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Abstract—In this paper, the string stable platoon control
problem of discrete-time networked vehicle systems is considered
by using distributed model predictive control (MPC) based
method. An optimization problem is established to minimize the
cost function associated to the system trajectories. The last-step
shifting method is applied to set the local optimal solution
as the assumed solution and send it to the neighbor vehicles.
By using the sum of the cost function as Lyapunov function, the
stability of the closed-loop platoon system is studied. Comparing
with existing results, the string stability, which is the unique
characteristics of the platoon system, is guaranteed under the
bidirectional-based structure as well as the predecessor-follower-
based information flow structure. Finally, several simulations
are presented to demonstrate the effectiveness of the proposed
algorithms.

Index Terms—Platoon control, MPC-based method, string
stable, networked vehicle.

I. INTRODUCTION

N THE past decades, traffic jam has become increasingly

serious [1], [2]. How to ensure the vehicle runs fast
and safely on the road has attracted the attention of many
researchers. Platoon control is one of the most promising
solutions to this issue and has achieved many remarkable
results, see [3], [4], [5] and the references therein. Vehi-
cle platoon control aims to ensure the specified distance
between each vehicle, with all vehicles in the system hav-
ing the same speed and acceleration as the (virtual) leader
vehicle’s [6], [7], [8].

The platoon system includes four elements, including
vehicle dynamics (VD), information flow topology (IFT),
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formation geometry (FG) [9], [10] and distributed controller
(DC). The IFT structures are mainly divided into predecessor-
following-based [9], [11], [12], [13] and bidirectional-based
structure [5], [6]. FG represents the distance strategy between
the vehicles in the platoon [14]. Intuitively, the design of DC
is closely related to VD, IFT, and FG. In recent years, some
advanced control methods, which can improve the perfor-
mance of the connected vehicle platoon system are proposed,
such as adaptive control method [15], sliding mode control
method [16], and robust control method [17]. Specifically,
a two-layer distributed control scheme is proposed to ensure
the closed-loop stability for the platoon system moving in
one-dimension space with constant vehicle spacing being guar-
anteed [15]. In [16], the sliding mode control is introduced into
the vehicle platoon control to solve the distributed trajectory
optimization problem for the heterogeneous platoon system.
A cooperative adaptive cruise control scheme is proposed for
the vehicle platoon system and the distributed observer is used
to estimate the lump disturbance in [17]. However, most of
these methods fail to consider the discrete vehicle model as
well as the string stability, which is a peculiar property of
vehicle platoon.

To solve the trajectory optimization problem with discrete
vehicle dynamics, model predictive control (MPC) is intro-
duced into vehicle platoon systems by solving the formulated
optimization problems within the predictive horizon to update
the control signals. By setting current states as the initial
states in each sampling moment, the MPC method can predict
the next-step state by using the current one [18]. Since the
MPC method can solve complex problems such as disturbance
reduction and delay tolerance issues, it is popular in practical
applications. In [19], the traffic control problem on highways is
considered, but the centralized MPC’s calculation time scales
poorly. Due to the limitations of collecting all vehicle infor-
mation and the challenges of calculation complexity of the
optimization problems, the centralized MPC is not suitable for
an actual vehicle platoon system [20], [21], [22]. However, the
majority of the applications are used in a centralized approach,
which means the controllers are designed by assuming that
all of the states in the system are known. For this issue, the
distributed MPC method is proposed for the vehicle platoon
systems, which means only the local information can be used
to each local controller to solve the MPC problem [23].
In [24], a distributed iteration control approach based on the
feasible direction method is proposed for multi-agent systems
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to solve the distributed MPC optimization problems. The
distributed MPC method removes the requirement on all states
of the vehicles are known and, however, how to ensure the
string stability of the platoon system is also one of the most
challenging problems and still not well explored.

String stability is a special characteristic of the vehicle
platoon system [25], [26], [27], [28]. Generally, there are two
different stability definitions in vehicle platoon, i.e., individual
stability and string stability. The former one, which is also
known as Lyapunov stability, means that each vehicle in
platoon system can be stabilized on some specific trajectories,
while the latter one means the disturbances are not being
magnified downstream along the vehicle platoon [28], [29],
[30]. If the string stability is not guaranteed, a small disrup-
tion can be amplified and produce traffic congestion as the
platoon length grows, such as stop-and-go phenomenon [31],
[32]. Intuitively, VDs, FGs as well as IFTs of the platoon
system will all affect the string stability [13], [29], [33].
In [29], the authors proved that since the complementary
sensitivity integral constraint, the system is string unstable
under the PF topology and CD policy. Under BD structure,
the string stability of the platoon system is limited under the
linear controller by some assumptions [33]. Some detailed
comprehensive comparison between different types of string
stability definitions under different analysis methods can be
found in [26] and the reference therein. The existing results
show that changing the forward communication structure of
IFTs or the FGs between vehicles does not affect the string
stability of the system. It should be noted that, to our best
knowledge, how to ensure the string stability for a discrete
platoon system by using distributed MPC method is still an
open problem and not well explored.

In this paper, the distributed MPC string stable platoon
control of discrete networked vehicle systems is considered.
An optimization problem is considered to minimize the cost
function associated to the system trajectories. A distributed
MPC scheme is proposed, including the last-step shifting
method, which is applied to set the local optimal solution
as the assumed solution and send it to its neighbor vehicles.
By using the sum of the cost function as Lyapunov function,
the individual stability as well as the string stability of the
closed-loop platoon system are studied. The effective of the
proposed method is verified by the simulation results and the
simulation results show that the proposed distributed MPC
method can be applied to many different topology structures
of vehicle platoon system. The contributions of the paper are
summarized as follows:

1) A distributed MPC-based method is proposed for a
realistic discrete vehicle platoon systems by using the
last-step shifting method. Comparing with [34], the pro-
posed algorithm removes the requirement on all states
of the platoon system be known.

2) Both the individual stability and the string stabil-
ity are considered for predecessor-follower-based and
bidirectional-based vehicle platoon structure. Comparing
with [35] and [36], not only the individual stability
but also the string stability of the closed-loop sys-
tem are considered under the proposed controller. Also
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unlike [37], rigorous proof is presented to guarantee the
string stability under the bidirectional-based structure as
well as the predecessor-follower-based vehicle platoon
structure.

The outline of this paper is given as follows: the pre-
liminaries and problem formulation are given in Section II.
The distributed MPC-based method for the discrete vehicle
platoon system and the prove processing is given in Section III.
Section V presents the simulation results and the conclusion
of the paper is given in Section VI.

II. PRELIMINARIES
A. Vehicle Model for Platoon Control

The dynamics of the networked vehicle is the basis for
designing a DC. Many existing results on vehicle platoon sys-
tems focus on the linear system model, such as the first-order
integral model [3] and the second-order integral model [38].
In recent years, the third-order integral model has been studied,
but these continuous models are harsh for real vehicle systems.

The vehicle model is defined as follows:

pi(t +1) = pi(t) +vi(0)z,
0t +1) =0;(t) + a;(t)z,
ai(t +1) = a;j(t) + (fi (1) + qi (t)ci ()7, (D

where p;(t), v;(t), a;(t) represents the i-th vehicle’s position,
velocity and acceleration, respectively. ¢; is the engine input
representing the desired driving or braking torque. 7 represents
the sampling time. f;(t) = —A%(ai + macacgviz/Zmi +
fcg/mi) _macacgviai/mi and ¢;(t) = ﬁ with mq, m;, As,
¢, and cg being the specific air mass, the vehicle mass, the
time lag, the area of cross-sectional, and the drag coefficient,
respectively. Based on [39], the engine input is given as
follows:

ci(t) = miui + maCaCqv; /2 + fe, + MaCaCgviai,  (2)

where u; is the designed control input. For each vehicle, the
state is defined as @; (t) = [pi(¢), v; (¢), a; 1)]T € R3>*!. Then,
the vehicle model can be rewritten as follows:

D;(t+1) = A;(D;(t)) + Biu; (1), (3)
where
pi(t) +vi(t)T
A,‘((Di(l)) = v; (l) + a,-(t)r ,Bi =

0
0
ai(t) — ALsai(t)r Aisr

B. Control Objectives

As mentioned above, the stability definition for the platoon
system includes individual stability and string stability. The
control objective is to design a DC for a platoon system
modeled by (1) and to ensure system stability in both senses,
where the distances between vehicles are identical to the
desired distance, and the vehicle velocities and accelerations in
the platoon system are equal to the leader’s ones. The control
objective are described as follows. The desired position of
itn vehicle is lim; oo pi(t) = p; = po + lio, the desired



3080

velocity is lim; oo v;(f) — v} = v, the desired acceleration
is lim; o0 a; (t) — a; = ap, where ;¢ is the desired distance
between the leader vehicle and the i-th vehicle, po, vg and ag
are the (virtual) leader’s position, velocity and acceleration,
respectively. Based on [37], the definition of the platoon
system’s string stability is that all state errors of the system
are converged to zero and the following condition should also
be satisfied:

, (4)

where 0 < k; < 1, i = 1,2,..., N. This equation means
that the disturbance is propagate downstream along the vehicle
platoon system without being magnified, then the system is
string stability.

Remark 1: The desired distance among the vehicles in
platoon system can be either constant or time-varying, which
is referred as the CD or CTH policy in a platoon system [26].
In [40], the result shows that the vehicle platoon systems with
CTH policy by using MPC algorithm can be converged. In this
paper, we focus on the networked vehicle platoon system’s
stability by using the distributed MPC-based approach and
the CD policy is considered in platoon system.

max | p; — po — lio| < ki max | pi—1 — po —li—1,0

C. Communication Topology

In this paper, both the BD information flow structure in
platoon system are considered. The communication topology
can be described by a undirected graph Gy = {Vy, En}, where
V= {1,2,..., N} is the vehicle index set, and Ey€ Vny XV
is the set of edges between vehicles. Note that the leader is
indexed by 0. The vehicle i can communicate with the vehicles
Jjifeij = (i, j) € Ev. The adjacency matrix is given as
A=la;;j] € RNV where a;; = 1 if (i, j) € En, otherwise
a;,j = 0. The neighbor set of vehicle i is defined as N; =
{j € Vn,aij = 1}. The Lapiacian matrix £ of Gy is defined
as L =D — A, where the degree matrix D is given as D =
diagl{d\,dy, ...,dy} with d; = szNl, a;j. If i-th vehicle
can communicate with the leader, the pinning gain ¢; = 1.
The pinning matrix is given as P = diag{qi,q2,...,qn}-
The leader accessible set for vehicle i is given as Q = {0} if
gi = 1, otherwise Q = . Obviously only the information of
vehicle j in the set Z; = N; U Q can be used for the designed
controller of i-th vehicle. The following assumption is given
for the communication topology.

Assumption 1: The platoon system communication topology
Gn contains at least one spanning tree rooting at the leader
vehicle and the self-loop does not exist in Gy.

The following well-known lemma for graph Gy is also given.

Lemma 1: [41] Under the Assumption 1, if Gy contains a
spanning tree rooting at the leader, then D + P is invertible

and /1('D+7j)—1./4 < 1.

III. DISTRIBUTED MODEL PREDICTIVE BASED METHOD

In this section, the distributed MPC-based method for
networked vehicle platoon systems is proposed. The local opti-
mization problem is firstly proposed and a solution algorithm
is given. Then rigorous proof is given to demonstrate that both
the Lyapunov stability and string stability can be guaranteed.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 3, MARCH 2023

A. Distributed Local Optimization Control Problem

Although all the information for vehicle j in set Zy can be
used for control design of the iy, vehicle, the local optimal
problem is established only used the information from the
(i — D and (i 4+ 1) vehicle in the platoon system. In this
subsection, the following definitions are used. N, is defined as
the predictive horizon, ¢ is the updating period in distributed
MPC algorithm, s represents the predicted time at time f,
the predicted state is (I)f(s, t) withs =0,1,2,...,Np, ie.,
s = | means s = ty + J, which represent the predicted
value of the state CDf of the time 7 + J at the time ¢. The
optimal predicted state is defined as @7 (s, ), the assumed
state is denoted by ®;(s, 1), the predicted control input is
uf (s, 1), the optimal control input is u](s,?), the assumed
control input is #; (s, t). The state variable CDf (s, t) is used to
parameterizes the optimal control problem, @7 (s, ¢) is defined
as an optimal solution to the optimal control problems. D; (s, 1)
is the trajectory communicated to its neighbours (i + 1) € Z;
and (i — 1) € Z;. In the proposed algorithm, the shifted
last-step optimal trajectory of vehicle i is used and it will
be implemented within the update period [z, f + J]. It should
be noted that (I)f(s, t) = @i(s,t) = ®; (s, 1) at the initial
moment.

The optimization control problem for vehicle i €

{1,2,..., N} in platoon system at time ¢ is established as
follows:
Li(6) : Ji(t) = min Ji(®F,ul, d;, d;)
uf)(s,t)
N,—1
= > (@, 0),ul (5,1), Di(s,1), D (5, )
s=0

(%)
subject to
O (s + 1,1) = A(DY (s, 1)) + Bul (s,1),s < Np,  (6)

where uf(s, t) € U
: : p p _
being the feasible set of u;(s,t), @;(sn,,1) =
| . R
m(ZjEI;,j>i(cDj(sz’ t) + Li,j) + ZjeIi’j<i((Dj(sza t) -
Lj;)) with sy, means s = Np.

gi(®, ul, d;,®;) in (5) is given as (7), shown at the
bottom of the next page, where L;;—1 = [l;i—1,0, 017,
Liit1 =lii+1,0, 0]17. K; > 0 denotes the penalized strength
from the desired trajectory to the predicted state trajectory.
For the vehicles that can not access to the leader, K; = 0.
R; > 0 denotes the control input weight. F; > 0 is the
weight coefficient for the moving suppression term, in which
the assumed state trajectory is the shifted last-step optimal
state. G; > 0 denotes the weight of predecessor relative error
term, which means the vehicle i try to ensure the predicted
trajectory as close to the assumed trajectory of the neighbor
vehicle i — 1 and i + 1. In addition, this paper doesn’t
consider the effects of the communication and actuation
delays in the platoon control. Theoretically, the proof is still
valid in the presence of communication delays, since the
last-step shifting method is applied to set the local optimal

is the control input with U;

The cost function
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solution as the assumed solution, where the optimal predictive
process is independent of the communication delay. However,
as mentioned in [42], the communication and actuation delays
are detrimental to string stability. How to ensure the string
stability under both the communication and actuation delays
in a distributed MPC scheme for networked vehicle systems
is still an open problem, which will be considered in the
future.

Remark 2: Note that Problem T';(t) only needs the neigh-
boring information thus be fully distributed. Comparing with
the results in [34], where the leader information being used in
each subsystems, this paper removes the requirements on any
prior information of the leaders. In addition, the proposed
distributed MPC based method in this paper can ensure
both the asymptotic stability and string stability, which is
also different the one in [36], where the string stability isn’t
considered. Rigorous proof and discussions will be given in
Section 1V.

B. Distributed MPC-Based Algorithm

In this subsection, the distributed MPC-based algorithm is
summarized as follows:

IV. STABILITY ANALYSIS FOR THE VEHICLE
PLATOON SYSTEM

In this section, since the particularity of the vehicle platoon
system, both the closed-loop stability and the string stability
of the system are analyzed by using the Lyapunov function
theory and mathematical induction, respectively. The terminal
equality constraint is also proved to ensure that the predicted
terminal state will converge to the desired state.

A. Terminal Equality Constraint

Define the terminal state error as follows:

3081
+ D (A@5(sw,. 1) — Lj)
jeI, j<i
(SNpa 1)+ Lij)
||1 I
JjeZLi,j>i
+ D (B, 1) — Lj)
jeTi,j<i
= Z0¥(sy,, 1), )
where Z is given as follows
1z 0
Z=|01 T (10)
001— 47

Then, we have CDf(sz, t+1) = ®;(sn,,t+ 1), and one can
know that the predicted state trajectory will converge to the
optimal state trajectory.

Substituting (9) into (8), it yields

Eg,(sn,,t +1)

= Qo(sn,, ||I-||( > (@sw,.t+ 1)+ Lij)
YT i
+ D> (Dj(sn,.t+ 1) = L)) — Lo
jEI Jj<i
:||I|| t-i—l)—(D(sz,t-i-l)—Lo])
=1 ”z Z(Ecp (s3> 1)) (1)
i
Rewriting (11) as an matrix form as
Eo(sn,,t+1)=(D+P)'A® ZEo(sn,,1). (12)

According to the definition of Z, we have Az = 1 and

Az =1-— —r Then, we can get that max(4z) = 1. Based
on the Assumptlonl and Lemmal, the self-loop does not exist
in the Gy for vehicle platoon systems and the eigenvalues of
(D+ P)’I.A are all located within a unit circle. Then, we can
know that 4(p p)-149z) < 1. thus the terminal state error
are converged to zero at t =1 + N,.

B. Stability Analysis for Closed-Loop Stability

The main results are given as follows.

Theorem 1: Under Assumption I and the proposed distrib-
uted MPC controller, the closed-loop vehicle platoon system

Eg,(sn,,t +1) = ®o(sn,,t + 1) — @F(sn,, 1 +1) — Lo,
(®)
Based on the distributed MPC-based algorithm, we have
O (sy,, 1+ 1) = ||1|| t+1)+Lij)
JELi,j>i
+ D> (Dj(sn,.t+ 1) = Lji)
jEI Jj<i
(SNP, )+ L; ])
III I
JELi,j>i
gi (07,

ul, bp, &) = | K@ 5, 1) = (5, )| + | Riel (5, )]

+ HF,-((Df(s, 1) — d;(s, f)H

2

jEI,‘,j>i

Gi(®F (s, 1) — D,

(s,t) — Li ;)

+ > |Gi@ sty — D5ty + L) || (7)

J€Lij<i
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Algorithm 1 The distributed MPC-based method for vehicle
platoon system

1. Initialization: Set vehicle i = 1 as the leader and broadcast
the desired velocity to other vehicles. We assumed that the
leader vehicle i will solve the optimal problem T'; () by setting
F; = G; = 0 before t = 0, and that the other vehicles in the
platoon system will solve the optimal problem I'; (¢) by setting
F; = 0 before t+ = 0, implying that the assumed trajectories
are unnecessary in the initialization.

Initialize (I)f (s, 0) and uf (s,0) as:

®;(0),s =0

P _ l B

@ (s,0) = A(®P (s — 1,0)) + Bul(s — 1,0), others
W(5,0) = 0

2. Iteration: For any 0 < t < t + N,, implementing the
following process:

(1) Transmit the assumed state trajectories (i)i(s, t), which is
derived by solving the optimal problem I';(¢), to the neighbor
vehicle j € 7;;

(2) Solve the optimal problem I';(¢) and obtain the optimal
control () and

(D;-k(t +1) = Ai(CD;-k(t)) + Biu;-k(t);
(3) Compute ®;(s,t+ 1) and (s, 7 + 1) as:

CD;"(S—}—l,t),sng—l

Dis, 1+ 1) = [ Ai(Df(sn,,1)), others

where sy, means s = N.

uf(s+1,1),s <Np—1

fai(s, 1 +1) [ 0, others

(4) Transmit (i),-(s, t + 1) to its neighbour vehicles i + 1 and
i — 1. Also the vehicle i receive (i)lur] (s,t+1) and D, (s, t+
1) from its neighbours, respectively;

(5) Solve the optimal problem I';(¢) for u} (s, + 1) and set
s = s + 1 and go back to step (1).

is stable under if the following conditions are satisfied, i.e.

u;(so, 1) =0, (13)

D} (s0,1) — Di(s0,1) =0, (14

(D7 (s0,1) — Dj(s0,1) — Lij)jern,j>i =0, (15)
(D} (s0,1) — Pj(s0, 1)+ Lji)jer,j<i = 0. (16)

Remark 3: The above conditions are the constraints on the
assumed states of the system at s = 0, which means the initial
assumed states of the system. It requires that the assumed
states of the system equal to the desired states of the system
at the initial moment, this is consistent with the previous
definition of the expected value and predicted value of the
system.

Proof: Consider the sum of the local cost function as an
candidate Lyapunov function, then the difference function is

N
AV =D (JF(t+1) = I (1), (17)

i=1
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where J#(1) = 3070 gi(@F (s,0), u? (s, 1), i (s, 1), B (5. 1).
Then rewriting (17) as

N Np—1
AV =D (D0 gil @ (s, 1+ 1), uf(s,  + 1), Dils, 1 + 1),
i=1 s=0
(s, 1+ 1))
Np—1
= > gl @ (s, 1), uf(s.1), Di(s, 1), D (5,1))). (18)

s=0

Next, we will prove that the difference function AV is strictly
monotonically decreasing such that the asymptotic stability
can be ensured.

According to the local optimal theory, we have

Np—1
AV < DD gi@ils,t + 1), di(s, 1 + 1), ils, 1 + 1),
i=1 s=0
(s, 1+ 1))
Np—1
— > 8@ (s, 1), uf (s, 1), Dils, 1), D) (s, 1))

s=0

N
< D (=8i(®] (50, 1), 1} (50, 1), i (s0, 1), D; (50, 1))
i=1
Np—1
+ D (@@ (s, 1), u (5, 1), D (s, 1), @5 (s, 1))

s=1
Np—1

— D> & @ (s, 1), uf (s, 1), Dils, 1), D (5, 1))
s=1

19)

where the definitions of ®(s, ), u*(s, 1), D; (s, 1), ®; (s, 1)
are given previously. Combining (7) and (19), it yields

N
AV < D" (—gi(®] (50, 1), ] (50, 1), i (s0, 1), D; (50, 1))
i=1
Np—1
+ D (| Ki (@ (s, 1) — ®F (s, 1)

s=1

+ | Ri(uf (s, 0)|| + || Fi (@F (s, 1) — DF(s, 1))

+ > |ai@ien -0~ Liy)|
jeli,j>i

+ Y |a@ien - o+ L)
jeli,j<i

—(| Ki (@ (s, 1) — @F (s, 1) || + | Ri (uf (5, 1))

+ ‘ Fi(®F (s, 1) — D; (s, 1)) H
+ Z HGi(CD:-“(s, ) — CiDj(s,t) - Li,j)H
jeli,j>i

+ > |Gi@e 0 — b0+ Lo @)

jeli,j<i
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Furthermore, according to the properties of the matrix norm,
we have

N

AV < > (=gi(® (50, 1), u} (50, 1), Di (50, 1), D; (50, 1))
i=1

+sz1(2 |Gi@}.0 = &5,

s=1 jel

Fi(@](s,1) = Bi(5, 1))
Since Ziel,- G — F; =< 0, it derives that (®}(s,t) —
Di(s, N (X ey, Gi — F)@f(s,1) — @i(s,1) < 0.
In addition,

21

> | Gi@in = dis, |

JEl;
B HF"((D?(S’ 1) — fbi(s,t))H <0 (22)

Then substituting (22) into (21), we have

N
> (—8i (@] (s0. 1), u} (s0. 1), Bi (50, 1), (50, 1))

i=1

AV

IA

N
— D (| Ki(@] (50, 1) = @ (50, )| + [ Rise} (50, 1) |

i=1

+ | i@ Gs0,0) = bis0, 0|

+ D | Gi@i(s0.1) — Dj(s0.1) — Lij) |
Jeli,j>i

+ D | Gi@i(s0.0) = Dj(s0.0) + Lji) - (23)
jel,j<i

IA

According to the conditions in (13)-(16), one has

N
AV < =D (| Ki(@f (s0. 1) — @} (s0. )| + || Riuef (s0. 1) |

i=1

+ HFi(cD?(so, 1) = ®i(s0.1) H

+ > | Gi@Fs0.1) = Dj(s0.1) = Lij) |
JEL,j>i
+ > G @0, 1) = D (50,0 + L) |
Jjeli,j<i
<0 (24)
Then asymptotical stability of the closed-loop platoon system
is guaranteed. This completes the proof. U
Remark 4: In this paper, the last-step shifting method is
used to constructed the assumed states in the proposed
distributed MPC algorithm. The similar strategies are also
used in [35], [36]. In contrast to these results, asymptotical
stability of the closed-loop platoon system can be guaranteed
under both PF and BD information flow structures. In addi-
tion, another potential benefit is that the proposed algorithm
removes the requirement on all states of the platoon system be
known such as the leader’s one, which is different from [34].
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C. String Stability Analysis

The string stability is suggested and thoroughly investigated
to ensure that the disturbance between each vehicle does not
amplify along the string when the number of vehicles is
increasing in the system [26], [27], [28]. The string stability
of the vehicle platoon systems is analyzed in this section.

Theorem 2: Under Assumption 1 and Theorem 1, the pro-
posed distributed MPC-based algorithm ensures the string sta-
bility of the vehicle platoon system if the following conditions
are satisfied:

1. The optimal problem T'; is solved by using the proposed
distributed MPC algorithm for each vehicle i > 2 under the
following conditions:

|p! (s0, 1) = po(so, 1) — lo,i

<ai|p? (0, 1) — po(so, ) —loi—1] (25)

where 0 < a; < 1.
2. Problem T';(t) will be solved by the proposed distributed
MPC algorithm with the following constraints:
For the leader vehicle:
p‘ln(s, t+1)— po(s,t +1) —1lo1
—(p1(s,t +1) = pols, t + 1) = lo,1)
<kays| PPt +1) = pols,t +1) —lo |
where k(1 5) > 0;
For the other vehicles:
‘ pls,t+1) — pols,t + 1) — o,

(26)

_(ﬁi(s’ t+ 1) - PO(Sa t+ 1) - lO,i)
< kGsymax | pf(s,1+1) — po(s,t + 1) —lo;i | (27)

where k(; s > 0.
3. In addition, the following condition is satisfied:

S
kisCkiors +1) +ai [ [kioij + 1)

j=l1
s—1 K
+ D (ki [Jkicip+ 1) <1, fori=2. (28)
j=1 p=1

Proof: Based on the definition of the string stability, if the
following condition is satisfied:

max | p; — po —lo,i| < ksmax |pi—1 — po —lo,i—1|, (29)
=0 =0

where kg < 1, then the vehicle platoon system is string stable.
To verify this condition, the mathematical induction method
is used.

For s = 0: We will firstly prove that the condition (29)
is satisfied for the case that s = 0. Since F; = G; =
0 at initialization for the leader vehicle i = 1, p!(so,1) —
po(so, ) —lo,i = pj(so,t) — po(so,t) — lo,; at initialization,
based on (25), we have

|p} (55, 1) — polso, 1) — lo,i|

< ai |pi_1(s0,1) = polso, 1) —loi| . (30)
Then, we have
max | p;(s, 1) — po(so, 1) —lo,i
< ajmax| pf_ (s0, 1) — po(so, ) —lo.i| (31

Thus the condition (29) is satisfied for the case that s = 0.
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For s = 1: Next, we will prove that the condition (29) is
also satisfied for the case that s = 1. By using the triangle
inequality, we have

|pf(s1, ) = po(si, 1) — lo,i|
< |pf(s1,t) = polsi, 1) —loi — (Pis1, 1) — po(si, ) — o)
+ | pi(s1, 1) = polsi, 1) — loi| - (32)

Since pf is the predicted position trajectory and p} is the
optimal predicted position trajectory, we have

|pi(si, 1) — po(sint) —loi| < |pP(s1.1) — po(si,t) —loi] -
(33)

Substituting (33) into (32), we can obtain

|pi(s1,1) = pols1, 1) — lo,
—(pi(s1, 1) — po(si, 1) —lo,i)]
+|piCs1, 1) = polsi, 1) — lo,i]

- pl(s1, 1) — polsi, 1) — loi
~ | =(pi(s1,t) — pols1, 1) —loi)

+ | pi(s1, 1) = polsi, 1) —loi| - (34)

Then substituting (27) into (34), one can get

|pl(s1,1) = pols1, 1) — lo,;
—(pi(s1,1) — po(si, 1) — lo,i)|
+ | pis1, 1) — po(si, 1) —lo,i|
< kijymax |pi—1(s1,1) — pols1, 1) —lo,i—1]

+|piCs1, 1) — polsi, 1) —lo,i] 35)

Furthermore, substituting (35) into (32), we can obtain

|pf(s1, ) — po(si, 1) — lo,i|
<|pP(s1,1) — po(si,t) — Lo,
—(pi(s1,1) — po(si, 1) — lo,i)|
+ | pi(s1, 1) — po(si, 1) —lo,i|
< kijy max |pi—1(s1,1) — po(s1, 1) — lo,i—1]

+ | pi(s1, 1) = polsi, 1) —loi| - (36)

From the results with s = 0, it yields

}p;k(s()a t) - (PO(SOa t)) - lo,i}

<ai |pf_i(s0, 1) = (po(so, 1)) — loi|  (37)

Then, one can get

|pi(siot + 1) — polsi, t + 1) — o

< ai|pici(si,t+1) = polst,t + 1) —loi| . (38)

By combining (36), (37), and (38), the following result is
derived

|pf(s1, 1) — po(si, 1) —lo.i|
< kijymax |pi—1(s1,1) — pols1, 1) —lo,i—1]
+0Ci

pic1(s1,1) — polst, 1) —loi] - (39)
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Similarly, the following inequality can be yielded by using the
triangle inequality,
| pis, 1+ 1) — po(s, 1 + 1) —lo,; |
— | piGs,t+1) = po(s, 1 + 1) —lo.i |

pl(s,t +1) — po(s, 1 + 1) — o,
| =pi(s,t +1) = pols, t +1) = lo;) |

Then according to (27) and (40), the following result is derived
by defining i =i — 1,
|pic1(s, 1+ 1) — po(s,t +1) —lo,i—1]

< ki—1,smax|pj_ (s, t + 1) = po(s, t + 1) — lo,i—1]|

(40)

i, 1) = pols, 1 + 1) —loi1].- (41)
Substituting s = 1 into (41), we have
|Pi-1(s1,8) — pols1, 1) — loi—1]
< ki—1,1max |pi_ (s1, 1) — po(si, 1) —lo,i—1]
+ P Gs1,0) = polst, 1) —lo,i-1 | (42)

Substituting (42) into (39), one can get

|pf(s1, 1) — posi, 1) — lo,i]
< ki1 max(ki—1, max | p{_; (s1, 1) — po(si, 1) — lo,i—1]
+|pfi (51, 1) — pols1, 1) — lo,i—1])
+ai - (ki—1,s max | p_ (s1,1) — po(si, 1) — lo,i—1]
+ | pi_i(s1,0) = po(si, 1) —lo,i-1))
< (ki1(ki—1,1 + 1)+ aiki—1,1 + a;)

max |p;_ (s1,1) = po(st, 1) —loi-1] . (43)
Thus the following result can be derived,
max | p (s1, 1) — po(si, 1) — lo.i|
< (kintkicig + D) +aiki—11 + a;)
~max | pf_ (s1,1) = pols1,1) —loi-1]. (44)

Then the condition in (29) is proved.

For s = 2: Similarly, by following the process for the case
s = 1, we will prove that the condition (29) is also satisfied
for the case that s = 2. By using the triangle inequality theory,
we have

|pi(s2,1) — po(s2, 1) — lo,i|
< |pf(s2, 1) = po(sa, 1) — lo,;
— (pis2,1) = pols2, 1) —loi)|
+ | pi(s2, 1) = pols2, 1) — lo.i

Similarly, by following the process of (33)-(35) and substi-
tuting it into (45), we have

(45)

| P} (s2,1) — po(sa, 1) — lo,i
< kipmax | pi—1(s2,1) — po(s2, 1) — lo,i |

+ | pi(s2, 1) — polsa, 1) — lo,i | (46)
By using the triangle inequality theory, we have
| pi(s,t+1) — pols,t +1) —lo,i |
_|p;‘k(s’t+ 1)_P0(59t+1)_10,i |
< kigmax |p{(s,t +1) = pols,t + 1) —loi|  (47)
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Then, the following result will be derived by defining i = For s = n + 1: By using the triangle inequality, we have
i—1ands =2,
| P (snv1: 1) = polsat1, 1) — lo.i]

| Pi—1(s2, 1) — polsa, 1) —lo.i| Pi (Snt1,1) = po(Snt1, 1) —lo,i

< kj—1,2 max ’pf_l(sz, t) — po(s2,t) —lo,i—1 ‘ = —(Pi(snt1,1) — po(Sn+1, 1) —lo.i)
+ | pii (52, 1) = polsa, 1) —lo i1 | +|PiSnt1, 1) — polsati, 1) —lo,i]
= ki—1,, max p;k_l(sz, t) — po(s2, t) —lo,i—1 ‘ < kin+1 max |ﬁi—1(5n+1» t) = po(Su+1,1) — lO,i|
+ | pi (52, 0) = polsa, 1) — o1 | (48) +|DiCsnt1, 1) = polsat1, 1) —loi] - (55)

Substituting (48) into (46), we have Following the previous process, it yields

|i(s,t 4+ 1) — pols, 1 + 1) — I |
—[pf (st +1) = pols,t + 1) = lo,i|
< kismax |pf (s, t + 1) — po(s, 1 + 1) —lo| . (56)

|pf(s2.1) — po(s2, 1) — o]
< kip(ki—1,2 + 1) max |pf_  (s2,1) — po(s2, 1) — lo,i—1]
+ | pi(s2, 1) — pols2, 1) — lo.i | (49)

] o Defining i =i — 1 and substituting it into (56), one can get
From the results with s = 1, it yields

|Pic1(ns1st 4+ 1) = polsngr, 1+ 1) —lo,i—1]

|pf(s1, 1) — po(si, 1) — lo,i] Pl Gngrst+ 1)
. 1— ’
< (kiiki—1,1 + 1) + aiki—11 + i) < Ki-t,n41 max +po(sng1,t+ 1) —loi-1
max | pj_y(s1, 1) = po(st. 1) —loi-1 | (50) + P ng1 t +1) = polsnsr, t+1) = loi]

p;k_l(sl’l+19 r+1)
+po(Snt1,1 + 1) —lo,i—1
|Pi(s2, 14+ 1) — (po(sa, 1 + 1)) = lo,i +| P ng1, 1 +1) = polsusr, t +1) —loi| . (57)
< (kii(ki—1,1 + 1)+ aiki—1,1 + a;)
max | pi—1(s2, 1+ 1) = (po(s2, 1 + 1)) —lo,i—1| (51)

Then, one can obtain < ki_1 41 max

Substituting (57) into (55), it yields

o . o | P} (15 1) = posur1, 1) — logi|
By combining (48)-(51), the following result is derived, p;k_l(an’ r41)

< k; max(k;_ max
< kint1 (ki—1,n+1 +po(sns1,t + 1) — o1

|pf(s2,1) — po(s2, 1) — Lo,

* .
< kia(ki—1 + Dymax |p (s2,1) — po(s2, ) — loi—1] + ’lzi—l(sn+1, t+1) = polsas1, 1+ 1) —loi|)
+kiiki—1 + 1) +aiki—11 + ;) +[Putsner, 0 = polsns1, ) = lo’i’* (
: 1)
max (k; 12 max | p;_(s2,1) — po(s2, 1) — lo,i—1 < ki ki— 1 p
i ‘ i1 i ’ = z,n+1( i—1,n+1 + )max +P()(Sn+lat+ 1) — l(),ifl

+ |pi_i(s2,1) — po(s2, 1) —lo,i—1]) (52) R
Pi al + | piCsnr1, 1) — po(snsr, 1) — Lol - (58)

The following result can be derived, Based on the condition (54). we have

max |pf (s2,1) = pols2, 1) —loy | |PF (5w 1) = polsus 1) — lo.i]

< (@itki-11 + Dkici2+ D+ kig(kioin + D(kio12 + 1) n
Fhio(kio1a + 1)) < kinkicin + D) +ai [ [k j+1)
~max | pi_(s2,1) = pols2, 1) — lo,i—1]. (53) . . 7=l

Next, suppose that the following condition is hold for the case + O (ki [Jkicap+ 1))

s =n. =1 p=I

*
- max P-_l(Sn,f)—PO(Sn,f)—lo,ifl .
‘p;k(snat)_PO(snat)_lO,i‘ ’ ' ’

n Then, we can obtain
<(kintkicin+1)+a ki—1,j+1 .
= ikt +1) ljl—[_l( =i+ D |Pisnt1,t+1) = po(snri, t + 1) —lo|
n
n—1 n
< (kintki—in+ D +o; | | (kiz1,j +1
+Z(ki,j H(ki—l,ﬂ"f‘ 1))) ( i,n\Ki—1,n ) tg i—1,j )
j= =1 n—1 n
~max | pi_ (sn, 1) = po(sns 1) = lo,i-1]- (54) +Z(ki,j H(kifl,ﬂ 1))
Based on this condition, we will prove that the condition (29) ‘:1A =1
is still satisfied under the proposed distributed MPC-based max | pi—1(snt1, 1 + 1) = polsust, 1 + 1) —loi—1].

algorithm. 59)
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Fig. 1. The results for vehicle platoon system under BD structure.

Then substituting (59) into (58), one can get

| P (sns1s 1) = polsust, 1) — lo,i]
<kint1(ki—t,ne1+1)
max | pi_y (sns1, 7+ 1) + polsay1, t +1) —loi—1 |

n
(ki Kimtn + D+ ai [ [kicry + 1)
j=1

n—1 n
+ > ki [[Kicrp + D) Kicrngr + 1)

=1 p=1
~max | pfy (a1, 1+ 1) + polsat1, 1+ 1) —loi-1]
n+1
= (kijnt1ki—inr1 + 1) +a; H(kifl,j +1)
j=1
n n+1
+ > (ki [[kicrp+ D))
=1 =1
~max | pf (snt1,t+ 1) + polsnrt, t +1) —loi-1].

(60)
From (60), the following condition can be derived.

max | p(sps1,1) — polsns1,1) —lo.i|

n+1
< (ki1 kiciner + D 4o [ Jioa +1)
j=1
n n+1
+ > ki [[kic1p+ D))
j=1 p=1

max | p;_ (sps1, 1 + 1) + po(sns1, 2 +1) —loi—1]. (61)

the acceleration of vehicle 3.

Then according to the available condition (54), it yields

max | p¥ (s, 1) — po(s, 1) — I ;|
< kymax |p/_ (s,t) — po(s,t) —lo,i|. (62)

where kg = (kis(ki—1,s + 1) + o; Hj‘=1(ki71,j + 1) +
> ki [T kicrp + 1)) Since kis(kiois + 1) +
ai [Ty kim1j+ 1)+ 252 ki [Th—y ki1, + 1)) < 1 and
the condition in (29) is hold, one can get that kg < 1. Then,
the string stability of the platoon system is guaranteed. g

Remark 5: Under the proposed distributed MPC algorithm,
the string stability of the discrete-time platoon system is
always guaranteed under the both BD and PF structures.
This is different from the results in [35] and [36], where
the string stability is not considered. The string stability can
be proved by the Laplacian transformation of position errors
for linear continuous system. However, the system’s position
error cannot be directly Laplace transformed for discrete-
time systems. Compared with the string stability analysis of
linear continuous system in [43], the string stability analysis
of discrete system is more challenging. The string stability
analysis for nonlinear discrete system is also one of our future
works.

V. SIMULATION

A. Simulation Parameters Settings

In this subsection, a vehicle platoon system with 10 vehicles
modeled by the discrete model (1) is considered. The first
vehicle is considered as a leader while the others are con-
sidered as followers. The initial position of the virtual leader
is Xo = 100 and the virtual leader is moving as a constant
velocity of vg = 5m/s. The desired distance between each
vehicle is considered as /; ;1 = 5m. In this paper, the horizon
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Fig. 2. The results for vehicle platoon system under PF structure.

TABLE I
THE MASS AND INITIAL STATES OF EACH VEHICLE

The Mass and initial states of each vehicle in platoon system
No./State Mass Position | Velocity Acceleration
(kg) (m) (m/s) (m/s?)

Vehicleg 5 100 5 0
Vehicle; | 5.6557 90 3 0
Vehiclea | 5.0357 81 2 0
Vehicles | 5.8791 73 1 0
Vehicley 5.9340 66 0.7 0
Vehicles | 5.6787 60 0.7 0
Vehicleg | 5.7577 55 0.1 0
Vehicle; | 5.7431 51 0.3 0
Vehicleg | 5.3922 47 2 0
Vehicleg | 5.6555 45 3 0

is set as T = 10s, the predictive horizon is set as N, = 15,
and the update period is set as © = 0.ls, respectively. The
model parameters are As = 0.5s, my, = 1, ¢, = 0.98m2,
¢g =0.01, and feg = 0.5N. All of the vehicles in the platoon
system moving in the positive direction of X-axis. The initial
states of each vehicle are given in Table I. The simulation
results are given as follows to verify the effectiveness of the
proposed algorithm.

B. The Simulation Results Under BD Structure

The platoon control using the proposed distributed
MPC-based method under the BD structure is presented in this
subsection. The initial conditions and control setting are given
in previous subsection. The main results are shown in Fig.1.
Under the BD structure, both the front vehicle (i — 1), and the
following vehicle (i + 1), can be affect by the vehicle iy, in the
platoon system. Fig.1(a) shows the position of each vehicle.
Since a constant velocity is defined to the leader vehicle’s,

the acceleration of vehicle 3.

the final slopes of each vehicle’s position is the same as that
of the virtual leader. Fig.1(b) shows the spacing errors of
each vehicle in the platoon system, which satisfy the system’s
string stability. Fig.1(c) and Fig.1(d) show the velocity and
acceleration, respectively. It can be seen that the spacing errors
of each vehicle are all converged to zero, the velocity and
the acceleration of each vehicle are converged to the leader’s
velocity and acceleration, respectively. It can be seen that
under the proposed distributed MPC-based algorithm, both the
asymptotical stability and the string stability are guaranteed.

C. The Simulation Results Under PF Structure

Fig.2 shows the results by using the proposed distributed
MPC-based method under a PF platoon structure, which
means the vehicle i;; only contact to the front vehicle
(i — 1) in the system. The simulation setting is
same to the ones in Subsection A. According to the

PF structure, the local cost function will change as
Ny—1

Jit) = 200 (|Ki(@F (s, 1) — @F (s, )|+ Riu? (s, 1) || +

[F@len - @] + X [Gid@len

(i),-_l(s, 1) + Lii—1)) H) Fig.2(a) shows the position of
each vehicle. Since the virtual leader runs with a constant
velocity, the final slopes of each vehicle’s position is the
same as it. The spacing errors are shown in in Fig.2(b), which
can be seen that the string stability of the platoon system
is guaranteed. The velocities and accelerations are shown in
Fig.2(c) and Fig.2(d), respectively. Fig.4 shows the cost of
each vehicle under the BD structure and the PF structure.
From Fig.1 and Fig.2, we can know that the proposed
distributed MPC-based method can guarantee the close-loop
stability of the system both under the BD structure and the PF
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Fig. 3. The results for vehicle platoon system under BD structure with CMPC.
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Fig. 4. The cost of the platoon system under BD structure and PF structure.

structure. The string stability of the platoon system also can
be guarantee under the proposed method. The cost functions
converge to zero under the distributed MPC algorithm, which
is shown in Fig.4.

D. Comparison Results Under BD Structure With
Centralized MPC

In this subsection, comparison results with the centralized
MPC algorithm proposed in [34] are presented. Based on [34],
the cost function and constraints in I';(f) are aggregated and
replace i) (s, 1) with (Df (s,t) in the MPC method. Since
global information in the platoon system can be used in the
centralized MPC method, the real-time predicted trajectory
(Df (s,t) is used to avoid the local optimum instead of the
assumed trajectory i) j(s, 1) in it. From Fig.3, it can be seen
that even though the system can be converged, the string
stability cannot be guaranteed. Fig.4 shows the cost of each
vehicle under the BD structure and the PF structure.

VI. CONCLUSION

The distributed MPC algorithm is proposed for a
discrete-time platoon system in this paper. The method can

structure with CMPC.

be applied not only to the PF-based vehicle platoon structures
but also to the BD-based one. By considering the sum of
the local cost function as the candidate Lyapunov function,
the asymptotical stability is guaranteed. In addition, rigorous
proof is also presented for the string stability issue of the
platoon system. Finally, simulation results as well as com-
parison results are presented to show the effectiveness of the
proposed control scheme. How to ensure the effectiveness of
the proposed control method for some complicated cases, such
as the nonlinear discrete vehicle platoon system under com-
munication failure/delays, traffic oscillations and emergency
braking, will be considered in future works.
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