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On the Evaluation of a Drone-Based
Delivery System on a Mixed

Euclidean-Manhattan Grid
Francesco Betti Sorbelli , Member, IEEE, Cristina M. Pinotti , Senior Member, IEEE, and Giulio Rigoni

Abstract— In this work, we investigate the use of drones in a
delivery scenario formed by two contiguous areas. In one area the
drones can freely fly on straight lines between any two locations
(Euclidean metric), while in the other one the drones must follow
the open space above the roads (Manhattan metric). We model
this delivery scenario as a Euclidean-Manhattan-Grid (EM-grid).
Given a set of customers to be served in an EM-grid, the objective
is to find the distribution point (DP) for the drone that minimizes
the overall traveled distance, considering that the drone has to
do multiple round trips to/from the DP. In our view, the DP is
optimized with respect to the set of customers and its computation
must be light because it needs to be recomputed every time
the set of customers varies. Accordingly, we define the Single
Distribution Point Problem (SDPP) and devise sub-optimal time-
efficient algorithms for solving it. We numerically compare the
cost of our sub-optimal solutions with that of an optimal solution
computed with a brute-force approach. Finally, using the BlueSky
open air simulator, we compare the cost of our best solution with
the cost of a solution that serves the costumers from a fixed DP,
like the location of a delivery company’s depot. The fixed DP
can perform very poorly for some customer instances, while our
solution is highly adaptive and reduces the time and the distance
covered by the drone.

Index Terms— Drone, delivery, Euclidean Manhattan grids,
distribution point, centroid, BlueSky.

I. INTRODUCTION

IN THE last period, unmanned aerial vehicles (UAVs) such
as drones, are extensively and widely used in many civilian

applications [1]–[6]. In fact, due to their ability to perform very
challenging tasks, drones are employed for localizing missing
people [7]–[9] or managing the search and rescue opera-
tions [10]–[12] after disastrous events, for offloading tasks at
the edge when monitoring points of interest [13], [14], or for
delivering small packages in a last-mile delivery scenario
[15]–[21]. In a delivery scenario, Amazon or other important
big companies can efficiently and effectively use drones for
many reasons, like extending their business increasing so the
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number of customers to be served, or for assisting customers
located at hard-to-reach places which would be impossible for
ground vehicles (trucks) to visit them in a timely manner.

In the current truck-based delivery system, a single ground
vehicle can accomplish, on average, 110–120 deliveries in a
single day in an urban area, and 40–50 deliveries in a mixed-
urban area [22]. Trucks can be stuck in the traffic jam and
can delay the deliveries, and in the worst case, they could
even cancel many of them. Drones, instead, have the ability
to fly avoiding the traffic, and in suburban areas they can also
minimize the distance to travel by short-cutting the routes.
Also, a recent paper [23] has proven that drones are a mean
of transportation socially well accepted and considered useful.
However, drones have peculiarities [24]. First of all, their
payload is bounded in weight and size, and so at the moment,
they cannot perform more than a single delivery at a time.
In fact, they must go back to the distribution point (DP), often
the depot (warehouse), for loading on-board the package to be
delivered to the next customer. Another constraint is that the
drones cannot fly beyond certain altitudes by law. In most of
the countries, this limit is fixed to 120 meters [25], [26].

In this work, we focus on a drone-based delivery scenario.
Given that a drone has to deliver one package at a time, it is
crucial to define a suitable starting point for any subset of
deliveries. Usually, in a rural area formed by low buildings
and houses, a drone can easily fly on straight lines between
any two locations. On the other hand, in a downtown area of
a big city formed by tall buildings and possibly skyscrapers,
the drone’s flight is more constrained due to the presence
of obstacles. Considering that a drone cannot fly beyond the
maximum altitude, inside a city a drone can only fly over the
roads/streets. We summarize these two different contexts as
follows: in the rural scenario, the drone moves freely according
to the Euclidean metric, while in the urban scenario, the drone
moves according to the Manhattan metric [27]. We model this
delivery area as a Euclidean-Manhattan-Grid (EM-grid), where
customers reside on both the areas.

Today, one of the biggest brakes on the development of
deliveries with small drones is the impossibility, related to
the payload, of shipping more than one package at a time.
So, shipping a parcel requires starting from the depot, usu-
ally built outside the city, with a fully charged battery, and
returning back to the depot to recharge or swap the battery
before the next delivery. To reduce the distance traversed for
each delivery, and to allow multiple deliveries with the same
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battery, we envision a truck-assisted drone-based delivery
system where a truck carries, up to a suitably selected DP, the
drone along with a mobile pod which stores all the packages
to be delivered by the drone. This mobile pod, once it is at
the DP, is inaccessible to other people for safety reasons. The
drone uses the top of the pod as starting point to deliver the
packages to the customers. Once the last delivery is done,
the drone stops at the pod, and the pod is then ready to be
picked-up by the truck.

Now, given a subset of customers inside an EM-grid to
be served by a single drone, the objective is to find the DP
(i.e., the pod’s position) that minimizes the sum of distances
between all the customers and the DP. Recall that the drone
has to perform multiple round trips to/from the DP.

The contributions of this work are summarized as follows.

• We present the EM-grid model which characterizes the
delivery area for the drone.

• We define the Single Distribution Point Problem (SDPP),
and devise time-efficient algorithms for computing the
DP. Our solution is optimized, with respect to the set of
customers, and computationally light because it needs to
be recomputed every time the set varies.

• We extensively and comprehensively compare the perfor-
mance of our presented algorithms.

• Using a simulator called BlueSky, we compare the per-
formance of our best solution with that of fixed DPs,
emulating the depot’s location of a delivery company.

The rest of the work is organized as follows. Section II
reviews the relevant related work. Section III formally defines
the SDPP and shows the optimal solution. Section IV presents
time-efficient algorithms for solving SDPP. Section V eval-
uates the effectiveness of our algorithms, and compares our
solution with the fixed solution through a simulator. Finally,
Section VI offers conclusions and future research directions.

II. RELATED WORK

In the literature, there are many works solving the last-mile
delivery problem with drones. In the seminal work [28], the
authors study the cooperation between one truck and one drone
to deliver packages to customers. The authors introduced the
flying sidekicks traveling salesman problem (FSTSP), a variant
of the TSP, in which a drone first takes off from the truck, then
proceeds to deliver goods to a customer, and finally rejoins the
truck in a third location. As the drone flies, the truck makes
deliveries to other customers, but has to stop waiting for the
drone at the rendezvous location. An optimal mixed-integer
linear programming (MILP) plus two heuristic solutions to
solve problems of practical sizes are proposed. The authors
in [29], instead, tackle the problem of solving the traveling
salesman problem with a drone (TSP-D), by assuming a
drone that rides on a truck. A branch and bound technique
is applied for solving the TSP-D. Both works pose the focus
on combining the truck’s and the drone’s movements. They
identify the best route (i.e., the best order) to sequentially
deliver all the goods, thus considering the truck’s movements
and waiting time in the process. Instead, we assume that in a
pre-processing phase the deliveries are assigned to the drone

and we focus on selecting the DP that minimizes the total
distance traveled by the drone. The truck brings the drone at
the DP and the drone will autonomously operate.

The Euclidean and Manhattan metrics have been considered
in [30] to evaluate distribution systems. The delivery area
is modeled as a circular region with a central warehouse
and customers randomly distributed throughout the region.
In the area, 13 optimization algorithms are simulated. The
comparison in terms of time and traveled distance, measured
with both Euclidean and Manhattan metrics, shows that differ-
ent algorithms perform better in different situations, therefore
authors recommend employing different algorithms depending
on the neighborhood. Similarly to our work, the authors pose
the focus on identifying the best algorithm based on the
customers’ distribution. We move a step further, by introducing
a mixed Euclidean and Manhattan area, and then, selecting the
best algorithm for the distribution of the customers.

The importance of a strategic planning on urban delivery
services is also studied in [31]. Specifically, the preferred
method and local impacts of vehicle trip may vary by neigh-
borhood characteristics (e.g., traffic or customer demands).
Instead of searching for an optimal route, the authors focus
on the estimation of the vehicles miles traveled (VMT) per
order, considering different types of neighborhoods, delivery
scenarios, and strategies. The system is evaluated in Chicago,
showing that alternative delivery strategies can largely reduce
the VMT per order based on the type of neighborhood.

Although these last two papers do not consider drones,
they impact our work because they underline the importance
of planning different delivery strategies depending on the
delivery scenario. They also suggest that distance is one of
the important parameters for evaluating a delivery system.

In our work, we focus on a delivery area called EM-grid
firstly introduced in [27] that is formed by two contiguous
areas, i.e., rural and urban. In the former area, the drone
connects two locations by following the unique line that
passes through them, while in the latter area, due to the tall
buildings and altitude constraints, the drone flies over the
roads. Simplifying, in the rural area, the drones’ movements
are modeled by the Euclidean metric, while in the urban
one by the Manhattan metric. In [27], the drone’s mission
consists of performing one delivery for each destination of
the grid. The authors envisioned the drone like the mailman
in days gone. That is, the authors expect that the drone will
drop off something every day in each house. In that scenario,
considering that the drone has to go back to the depot after
each delivery and has to serve all the points of the grid, the
problem is to find the location for the depot that minimizes
the sum of the traveled distances. The exact solution of the
problem with a delivery for each grid point is computed in
logarithmic time in the length of the side of the EM-grid [27].
In this paper, we make the more realistic assumption that only
an arbitrary number of customers in EM-grid grid, i.e., not
necessarily all the points of the grid are customers to be served,
must be served. We borrow this assumption from [32] where
a drone substitutes a shopping cart inside a warehouse.

In [19], authors consider the problem of delivering goods
using a drone when environmental factors are present,
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specifically the wind. They propose a framework based on
time-dependent cost graphs to model the problem considering
that a drone can serve a single customer before returning
to the warehouse. The delivery area map is modeled with a
weighted graph whose costs are time-dependent (i.e., the wind
can change affecting the energy consumption of the drone),
and fixed topology. To solve the problem, three approaches
are proposed, i.e., offline, online, and greedy online. The per-
formance is evaluated in terms of flight missions successfully
accomplished with a given battery energy budget. Differently
from this paper, not all the deliveries can be performed due to
the presence of the wind that can increase the drone’s energy
consumption. Therefore, differently from us, the objective is
to maximize the number of deliveries.

Focusing on computation time and exploiting the GPU
parallel computation, the work in [20] proposes a centralized
system for computing energy-efficient time-varying routes in
a multi-depot multi-drone delivery system. The authors devise
a centralized parallel algorithm that constantly updates the
drones’ delivery routes avoiding the whole recomputation
from scratch, becoming 4.5× faster than the state-of-the-
art algorithms. Like in our model, the pursued goal is to
minimize the total traveled distance, but the drones can only
fly according to the Euclidean metric.

Authors in [21] investigate the collaboration among a truck
and multiple drones in a last-mile package delivery scenario.
Each delivery has an energy cost associated, a reward based
on the priority of the delivery, and both launch and ren-
dezvous times with the truck. The work aims at finding the
optimal scheduling for the drones that maximizes the overall
reward, subject to the drone’s battery capacity while ensuring
that the same drone performs deliveries that do not overlap.
Results show that the presented problem is computationally
intractable, and therefore, different time-efficient heuristics are
proposed [33]. Differently from our work, not all the deliveries
can be performed due to the conflicts of deliveries. Moreover,
their objective function aims at maximizing the total reward
regardless of the total traveled distance.

III. PROBLEM DEFINITION

In this section, we first introduce the system model which
characterizes the delivery area and how the drone moves inside
it, and then we formally describe the problem to solve. The
aim of our work is to find the DP that minimizes the sum
of distances between the DP and all the customers to be
served by the drone. The DP is a location inside the delivery
area that depends on the set of customers. So, changing the
set of customers, the DP varies. We start by stating a few
assumptions.

A. Assumptions

To implement our solution, the drone has to work in
symbiosis with a mobile pod, located at the selected DP, that
stores all the packages to be delivered for that particular set
of customers. We neglect the transportation cost (additional
distance) for moving the mobile pod from the main depot
to the DP because such a cost is paid just once for any

Fig. 1. The EM-grid with R rows, C columns. Each cell identified by the
pair row and column, represents the “block” of a customer.

set of customers and does not affect the drone’s resources.
Such a cost is obviously “non-negligible” for the transportation
company, but in our proposed model it does not impact on the
drone. Namely, another vehicle like a truck is in charge of
moving the pod (with the drone) inside the city. So, since
the drone’s cost and the transportation cost are not really
comparable each other, we only took into account the drone’s
cost (i.e., the total flown distance to minimize).

The deliveries we deal with all have the same priority.
In fact, we believe that, currently, drone-based deliveries are
offered as a premium service. Our solution is not affected by
the order in which the deliveries are scheduled, so we imagine
that the transportation company simply applies a first-in-first-
out order to serve the requests assigned to the same drone.
In future works, as drone-based systems become widely used,
a prioritized delivery system could be studied to distinguish
among the customers. In any case, our solution can be adapted
for those subsets of deliveries with the same priority.

B. The System Model

The positions of the customers to be served lie inside a
Euclidean-Manhattan-Grid (EM-grid). This area is defined as
a 2-dimensional grid G = (R, C, K ) which consists of R
rows, C columns, and a column parameter K ∈ [1, C] (which
defines the Border B) that separates the Euclidean sub-grid E
(i.e., the rural area) from the Manhattan sub-grid M (i.e., the
urban area). Specifically, E = {1, . . . , R} × {1, . . . , K }, B =
{1, . . . , R}×{K } ⊆ E , and M = {1, . . . , R}×{K +1, . . . , C}.
The border B consists of the single column K .

Conventionally, the delivery area is only Euclidean if
K = C , and only Manhattan when K = 1. In an EM-grid,
any internal vertex u = (ru , cu) of G, i.e., with 1 < ru < R
and 1 < cu < C , is connected to the four adjacent vertices
(ru, cu ±1) and (ru ±1, cu); whereas, in general, any vertex of
the grid, i.e., with 1 ≤ ru ≤ R and 1 ≤ cu ≤ C , is connected
only to the existing adjacent vertices (i.e., an external vertex
has only three or two neighbors). For simplicity, we assume
that the distance between any two pairs of consecutive vertices
on the same row or column is constant and unitary. Figure 1
shows an example of EM-grid.

The drone follows either the Euclidean metric when it
moves inside the rural area, or the Manhattan metric when
it moves inside the urban area. In fact, for any two vertices u,
v in G, the distance d(u, v) is the length of the shortest path
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traversed by the drone in the EM-grid to go from u = (ru, cu)
to v = (rv , cv ). Recalling that the Euclidean and Manhattan
distances are defined, respectively, as:

dE (u, v) =
�

(ru − rv )2 + (cu − cv )2

dM(u, v) = |ru − rv | + |cu − cv |,
then, the distance d(u, v) for u, v ∈ G is given by:

d(u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dE (u, v) if u, v ∈ E

dM (u, v) if u, v ∈ (M ∪ B)

min
w∈B

{dE (u, w) + dM (w, v)} if u ∈ E, v ∈ M

d(v, u) if u ∈ M, v ∈ E

where d(u, v) = d(v, u) because both Euclidean and
Manhattan distances are symmetric.

By Lemma 1, the shortest path d(u, v) is unique and passes
through the vertex in row v on the border B .

Lemma 1 [27]: Consider an EM-Grid G = (R, C, K ).
Given u = (ru, cu) ∈ E and v = (rv , cv ) ∈ M, then
d(u, v) = dE (u, h) + dM (h, v) with h = (rv , K ).

Thus, from now on, d(u, v) is finally given by:

d(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE (u, v) if u, v ∈ E

dM (u, v) if u, v ∈ (M ∪ B)

dE (u, h) + dM (h, v) if u ∈ E, v ∈ M

h = (rv , K ) ∈ B

dM (u, h) + dE (h, v) if u ∈ M, v ∈ E

h = (ru , K ) ∈ B

(1)

C. The Problem Formulation

The basic task in a delivery area is to serve a subset of
customers with the help of a drone. Due to payload constraints,
the drone cannot serve all the customers on the same flight.
So, in a given EM-grid, a drone has to fly from the DP to
all the customers. A mission M = ∪m

i=1{ui
(tui )} for a drone

consists of m distinct customers (vertices of G), denoted as
ui , with i = 1, . . . , m, each with multiplicity tui ≥ 1. That
is, the customer ui has ordered tui different packages that the
drone has to separately deliver. The mission M consists of
overall n = �m

i=1 tui packages to be delivered. Let ME be
the subset of customers which reside in E , and MM the subset
of customers which reside in M . Clearly, M = ME ∪ MM .
Let nE = �

u∈ME
tu and nM = �

u∈MM
tu . Moreover, let

the cost function for the drone applied to M having set the
DP at u ∈ G be:

C(M, u) = 2
�
v∈M

tvd(v, u) (2)

that is, the cost function is the sum of the distances between
any item v ∈ M and the point u. Notice that the multiplicative
constant 2 considers the round trip for each delivery. To ease
the notation, we can write C(u) instead of C(M, u) because
M is assumed to be invariant. Our aim is to find the optimal
DP u∗ = (r∗, c∗) in G that minimizes the cost function:

u∗ = argmin
u∈G

C(u). (3)

We denote this problem as the Single Distribution Point
Problem (SDPP) because the goal is to find the single DP in
EM-grids. The SDPP considers only a single drone, however it
can be extended to a multi-drone case. Two possible scenarios
can be envisioned: 1) by using multiple pods each with a
single drone, or 2) by using a single pod with multiple drones.
In the first scenario, the pods create a partition of customers
and for each subset of customers our solution of SDPP is
applied to minimize the distance traversed by the drone. In the
second scenario, the customers must be partitioned among the
drones to balance the distance traversed by the drones and
simultaneously minimize the total (global) distance of all the
drones from the DP.

D. The Optimal OPT Algorithm

The brute-force algorithm OPT optimally solves SDPP.
It sequentially considers each vertex u ∈ G as candidate to
be the DP, and returns the point u∗ that minimizes Eq. (3).
Hence, since the grid G consists of R rows and C columns,
for a given mission M with n packages to deliver, the time
complexity for finding u∗ by performing an exhaustive search
is O(n RC).

The SDPP is strictly polynomial when applied to a fully
Manhattan grid. In that case, the coordinates of the DP are
just computed as the median of the x- and y-coordinates
of the n deliveries in O(n) time [34]. Very different is the
situation for the Euclidean case. In the literature, SDPP has
been studied for points distributed in the continuous Euclidean
space. In such a case, the DP is known as the geometric
median. In the special case of three points, the DP is known
as the Fermat point [35]. In general, no explicit formula,
nor an exact algorithm involving only arithmetic operations
and kth roots, can exist for an arbitrary set of points in the
Euclidean space [36]. So, only numerical or symbolic estima-
tion of the solution of this problem are possible. However,
it is possible to calculate an arbitrary good estimate of the
geometric median by using an iterative procedure where each
step produces a more accurate estimation. Similar procedures
can be performed because the function “sum of distances to the
delivery points” is a convex function. Therefore, procedures
that iteratively decrease the sum of distances cannot get
trapped in local optima. A common approach is relying on the
Weiszfeld’s algorithm [37]. This algorithm should in principle
also work for full Euclidean and EM-grids, because the sum
of the distances to the delivery points remains a convex
function. However, the solution is not guaranteed to belong
to a grid’s point. For this reason, we sacrifice the accuracy
of these solutions and prefer simpler and faster algorithms
to be computed whenever required for EM-grids of arbitrary
sizes.

Having that said, the optimal position of the DP can
be exactly computed for EM-grid grids by invoking OPT.
However, since both R and C can be exponentially large with
respect to the number of deliveries n, the time complexity
O(n RC) of OPT can be indeed exponential in the size of the
instance. Therefore, OPT is applied only as a touchstone to
evaluate the accuracy of the other proposed algorithms.
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Fig. 2. An EM-grid G = (6, 10, 4) with a = (2, 3), b = (4, 2), c = (4, 7),
d = (6, 10), and e = (3, 3). The u∗ is in red in position (3, 3). The dashed
lines that connect all the points with u∗ represent the paths of the drone.

Fig. 3. Heatmap of the example in Figure 2. The colors illustrate the value
C(u) for each u ∈ G . The best points are the ones with cold colors (blue),
while the worst ones are in hot colors (red).

Finally, observe that some of the new proposed algorithms
refer to the centroid, which is similarly defined to the geomet-
ric median, but minimizes the sum of the squared distances
to each point. For the centroid, differently from the geometric
median, a closed formula does exist, and for this reason
sometimes it is used to replace the geometric median [38].
It can be found as the average (x- and y-coordinates) of the
coordinates of the points.

So, in the next section we devise better time-efficient
approximation and heuristic algorithms for solving SDPP.

Figure 2 highlights an example of EM-grid which will be
used for describing all the presented algorithms in Section IV.
Let M = {a, b, c, d, e} be the set of customers to be served.
By running the optimal algorithm OPT that exhaustively tries
each vertex as solution, the DP that minimizes Eq. (3) is (3, 3).
When using the point u∗ = (3, 3), the total cost by computing
Eq. (2) for the drone is 2

�
v∈M d(v, u∗) = 2 + (2

√
2) +

(6 + 2
√

2) + (12 + 2
√

10) ≈ 31.98.
Finally, Figure 3 shows the importance of choosing a good

DP in the delivery area. Each square represents a vertex u ∈ G
whose color quantify the value C(u). From Figure 2, we know
that the optimal point is u∗ = (3, 3), and hence, according to
the adopted coloring, its square is the coldest one (i.e., blue).
It is worth nothing that, although the example is very small,
if we randomly select a DP (e.g., the top or bottom right
corners) the total cost is more than twice the optimal cost.
At the same time, for reasons of symmetry, there is a subset
of candidate points whose cost is very close to the optimal
cost. Note that the costs in Figure 3 are relative to the example
in Figure 2. Changing the customers’ positions, the heatmap
changes and thus the optimal and the other (possible) DPs.

We now focus on two special cases of SDPP when m = 2,
i.e., when there are only two customers. In general, finding
the optimal solution with an arbitrary number of customers is
not trivial. However, in the following scenario with only two
customers, we can reduce the number of possible candidate
DPs and hence determine the optimal solution.

Lemma 2: Given M = {u(tu), v(tv )}, then the DP u∗
belongs to the shortest path between u and v.

Proof: We select a vertex q ∈ G that does not belong to
the shortest path between u and v. W.l.o.g., let tu ≥ tv . Let p
be the vertex of the shortest path such that d(u, p) = d(u, q).
Then, the cost C(q) of setting the DP at q yields:

C(q) = tud(u, q) + tvd(q, v)

= tud(u, q) − tvd(u, q) + tvd(u, q) + tvd(q, v)

= (tu − tv )d(u, q) + tv (d(u, q) + d(q, v))

≥ (tu − tv )d(u, q) + tvd(u, v)

= (tu − tv )d(u, p) + tvd(u, v)

= tud(u, p) + tv (d(u, v) − d(u, p))

= tud(u, p) + tvd(p, v) = C(p)

So, any point q outside the shortest path increases the
cost. �

When the two delivery points have the same multiplicity,
not only the points of the shortest path are candidates, but all
of them optimize the cost. Specifically,

Lemma 3: Given M = {u(tu), v(tv )}, if tu = tv ≥ 1, then,
any point p along the shortest path between u and v can be
the DP.

Proof: When tu > tv , the best position of the DP is u, i.e.,
the vertex with the largest multiplicity. Namely, for any point
p 
= u along the shortest path between u and v, it yields:

C(p) = tud(u, p) + tvd(p, v)

= tud(u, p) + tvd(u, v) − tvd(u, p)

= tvd(u, v) + (tu − tv )d(u, p)

> tvd(u, v) = C(u)

�
These preliminary observations motivate our further inves-

tigation in the next section.

IV. PROPOSED ALGORITHMS

In this section, we propose the time-efficient algorithm,
called APX, that solves SDPP returning the best solution
among the solutions of four algorithms, each exploiting a
different peculiarity of the EM-grid. In particular, two algo-
rithms fix the DP pretending that the whole area is fully
Euclidean (GEC) or fully Manhattan (GMM). Then, two more
algorithms are given that force the DP to reside either in the
Euclidean area (ECMB) or in the Manhattan area (MMEB).
It is important to note that, differently from the OPT algorithm,
the new algorithms determine the DP just using the positions
of the customers and the knowledge of the border’s position in
EM-grid. The width of the Euclidean and Manhattan area as
well as the values R and C do not play any role in determining
the DP (except for MMEB).
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Fig. 4. A particular instance when invoking GEC.

A. The GEC Algorithm

The Global Euclidean Centroid (GEC) algorithm is a
heuristic that solves SDPP by pretending the EM-grid as a full
Euclidean grid, i.e., by selecting the centroid of the n customer
locations. To be more precise, given a mission M ∈ G, the
centroid uC is:

uC =
⎛
⎜⎝

�
u∈M

turu

n
,

�
u∈M

tucu

n

⎞
⎟⎠ . (4)

The GEC algorithm selects the centroid uC as the DP. Note
that since G is a discrete grid, we have to round each
individual coordinate of uC to the closest row and column, thus
introducing a further error. Moreover, according to Eq. (4), uC

can be computed in O(n) time.
Observation 1: A lower bound for the approximation ratio

of GEC is 2. Consider the configuration illustrated in Figure 4.
The two vertices u and v (that represent two customers)

on the same row have multiplicity k and n − k, respectively,
with k � n. It is easy to see that u∗ = v, while, by Eq. (4),
uC is closer to v than u. The cost of setting the DP at uC is
k

� n−k
n

�
d +(n −k)

� k
n

�
d = 2k

� n−k
n

�
d , while the optimal cost

of setting the DP at u∗ = uM is kd . For large values of n,
the ratio between this solution and the optimal solution tends
to 2. Note that, in this configuration we neglect the position
of the border K since GEC assumes the delivery area as a full
Euclidean area. Also, this illustration does not guarantee that
in general the upper bound for the approximation ratio is 2.
For this consideration, GEC is not an approximation algorithm.

If we perform the GEC algorithm on the example of
Figure 2, the average row among 2, 4, 4, 6, 3 is 3.8, while the
average column among 3, 2, 7, 10, 3 is 5. By rounding the
average row, we have that uC = (4, 5), which belongs to
the Euclidean area. In this case, the total cost is 35.30 and the
ratio 35.30

31.98 = 1.104, meaning that in this example, the cost of
GEC is 10% more than the optimal cost.

B. The ECMB Algorithm

The Euclidean Centroid by projecting M to B (ECMB)
algorithm solves SDPP by forcing the DP to reside in the
Euclidean area. Consider a mission M = ME ∪ MM . If the
DP is selected in the Euclidean side, to serve each destination
in the Manhattan area, the drone crosses the border B and then
flies horizontally up to the destination (see Eq. (1)). Overall,
the drone covers the distance H = �

u∈MM
(cu − K ) in M

for serving the customers MM . The DP is then selected as
the centroid of M� = ME ∪M�

M , where M�
M replaces each

original customer u = (ru, cu) in the Manhattan side with its
projection u� = (ru, K ) on the border B . Namely, one can see

that all the points in M� reside in E . Hence, as explained in
Section IV-A, a good DP is the vertex:

uĈ =
⎛
⎜⎝

�
u∈M

turu

nE + nM
,

�
u∈ME

tucu + �
u∈MM

tu K

nE + nM

⎞
⎟⎠ , (5)

where uĈ is the centroid of M�. The total cost is given by
H plus the sum of the distances traversed in E to move the
points in M� to uĈ . The point uĈ can be computed in O(n).

Notice that ECMB would not return the optimal point u∗
even if we know in advance that the optimal DP resides in the
Euclidean area since the centroid is not optimal for GEC, as
previously discussed in Observation 1.

Observation 2: The approximation ratio of the ECMB algo-
rithm in unbounded. In fact, consider Figure 4 and the value
of the border K . Since ECMB forces the DP in the Euclidean
area, if the border crosses the vertex v or it is to the right of
v, then the analysis is exactly the same as before because u
and v belong in E . However, the border can be also to the
left of v. If the border crosses the vertex u, ECMB returns u
because, after moving the MM on K , all the items are in u.
This solution has total cost d(n−k). Recalling that the optimal
solution has a cost of kd , the ratio would be n−k

k , and for large
values of n this ratio tends to n. Even worse is the situation
where the border is beyond u, on its left. Here, both u and v
have to move because they reside in M , but the optimal cost
is still kd , so the ratio can be arbitrarily large.

If we perform the ECMB algorithm on the example of
Figure 2, we have initially to project c and d to the border.
So, we would have to consider the projected points c� = (4, 4)
and d � = (6, 4). Then, the arithmetic mean of the rows 2, 4,
4, 6, 3 is 3.8 (as before in GEC), while the arithmetic mean
of the columns (considering the projected points) 3, 2, 4, 4, 3,
is 3.2. By rounding, we have that uĈ = (4, 3), which obviously
belongs to the Euclidean area. In this case, the total cost is
32.47 and the ratio 32.47

31.98 = 1.015, which is very close to the
best solution (only 1.5% more than the optimal cost).

C. The Approximation GMM Algorithm

The Global Manhattan Median (GMM) algorithm solves
SDPP by returning the median of all the points, pretending
the whole grid as a pure Manhattan grid, i.e., G(R, C, 1).
In the literature, for the Manhattan space the optimal DP is
called as the median [27], and it will be denoted as:

uM = (r̃M, c̃M) , (6)

where r̃M and c̃M are the median of the rows and the
columns, respectively, of the customers, up to multiplicities,
in M. We can use the median uM as the DP of an arbitrary
delivery area, regardless of the value of K .

The median uM can be efficiently computed [39] with time
complexity O(n). GMM guarantees an approximation ratio
of

√
2, which means that the point uM ensures that the total

drone’s cost is upper bounded by a factor of
√

2 of the optimal
cost returned by OPT. Specifically,

Theorem 1: The approximation ratio performing the GMM
algorithm is

√
2.



1282 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

Fig. 5. A particular instance when invoking GMM.

Proof: When the DP is set to the optimal point u∗, let
CM (u∗) and CE (u∗) be the total Manhattan and Euclidean cost
for the drone, respectively, for serving u∗. Since dE (u, v) ≤
dM (u, v), then C(uM) ≤ CM (uM ) and C(u∗) ≥ CE (u∗).
By the optimality of uM for a full Manhattan grid, one has
CM (uM ) ≤ CM (u∗). Recalling the Cauchy-Schwarz inequality,
that is, a + b ≤ √

2
√

a2 + b2, one has dE (u, v) ≤ dM (u, v) ≤√
2dE (u, v) and therefore:

C(uM)

C(u∗)
≤ CM (u∗)

CE (u∗)
≤ √

2.

�
Observation 3: There is an instance such that the approxi-

mation ratio performing GMM tends to
√

2. Suppose to have
a configuration like the one illustrated in Figure 5.

The three vertices u = (0, 0), v = (d, d), and z = (d, 0)
belong to the Euclidean part. Each of the two vertices u and
v have multiplicity n, while the third vertex has a single
multiplicity. For large values of n, the DP is attracted by the
straight line uv . In fact, if we had only u and v without the
point z, by Lemma 2, any point on uv would be optimal.
However, because of z, only the closest point to z on the line
uv , i.e.,

� d
2 , d

2

�
, is optimal. So, selecting u∗ = ( d

2 , d
2 ) as the

DP, it holds C(u∗) = d
2

√
2 + nd

√
2. Instead, GMM returns

uM = z for any value of n and C(z) = 2nd . Thus, for large

values of n, C(z)
C(u∗) → √

2.

If we perform the GMM algorithm on the example of
Figure 2, we have to individually consider the median of
rows and median of columns. The row median among the
sorted sequence 2, 3, 4, 4, 6 is 4, while the column median
among the sorted sequence 2, 3, 3, 7, 10, is 3. Hence, we have
that uM = (4, 3), which belongs to the Euclidean area. Note
that incidentally uĈ and uM coincide. Hence, the total cost is
32.47 and the ratio 32.47

31.98 = 1.015.

D. The MMEB Algorithm

The Manhattan Median by projecting E to B (MMEB) algo-
rithm solves SDPP by applying the same strategy as ECMB,
only replacing Euclidean with Manhattan. In other words,
MMEB forces the DP to reside in the Manhattan area. Given
a mission M = ME ∪ MM , to serve all the customers of
ME while forcing the DP to reside in the Manhattan side, the
drone must fly passing through a unique point of the border B

(see Eq. (1)). To visit all the Euclidean customers of ME from
the border B in position vi = (rvi , K ) (with 1 ≤ i ≤ R),
the drone travels the distance Dvi = �

u∈ME
dE (u, vi ). The

total Euclidean distance Dvi depends on the unique junction
position vi for connecting the customers of ME to the border.
Let M�

E (i) be the i th set ME where each original customer
u = (ru, cu) in the Euclidean side is replaced by its projection
u� = (rvi , K ) on the border, for 1 ≤ i ≤ R. One can see that
to serve the customers in M, the overall cost is Dvi , plus the
cost for serving the customers in M�(i) = M�

E (i) ∪ MM in
a pure Manhattan grid. Hence, the MMEB algorithm selects
as the DP location for the drone the vertex:

uM̂ = argmin
1≤i≤R

C
�
r̃M�(i), c̃M�(i)

�
, (7)

where uM̂ is the Manhattan median of M�(i), and r̃M�(i)
and c̃M�(i) are the median of the rows and the columns,
respectively, of the customers, up to multiplicities, in the i th

set M�(i). In Eq. (7), the value of c̃M�(i) is the same regardless
of the value of i , while r̃M�(i) changes accordingly. Note that,
uM̂ can be computed in O(n R).

If we perform MMEB on the example of Figure 2, we have
to sequentially project a, b, and c to the border, starting from
the first row. So, for each 1 ≤ i ≤ 6 we would have to
consider the projected points a� = b� = c� = (i, 4). Then,
we compute the median in the Manhattan grid (as before in
GMM) and compute the total cost. Eventually, we return the
best i that minimizes Eq. (7). In this example, we have that
uM̂ = (4, 4), which obviously belongs to the Manhattan area
(border). In this case, the total cost is 33.30 and the ratio
33.30
31.98 = 1.041.

Observation 4: The MMEB algorithm would return, more
efficiently, the global optimal solution for SDPP if it is known
that u∗ resides in the Manhattan grid, in just O(n R) time.
Namely, instead of testing all the positions of the Manhattan
grid (that are R(C − K )), MMEB considers only R distinct
positions on the border and, for each of them, it computes
the median of all the customers assuming the customers in E
(i.e., the subset ME ) projected on the border. By this obser-
vation, we can decrease the time complexity of the brute-force
optimal algorithm OPT to O(n RK + n R).

E. The Approximation APX Algorithm

All the presented algorithms have peculiarities that make
them suitable for particular settings. For instance, MMEB
works well when the delivery area is mostly Manhattan,
whereas ECMB works well when the area is mostly Euclidean.
Therefore, this suggests a new algorithm, that we call APX,
which selects as DP the best point u B among the four previous
ones, i.e.,

u B = argmin
�
C(uC), C(uĈ), C(uM ), C(uM̂ )

�
.

Theorem 2: The approximation ratio performing the APX
algorithm is

√
2.
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Fig. 6. Model framework of our proposed drone-based delivery system.

Proof: APX inherits the approximation ratio of
Theorem 1, and trivially:

C(u B)

C(u∗) ≤ C(uM )

C(u∗) ≤ CM (u∗)
CE (u∗) ≤ √

2.

�
For completeness, in the example of Figure 2, the APX

algorithm would compare the best DP among uC = (4, 5),
uĈ = (4, 3), uM = (4, 3), and uM̂ = (4, 4) whose costs are
35.30, 32.47, 32.47, and 33.30, respectively. So, the best DP
selected by APX is (4, 3).

F. Discussion About the Algorithms

In Section IV, we introduced several heuristic and approx-
imation algorithms that can deal with any EM-grid with
arbitrary size. First, the centroid-based algorithms GEC and
ECMB work well when the EM-grid is mainly Euclidean,
and therefore obtain bad results when the EM-grid is mainly
Manhattan. A symmetric trend is observed with the two
median-based algorithms GMM and MMEB, where they work
well when the EM-grid is mainly Manhattan (see Figures 7–8).
By definition GEC prefers fully Euclidean grids, while ECMB
obtains good results when the EM-grid is evenly balanced
(i.e., K = C

2 ). Like ECMB, MMEB prefers balanced scenarios
but its complexity is larger. Finally, GMM is in general the
best one in terms of performance and time complexity, but its
performance lacks when the EM-grid is evenly balanced.

To conclude, since our algorithms present advantages and
disadvantages that depend on the current layout and number
of deliveries, we devised the APX which returns the best
sub-optimal solution in reasonable time, by comparing the
aforementioned 4 solutions.

In Figure 6, we summarize the model framework concerning
our proposed drone-based delivery system. The initial gray
block refers to the pre-processing phase, not part of this work,
in which a hypothetical order or grouping for the deliveries,
is arranged. Next, is the EM-grid instantiation, based on
the deliveries distribution from which follows the Algorithm
Selection block. At this point, the presented algorithms are
evaluated, and the best one (i.e., APX) is used to compute the
drone’s trajectories. At the end of the process, the mobile pod
is deployed at the DP, and the drone performs the deliveries.

In Table I, we compare the presented algorithms evaluating
their time complexities and guaranteed approximation bounds.
Note that we have found two approximated solutions: GMM
and APX. The former has time complexity linear in the number
of the customers, while the latter has a time complexity that
depends also on the size of the EM-grid. As we will see,
although we can guarantee the same approximation ratio, the
performance of APX is always better than that of GMM.

TABLE I

COMPARISON BETWEEN THE ALGORITHMS

The time complexity of OPT depends on the size of the
EM-grid, and it provides the optimal solution. The centroid-
based solutions are very fast in terms of time complexity
(linear in n) but they do not guarantee any upper bound in
terms of accuracy of the solution. The other fast solution, i.e.,
GMM (median-based), has a time complexity again linear in n
and it guarantees an approximation bound. It is worthy to note
that, experimentally, we have observed that this upper bound
is never reached, and generally it is ≤1.05, much better than√

2 ≈ 1.4. The remaining median-based algorithm MMEB
has a larger time complexity compared with the previous
three solutions. Also, we could not provide any approximation
ratio for it. Finally, the APX algorithm that selects the DP of
minimum cost is very accurate in practice.

V. PERFORMANCE EVALUATION

In this section, we first numerically evaluate the goodness
of our algorithms in EM-grids by varying the number of rows
and columns, and the number of customers to be served. Then,
with the help of the open air simulator BlueSky, we compare
the cost of our best solution APX with the cost of a solution
that serves the costumers from a fixed DP that emulates the
depot’s position of a delivery company.

A. Settings and Parameters
We implemented our algorithms in Python language version

3.5, and run all the instances on an Intel i7-10genK computer
with 16 GB of RAM.

In order to evaluate our proposed algorithms for solving
SDPP, we set different layouts by varying R, C ∈ {50, 100}
and K ∈ {1, 1

4 C, 1
2 C, 3

4 C, C}. We uniformly generate n = |H |
random positions (in which multiplicities can occur) inside
the grid with n = {5, 10, 15, 20, 50, 100}, and then return
the average ratio (along with the standard deviation) on
33 different random instances. Moreover, given a setting with
n random points, we evaluate the algorithms when balancing
the quantities nE and nM with respect to a certain fraction
p = {0, 1

3 , 1
2 , 2

3 , 1} on n, such that nE = p · n and nM =
(1 − p) · n, with n = nE + nM .

We compare the algorithms with respect to OPT, and we

plot the ratio ρ = C(H,ũ)
C(H,u∗) ≥ 1, where ρ is the ratio between

the total cost for serving all the required customers assuming
ũ as DP returned by the tested algorithm, and the total cost
outputted by the optimal algorithm assuming u∗ as optimal
DP, where H ⊆ G.

B. Numerical Analysis
Figure 7 reports the numerical evaluation of all the presented

algorithms for solving SDPP with respect to the optimal
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Fig. 7. All the algorithms on different layouts when varying n.

algorithm OPT. In particular, we show the performance of the
algorithms when fixing a layout (R, C, K ) and varying the
number n of deliveries.

The first row of Figure 7 shows a squared layout, the second
row a layout with R > C , and the third row a layout with
R < C . Let us now focus on the first row. We initially
observe a symmetric behavior between the centroid-based and
the median-based algorithms. The centroid-based algorithms
such as GEC and ECMB work well when the Euclidean side
is the largest, i.e., K tends to C , while the median-based
algorithms such as MMEB and GMM get a better performance
when the Manhattan side is the largest, i.e., for smaller values
of K . In general, when the number of deliveries n to be served
is small, the algorithms present very variable results and hence
the standard deviation is pretty large. This means that when
n is small, it is easy to have instances for which the same
algorithm can either work well or very poorly. Nevertheless,
APX obtains a good and stable performance regardless of the
values of n and K .

The best algorithm is APX whose average ratio is around
1.01, well below the guaranteed upper bound of

√
2 ≈ 1.41.

For almost Manhattan grids, as expected, the worst performing
algorithm is GEC, especially when n is large. For almost
Euclidean grids, the worst performing algorithm is MMEB,
which is worse than GMM. Concerning the second row of
Figure 7, when R > C , all the algorithms obtain a good
performance in the case of K = C

2 . In principle, on this layout
the algorithms behave almost the same as in the previous
case with R = C = 50, but with much better performance.
It is also interesting to note that in the opposite layout with
R < C (third row of Figure 7), the algorithms get a bad
performance with respect to OPT. This bad trend can be seen

Fig. 8. All the algorithms on different layouts when varying p.

especially with GMM, which has a counter-intuitive behavior.
The poor performance when there are more columns than rows
is justified by the fact that the impact of the border is higher,
and there is a quite large difference between the centroid-based
and the median-based algorithms. Indeed, with a small n the
performance of GMM is good, but when n starts to increase, its
performance degrades immediately. This is accentuated when
the grid is almost Euclidean (K = 75).

Figure 8 compares the performance of the algorithms when
fixing a layout G = (R, C, C

2 ) and varying the quantity p
of deliveries to each side of the EM-grid. As before, the first
row depicts the squared layout, while the second and the third
rows show the two different rectangular layouts. On each plot
we fixed the value of the border K as C

2 , i.e., we zoom in the
central column of Figure 7. In the first column of Figure 8,
a third of the deliveries are on the Euclidean area, i.e., p = 1

3 ,
in the second column the deliveries are equally halved to each
sub-area, i.e., p = 1

2 , and finally in the third column a third
of the deliveries are on the Manhattan area, i.e., p = 2

3 .
In general, the performance are more variable than those

already seen in Figure 7, so here we have a different scale on
the y-axis for ρ up to 1.2. On these plots, ECMB performs
poorly, especially for small values of p. This is due to the fact
that ECMB forces the DP in the Euclidean area, and having
two thirds of the deliveries in the Manhattan area, the total cost
for the drone blows up accordingly. It is interesting to see how
all the algorithms decently perform when the n deliveries are
equally distributed on both the areas. In these cases, the best
algorithms are GMM and, obviously, APX. As expected, the
centroid-based algorithms work well when most of the points
belong to the Euclidean grid, and the median-based ones work
well when most of the points belong to the Manhattan grid.
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Fig. 9. A screenshot of the drone simulator BlueSky.

In the next section we move towards a much realistic
environment, evaluating the performance of APX by using an
open air simulator.

C. Simulation Results
For evaluating our algorithms on a simulated environment,

in this work we rely on BlueSky. BlueSky is an open Air
Traffic Simulator (ATS), and is meant as a tool to perform
research on Air Traffic Management and Air Traffic Flows.
It is distributed under the GNU General Public License v3.
The goal of BlueSky is to provide a free tool in order to visu-
alize, analyze, or simulate air traffic without any restrictions,
licenses, or limitations [40]. Although BlueSky is an open air
simulator, in this work we simply refer to it as drone simulator.
A screenshot is shown in Figure 9.

In the simulated environment, we set R = C = 50 and
K = {12, 25, 37} which represent a grid with a third, a half,
and two thirds of Euclidean columns, respectively. Overall,
we fix a reasonable number of deliveries n = 50. Moreover,
we set the speed of the drone to 10 m/s and its altitude 100 m
above the ground. Finally, we set the unitary distance between
two grid points as to 100 m, so the whole area is 5 × 5 km2.
In the simulations, we evaluate the total drone’s covered
distance and elapsed time for accomplishing all the deliveries.
Namely, the focus of our research is to minimize the mission’s
cost by selecting a single starting point from which all the
deliveries are served. In order to expedite the simulations,
we virtually set a drone for each individual delivery, and then
we run in parallel all the flights and sum all the distance and
time values.

We also compare our solution, that uses an ad-hoc DP
for the current set of deliveries, with the solution that uses
a fixed predefined DP, independent of the current deliveries.
A fixed DP simply models a fixed warehouse built in a specific
location which is the standard (current) solution for a delivery
company. As already said, a DP that varies with the given
set of deliveries, instead, implies to have a truck that moves
the mobile pod at a certain position of the grid. The (non
fixed) DP, that depends on the set of deliveries, introduces the
additional cost of moving the pod, paid just once for all the
deliveries of the same set. At the moment, we neglect such a
cost because our goal is to see if it is advantageous to use the
ad-hoc DP over the fixed one in terms of distance covered and
time spent by the drone to serve the given set of deliveries.
For this reason, we compare the cost of the DP returned by
the best algorithm APX presented in this work with OPT, and
with the following three fixed points:

• uE (denoted as FIXE) is the center of the Euclidean area,
i.e., uE = (� R

2 �, � K
2 �);

• u B (denoted as FIXB) is the center of the border, i.e.,
u B = (� R

2 �, K );

Fig. 10. Results by using BlueSky simulator comparing the distance and
time with respect to the optimal one.

Fig. 11. Results by using BlueSky simulator evaluating the distribution
(distance and time) of all the deliveries.

• uM (denoted as FIXM) is the center of the Manhattan
area, i.e., uM = (� R

2 �, �C+K
2 �).

In this section, in addition to the distance covered by the
drone which was evaluated with the analytic experiments in
Section V, we also evaluate the time spent by the drone
during the missions. First, Figure 10 illustrates the qualitative
assessment of our new solution by plotting the ratio between
the distance (and time) cost of APX, and the distance cost (and
time) of the fixed points FIXB, FIXB, and FIXM with respect
to that of OPT. Then, Figure 11 gives the absolute distance
and time values to quantitatively assess our new solution.

Figure 10 plots in the y-axis the ratio ρD = C(H,ũ)
C(H,u∗) ≥ 1

(on the left) and the ratio ρT = T (H,ũ)
T (H,u∗) ≥ 1 (on the right)

where T represents the time required for performing all the
round trips from the DP to the customers. Basically, on the
33 random simulated scenarios with BlueSky, APX and OPT
almost always coincide on both distance and time. The ratio
is thus very close (slightly better) to that of the analytic
experiments in Figure 7 (first row, n = 50). Hence, fixed
the source, destination, and intermediate points, in absence of
external agents (e.g., wind1), the drones are routed in BlueSky
along straight lines, without deviations and noises, as we
assumed in Section V-B. The differences between ρD and ρT

are pretty negligible. As one can now evaluate in Figure 11, the
time obeys the physical law, that is, it is equal to the distance
divided by the speed. Hence, without external wind, the drones
in BlueSky constantly move at the specified speed. Although
this aspect was not so obvious at the beginning when we
started to consider this simulator, it is quite important because

1BlueSky allows to set a global wind speed and direction parameter when
simulating the missions, influencing so the flight of drones.
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we can now reasonably assume that not only the distance but
also the time can be analytically estimated.

The main aim of Figure 10 is to evaluate the performance
of the mobile DPs versus that of the fixed DPs. As expected,
when K is small FIXM is preferable because the Manhattan
side dominates in EM-grid, and when K is large FIXE is
preferable because the Euclidean side dominates in EM-grid.
In both cases, FIXB is in between. When K = C

2 , the
worst result occurs when applying FIXE or FIXM (middle
of Euclidean or Manhattan grid, respectively) whose DPs are
uE = (25, 12) and uM = (25, 37), respectively, while the
other fixed point FIXB with u B = (25, 25) (middle of border)
gets a quite good performance, just a bit worse than the
optimal. This is reasonably expected since uE and uM are
specular each other with respect to the border that halves the
EM-grid, and both are equidistant from the border. The point
u B is closer to the optimal point u∗ than the other two points,
and therefore the cost when applying FIXE or FIXM is larger.

Finally, in Figure 11 we plot the simulated results in a
much more thorough manner. In these plots, we make use
of box plots [41] which report the minimum, the first quartile,
the median, the third quartile, and the maximum. Also the
mean is reported as the diamond. In particular, in the first
plot we highlight the total covered distance by the drone
(kilometers, km), while in the second plot we show the
total makespan of the drone for performing all the deliveries
(minutes, min).

We initially observe that the optimal solution OPT
requires approximately 210–230 km as total distance flown
for 50 deliveries. Therefore, each delivery requires an average
of 4.2–4.6 km for a complete round trip to/from the DP.
Obviously, the total covered distance increases when the value
of K decreases due to the fact that the drone has to connect
more intermediate points provided by the Manhattan metric.
Concerning APX, its performance almost matches the one of
OPT on these random instances. It is interesting to note that
the mean and the median coincide for APX and OPT.

The three static points show the same behavior as before
(see Figure 10), i.e., FIXE is better when K is large, while
FIXM is better when K is small. Moreover, note that the mean
of FIXE is smaller than its median when K = 12. Similarly,
the mean of FIXM is larger than its median when K = 37.
The span of values of FIXE is larger than that of FIXM. The
worst performance can be observed for FIXE when K = 12 in
which the drone has to fly for almost 350 km (7 km for a
single delivery). The overall duration of the mission is about
600 min, i.e., about 10 hours (12 min for a single delivery).
With respect to the worst case, the length of the missions in
APX save up to 100 km and 150 min. Finally, in OPT and APX
the drone flies for approximately 350 min (7 min for a single
delivery), thus halving the delivery time with respect to the
worst scenario. As expected, the missions in OPT are shorter
when the Euclidean side dominates in EM-grid, and longer
when the Manhattan side dominates in EM-grid. The OPT and
APX missions saves from a minimum of 10 to a maximum of
150 km, and from 10 to 150 min with respect to the fixed DPs.
In conclusion, FIXM (respectively, FIXE) has a reasonable
performance if it is applied when the Euclidean side is small
(respectively, large), while its performance is very poor if it is

applied when the Euclidean side is large (respectively, small).
That is, the behavior of FIXM and FIXE strongly depends on
which side dominates in EM-grid. Therefore, both FIXM and
FIXE can perform very poorly depending on the distribution
of customers among both the sides. So, when the width of the
Manhattan and Euclidean sides is not defined a priori, APX
substantially outperforms all the other algorithms.

VI. CONCLUSION

In this work, we considered a drone which is in charge
of delivering small packages to customers in a delivery area,
modeled as an EM-grid. We proposed an optimal as well
as approximation and heuristic algorithms for computing the
DP that solves SDPP. Although we can guarantee the same
approximation ratio for the two approximation algorithms, the
performance of APX is always better than that of GMM.
By using the BlueSky simulator, we compare our best solution
APX with fixed DPs, selected as a function of the size RC
of the EM-grid. Our solution saves from a minimum of
10 to a maximum of 100 km of traveled distance, and from
10 to 150 min of elapsed time with respect to the fixed DPs.

As a future work, we intend to extend our solution to multi-
ple drones. This requires to partition the customers among the
drones, and then apply our proposed solutions to each parti-
tion. We plan to further investigate the symbiotic cooperation
between a truck, pods, and drones, by setting different DPs for
subsets of customers, and then use a truck that sequentially
visits each of these. Other possible extensions would include
a hierarchy of customers with different priorities, so that the
drones have to serve first the users with higher priority, and
then the regular ones. Our solution will apply for subsets of
customers with the same priority.
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