further explain how the lower-level problem func-
tions: Given the charging network design (i.e., the loca-
tion and capacity of charging facilities), the lower-level
problem (5a)-(5g) and (6a)-(6f) is formulated as an integrated
distribution and assignment model [41]. The charging facilities
are assumed as destinations with the utility of pt

i , where EV
users aim to access charging facilities that yield minimum
travel time, cruising time, and charging expenses. If we let ut

oi
denote the travel time of the minimum EV path from origin
o ∈ O to charging facility at node i ∈ N at time t ∈ �,
EV users will try to access charging facilities that yield the
minimum net travel impedance ut

oi + pt
i . Note that based on

the Wardrop’s first principle [41], EV users cannot unilaterally
improve the net travel impedance by switching to other paths
and/or charging facilities. This condition represents a UE
distribution and assignment model, where the objective of each
user is optimized individually. UE decisions facilitate more
accurate modelling of (i) user responses to charging prices,
travel time to charging facilities, waiting time to get served,
charger availability, among other factors, (ii) user responses
to other users’ decisions, and (iii) charging network operator’s
responses to users’ decisions.

IV. SOLUTION TECHNIQUE

The proposed formulation (4a)-(4i), (5a)-(5g), and (6a)-(6f)
has a bi-level form and contains mixed-integer decision
variables and non-linear terms. To tackle the complexities,
an integrated solution technique is developed that includes
(i) an active-set algorithm and (ii) an MFD based strategy. The
details are illustrated in Sections IV-A and IV-B, respectively.

A. Active-Set Technique

The proposed mixed-integer non-linear program (MINLP) is
computationally interactable given the integer physical capac-
ity η, due to additional branching at each integer solution.
Hence, it is beneficial to redefine the integer variables as
follows. We first define the physical capacity ηi of charging
facility at i as a combination of new binary location variables
y �

ik ; i.e.,

ηi =
K�

k=0

2k y �
ik, ∀i ∈ N, (7a)

y �
ik ∈ {0, 1}, ∀i ∈ N, k ∈ K , (7b)

where K = �log2 ηmax	 and ηmax indicates the maximal
number of chargers. Therefore, constraints (4i) can be relaxed
given a pre-determined upper bound for K . Furthermore, y �

ik
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can relax the binary network design decision variable yi to a
continuous variable in [0, 1]:

yi ≥ y �
ik , ∀i ∈ N, k ∈ K , (8a)

yi ≤
K�

k=0

y �
ik , ∀i ∈ N. (8b)

Literature has shown the relaxation of binary decision
variables y �

ik ∈ {0, 1}, ∀i ∈ N, k ∈ K to continuous variables
0 ≤ y �

ik ≤ 1, using complementary constraints y �
ik(1 −

y �
ik) = 0. An active-set based technique relaxes the need

for the complementary constraints and tackles the associated
complexities, as also shown in [42] and [20]; otherwise, the
binary decisions do not allow the derivation of dual slackness
to satisfy the complementary slackness conditions [43].

We now reformulate the proposed bi-level MINLP (3),
(4a)-(4i), (5a)-(5g), (6a)-(6f), (7a)-(7b), and (8a)-(8b) as an
equivalent single-level program using Karush-Kuhn-Tucker
(KKT) conditions, similar to [44]. We introduce ρt,od

i as a
minimum cost to get to node i ∈ N from origin o ∈ O to
destination d ∈ D at time t . Hence, the lower-level objective
function (6a) will be transformed into complementary equa-
tions, similar to [45], as

0 ≤ Rt
a(v t

a)

+ γ pt
i x t,od,i

a − ρt,od
i + ρt,od

j ⊥ zt,od
a ≥ 0,

∀a = (i, j) ∈ A, od ∈ O D, t ∈ �. (9)

Note that all the aforementioned terms are defined over [0,∞)
domain and they form a cone in IR2 and IR. Therefore, the
solution to the complementary equations will be the same as
those to the variational inequalities [46]. We can re-write (9)
as linear equations, using (5a), as illustrated below.

0 ≤ Rt
a(v

t
a)

+ γ pt
i x t,od,i

a − ρt,od
i + ρt,od

j ≤ M (1 − ct,od
a ),

∀a ∈ A, od ∈ O D, t ∈ �. (10)

We add variable ρt,od
i to the upper-level objective function (4a)

to capture the total cost of individual users. The bilinear term
p x in (10) is converted into a set of tangent supporting planes
using a piece-wise linear function. The equivalent single-level
MINLP formulation is

A : min
y,η,y�, p,v,z,x,ρ

�
i∈N

�
ηi Ci −

α
�
t∈�

�
a∈A

�
od∈O D

ρt,od
i

�
subject to (4b) − (4g), (5a) − (5g), (6b) − (6f),

(7a) − (7b), (8a) − (8b), and (10).

(11)

Note that the impact of charging price pt
i is captured in

the calculation of ρt,od
i in constraints (10); hence, objective

function (11) does not include a separate term to account for
the network operator’s revenue.

The approach generates the charging facility network design
(i.e., location and physical capacity) and modifies it iteratively.
Given the charging network plan, the problem can be converted

into integrated distribution and assignment models [41], solv-
able using commercial solvers, e.g., CPLEX [47]. The infor-
mation on charging facility locations and network geometry
identifies the arcs located on feasible paths. Thus, ct,od

a will
be relaxed to a continuous variable (i.e., 0 ≤ ct,od

a ≤ 1) to
satisfy the duality theory.

We define active sets �1, �0, and �, where �1 con-
tains selected network nodes to install charging facilities, �0
includes nodes with no charging facility, and � = {(i, k) : i ∈
N, k = 0, . . . , K }. Note that �0 ∩�1 = ∅ and �0 ∪�1 = �.
We re-formulate A based on the active sets as

min
y,η,y�, p,v,z,x,ρ

�
i∈N

�
ηi Ci − α

�
t∈�

�
a∈A

�
od∈O D

ρt,od
i

�
(12a)

subject to (4b) − (4g), (5a) − (5g), (6b) − (6f),

(7a), (8a) − (8b), (10), and

y �
ik = 0, ∀(i, k) ∈ �0, (12b)

y �
ik = 1, ∀(i, k) ∈ �1. (12c)

At iteration n, the allocation plan of network nodes to �n
1 and

�n
0 will be updated to ensure optimal charging locations will

be found over a finite number of iterations; also see [42]. The
active-set procedure follows.

Step 0 Initialize the active sets: set n = 1, �1
0 = �, and

�1
1 = ∅ (i.e., assume no charging facility is installed

on nodes i ∈ N).
Step 1 Determine the solution to decision variables

η, y, y�, p, f , x, v, z, and ρ using (�n
0, �n

1). Find
ωn

ik and μn
ik , the smallest and largest values of KKT

multipliers associated with constraints (12b)-(12c).
Set En as the total cost (12a) associated with the
current allocation plan.

Step 2 Set Q = −∞ and adjust the active sets:
Step 2.1 Solve the following knapsack problem to deter-

mine w∗ and b∗.

min
w,b

�
(i,k)∈�n

0

ωn
ikwik −

�
(i,k)∈�n

1

μn
ikbik (13a)

subject to
�

(i,k)∈�n
0

Ci 2k wik −
�

(i,k)∈�n
1

Ci 2k bik ≤ B −
�

(i,k)∈�n
1

Ci 2k

(13b)�
(i,k)∈�n

0

ωn
ikwik −

�
(i,k)∈�n

1

μn
ikbik ≥ Q, (13c)

wik , bik ∈ {0, 1}. (13d)

Obtaining wik = 1 from the knapsack formula-
tion implies that node i shall be moved from �n

0
to �n

1 to modify the node allocation plan; other-
wise, bik = 1 leads to shifting (i, k) from �n

1 to
�n

0 (i.e., no need to deploy charging facility at i ).
Terminate the algorithm if the optimal objective
value (13a) is zero (i.e., the allocation plan cannot
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be further improved) and set the current solution
as optimal. Otherwise, go to Step 2.2 to update
the plan y�� based on (��

0,�
�
1).

Step 2.2 Set

U =
�

(i,k)∈�n
0

ωn
ikw

∗
ik −

�
(i,k)∈�n

1

μn
ikb∗

ik , (14a)

��
0 = �

�n
0 − �

(i, k) ∈ �n
0 : w∗

ik = 1
��

∪ �
(i, k) ∈ �n

1 : b∗
ik = 1

�
, (14b)

��
1 = �

�n
1 − �

(i, k) ∈ �n
1 : b∗

ik = 1
��

∪ �
(i, k) ∈ �n

0 : w∗
ik = 1

�
. (14c)

Step 2.3 Evaluate the quality of the updated plan:
solve problem (12a)-(12c) using (��

0, ��
1) and

compare the objective value (12a) to En . Go to
Step 2.4 if total infrastructure and operating cost
(12a) using (��

0, ��
1) is less than En . Otherwise,

set Q = U + �, where � > 0, and return to Step
2.1.

Step 2.4 Set �n+1
0 = ��

0, �n+1
1 = ��

1, and n = n + 1.
Go to Step 1.

Proposition 1 ensures that an optimal solution to (12a)-(12c)
exists for a feasible allocation plan. Additionally, Theorem
1 shows that a proper adjustment in the allocation plan will
reduce the charging facility deployment cost and increase the
revenue.

Proposition 1: Given binary vector ȳ�, compatible with
complete and budget-feasible active pairs (�n

0,�
n
1) at iter-

ation n, we have: ȳ �
ik = 0, ∀(i, k) ∈ �n

0 , and ȳ �
ik =

1, ∀(i, k) ∈ �n
1 . We let (z̄, v̄) be the solution to the UE

problem: 0 ≤ Rt
a(v t

a) + γ pt
i x t,od,i

a − ρt,od
i + ρt,od

j ⊥
zt,od

a ≥ 0, ∀a ∈ A. Then, (ȳ�, z̄, v̄) is the optimal solution
to (12a)-(12c).

Proof: Given a monotone travel time function Rt
a(v t

a), the
solution (z̄, v̄) to the UE problem is unique. Thus, (ȳ�, z̄, v̄)
must be the optimal solution as it is the only feasible solution
to equilibrium problem: 0 ≤ Rt

a(v t
a) + γ pt

i x t,od,i
a − ρt,od

i +
ρt,od

j ⊥ zt,od
a ≥ 0. �

Furthermore, pairs (�n
0,�

n
1) at iteration n are complete

partitions and every feasible solution to problem (12a)-(12c)
is feasible to original problem A.

Theorem 1: If ωi �k� < 0 for some (i �, k �) ∈ �n
0 and μi �k� >

0 for some (i �, k �) ∈ �n
1 at iteration n, then the solution to A

will be improved by adjusting �n
0 = �n

0 − (i �, k �) and �n
1 =

�n
1 − (i �, k �), respectively.

Proof: The adjustments to active sets �n
0 and �n

1 at itera-
tion n suggest relaxing the binding constraints for some (i �, k �)
in the minimization problem (12a)-(12c), which may provide a
lower objective value. A non-decreasing trend in the objective
value adjustments (i.e., no solution improvements) suggests
that constraints y �

ik ≥ 0 and y �
ik ≤ 1 are binding, which

contradicts with the properties of their associated multipliers:
ωi �k� < 0 and μi �k� > 0. For more details; see Theorem 1 and 2
in [42]. �

Theorem 1 indicates that the adjustment plan in Step 2.1
will suggest the optimal modification of active sets (�n

0,�
n
1),

which will minimize the costs imposed to the charging net-
work operator.

B. Travel Time Estimation

This section introduces an MFD-based method to estimate
travel times imposed to EVs traveling on each arc. Note that
while most studies in the literature (e.g., [48]) capture the
impact of traffic flows on arc travel times using the perfor-
mance function developed by Bureau of Public Roads [49],
the fourth-degree polynomial form of the monotonic BPR
function imposes additional computational complexities to the
problem. MFD, with a more aggregated nature, estimates the
travel times by constructing a relationship between traffic flow,
density, and speed in the transportation network [50], which is
still applicable to regions (e.g., arcs) of an urban network with
homogeneous distribution of traffic congestion [51]. Figure 3,
hypothetically, presents (i) an urban network divided into
different homogeneous regions r ∈ R and (ii) several paths
m ∈ Mod that connect origin o ∈ O to destination d ∈ D. The
region boundaries are defined based on the network geometry
and traffic distribution. A unique trip production rate ϒr (v

� t
r )

corresponding to the accumulated number of users v � t
r in

region r at time t is defined, which shows total VMT by EV
users in each region in unit time. The accumulated number of
users on path m ∈ Mod in region r at time t is denoted by
v � t,od

r,m that can be updated based on flow zt,od
a , as follows.

v � t,od
r,m = zt,od

a|a∈A+
r ∩ a∈m

− zt,od
a|a∈A−

r ∩ a∈m

+ 1o(r)θt
od,m, ∀r ∈ R, m ∈ Mod,

od ∈ O D, t ∈ �, (15)

where A+
r and A−

r represent the inbound and outbound arcs to
region r , respectively. In this equation, 1o(r) is 1 if the origin
is located in region r , or 0 otherwise. We let θt

od,m denote the
share of user-centric demand θt

od who choose path m. Equation
(15) defines the accumulated number of users v � t,od

r,m by (i) the
generated demand on path m ∈ Mod with od ∈ O D if region
r is origin o at time t , (ii) the inbound flows from upstream
arcs on path m, and (iii) the outbound flows to downstream
arcs.

Let �t
r denote the trip completion rate that represents the

number of EV users who leave region r at time t . We represent
total trip length on path m across region r by lt,od

r,m . Similarly,
�t,od

r,m denotes the trip completion rate in region r for users
traveling on path m with od ∈ O D at time t , as follows [50]:

�t,od
r,m = ϒr (v

� t
r )

v � t
r

v � t,od
r,m

lt,od
r,m

= V t
r

v � t,od
r,m

lt,od
r,m

, ∀r ∈ R,

m ∈ Mod, od ∈ O D, t ∈ �, (16)

where V t
r denotes the average speed in region r . Trip com-

pletion rate �t,od
r,m represents the number of users on path

m ∈ Mod who complete their trip within region r ∈ R at
time t . Note that (16) establishes a relationship between speed

V t
r and density v

� t,od
r,m

lt,od
r,m

to compute trip production rate �t,od
r,m in

region r at time t . Hence, travel time on each arc a ∈ R can
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Fig. 3. A multi-region urban network.

be estimated by

Rt
a(v t

a) = v t
a

� �
od∈O D

�
m∈Mod

�t,od
r,m

�−1
,

∀a ∈ R, t ∈ �. (17)

According to (16), trip completion rate is obtained by the
(i) accumulated number of users v � t

r and (ii) average trip
length in each region r at time t . The accumulated number
of users v � t

r in each region r can be obtained from (15) by
incorporating the solution to A (using the active-set technique
in IV-A). Note that total trip length lt,od

r,m on path m across
region r indirectly represents the traffic condition on path m
in region r . We implement an iterative algorithm to estimate
the total trip length in each region r over iteration δ, keeping
the same trip completion rate (to reach a traffic equilibrium)
on each od at time t . We first set the total trip length
lt,od,1
r,m to the length of arcs on path m in region r . Then,

we solve (12a)-(12c) using the proposed active-set method to
find the traffic flow on each arc. We then find the accumulated
number of users v � t

r and trip completion rate �t,od
r,m using (15)

and (16), respectively. Afterwards, the average trip lengths will
be adjusted as follows.

lt,od,δ+1
r,m = lt,od,δ

r,m + (δ + 1)−1(l
�t,od
r,m − lt,od,δ

r,m ),

∀r ∈ R, m ∈ Mod, od ∈ O D, t ∈ �, (18)

where l
�t,od
r,m represents the adjustment of total trip length for

users with od ∈ O D on path m. Note that (18) applies the
difference between total trip lengths in the update procedure
using l

�t,od
r,m and the predetermined step size (i.e., 1

δ+1 ) at
iteration δ. To achieve traffic equilibrium, the average trip
completion rates �̄t,od

r,m are calculated as follows.

�̄t,od
r,m =

�
m∈Mod �t,od

r,m

|Mod | , ∀r ∈ R, m ∈ Mod,

od ∈ O D, t ∈ �, (19)

where the variance of each path from the average trip com-
pletion rate is obtained as �t,od

r,m −�̄t,od
r,m . Then, the adjustment

of total trip length l
�t,od
r,m is formulated as an inverse function

of the variances at iteration δ (i.e., l
�t,od
r,m = V t

r v � t,od
r,m (�t,od

r,m −
�̄t,od

r,m )−1). The problem (12a)-(12c) is solved again until the
difference of trip production rate in two consecutive iterations
is within a pre-defined threshold ε�. Figure 4 presents the
proposed algorithm to find the charging facility location along
with the UE traffic assignment.

The aforementioned iterative MFD-based algorithm utilizes
the MSA method, where the arcs’ travel times Rt

a are updated

Fig. 4. Flowchart of the proposed algorithm.

at each iteration δ until the algorithm converges. We introduce
l∗ t,od
m = min{l∗ t,od

r,m , ∀r ∈ R} as the optimal total trip length
for EV users with od ∈ O D on path m ∈ Mod . The main
objective of the MSA method is to find l∗ t,od

m via an iterative
procedure using the step size χδ = (δ + 1)−1, as indicated in
(18). [52] have shown the convergence proof of MSA [53].

V. NUMERICAL EXPERIMENTS

The solution technique proposed in Section IV is coded in
Java and run on a desktop computer with quad-core 3.6 GHz
CPU and 16 GB of memory. A Poisson distribution is applied
to generate the initial demand pattern for five different time-
of-days in a business day, i.e., early AM, AM peak, mid-day,
PM peak, and evening. Commercial solver LINDO [54] is
utilized to solve model (12a)-(12c) and find the multipliers
associated with constraints (12b)-(12c).

A. Hypothetical Dataset

To verify the applicability of the proposed methodology,
we first apply our model (4b)-(4g), (5a)-(5g), (6b)-(6f),
(7a)-(7b), (8a)-(8b), (10), and (11) and hybrid solution frame-
work to a hypothetical network. The planning horizon is
assumed to be from 8 AM to 5:30 PM with the time interval
of 30 min. The network dataset includes 12 nodes and 32 arcs.
We assume EV users need one time period (e.g., 30 min) to get
charged. The average vehicle arrivals over different time-of-
days is respectively assumed to be 20, 25, 20, 15, and 30 for
early AM, AM peak, mid-day, PM peak, and evening for a
medium demand level. Accordingly, the low and high demand
levels are assumed to be half and twice the medium demand,
respectively. The available budget is assumed to be $500K
and the deployment cost of each charger is $50K . An arc
elasticity coefficient for the demand function is assumed to
be b = −0.3 to capture the impact of disutilily on charging
demand.

The value of objective function parameter α is set to 365 that
represents the number of days in a year assuming the same
demand distribution in different days. Note that a series of
sensitivity analysis has been conducted to show the impact
of α on the objective value (see Section V-C). Besides, the
maximum driving range is set to 200 miles to study the impact
of driving range limitation on the solutions. We also set the
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Fig. 5. (a) Selected charging facilities (demand from node 1 to nodes 10 & 12); (b) Max distance traveled from the last visited charging facility.

Fig. 6. Charging price at facilities 5 and 7 over the planning horizon.

Fig. 7. Average charging price at candidate facilities over the planning horizon.

Fig. 8. Number of selected chargers in different demand levels.

slope value �i of the linear waiting function as �i = 0.85 for
candidate facility i ∈ N . Finally, we assume that a maximum
of five chargers can be installed at each selected facility.
We also assume l �i = 10.0($/veh) and li = 0.1($/veh),
∀i ∈ N , which respectively represent the maximum and
minimum charging prices at chargers per time step.

1) Results: Figure 5(a) shows the selected locations of
charging facilities originated from node 1 with destinations at
nodes 10 and 12 within a day starting from 8 AM to 5:30 PM
for medium demand case in the hypothetical dataset. We have
assumed that 70% of the demand originates from node 1 and
goes to node 10, and the rest moves towards node 12. The
results indicate the essence of having charging facilities at
nodes 5 and 7 with the capacity of 5 and 3 chargers to satisfy
the medium demand (and reduce the number of lost users
due to the range anxiety concern). Besides, Figure 5(b) shows
the maximum distance traveled from the last visited charging
facility. Figures 5(a) and 5(b) show that the charging facilities
are selected in a way that EVs do not exceed the travel range
of 200 miles in this network.

Figure 6 shows the distribution of charging prices for the
selected facilities at nodes 5 and 7 with respect to EV users’
arrivals over the planning horizon. Facility at node 5 offers
a higher charging price compared to facility at node 7 due
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Fig. 9. Convergence of upper bound and lower bound ($) for the solution of bi-level optimization model.

to higher demand from node 1 to node 10. As shown in
Figure 6, charging prices are responsive to the EV arrivals.
It can be observed that a high demand in the morning (e.g.,
9 AM - 11 AM) and evening (e.g., 4 PM - 5:30 PM) causes
a surge in charging prices as EV users have to wait to find
a vacant charging spot. We also notice a decrease in prices
in periods with less EV arrivals, where more chargers are
available.

Figure 7 presents the average price of charging facilities
within a day starting from 8 AM to 5:30 PM for the low,
medium, and high demand levels in the hypothetical dataset.
As indicated, charging prices vary with respect to the users’
arrivals and facilities’ occupancy. At the beginning of the
planning horizon, prices are close to their minimum values
since charging facilities are not fully occupied. As users from
previous time steps as well as newly arrived users occupy the
available spots, prices tend to increase.

As Figure 7 indicates, the average and standard deviation
of charging prices increase by 4.5% and 13.5% in the medium
demand case compared to the low demand case. The standard
deviation captures the reaction of charging facility agencies to
the number of EV users who search for vacant chargers over
time. Moreover, the fluctuation of charging prices increases
over the time steps with more EV arrivals, which shows the
capability of the proposed approach to adjust the charging
prices based on the observed demand. Figure 8 presents the
number of required chargers for various demand distribu-
tions. As indicated, charging network operator shall install a
charging facility at node 5 to serve EV users in all demand
levels, although the number of chargers depend on the demand
intensity. The same trend is observed regarding facility at
node 7. However, facility at node 4 is installed only when
high demand is experienced.

2) Benchmark: To theoretically evaluate the solution quality
of the proposed algorithm, an alternative solution technique is
implemented to solve the bi-level problem (4a)-(4i), (6a)-(6f),
and (3) over the entire planning horizon. The system-level bi-
level optimization method [55] generates theoretical lower and
upper bounds to the proposed bi-level problem. To find the
lower-bound, a system-level optimization problem is solved
that includes the upper-level objective function (4a), con-
straints of both upper-level and lower-level problems (4b)-(4i)
and (6b)-(6f), and parametric upper-bound of the optimal solu-
tion to the lower-level problem. The parametric upper-bound

Fig. 10. (a) Travel origins/destinations, NC; (b),(c),(d) Charging facility
locations on North Carolina State University campus. [Map source: Google,
accessed November 25, 2020].

can be improved iteratively by adding new constraints to
the system-level optimization problem through the following
steps. First, the lower-level problem (6a)-(6f) is solved to
system-level optimality given the value of upper-level deci-
sion variables (y, η, p, f ) from the previous iteration. Then,
admissible values of the lower-level decisions (x, z, v), given
the optimal objective value of lower-level problem (6a)-(6f),
developed in the first step, are found. Finally, a tighter bound
among all feasible-region bounds for upper-level decisions,
i.e., (y, η, p, f ), is obtained that satisfies the constraints of
the lower-level problem. To find the upper-bound, similar
system-level optimization problem is solved under constraints
of the lower-level problem (6a)-(6f), given the values of
upper-level decision variables (y, η, p, f ) found in the lower-
bound procedure.

Figure 9 shows the convergence of upper and lower bounds
with a gap of 4.5% for the bi-level optimization program,
while the objective value obtained from the proposed method-
ology in Section IV is 200,160.5 (i.e., within a tight gap).
The CPU time for the exact benchmark approach and the
proposed algorithm is 173.1 hr and 2.3 hr , respectively,
which indicates the computational efficiency of the proposed
algorithm.

B. Real-World Dataset

The proposed formulation and solution technique are applied
to a real-world case study in North Carolina. The network
includes 42 nodes, 451 arcs, and 13 candidate locations for
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Fig. 11. Charging price at selected facilities over the planning horizon.

charging facility deployment, each with a 8-charger capacity,
in North Carolina State University campus as shown in Fig-
ure 10. The figure indicates the origin and destination nodes
of EV travellers (i.e., faculty, staff, students, and visitors) who
tend to charge at a facility on campus for one time step. The
origins and destinations are located in Raleigh, Durham, and
Chapel Hill. We set α = 365. The charging price is assumed to
vary between a minimum of li = 0.1($/veh) and maximum of
l �i = 10.0($/veh),∀i ∈ N , per time step. The pricing bounds
can be estimated based on the amount of energy (e.g., in kilo-
watt hours) consumed in an EV multiplied by the car’s driving
range limit (e.g., in kilowatts per hour) for a variety of EVs and
charger types given the electricity cost at different locations
per time unit. The maximum driving range is assumed to be
200 miles. The medium demand in this dataset is distributed
over time as 70, 105, 85, 60, and 115 vehicles for early
AM, AM peak, mid-day, PM peak, and evening time-of-days.
Similar to the hypothetical dataset, the low and high demand
levels are assumed to be half and twice of the medium demand
level, respectively. The initial SOC of EVs follow a normal dis-
tribution with an average of 50 miles and standard deviation
of 20 miles.

Similar to the hypothetical dataset, Figure 11 indicates the
average price of charging facilities with respect to EV arrivals
within a day starting from 8 AM to 5:30 PM for the medium
demand case. As illustrated, the proposed dynamic pricing
policy increases the charging prices when the facilities are
occupied by users from previous time steps and/or new EV
arrivals. The prices decrease when the charging facilities offer
available spots. Besides, Figure 11 presents the impact of
charging facility locations on the pricing scheme. For example,
facility at node 12 is located in the parking facility close to the
main library. As expected, this charging facility experiences a
high demand for EV charging throughout the day and hence,
it offers the highest charging price in most time steps compared
to other facilities. However, charging facility at node 3 (located
near the student center building with generally less demand)
is priced close to facility at node 2 and even higher in time
step 17 due to excessive demand during the evening hours.
An average demand of 87 users will be assigned to 13 facilities
each with an 8-charger capacity (i.e., 104 charging spots)
in 20 time steps that results in 7,539,121 decision variables.
The proposed iterative active-set algorithm completes within

Fig. 12. Sensitivity of upper-level objective function terms to model para-
meters: (a) number of chargers versus unit installation cost and (b) average
charging price versus coefficient of charging price term in the lower-level
problem (i.e., cost-to-monetary value conversion factor γ ).

263 iterations, with a 0.43% gap, for the given travel times in
MSA.

C. Sensitivity Analyses

Besides Figure 8 on the sensitivity of selected chargers given
various demand distributions, we have conducted a series of
sensitivity analysis on various parameter values, i.e., Ci and
γ , to evaluate the impact of charging facility installation cost
and pricing scheme on the objective value (captured by (11)),
as illustrated in Figure 12. When the value of unit installation
cost at each station, i.e., Ci , increases, so does the objective
value term on the installation cost (see Figure 12 (a)), which
indicates a negative impact on adding more chargers due to
the increase in total cost. According to Figure 12 (b), when
the value of γ increases, the average charging prices decrease
to improve the utilization by reducing the number of lost
users affected by the pricing scheme at charging facilities.
The inverse relationship between γ and charging price can be
interpreted by the monotonic nature of the travel time function
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Fig. 13. Charging network design for the low, medium, and high demand cases in real-world dataset.

TABLE II

SENSITIVITY OF CHARGING PRICE TO THE NUMBER OF CHARGERS

as well. The value of γ balances the impact of travel costs
versus charging prices, as indicated in (10).

Additionally, Figure 13 shows the optimal network design
and capacity of charging facilities at different demand lev-
els. As expected, higher demand requires higher number of
chargers. If the capacity of existing facilities is reached,
additional facilities will be needed to satisfy the demand (e.g.,
Facility at nodes 1, 6, 7, 9, 10, and 13 under high demand).
Furthermore, Table II shows the impact of maximum number
of chargers ηmax on average charging price and its standard
deviation. As indicated, when ηmax increases, the charging
prices decrease on average due to the availability of additional
supply. Besides, it can motivate EV users to move towards
the central locations of the campus for charging, where the
destinations d ∈ D are located. Therefore, popular charging
facilities (e.g., closer to the main library) will keep their high
charging prices due to excessive arrivals. On the other hand,
charging facilities that are far from the campus center will
reduce their prices to offer more incentives to EV users. The
observed pricing scheme affects the EV user decisions and
as a result, facility selection behaviors will be more diverse.
This impact is shown in Table II by the increasing trend in the
standard deviations. Higher utilization rate in popular charging
facilities causes distant facilities to reduce their prices more
to stay competitive. This increases the deviations of charging
prices among different facilities.

Figure 14 presents the average number of charging attempts
versus maximum driving range limits (offered by different
manufacturers) at medium and high demand levels in the
hypothetical case study. Moreover, Figure 14 indicates that
the number of charging attempts changes inversely with the
maximum driving range changes. Note that, lower driving
range limits impose higher facility deployment costs due to
the need for more frequent charging visits and consequently,
higher number of facilities. For instance, driving range of

Fig. 14. Sensitivity to maximum driving range in medium and high demand
levels in hypothetical case study.

TABLE III

SENSITIVITY OF THE NUMBER OF SELECTED FACILITIES TO DIFFERENT
RANGE LIMITS IN HYPOTHETICAL CASE STUDY

100 miles enforces the charging network operator to install
charging facilities at nodes 2,3,4,5,7,8, and 9 in the high
demand level, while driving range of 300 miles requires
facility deployments at nodes 5 and 7. Similarly, Table III
presents the nodes that are selected for charging facility
deployment based on the maximum driving range in medium
and high demand levels. The decreasing trend in the number
of charging facilities with the increase in the driving range
limit is observed in more details.

VI. CONCLUSION

This paper develops a methodology that incorporates a
dynamic pricing scheme into EV charging infrastructure
design. The objective is to determine the optimal (i) number,
location, and capacity of charging facilities in the trans-
portation network and (ii) demand-driven charging pricing
scheme. The problem is formulated as a bi-level mathematical
program that includes the EV charging facility design and
pricing scheme in the upper level and user charging deci-
sions with respect to charging pricing and travel time in the
lower level. The model minimizes the total costs including
infrastructure investments and operating costs of facilities as
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well as users’ travel and charging expenses under equilibrium
flows. The bi-level problem is converted into an equivalent
single-level formulation following the redefinition of binary
decision variables as continuous variables, and solved using
an active-set based methodology where arc travel times are
estimated using an MFD-based technique. MFD generates the
travel time function based on the arc flow, which is updated
based on the active-set solutions in each iteration. Additionally,
a stochastic queuing theory is utilized to establish a linear
relationship between each facility’s occupancy and physical
capacity to capture the impact of waiting time on maximum
occupancy. Numerical experiments include (i) a hypothetical
network and (ii) a real-world case study in North Carolina.
The numerical results indicate that the proposed algorithm
can solve the problem effectively. Besides, the solution to
the proposed algorithm falls within a tight theoretical gap
(obtained from an exact solution technique applied to the
original bi-level problem), which indicates the solution quality
and computational efficiency (i.e., the CPU time of 2.3 hr
compared to 173.1 hr of the exact algorithm on a hypothetical
dataset) of the proposed methodology. A series of sensitivity
analyses has been conducted to study the impact of input
parameters on the solutions and draw managerial insights.
Future research can be conducted in a few directions. It is very
interesting to include a multi-agency competitions to absorb
EV users to respective charging facilities in highly-variable
demand regions. Furthermore, the impact of various EV
penetration rates can be incorporated in the study to obtain
more realistic resolutions for the existing traffic conditions.
The impact of charging decisions on traffic system dynamics,
also considering automated traffic streams [56], [57], [58],
[59], [60], [61], as well as traffic control decisions [62], [63]
on drivers’ charging attempts are other interesting directions.
Besides, it will be very encouraging to study the electrification
of heavy equipment and its impact on charging location design
and management strategies, e.g., using approaches used for
service truck logistics [64], emergency response planning [65],
micromobility logistics, among others. It will be worthwhile
to incorporate the charging demand uncertainties (e.g., due to
special events and holidays) into the proposed pricing frame-
work over long-term study periods. Another direction will be
to study stochastic latency along network routes with various
traveling behaviors and uncertain travel times compared to the
Wardrop equilibrium [66].
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