
OpenPLC: An Open Source Alternative to Automation

Thiago Rodrigues Alves, Mario Buratto, Flavio Mauricio de Souza, Thelma Virginia Rodrigues
Departamento de Engenharia Eletrônica e de Telecomunicações

PUC Minas
Belo Horizonte, Brazil

thiagoralves@gmail.com

Abstract
Companies are always looking for ways to increase

production. The elevated consumerism pushes factories to
produce more in less time. Industry automation came as the
solution to increase quality, production and decrease costs.
Since the early 70s, PLC (Programmable Logic Controller)
has dominated industrial automation by replacing the relay
logic circuits. However, due to its high costs, there are many
places in the world where automation is still inaccessible.
This paper describes the creation of a low-cost open source
PLC, comparable to those already used in industry
automation, with a modular and simplified architecture and
expansion capabilities. Our goal with this project is to create
the first fully functional standardized open source PLC. We
believe that, with enough help from the open source
community, it will become a low cost solution to speed up
development and industrial production in less developed
countries.

Keywords—PLC; OpenPLC; Automation; MODBUS; Open
source

I. INTRODUCTION

In early 60s, industrial automation was usually composed
of electromechanical parts like relays, cam timers and drum
sequencers. They were interconnected in electrical circuits to
perform the logical control of a machine. To change a
machine logic was to make an intervention on its electrical
circuit, which was a long and complicated process.

In 1968, the Hydra-Matic of General Motors requested
proposals for an electronic replacement for hard-wired relay
systems. The winning proposal came from Bedford
Associates with their 084 project. The 084 was a digital
controller made to be tolerant to plant floor conditions, and
was latter known as a Programmable Logic Controller, or
simply PLC [1].

Within a few years, the PLC started to spread all over the
automotive industry, replacing relay logic machines as an
easier and cheaper solution, and becoming a standard for
industrial automation.

There is a strict relation between automation and
development. In less developed countries, the greatest barriers
are knowledge and cost. Industrial controllers are still very
expensive. Companies don’t provide detailed information
about how these controllers work internally as they are all
closed source.

The OpenPLC was created to break these two barriers, as
it is fully open source and open hardware. It means that
anyone can have access to all project files and information for
free. This kind of project helps spread technology and
knowledge to places that need the most. Also, the OpenPLC

is made with inexpensive components to lower its costs,
opening doors to automation where it wasn’t ever possible
before.

II. THE PLC ARCHITECTURE

The PLC, being a digital controller, shares common terms
with typical PCs, like CPU, memory, bus and expansion. But
there are two aspects of the PLC that differentiate them from
standard computers. The first one is that its hardware must be
sturdy enough to survive a rugged industrial atmosphere. The
second is that its software must be real time.

A. Hardware

With the exception of “Brick PLCs” that are not modular,
the hardware of a usual PLC can be divided into five basic
components:

 Rack

 Power Supply

 CPU [Central Processing Unit]

 Inputs

 Outputs

Like a human spine, the rack has a backplane at the rear
allowing communication between every PLC module. The
power supply plugs into the rack providing a regulated DC
power to the system.

The CPU is probably the most important module of a
PLC. It is responsible for processing the information received
from input modules and, according to the programmed logic,
send impulses to the output modules. The CPU holds its
program on a permanent storage, and uses volatile memory to
perform operations. The logic stored in CPU’s memory is
continuously processed in an infinite loop. The time needed to
complete a cycle of the infinite loop is called scan time. A
faster CPU can achieve shorter scan time.

Input modules are used to read signals of sensors installed
at the field. There are many types of input modules,
depending on the sensor to be read, but they can generally be
split into two categories: analog and digital.

Digital input modules can handle discrete signals,
generated by devices that are either on or off. Analog input
modules convert a physical quantity to a digital number that
can be processed by the CPU. This process of conversion is
usually made by an ADC [Analog to Digital Converter] inside
the analog input module. The type of the physical quantity to
be read determines the type of the analog input module. For
example, depending on the sensor, the physical value can be
expressed in voltage, current, resistance or capacitance.

Similarly to the input modules, output modules can
control devices installed at the field. Digital output modules

978-1-4799-7193-0/14/$31.00 ©2014 IEEE 585 IEEE 2014 Global Humanitarian Technology Conference

can control devices as if on-off switches. Analog output
modules can send different values of voltage or current to
control position, power, pressure or any other physical
parameter.

As the most significant feature of a PLC is robustness,
each module must be designed with protections such as short
circuit, over current and over voltage protections. It is also
important to include filter against RF noise.

B. Software

PCs, by design, are made to handle different tasks at the
same time. However, they have difficulty handling real time
events. To have an effective control, PLCs must be real time.
A good definition of real time is “any information processing
activity or system which has to respond to externally
generated input stimuli within a finite and specified period”
[2]. Real time systems don’t necessarily mean to be fast. They
just need to give an answer before the specified period known
as deadline. Systems without real time facilities cannot
guarantee a response within any timeframe. The deadline of a
PLC is its scan time, so that all responses must be given
before or at the moment scan reaches the end of the loop.

There are many accepted languages to program a PLC, but
the most widely used is called ladder logic, which follows the
IEC 61131-3 standard [3]. Ladder logic (see Fig. 1) was
originally created to document the design and construction of
relay logic circuits. The name came from the observation that
these diagrams resemble ladders, with two vertical bars
representing rails and many horizontal rungs between them.
These electrical schematics evolved into a programming
language right after the creation of the PLC, allowing
technicians and electrical engineers to develop software
without additional training to learn a computer language, such
as C, BASIC or FORTRAN.

Fig. 1. Example of a ladder logic diagram

Every rung in the ladder logic represents a rule to the
program. When implemented with relays and other
electromechanical devices, all the rules execute
simultaneously. However, when the diagram is implemented
in software using a PLC, every rung is processed sequentially
in a continuous loop (scan). The scan is composed of three
phases: 1) reading inputs, 2) processing ladder rungs, 3)

activating outputs. To achieve the effect of simultaneous and
immediate execution, outputs are all toggled at the same time
at the end of the scan cycle.

III. THE OPENPLC HARDWARE ARCHITECTURE

The OpenPLC (see Fig. 2) was created based on the
architecture of actual PLCs on the market. It is a modular
system, with expansion capabilities, an RS-485 bus for
communication between modules and hardware protections.

To create the first OpenPLC prototype, four boards were
built:

 Bus Board

 CPU Card

 Input Card

 Output Card

Fig. 2. The OpenPLC Prototype

A. Bus Board

The bus board acts like a rack, with an integrated 5VDC
power supply. Each module connects to the bus board through
a DB-25 connector. The communication between modules is
made over an RS-485 bus, whose lines are on the bus board.
Caution was taken, while routing the RS-485 lines, to avoid
communication problems. Fig. 3 shows the pins and
connections of each slot of the bus board. The 24V and RS-
485 ground was separated from the rest of the circuit ground
to isolate short circuits on these lines.

To allow more current to flow through the power lines,
the respective pins were duplicated. Three pins were used for
physical address, so that the module connected on a particular
slot would know its physical position on the bus board. These
pins were called D0, D1 and D2, being hardcoded with logic
1 or 0 in a binary sequence, creating different numbers from 0
to 7, one number for each slot.

Fig. 3. Bus Board DB-25 connections

B. CPU Card

The OpenPLC’s brain is the CPU card. It was important to
use a processor that was inexpensive, fast enough to handle
all PLC operations, and most importantly, actively supported
by the open source community. After some research, the
processor selected was the AVR ATmega2560. This
microcontroller is a “high-performance, low-power Atmel 8-
bit AVR RISC-based microcontroller that combines 256KB
ISP flash memory, 8KB SRAM, 4KB EEPROM, 86 general
purpose I/O lines, 32 general purpose working registers, real
time counter, six flexible timer/counters with compare modes,
PWM, 4 USARTs, byte oriented 2-wire serial interface, 16-
channel 10-bit A/D converter, and a JTAG interface for on-
chip debugging. The device achieves a throughput of 16
MIPS at 16 MHz and operates between 4.5-5.5 volts” [4].

The biggest reason for this choice was that the
ATmega2560 is used on the Arduino family [5], a large open
source community for rapid electronic prototyping, with an
advanced programming language called Wiring. By using this
processor we made the OpenPLC compatible with Arduino
code, including hundreds of libraries written for it.

The CPU card also includes another important IC
(Integrated Circuit), the Wiznet W5100, responsible for
Ethernet communication. The Wiznet W5100 supports
hardwired TCP/IP Protocols like TCP, UDP, ICMP, IPv4
ARP, IGMP, PPPoE and Ethernet 10BaseT/100BaseTX, has
16KB of internal memory for Tx/Rx buffers and accepts
serial (over SPI) or parallel interface. This is also the Arduino
Ethernet Shield official IC, enabling us to reuse all the code
written for it on the OpenPLC.

In order to communicate with the PC and download
programs, the OpenPLC uses an USB port. The FT232RL
from FTDI Devices converts Serial Rx/Tx lines to USB
standard. The Arduino Mega bootloader is used to upload
code to the CPU over the USB circuit.

C. Input Card

The Input card is a digital input module for the OpenPLC.
To process the digital inputs read by the conditioning signal
circuit and send them to the CPU card, the input card uses the
AVR ATmega328P, a microcontroller with the same core of
the CPU card. This made the reutilization of parts of code

written for the CPU card, especially code related to
communication over the RS-485 bus possible.

The input signal conditioning circuit is composed mainly
by an optocoupler, used to isolate the input signals and the
control signals. The circuit of each input can be seen on Fig.
4.

When a stimulus is made between E1+ and E1-, a current
flow through the input resistor and activates the internal LED
of the optocoupler. The photons emitted by the internal LED
are sensed by the phototransistor, which creates a path for the
current from 5VCD to ground, sending logic 0 to inverter’s
input. As the inverter must invert the logic signal, a logic 1 is
received by the microcontroller, indicating that a digital
stimulus was made at the input.

The input card has 8 isolated input circuits, so that each
module can read up to 8 digital signals at the same time. The
state of each input is sent to the CPU card, over the RS-485
bus, to be processed according to the ladder logic.

Fig. 4. Isolated input circuit from the Input Card

D. Output Card

Each Output card has 8 relay-based outputs driving up to
8 loads at the same time. It has double isolated outputs, as
they are isolated by an optocoupler (just like the Input card)
and the relay itself, which gives an additional layer of
isolation. Fig. 5 shows the circuit of one isolated output from
the Output card.

As digital processors are better sinking current than
sourcing, the cathode of the optocoupler’s internal LED is
connected to an output pin on the ATmega328P. While the
output pin remains with logic 1, no current flows through the
LED. If the output pin goes to logic 0, a current is drawn on
that pin, activating the optocoupler’s internal LED. The
internal phototransistor is connected to an external BC817
transistor in a Darlington configuration to increase gain.
When photons are sensed by the internal phototransistor, both
transistors are polarized, energizing the relay’s coil. Without
photons, there isn’t any current flowing through the coil, and
the relay remains off.

Fig. 5. Isolated output circuit from the Output Card

E. Protections

 There are five types of protections used in the OpenPLC
circuit:

 Current limiting protection with PPTC [Polymeric
Positive Temperature Coefficient]

 Over-voltage protection with TVS [Transient Voltage
Suppression diode]

 Ground isolation

 Reverse polarity protection

 Noise filters

Every input and output (including the power input at the
Bus board) has protection against over-voltage and short
circuit. These protections are achieved by using a PPTC in
series with the circuit input and a TVS diode in parallel.

When a high current flows through the PPTC, it reaches a
high resistance with a low holding current, protecting the
circuit in series. When the current is removed, it cycles back
to a conductive state, enabling the circuit to work properly.

Optocouplers and relays were used to isolate high power
circuits from control logic. The filled zones were connected to
ground and only the low power zones of the board were filled.
To isolate the communication and 24V grounds from the
filled zone, zero ohm resistors were used.

To protect against reverse polarity on inputs, diodes were
connected in series to allow current flow in only one
direction. Also, capacitors were used in parallel to ground to
filter noise from sensitive devices.

IV. THE OPENPLC SOFTWARE ARCHITECTURE

What differentiates a PLC from any other robust digital
controller is its ability to be programmed in some
standardized languages. According to [3], the IEC 61131-3
standard defines five languages on which PLCs can be
programmed:

 FBD [Function Block Diagram]

 Ladder Diagram

 Structured Text

 Instruction List

 SFC [Sequential Function Chart]

The most widely used language in PLC is the Ladder
Diagram. PLCs from different manufacturers might not have
all the five programming languages available, but they
certainly have the Ladder Diagram as one of the options.

For this reason, it was important to develop a software
that was able to compile a ladder diagram into a code that
could be understood by the CPU of the OpenPLC. The
solution was partially based on LDmicro [6], an open source
ladder editor, simulator and compiler for 8-bit
microcontrollers. It generates native code for Atmel AVR and
Microchip PIC16 CPUs from a ladder diagram.

Unfortunately, the OpenPLC CPU uses the ATmega2560,
which is not supported by the original LDmicro software.
Also, the generated code contains only the ladder logic
converted to assembly instructions. The OpenPLC has many
other functions to perform, such as communication over

Ethernet for MODBUS-TCP supervisory systems, RS-485
and USB, individual modules control, error messages
generation and so on.

For this reason, it was necessary to create an intermediate
step before the final compilation in which the ladder diagram
had to be combined with the OpenPLC firmware. Doing so,
the final program would contain both the ladder logic and the
OpenPLC functions. One of the outputs generated by the
LDmicro for the Ladder Diagram was ANSI C code. So,
instead of having machine code for a specific processor, an
ANSI C code that could be compiled for any platform was
generated. The only thing that had to be provided using this
method was a C header to link the generated ANSI C
functions and the target system.

The OpenPLC Ladder Editor (Fig. 6) was created to fulfill
these tasks. Basically, the OpenPLC Ladder Editor is a
modified version of the LDmicro, with reduced instructions
(processor-specific instructions had to be removed), no
support to direct compiling (it only generates ANSI C code)
and a tool that can automatically link the generated ANSI C
code with the OpenPLC firmware, compile everything using
AVR GCC and upload the compiled software to the
OpenPLC.

The compiler tool is called every time the “compile”
button is clicked. While the code for the LDmicro was created
using C++, the compilation tool was created using C# .net, a
very robust and modern language.

The final result is a binary program uploaded to the
OpenPLC CPU, containing both the ladder logic and the
functions of the OpenPLC firmware.

Fig. 6. OpenPLC Ladder Editor software running on a PC

A. MODBUS Communication

MODBUS is an industry standard protocol for automation
devices. Although, the message format is maintained, there
are some variations of this protocol depending on the physical
interface it will be used on. As the OpenPLC has Ethernet
over TCP-IP, it was implemented support for the MODBUS-
TCP protocol. Only the most used functions of the protocol
were implemented, as shown next:

 FC01 - Read Coil Status

 FC02 - Read Input Status

 FC03 - Read Holding Registers

 FC05 - Force Single Coil

 FC15 - Force Multiple Coils

B. Boards Communication

To become a modular system, each module of the
OpenPLC must have a way to communicate with the CPU.
The RS-485 bus is the physical protocol through which
messages are sent. But it was necessary to create a protocol
on the application layer, to standardize the messages sent and
received.

The protocol created was called OPLC Protocol. It is a
simple protocol that encapsulates each message sent or
received with information about destination, size of the
message and function to be executed.

TABLE I. OPLC PROTOCOL HEADER

Start Size Function Address Data

1 Byte 1 Byte 1 Byte 1 Byte n Bytes

Every message starts with a start byte, which is always
0x7E. The receiver will only process the message after
receiving the start byte. The size field must contain the size
(in bytes) of the Data field only. The function field is related
to the data field. It means that what the receiver will do with
the data received depends on the function. Five functions
were implemented for the OPLC Protocol:

 0x01 – Ask for the card type

 0x02 – Change card logical address

 0x03 – Read discrete inputs

 0x04 – Set discrete outputs

 0x05 – error message

The address field may have the logic or the physical
address of the card, according to the function requested. For
example, the functions 0x01 and 0x02 are addressed to the
physical address, because they are related to low level
commands, such as get card information or change the logical
address.

V. RESULTS

To evaluate the OpenPLC as a real PLC, a benchmark had
to be made comparing it with another controller. This was
achieved using a model of a five floor building with an
elevator originally controlled by a Siemens S7-200 PLC.

Modifications were made to the model enabling it to
interchange PLCs easily for the tests. The elevator is moved
by a DC motor attached to it. There are limit switches on

every floor to indicate elevator's position. Also, limit switches
were installed at the top and bottom of the building to prevent
the elevator to move over the permitted range. Lights
indicators on every floor were used to visually indicate when
the elevator stops at the respective floor. Five push buttons
were used to call the elevator to the desired floor.

The ladder diagram for this task was already written for
the Siemens PLC using the Siemens Step 7 platform. It used
13 digital inputs and 10 digital outputs to fully control the
model. The diagram was printed and the exactly same
diagram was written for the OpenPLC using the same logic
blocks, see Figure 10. The OpenPLC Ladder Editor was used
to compile, simulate and upload the diagram to the OpenPLC.

During tests, a bug on the ladder diagram was found. If
the user held the push button related to the floor on which the
elevator was located while pushing another button to send it
to another floor, the system hung with an infinite loop. As
expected, the OpenPLC behaved exactly the same way as the
Siemens PLC, presenting the same bug. After correcting the
ladder on both controllers, each one operated flawlessly. The
response of diverse stimulus on each PLC was identical on
every tested situation.

VI. CONCLUSION

The open source community is growing stronger every
day. There are many projects, from software to hardware with
contributions from people all around the world. Creating an
open source industrial controller from scratch is a very bold
task. But thanks to the support of the open source community
like the Arduino and LDmicro it was possible to create a
prototype of a functional PLC comparable with a standardized
industry controller. During tests, the OpenPLC behaved
exactly the same way as other controllers, given the same
input impulses. The MODBUS-TCP communication was
tested using SCADA software from different vendors. It was
possible to read inputs and outputs and force outputs as it
would be on any other PLC.

Our next big step is to use our OpenPLC in a field
application, evaluating its robustness, versatility and ease of
use for the user.

REFERENCES
[1] P.E. Moody and R.E. Morley, “How Manufacturing Will

Work in the Year 2020”, Simon and Schuster.
[2] R. Oshana and M. Kraeling, “Software Engineering for

Embedded Systems: Methods, Practical Techniques, and
Applications”, 1st ed. Newnes, 2013 pp.12-20.

[3] K.H. John and M. Tiegelkamp, “IEC 61131-3:
Programming Industrial Automation Systems,” 2nd ed.
Springer, 2010 pp.147-168.

[4] Atmel Corporation, “ATmega2560,” Atmel.com. 2014.
8 Jul. 2014.
http://www.atmel.com/devices/atmega2560.aspx.

[5] Arduino, “Arduino MEGA ADK,” arduino.cc. 2014. 8
Jul. 2014.
http://arduino.cc/en/Main/ArduinoBoardMegaADK.

[6] J. Westhues, “Ladder Logic for PIC and AVR,” cq.cx.
2014. 8 Jul. 2014. http://cq.cx/ladder.pl.

