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Abstract—Differential privacy is becoming a gold standard
notion of privacy; it offers a guaranteed bound on loss of
privacy due to release of query results, even under worst-case
assumptions. The theory of differential privacy is an active
research area, and there are now differentially private algorithms
for a wide range of problems.

However, the question of when differential privacy works in
practice has received relatively little attention. In particular, there
is still no rigorous method for choosing the key parameter ε ,
which controls the crucial tradeoff between the strength of the
privacy guarantee and the accuracy of the published results.

In this paper, we examine the role of these parameters in
concrete applications, identifying the key considerations that
must be addressed when choosing specific values. This choice
requires balancing the interests of two parties with conflicting
objectives: the data analyst, who wishes to learn something
abou the data, and the prospective participant, who must decide
whether to allow their data to be included in the analysis. We
propose a simple model that expresses this balance as formulas
over a handful of parameters, and we use our model to choose
ε on a series of simple statistical studies. We also explore a
surprising insight: in some circumstances, a differentially private
study can be more accurate than a non-private study for the
same cost, under our model. Finally, we discuss the simplifying
assumptions in our model and outline a research agenda for
possible refinements.

Index Terms—Privacy

I. INTRODUCTION

Protecting privacy is hard: experience has repeatedly shown

that when owners of sensitive datasets release derived data,

they often reveal more information than intended. Even careful

efforts to protect privacy often prove inadequate—a notable

example is the Netflix prize competition, which released movie

ratings from subscribers. Although the data was carefully

anonymized, Narayanan and Shmatikov were later able to “de-

anonymize” some of the private records [21].

Privacy breaches often occur when the owner of the dataset

uses an incorrect threat model—e.g., they make wrong as-

sumptions about the knowledge available to attackers. In the

case of Netflix, Narayanan and Shmatikov had access to auxil-

iary data in the form of a public, unanonymized data set (from

IMDB) that contained similar ratings. Such errors are difficult

to prevent without reasoning about arbitrary information that

could be (or become) available to an attacker.

One way through this dilemma is to make sure that every

computation on sensitive data satisfies differential privacy [8],

a very strong guarantee: if an individual’s data is used in

a differentially private computation, the probability of any

given result changes by at most a factor of eε compared

to if the individual’s data is not used in the computation,

where ε is a parameter controlling the tradeoff between privacy

and accuracy. Differential privacy impresses by the long list

of assumptions it does not require: it is not necessary to

know what information an attacker has, whether attackers are

colluding, or what the attackers are looking for in particular.

But there is one question that users of differential privacy

cannot avoid: how to choose the privacy parameter ε . It

is the central parameter controlling strength of the privacy

guarantee, and hence the number of queries that can be

answered privately as well as the achievable accuracy. But

ε is also a rather abstract quantity, and it is not clear how

to choose an appropriate value in a given situation. This is

evident in the literature, where algorithms have been evaluated

with ε ranging from as little as 0.01 to as much as 7, often

with no explanation or justification. A similar concern applies

to the parameter δ in (ε,δ )-differential privacy, a standard

generalization of differential privacy [7].

In this paper, we take a step towards a more principled

approach by examining the impact of ε and δ on the different

actors in a differentially private study: the data analyst, and

the prospective participants who contribute private data. We

propose a simple model that can be used to calculate a range of

acceptable values of ε and δ , based on a few parameters of the

study. Our model assumes that the participants are rational and

will choose to contribute their data if their expected benefits

(i.e., monetary compensation) from the study outweigh the

risks (i.e., the bad events that may befall them as a result of

their private data being exposed).

To demonstrate our model, we use it to choose ε in a series

of case studies. We start by presenting the different parameters

of our model, in the simplest situation where the analyst is

interested in the result of only one query. Then, we consider

a more realistic setting where the analyst wants to answer

thousands of queries. Next, we show how our model can

incorporate constraints specific to a particular study. Finally,

we apply our model to a more accurate study under (ε,δ )-
differential privacy. Throughout these examples, we vary the

input parameters to our model through four scenarios—a

clinical study of smokers, a study of educational data, a study

of movie ratings, and a social network study—and show how

the conclusions of our model change.

We also find that—perhaps counterintuitively—a study

with strong differential privacy guarantees can sometimes be

cheaper or (given a fixed budget) more accurate than an

equivalent study without any privacy protections: while a

differentially private study requires considerably more par-

ticipants to account for the additional noise, it substantially
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reduces the risks of each participant and thus lowers the

compensation that rational participants should demand.
Our model provides a principled way to choose reasonable

values for ε and δ based on parameters with more immediate

connections to the real world. For many applications of

differential privacy, this level of guidance may already prove

useful. However, as is often the case, our model relies on

some simplifying assumptions; for instance, we assume that

participants fear some specific bad events when participating

in the study, and that they can estimate their expected cost

from these events even when they do not participate in the

study. Some applications may require a more detailed model,

and we consider possible refinements.
Our main contributions are: (1) a principled approach to

choosing the privacy parameter ε for differentially private data

analysis (Section IV); and (2) three case studies: a simple

one-query study, a more sophisticated study answering many

queries (Section V), and a study with external constraints

(Section VII-C); and (3) an extension of our model to (ε,δ )-
differential privacy (Section VIII). As an application of our

model, we consider when a differentially private study can

be cheaper than a non-private study (Section VI). We discuss

possible extensions of our model in Section IX, and review

related work in Section X.

II. BACKGROUND: DIFFERENTIAL PRIVACY

Before describing our model, let us briefly review the core

definitions of ε-differential privacy. (We defer the generaliza-

tion of (ε,δ )-differential privacy to Section VIII.)
Differential privacy [8] is a quantitative notion of privacy

that bounds how much a single individual’s private data can

contribute to a public output. The standard setting involves

a database of private information and a mechanism that

calculates an output given the database. More formally, a

database D is a multiset of records belonging to some data
universe X , where a record corresponds to one individual’s

private data. We say that two databases are neighbors if they

are the same size and identical except for a single record.1

A mechanism M is a randomized function that takes the

database as input and outputs an element of the range R.

Definition 1 ([8]). Given ε ≥ 0, a mechanism M is ε-

differentially private if, for any two neighboring databases D
and D′ and for any subset S⊆R of outputs,

Pr[M (D) ∈ S] ≤ eε ·Pr[M (D′) ∈ S]. (1)

Note that S in this definition is any subset of the mech-

anism’s range. In particular, when S is a singleton set {s},
the definition states that the probability of outputting s on a

database D is at most eε times the probability of outputting s
on any neighboring database D′.

For an intuitive reading of Definition 1, let x be an individual

in database D, and let D′ contain the same data as D except

1The original definition of differential privacy [8] is slightly different: it
says that neighboring databases are identical, except one has an additional
record. We use our modified definition since we will assume the database
size is public, in which case neighboring databases will have the same size.

Pr

f (·)

c

Fig. 1: Probability distributions of the Laplace mechanism for

a c-sensitive function on two neighboring databases.

with x’s data replaced by default data. Then, the differential

privacy guarantee states that the probability of any output of

mechanism M is within an eε multiplicative factor whether

or not x’s private data is included in the input. Hence, the

parameter ε controls how much the distribution of outputs

can depend on data from the individual x.

The definition also implies a lower bound: swapping D and

D′ yields eε ·Pr[M (D) ∈ S]≥ Pr[M (D′) ∈ S], or

Pr[M (D) ∈ S] ≥ e−ε ·Pr[M (D′) ∈ S]. (2)

That is, the probability of an output in S on a database D
is at least e−ε times the probability of an output in S on a

neighboring database D′.2

A. The Laplace mechanism

The canonical example of a differentially private mechanism

is the Laplace mechanism.

Theorem 2 ([8]). Suppose ε,c > 0. A function g that maps
databases to real numbers is c-sensitive if |g(D)−g(D′)| ≤ c
for all neighboring D,D′. For such a function, the Laplace

mechanism is defined by Lc,ε(D) = g(D) + ν , where ν is
drawn from the Laplace distribution Lap(c/ε), that is, with
probability density function

F(ν) =
ε
2c

exp

(−ε|ν |
c

)
.

This mechanism is ε-differentially private.

The scale c/ε of the Laplace distribution controls its spread:

the distribution is wider for more sensitive functions (larger

c) or stronger privacy guarantees (smaller ε), giving a higher

probability of adding more noise.

For example, suppose that we have a database D of med-

ical information and we wish to compute the proportion of

smokers in a differentially private way. If the database has

N records, define g(D) = #(smokers in D)/N. Notice that,

on any two neighboring databases, this proportion changes

by at most 1/N, since the numerator changes by at most 1

if a single record is altered. Thus, L(D) = g(D)+ ν , where

ν ∼ Lap(1/Nε) is an ε-differentially private mechanism.

Differential privacy has many key benefits, like worst-

case adversary assumptions and closure under composition

and post-processing. We will take these features for granted;

2For example, if Pr[M (D) ∈ S] = 0 for some D and S, then Pr[M (D′) ∈
S] = 0 for all databases D′—if some outputs are impossible on one input
database, they must be impossible on all inputs.
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they have been well-explored in the literature. (We refer the

interested reader to the survey by Dwork [6].) Instead, let us

take a closer look at the central parameter in the definition: ε .

III. INTERPRETING ε
A natural interpretation of differential privacy is in terms of

bad events. For concreteness, let the mechanism be a scientific

study, and suppose the individual has a choice to contribute

data. Let E be a set of (real-world) events such that, if the

output of the mechanism is fixed, an individual’s participation

has no effect on the probabilities of events in E (we will make

this more precise below). Note that probabilities of events in

E may still depend on the output of the mechanism. Roughly,

E can be thought of as the set of privacy violation events.

To connect the outputs of the mechanism to the real-world

events in E , we imagine two runs of the mechanism: one with

x’s real data and one with dummy data, holding the other

records fixed in both runs. Let xp be the event “x participates,”

xnp be the event “x does not participate,” and R be the output

of the mechanism (a random variable). For any event e ∈ E ,

the probability of event e if x participates in the study is

Pr[e | xp] = ∑
r∈R

Pr[e | xp,R = r] ·Pr[R = r | xp].

We say that events cannot observe x’s participation if all the

differences between the two trials are due to differences in the

output: if the output is the same in both trials, the probability

of events in E should be the same. That is, the first probability

under the summation is the same assuming event xp or xnp.

By differential privacy (Equation (1)), the second probabil-

ity is bounded by eε times the probability of output r if x does

not participate:

∑r∈R Pr[e | xp,R = r] ·Pr[R = r | xp]
= ∑r∈R Pr[e | xnp,R = r] ·Pr[R = r | xp]
≤ eε ·∑r∈R Pr[e | xnp,R = r] ·Pr[R = r | xnp] = eε ·Pr[e | xnp],

where the first equality holds since events in E cannot observe

x’s participation. In particular, if e is a bad event in E , the

probability of e increases by at most a factor eε when the

individual participates compared to when the individual does

not participate. Hence, the interpretation of privacy in terms

of bad events: under differential privacy, events in E will not

be much more likely if an individual participates.

Since differential privacy bounds the multiplicative change

in probabilities, the probability of a likely event may change

significantly in absolute terms. Thus, the differential privacy

guarantee is stronger for events that are very unlikely to

happen if the individual does not participate. This is arguably

true of most unpleasant events concerning private data: for

instance, there is low probability that an individual’s entire

genome is released if they do not participate in a genetic study.

A. Introducing cost

Of course, not all bad events are equally harmful. To model

this fact, we can assign a cost to each event. Specifically,

suppose the potential participant has a non-negative event cost
function fE on the space of events E . Let R again be the

output of mechanism M, and define the associated output cost
function f on the space of outputs R by

f (r) = Ee∈E [ fE (e) | R = r].

Note that

Ee∈E [ fE (e) | xp] = Er∈R [ f (r) | xp],

and similarly with xnp instead of xp, so bounds on the expected

value of f carry over to bounds on the expected value of fE .

Thus, the individual need not reason about the set of outputs

R and the output cost function f directly; they can reason just

about costs of real-world events, represented by fE .

Using the differential privacy guarantee, we can bound the

expected cost of participating in the study:3

e−ε
E

r∈R
[ f (r) | xnp] ≤ E

r∈R
[ f (r) | xp] ≤ eε

E
r∈R

[ f (r) | xnp] (3)

In other words, the expected cost of x participating in a study

is within an eε factor of the expected cost of declining.

Note that E and the cost function f have a large impact on

the expected cost: for instance, if E contains bad events that

will not actually be affected by the output of the mechanism,

such as the event that an asteroid impact destroys civilization,

the participant’s perceived increase in expected cost may be

prohibitively (and unjustifiably) large.

In general, the question of what events a differentially pri-

vate study may be responsible for (i.e., what events should be

in E ) is not a purely technical question, and could conceivably

be handled by the legal system—just as laws describe who

is liable for bad events, perhaps laws should also describe

which events a private mechanism is liable for. Accordingly,

our model does not specify precisely which events to put in

E , as long as they do not depend directly on the individual’s

participation. For our examples, we will consider events that

can directly result from running a private mechanism.

B. The challenge of setting ε
So far, we have considered what ε means for the participant:

higher values of ε lead to increases in expected cost. As

we will soon see, there is another important consideration:

ε controls how much noise is needed to protect privacy, so it

has a direct impact on accuracy.

This is the central tension—abstractly, ε is a knob that

trades off between privacy and utility. However, most prior

work (we discuss some exceptions in Section X) focuses

on how the knob works rather than how it should be set.

High-level discussions about setting ε tend to offer fairly

generic guidance, for example reasoning that a e0.1∼ 1.1 factor

increase in the probability of a bad event that is already very

3For one direction,

E
r∈R

[ f (r) | xp] = ∑
r∈R

Pr[R = r | xp] · f (r)

≤ ∑
r∈R

eε Pr[R = r | xnp] · f (r) = eε · E
r∈R

[ f (r) | xnp].

Note that the inequality requires f (r) ≥ 0. The other direction is similar,
appealing to Equation (2).

400



improbable is a minor concern, so 0.1 is a sensible value for

ε . On the other hand, experimental evaluations of differential

privacy, where a concrete choice of ε is required, often just

pick a value (ranging from 0.01 [25] to 7 [19]) with little

justification.

In a sense, the difficulty of choosing ε is a hidden conse-

quence of a key strength of differential privacy: its extreme

simplicity. That is, ε is difficult to think about precisely

because it rolls up into a single parameter a fairly complex

scenario involving at least two parties with opposing interests

(the analyst and the participants), as well as considerations

like compensating individuals for their risk.

Our goal in this paper is to unpack this complexity and offer

a more ramified model with more intuitive parameters.

IV. A TWO-PARTY MODEL

We propose a simple model for choosing ε , involving two

rational parties: a data analyst and an individual considering

whether to participate in the analyst’s study.

A. The analyst’s view

The analyst’s goal is to conduct a study by running a

private mechanism, in order to learn (and publish) some useful

facts. The analyst’s main concern is the accuracy AM of the

mechanism’s result, with respect to some benchmark.

One natural benchmark is the “true answer” for the non-

differentially-private version of the study, which we call the

sample statistic. Compared to this standard, the error in a

private study is due entirely to noise added to preserve privacy.

This error is determined partly by ε , but also can depend on

N, the number of records in the analyst’s database: if a larger

number of records leads to less privacy loss to any individual,

less noise is needed to protect privacy.4

Another possible benchmark is the true answer on the entire

population, which we call the population statistic. This is the

natural benchmark when we want to infer properties of the

population, given only a random sample of individual data

(here, the database). For this benchmark, an additional source

of error is sampling error: the degree to which the sample is

not perfectly representative of the population. This error tends

to decrease as N increases: larger samples (databases) are more

representative. This error is not due to differential privacy and

so is independent of ε .

Since these errors typically decrease as N increases, the

analyst would conduct huge studies were it not for a second

constraint: budget. Each individual in the study needs to be

compensated for their participation, so the analyst can’t afford

studies of infinite size. The analyst model describes these two

conflicting constraints.

Definition 3. The analyst runs a private mechanism M pa-
rameterized by ε and N. The mechanism comes with a real-
valued accuracy function AM (ε,N), where smaller values of

4For example, if the Laplace mechanism is used to release an average value,
the sensitivity of the underlying function depends on N: as N increases, the
sensitivity decreases, so less noise is required to achieve a given level of
privacy.

AM (ε,N) correspond to more accurate results. (We will omit
the subscript when the mechanism is clear.) The analyst wants
a target accuracy α , and so requires that AM (ε,N) ≤ α .
Finally, the analyst has a budget B to spend on the study.

Depending on what the analyst is trying to learn, he may

be able to tolerate a lower or higher total error. In general,

the analyst may have a utility function that quantifies how

bad a specific amount of error is. Though our model can be

extended to handle this situation, for simplicity we assume

that the analyst cannot tolerate inaccuracy beyond the target

level and is otherwise equally happy.

B. The individual’s view

We next consider the individuals who might want to con-

tribute their information to a database in exchange for pay-

ment. Study participants may want compensation for various

reasons; for example, they may want a flat compensation

just for their time. Even though our model can be easily

extended to handle per-participant costs, for simplicity we do

not consider this cost. Instead, we focus on the compensation

most relevant to privacy: participants may face personal harm

if their data is revealed, so they are willing to join the study

only if they are adequately compensated for the risk they take.

A simple way to model the individual’s risk is via a cost

function f , as described in Section II.

We suppose the individual is offered a choice between

participating in a study and declining, but the study will

always take place. Our model does not say whether to run the

study or not—are the study’s potential discoveries worth the

potential (non-privacy-related) harm to individuals?5 Instead,

we assume that some authority has decided that the study will

take place, and the individual only gets to decide whether to

participate or not. Thus, the individual participates only if they

are compensated for their marginal increase in expected cost.

From the interpretation of differential privacy in terms of

bad events (Section III), an individual’s expected cost should

increase by at most an eε factor if she decides to participate in

a study. There is one detail we need to attend to: our previous

calculation of the marginal increase in cost depends on the

probability of each possible output of the mechanism. This

probability should be interpreted as taken over not only the

randomness in the mechanism, but also over the uncertainty

of an individual about the rest of the database.

To make this point clearer, we separate these two sources of

randomness in the calculation of the marginal increase in cost

for a specific individual x. Let D be the set of all possible

databases of size N, and let E be x’s expected cost if she

decides not to participate. Unpacking,

E = E[ f (M (D))] = ∑
s∈R,D∗∈D

Pr[D = D∗,s = M (D)] · f (s)

= ∑
D∗∈D

Pr[D = D∗] · ∑
s∈R

Pr[s = M (D) | D = D∗] · f (s),

5Indeed, the difference in harm between running a study and not running
the study may be very large: for instance, running a study may discover that
smoking causes lung cancer, increasing insurance costs for all smokers.
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where Pr[D=D∗] encodes an individual’s belief about the con-

tents of the entire database, and by extension an individual’s

belief about the output of the mechanism run on the entire

database. E represents an upper bound on the individuals’

beliefs about how much the study will cost them if they do not
participate in the study. For example, a study might discover

that people in a certain town are likely to have cancer—this

knowledge could harm all the residents of the town, not just

the participants. Similarly, if C is the individual’s expected cost

if they do participate and y is any record in D (representing a

default or dummy record),

C = E[ f (M (D∪ x\ y))]

= ∑
s∈R,D∗∈D

Pr[D = D∗,s = M (D∪ x\ y)] · f (s)

= ∑
D∗∈D

Pr[D = D∗] · ∑
s∈R

Pr[s = M (D∪ x\ y) | D = D∗] · f (s).

But the inner summation is the individual’s expected cost when

the rest of the database is known to be D∗. By Equation (3),

we bound the increase of cost C if x participates (for any y):

∑s∈R Pr[s = M (D∪ x\ y) | D = D∗] · f (s)

≤ eε ∑s∈R Pr[s = M (D) | D = D∗] · f (s).

Repacking the expressions for E and C, we get C ≤ eε E.

Hence the individual’s marginal cost of participation C−E
satisfies C−E ≤ eε E−E = (eε −1)E.

Now, we are ready to define a model for the individual.

Definition 4. The individuals are offered a chance to par-
ticipate in a study with a set level of ε for some payment.
Each individual considers a space of real-world events that,
conditioned on the output of the study and the database size,
are independent of their participation.

Each individual also has a non-negative cost function on
this space, which gives rise to a non-negative cost function
f on the space of outputs of the mechanism, and base cost

E[ f (R)], where R is the random output of the mechanism
without the individual’s data. Let E be an upper bound on
the individual’s base costs. The individual participates only
if they are compensated for the worst-case increase in their
expected cost by participating: (eε −1)E.

Note the requirement on the space of bad events: we

condition on the output of the mechanism, as well as the

size of the database. Intuitively, this is because the size of

the database is usually published. While such information

may sometimes be private, it is hard to imagine conducting

a study without anyone knowing how many people are in it—

for one thing, the size controls the budget for a study. By

this conditioning, we require that an adversary cannot infer an

individual’s participation even if he knows both the database

size and the output of the mechanism.

C. Combining the two views

To integrate the two views, we assume that the analyst

directly compensates the participants. Supposing that the an-

alyst has total budget B, since N individuals need to be paid

(eε −1)E each, we have the following budget constraint:6

(eε −1)EN ≤ B (4)

This constraint, combined with the analyst’s accuracy con-

straint AM(ε,N)≤ α , determines the feasible values of N and

ε . In general, there may be no feasible values: in this case,

the mechanism cannot meet the requirements of the study. On

the other hand, there may be multiple feasible values. These

trade off between the analyst’s priorities and the individual’s

priorities: larger values of ε and smaller values of N make the

study smaller and more accurate, while smaller values of ε and

larger values of N give a stronger guarantee to the individuals.

In any case, feasible values of N and ε will give a study that is

under budget, achieves the target accuracy, and compensates

each individual adequately for their risk.

Note that the payments depend on the particular study only

through the E parameter—different studies require different

data, which may lead to different base costs—and the ε
parameter, which controls the privacy guarantee; other internal

details about the study do not play a role in this model. By

using differential privacy as an abstraction, the model auto-

matically covers differentially private mechanisms in many

settings: offline, interactive, distributed, centralized, and more.

Further, the model can be applied whether the analyst has

benevolent intentions (like conducting a study) or malicious

ones (like violating someone’s privacy). Since differential

privacy does not make this distinction, neither does our model.

D. Deriving the cost E

While the expected cost of not participating in a study may

seem like a simple idea, there is more to it than meets the

eye. For instance, the cost may depend on what the individuals

believe about the outcome of the study, as well as what bad

events individuals are worried about. The cost could even

depend on prior private studies an individual has participated

in—the more studies, the higher the base cost.

Since individuals have potentially different beliefs about this

cost, the analyst must be sure to offer enough payment to

cover each individual’s expected cost. Otherwise, there could

be sampling bias: individuals with high cost could decline

to participate in the study. While the analyst would like to

offer each individual just enough compensation to incentivize

them to participate, this amount may depend on private data.

Thus, we model the analyst as paying each individual the same

amount, based on some maximum expected cost E.

Even if this maximum expected cost is difficult to perfectly

calculate in practice, it can be estimated in various ways:

reasoning about specific bad events and their costs, conducting

surveys, etc. While there has been work on using auctions

to discover costs related to privacy [11], [18], [2], [5], [24],

6Since we do not consider compensating participants for their time (though
our model can be extended to cover this case), the “budget” should be thought
of as the cost needed to cover privacy-related harm, part of a potentially larger
budget needed to conduct the study.
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estimating this cost in a principled way is an area of current

research. Therefore, we will not pick a single value of E for

our examples; rather, we show how different values of E affect

our conclusions by considering estimates for a few scenarios.

Remark 5. Our goal in the following sections is to demon-
strate how our model works in a simple setting. Hence, we will
consider studies with rather simplistic statistical analyses. As
a result, the number of participants (and costs) required to
achieve the accuracy may seem unreasonably high. There is a
vast literature on sophisticated study design; more advanced
methods (such as those underlying real medical studies) can
achieve better accuracy at more modest cost.

V. A SIMPLE STUDY

In this section, we will show how to apply our model to a

simple study that answers some queries about the database.

A. A basic example: estimating the mean

Suppose we are the analyst, and we want to run a study

estimating the proportion of individuals in the general popu-

lation with some property P; we say this target proportion μ
is the population mean. We also have a measure of accuracy

A(ε,N) (which we define below), a target accuracy level α
and a fixed budget provided by the funding agency.

First, we specify our study. For any given N and ε , we will

recruit N subjects to form a private database DN . We model

the participants as being chosen independently and uniformly

at random, and we consider the database DN as a random

variable. (We sometimes call the database the sample.) We

then calculate the proportion of participants with property P
(the sample mean)—call it g(DN). Since g is a 1/N-sensitive

function, we release it using the ε-private Laplace mechanism

by adding noise ν(ε,N) drawn from Lap(1/Nε) to g(DN).

Now, we need to specify the accuracy function A(ε,N) of

this study. In general, there are several choices of what A can

measure. In this example we will fix the desired error T , and

we say the mechanism fails if it exceeds the error guarantee

T . More precisely, the failure probability p is

p := Pr[ |g(DN)+ν(ε,N)−μ| ≥ T ].

As analysts, our goal is to ensure that p is at most some given

level α (i.e., α measures how confident we are).

While it would be natural to define A(ε,N) as precisely this

failure probability (and requiring A(ε,N)≤ α), the analysis is

simpler if we define A(ε,N) to be an upper bound on the

failure probability. Then, A(ε,N)≤ α is a sufficient condition

on the true failure probability p being bounded by α .

There are two sources of error for our mechanism: from the

sample mean deviating from the population mean (|g(DN)−
μ|), and from the Laplace noise added to protect privacy

(|ν(ε,N)|). Let us bound the first source of error.

Theorem 6 (Chernoff Bound). Suppose {Xi} is a set of N
independent, identically distributed 0/1 random variables with

mean μ and sample mean Y = 1
N ∑Xi. For T ∈ [0,1],

Pr[ |Y −μ| ≥ T ] ≤ 2exp

(−NT 2

3μ

)
.

Assuming that our sample DN is drawn independently from

the population, we can model each individual as a random

variable Xi which is 1 with probability μ , and 0 otherwise.

Then, the Chernoff bound is a bound on the probability of

the sample mean g(DN) deviating from the true proportion μ
that we are interested in. Note that the sample must be free of

sampling bias for this to hold—inferring population statistics

from a non-representative sample will skew the estimates.

This is why we must compensate participants so that they

are incentivized to participate, regardless of their private data.

Similarly, we use the following result to bound the second

source of error, from adding Laplace noise.

Lemma 7 (Tail bound on Laplace distribution). Let ν be
drawn from Lap(ρ). Then,

Pr[ |ν | ≥ T ] ≤ exp

(
−T

ρ

)
.

Now, since the total error of the mechanism is the difference

between the sample mean and the population mean plus the

Laplace noise, if the output of the Laplace mechanism deviates

from the population mean by at least T , then either the sample

mean deviates by at least T/2, or the Laplace noise added is

of magnitude at least T/2. Therefore, we can bound the failure

probability p by

Pr[ |g(DN)−μ| ≥ T/2]+Pr[ |ν | ≥ T/2].

Consider the first term. Since μ ≤ 1, the Chernoff bound gives

Pr[ |g(DN)−μ| ≥ T/2] ≤ 2e−NT 2/12μ ≤ 2e−NT 2/12.

The tail bound on the Laplace distribution gives

Pr[ |ν(ε,N)| ≥ T/2] ≤ exp

(
−T Nε

2

)
,

since we added noise with scale ρ = 1/εN. Therefore, given

a target accuracy α , an upper bound on the failure probability

p is

p≤ A(ε,N) := 2exp

(
−NT 2

12

)
+ exp

(
−T Nε

2

)
, (5)

the accuracy constraint A(ε,N)≤ α suffices to guarantee that

p≤ α as desired.

For the budget side of the problem, we need to compensate

each individual by (eε − 1)E, according to our individual

model. If our budget is B, the budget constraint is Equation (4):

(eε −1)EN ≤ B.
Our goal is to find ε and N that satisfy this budget constraint,

as well as the accuracy constraint Equation (5). While it is

possible to use a numerical solver to find a solution, here

we derive a closed-form solution. Eliminating ε and N from

these constraints is difficult, so we find a sufficient condition

on feasibility instead. First, for large enough ε , the sampling
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error dominates the error introduced by the Laplace noise. That

is, for ε ≥ T/6,

exp

(
−T Nε

2

)
≤ exp

(
−NT 2

12

)
,

so it suffices to satisfy this system instead:

3exp

(−NT 2

12

)
≤ α and (eε −1)EN ≤ B. (6)

Figure 2 gives a pictorial representation of the constraints in

Equation (6). For a fixed accuracy α , the blue curve (marked

α) contains values of ε,N that achieve error α . The blue

shaded region (above the α curve) shows points that are

feasible for that accuracy—there, ε,N give accuracy better

than α . The red curve (marked B) and red shaded region

(below the B curve) show the same thing for a fixed budget B.

The intersection of the two regions (the purple area) contains

values of ε,N that satisfy both the accuracy constraint, and

the budget constraint. Figure 3 shows the equality curves for

Equation (6) at different fixed values of α and B.

Solving the constraints for N, we need

N ≥ 12

T 2
ln

3

α
. (7)

Taking equality gives the loosest condition on ε , when the

second constraint becomes

ε ≤ ln

(
1+

BT 2

12E ln 3
α

)
.

Thus, combining with the lower bound on ε , if we have

T
6
≤ ε ≤ ln

(
1+

BT 2

12E ln 3
α

)
, (8)

then the study can be done at accuracy α , budget B. Since

we have assumed ε ≥ T/6, this condition is sufficient but not

necessary for feasibility. That is, to deem a study infeasible,

we need to check that the original accuracy constraint (Equa-

tion (5)) and budget constraint (Equation (4)) have no solution.

For a concrete instance, suppose we want to estimate the

true proportion with ±0.05 accuracy (5% additive error), so

we take T = 0.05. We want this accuracy except with at most

α = 0.05 probability, so that we are 95% confident of our

result. If Equation (8) holds, then we can set ε = T/6= 0.0083

and N at equality in Equation (7), for N ≈ 20000.

For the budget constraint, let the budget be B = 3.0×104.

If we now solve Equation (8) for the base cost E, we find that

the study is feasible for E ≤ E f eas ≈ 182. This condition also

implies a bound on an individual’s cost increase, which we

have seen is (eε −1)E. To decide whether a study is feasible,

let us now now estimate the cost E and compare it to E f eas
in various scenarios.

B. Analyzing the costs scenarios

We consider participant costs for four cost scenarios; these

will be our running examples for the remainder of the paper.

ε

N

B

α

Fig. 2: Feasible ε,N, for accuracy α and budget B.

ε

N

B1

B2

α2

α1

Fig. 3: Constant accuracy curves for α1 < α2, constant budget

curves for B1 < B2

Smoking habits. The data comes from smokers who fear

their health insurance company will find out that they smoke

and raise their premiums. The average health insurance pre-

mium difference per year between smokers and nonsmokers

is $1,274 [20]. Thus, some participants fear a price increase

of $1,274.7 Since we pay the same amount to everyone,

smoker or not, we base our estimate of the base cost on

the smokers’ concerns. To estimate the base cost E, we first

estimate the probability that the insurance company concludes

that an individual smokes, even if they do not participate in

the study. This is possible: perhaps people see her smoking

outside.

So, suppose the participants think there is a moderate, 20%

chance that the insurance company concludes that they are

smokers, even if they do not participate. Thus, we can estimate

the base cost by E = 0.20 ·1274 = 254.8—this is the cost the

participants expect, even if they do not participate. Since this is

far more than E f eas ≈ 182, the study may not be feasible. To

check, we plug the exact accuracy constraint (Equation (5))

and budget constraint (Equation (4)) into a numeric solver,

which reports that the system has no solution for ε,N. Thus,

we conclude that the study not feasible.

7Note that this covers the cost for just one year. Throughout our scenarios,
we focus on immediate, concrete costs, rather than projecting out costs far
into the future.

404



Perhaps this is not so surprising: since smoking is often done

in public, it may not be considered truly private information—

indeed, the probability of the bad event if the individual did

not participate was already fairly large (we estimated 20%).

For more typical privacy scenarios, this may not be the case.

Educational data. The data consists of students’ educational

records, including courses taken and grades. Suppose indi-

viduals fear their record of classes and grades are published,

perhaps causing them to be fired and forced to switch to a job

with lower pay. The mean starting salary of college graduates

in the United States is $45,000 [1]; let us suppose that they

face a pay cut of 30% ($12,500) if their records become public.

If the individual does not participate in the study, it is still

possible that an employer uncovers this data: perhaps someone

steals the records and publishes them, or maybe the outcome

of the study (without the individual) can be combined with

public information to infer an individual’s grades. However,

complete disclosure seems like a low probability event; let us

suppose the chance is one in a thousand (0.001). Then, we

can estimate the base cost by E = 0.01 ·12500 = 12.5. Since

this is less than E f eas, the study is feasible.

Movie ratings data. The data consists of movie ratings; sup-

pose individuals fear their private movie ratings are published,

much like the case of the Netflix challenge [21]. Again, while

an exact monetary amount of harm is not obvious, we can

consider the monetary cost of this disclosure, legally speaking.

The Video Privacy Protection Act of 1998 is an American law

stating that punitive damages for releasing video rental records

should be at least $2,500.

If the individual does not participate in the study, it is

possible that their movie ratings are still published—perhaps

their internet service provider is monitoring their activities, or

someone guesses their movies. Again, disclosure seems like

a low probability event; let us suppose the chance is one in

ten thousand (0.00001). Then, we can estimate the base cost

by E = 0.0001 ·2500 = 0.25. Since this is less than E f eas, the

study is feasible.

Social networks. Many social networks allow anonymous

personas. Suppose individuals fear their true identity will

be revealed from studies on the social network structure,

much like deanonymization attacks against anonymous Twitter

accounts [22]. The exact monetary amount harm of disclosure

is not clear, but the dangers can be serious: consider dissidents

operating anonymous accounts. Suppose we estimate the cost

of disclosure to be very high, say $100,000.

If the individual’s information is not included in the social

network data, it is unlikely that their identity is revealed—

perhaps there is a physical privacy breach. If the individual

takes strong precautions to guard their privacy, then disclo-

sure seems like a very low probability event if they do not

participate in this study. Let us suppose the chance is one in a

hundred thousand (0.00001). Then, we can estimate the base

cost by E = 0.00001 ·100000 = 1. This is less than E f eas, so

the study is feasible.

C. A more realistic example: answering many queries
When working out the simple study above, we needed

to derive the accuracy totally from scratch. Moreover, the

mechanism is not very powerful—it can answer only a single

query! In this section, we address these issues by considering

a more sophisticated algorithm from the privacy literature: the

multiplicative weights exponential mechanism (MWEM) [12],

[13]. As part of our analysis, we will show how to directly

plug established accuracy results for MWEM into our model.
MWEM is a mechanism that can answer a large number

of counting queries: queries of the form “What fraction of

the records in the database satisfy property P?” For example,

suppose that the space of records is bit strings of length d,

i.e. X = {0,1}d . Each individual’s bit string can be thought

of as a list of attributes: the first bit might encode the gender,

the second bit might encode the smoking status, the third bit

might encode whether the age is above 50 or not, etc. Then,

queries like “What fraction of subjects are male, smokers

and above 50?”, or “What proportion of subjects are female

nonsmokers?” are counting queries.
To use our model, we will need an accuracy bound for

MWEM [13]: For a data universe X , set of queries C and N
records, the ε-private MWEM answers all queries in C within

additive error T with probability at least 1−β , where

T =

⎛
⎝128ln |X | ln

(
32|C | ln |X |

βT 2

)
εN

⎞
⎠

1/3

.

We again define the accuracy function A(ε,N) to be the

probability β of exceeding error T on any query. Solving,

A(ε,N) := β =
32|C | ln |X |

T 2
exp

(
− εNT 3

128ln |X |
)
,

Like the previous example, we want to satisfy the constraints

A(ε,N)≤ α and (eε −1)EN ≤ B.
For a concrete example, suppose we want X = {0,1}8

so |X | = 28 and accuracy T = 0.2 for 20% error, with bad

accuracy at most 5% of the time, so α = 0.05. Further, we

want to answer 10000 queries, so |C |= 10000.
We can now carry out cost estimates, supposing that the

budget is B = 2.0×106. Looking at the movie ratings scenario

when E = 0.25, the constraints are satisfiable: take N = 8.7×
105, ε = 2.3, compensating each individual (eε −1)E = 2.2.

For the social network scenario where E = 1, the constraints

are also satisfiable: take N = 1.3×106, ε = 1.5, compensating

each individual (eε − 1)E = 3.5. The calculations are similar

for the other cost scenarios; since those examples have higher

base cost E, the required budget will be higher.

VI. THE TRUE COST OF PRIVACY

Now that we have a method for estimating the cost of a

private study, we can compare this cost to that of an equivalent

non-private study. Again, we consider only costs arising from

compensation for harm to privacy.
Differential privacy requires additional noise to protect

privacy, and requires a larger sample to achieve the same
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accuracy. Hence, one would expect private studies to be

more expensive than equivalent non-private studies. While

this is true if individuals are paid the same in both cases,

differential privacy also has an advantage: it can bound the

harm to individuals, whereas—as deanonymization attacks

have shown—it is difficult for non-private studies to make

any guarantees about privacy.

When an individual participates in a non-private study, it

is very possible that their information can be completely re-

covered from published results. Thus, to calculate the cost for

the non-private study, we consider a hypothetical world where

non-private study participants are compensated in proportion

to their worst-case cost W , i.e., their cost for having their data

published in the clear.

It would be unreasonable for the non-private study to pay

each individual their full worst-case cost: even in the most

poorly designed non-private study, it is hard to imagine every

individual having their data published in the clear. More

likely, attackers may be able to recover some fraction of the

data; for instance, if attackers are analyzing correlations with

public datasets, the public datasets may contain information

for only a portion of all the study participants. Thus, we

suppose a non-private study might expose up to a φ fraction of

the participants, and the non-private study compensates each

participant with a φ fraction of their worst-case cost, i.e., φW .

Consider the mean-estimation study from Section V. For

the non-private study with N′ individuals, we directly release

the sample mean g(D) = 1
N′ ∑Xi.

8 Thus, we do not have to

bound the error from Laplace noise—all the error is due to

the sample mean deviating from the population mean.

We can then give conditions under which the private study

is cheaper than the public study. (The proof can be found in

the extended version of this paper [14].)

Theorem 8. Given a target error T ≥ 0 and target accuracy
α > 0, the private mean estimation study will be cheaper than
the non-private mean estimation study exposing a fraction φ
of participants if the following (sufficient, but not necessary)
condition holds:

T
6
≤ ln

(
1+

φW ln 1
2α

96E ln 3
α

)
(9)

The non-private study needs at least N′ individuals, where

N′ ≥ 1

8T 2
ln

1

2α
. (10)

8Remark 5 holds here as well: more sophisticated statistical experiments can
achieve accuracy for less resources, while we use a simple analysis. However,
we do so for both the private and non-private studies, so comparing the relative
costs is fair.

For our example calculations below, we take φ = 1/500 =
0.002.9 Now that we have a sufficient condition for when the

private study is cheaper than the public study, let us turn back

to our four cost scenarios. From Section V, recall we wanted

to estimate the mean of a population to accuracy T = 0.05,

with failure probability at most α = 0.05.

Smoking habits. Recall that we estimated the base cost E to

be 254.8. The worst case cost is at least the rise in health

insurance premium, so we let W = 1274. Plugging in these

numbers, Equation (9) does not hold. So, the private study is

not necessarily cheaper.

Educational data. Recall that we estimated the base cost E
to be 12.5. The worst case cost is at least the loss in salary:

$12,500; we take this to be W . Plugging these numbers into

Equation (9), we find that the private study is cheaper.

Movie ratings. Recall that we estimated the base cost E to

be 0.25, and we estimated the worst case disclosure cost to

be at least the damages awarded under the Video Privacy

Protection Act. So we let W = 2500. Plugging these numbers

into Equation (9), we find that the private study is cheaper.

Social networks. Recall that we estimated the base cost E to

be 1. The worst case cost is at least the cost of discovery:

$100,000; we let this be W . Plugging these numbers into

Equation (9), we find that the private study is cheaper.

Let us compare the size and costs of the two studies, just for

the movie ratings scenario. By Equation (10), the non-private

study needs N′ ≥ 115. As expected, the non-private study

needs fewer people to achieve the same accuracy compared

to the private study (N = 20000), since no noise is added.

However, the total cost for non-private study would be B′ =
φWN = 0.002 ·2500 ·115≈ 575. The equivalent private study,

with E = 0.25,ε = 0.0083,N = 20000 costs (eε−1) ·EN ≈ 40.

If both private and non-private studies have the same budget,

the private study can buy more participants to further improve

its accuracy. Thus, this private study is more accurate and

cheaper (and more private!) than the non-private version.

VII. EXTENDING THE MODEL

So far, we have considered just two constraints on ε and

N: expected cost to the individuals (expressed as a budget

constraint), and accuracy for the analyst. Other constraints

may be needed to model finer details—we will refer to these

additional constraints as side conditions. In this section, we

first consider generic upper and lower bounds on ε—these

follow from the definition of differential privacy. Then, we

present a case study incorporating side conditions.

A. Upper bounds on ε
While the definition of differential privacy is formally valid

for any value of ε [9], values that are too large or too small give

9Precise measurements of the success rate of real deanonymization attacks
are hard to come by, for at least two reasons: first, published deanonymization
attacks aim to prove a concept, rather than violate as many people’s privacy
as possible. Second, published deanonymization attacks generally do not have
the luxury of knowing the original data, so they are necessarily conservative in
reporting success rates. Adversarial attacks on privacy need not satisfy these
constraints.
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weak guarantees. For large values of ε , the upper bound on the

probability Pr[M (D)∈ S] can rise above one and thus become

meaningless: for instance, if ε = 20, Equation (1) imposes

no constraint on the mechanism’s output distribution unless

Pr[M (D′) ∈ S]≤ e−20.

To demonstrate this problem, we describe an ε-private

mechanism for large ε which is not intuitively private. Con-

sider a mechanism M with range R equal to data universe X ,

and consider a targeted individual J. When J is in the database,

the mechanism publishes their private record with probability

p∗ > 1/|X |, otherwise it releases a record at random.

We first show that this mechanism is ε-differentially private,

for a very large ε . Let j be J’s record, and let

p =
1− p∗

|X |−1
<

1

|X |
be the probability of releasing a record s �= j when J is in the

database. Consider two databases D∪ i and D∪ j, where i is

any record. For M to be ε-differentially private, it suffices that

e−ε Pr[M (D∪ i) = j]

≤ Pr[M (D∪ j) = j] ≤ eε Pr[M (D∪ i) = j]

e−ε Pr[M (D∪ i) = s]

≤ Pr[M (D∪ j) = s] ≤ eε Pr[M (D∪ i) = s],

for all s �= j. Rewriting, this means

e−ε 1

|X | ≤ p∗ ≤ eε 1

|X | and e−ε 1

|X | ≤ p ≤ eε 1

|X | .

By assumption, the left inequality in the first constraint and

the right inequality in the second constraint hold. Thus, if

ε ≥ ln(p∗|X |), (11)

the first constraint is satisfied. Since the probabilities over all

outputs sums to one, we also know p∗+(|X |−1)p = 1. So,

ε ≥ ln

(
1

p|X |
)
≥ ln

( |X |−1

|X |(1− p∗)

)
(12)

suffices to satisfy the second constraint.

Therefore, M is ε-differentially private if ε satisfies these

equations. For instance, suppose |X | = 106, and p∗ = 0.99.

M almost always publishes J’s record (probability 0.99) if J is

in the database, but it is still ε-differentially private if ε ≥ 14.

Clearly, a process that always publishes a targeted individ-

ual’s data if they are in the database and never publishes their

data if they are not in the database is blatantly non-private.

This ε-private mechanism does nearly the same thing: with

probability p∗ = 0.99, it publishes J’s record with probability

at least p∗ = 0.99 if J is in the database, and with probability

1/|X |= 10−6 if J is not. Evidently, values of ε large enough

to satisfy both Equations (11) and (12) do not give a very

useful privacy guarantee.

B. Lower bounds on ε

While choosing ε too large will compromise the privacy

guarantee, choosing ε too small will ruin accuracy—the

mechanism must behave too similarly for databases that are

very different. For example, let D,D′ be arbitrary databases

of size N, and let 0 < ε ≤ 1
N . Since the two databases have

the same size, we can change D to D′ by changing at most N
rows. Call the sequence of intermediate neighboring databases

D1, · · · ,DN−1. By differential privacy,

Pr[M (D) ∈ S] ≤ eε Pr[M (D1) ∈ S]

Pr[M (D1) ∈ S] ≤ eε Pr[M (D2) ∈ S]

· · · Pr[M (DN−1) ∈ S] ≤ eε Pr[M (D′) ∈ S].

Combining, Pr[M (D) ∈ S] ≤ eNε Pr[M (D′) ∈ S]. Simi-

larly, we can use Equation (2) to show Pr[M (D) ∈ S] ≥
e−Nε Pr[M (D′) ∈ S]. But we have taken ε ≤ 1/N, so the

exponents are at most 1 and at least −1. So, the probability

of every event is fixed up to a multiplicative factor of at most

e, whether the input is D or D′. (Differential privacy with

ε = 1 guarantees this for neighboring databases, but here D and

D′ may differ in many—or all!—rows.) Such an algorithm is

probably useless: its output distribution depends only weakly

on its input.

C. Case Study: Educational statistics

Putting everything together, we now work through an exam-

ple with these added constraints on ε , together with a limit on

the study size. We consider the same mean estimation study

from Section V, except now with side constraints.

Concretely, suppose that we are in the educational data

scenario, where each student’s record contains class year (4

possible values), grade point average (rounded to the nearest

letter grade, so 5 possible values), years declared in the major

(4 possible values), and order of courses in the major (100

possible combinations). The total space of possible values is

|X |= 4 ·5 ·4 ·100 = 8000.

We now add in our side conditions. First, suppose that we

have data for N = 1000 students, spanning several years. It

may not be simple to expand the study size—perhaps this

data for all the students, or perhaps we only have access to

recent data. the only way to collect more data is to graduate

more students. We also want the upper and lower bounds on

ε discussed above to hold.

For the accuracy, recall from Section V that if T is the

desired additive error and α is the probability we do not

achieve this accuracy, the accuracy constraint is

2exp

(
−NT 2

12

)
+ exp

(
−T Nε

2

)
≤ α.

In this example it is not very natural to think of a total budget

for compensation, since all the data is assumed to have been

already collected. Instead, we know the privacy harm for any

individual is at most (eε − 1) · E, and we will bound the

maximum allowed privacy harm per student. Suppose it is

B0 = 10, giving the constraint (eε −1) ·E ≤ B0.
To capture the side conditions, we add a few more con-

straints. For the population, we require N ≤ 1000. For the

upper bound on ε , we do not want Equations (11) and (12) to
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both hold, so we add a constraint

ε ≤ max

[
ln(0.1 · |X |), ln

( |X |−1

|X |(1−0.1)

)]
.

For the lower bound on ε , we add the constraint ε ≥ 1/N.

Putting it all together, with base cost E = 12.5, record space

size |X |= 8000 and allowed harm per student B0 = 10, and

target error T = α = 0.05, the feasibility of this study is

equivalent to the following system of constraints.

2exp(−0.0002 ·N)+ exp(−0.025Nε) ≤ 0.05,

(eε −1) ·12.5 ≤ 10, N ≤ 1000,

1/N ≤ ε ≤ max(ln(800), ln(1.11))

Note that we are requiring the same accuracy as in our original

study in Section V, and in fact the original study without the

side constraints is feasible. However, a numeric solver shows

that these constraints are not feasible, so this study is not

feasible in this setting.10

VIII. WHAT ABOUT δ ?

In this section, we extend our model to an important gener-

alization of ε-differential privacy, known as (ε,δ )-differential

privacy.

Definition 9 ([7]). Given ε,δ ≥ 0, a mechanism M is (ε,δ )-
differentially private if for any two neighboring database
D,D′, and for any subset S⊆R of outputs,

Pr[M (D) ∈ S] ≤ eε ·Pr[M (D′) ∈ S]+δ .

Intuitively, this definition allows a δ probability of fail-

ure where the mechanism may violate privacy. For instance,

suppose that s is an output that reveals user x’s data. For a

database D′ that does not contain user x’s information, suppose

Pr[M (D′) ∈ S] = 0. Under ε-differential privacy, M can never

output s on any database. However, under (ε,δ )-differential

privacy, M may output s with probability up to δ , when fed

any neighboring database D. In particular if D = D′ ∪ x \ y,

Pr[M (D) ∈ S] may be up to δ : even though M never outputs

x’s records on databases without x, M can output x’s record

when she is in the database with probability δ .

A. Modeling δ
By considering “blatantly non-private” mechanisms that

nevertheless satisfy (ε,δ )-privacy, we can upper bound δ . For

example, for a database with N records and for δ = 1/N, the

mechanism that randomly outputs a record from the database

is (0,δ )-private. This mechanism is intuitively non-private, so

we require δ � 1/N for a more reasonable guarantee.

For a more principled method of picking this parameter,

we can model the costs associated with different levels of

10To be precise, we have shown that this particular mechanism (i.e.,
the Laplace mechanism) is not feasible—there may be other, more clever
mechanisms that feasibly compute what we want. We are not aware of any
such mechanisms, but we also cannot rule it out.

δ . The first step is to bound the increase in expected cost

for participating in an (ε,δ )-private mechanism. We assume

a bound W on an individual’s cost if their data is publicly

revealed, since with probability δ the mechanism may do just

that. Then, we can bound an individual’s increase in expected

cost when participating in an (ε,δ )-private study. (The proof

can be found in the extended version of this paper [14].)

Proposition 10. Let M be an (ε,δ )-private mechanism with
range R, and let f be a non-negative cost function over R.
Let W = maxs∈R f (s). Then, for neighboring databases D,D′,

E[ f (M (D))] ≤ eε
E[ f (M (D′))]+δW.

We can now incorporate the δ parameter into our model.

Definition 11 ((ε,δ )-private analyst model). An (ε,δ )-private

analyst is an analyst with accuracy AM a function of ε,N,δ .

Definition 12 ((ε,δ )-private individual model). An (ε,δ )-
private individual is an individual with a worst-case cost W,
which measures the cost of publicly revealing the individual’s
private information. The individual wants to be compensated
for her worst-case marginal cost of participating under these
assumptions: eε E +δW −E = (eε −1)E +δW.

Since (ε,δ )-privacy is weaker than pure ε-privacy, why is

it a useful notion of privacy? It turns out that in many cases,

(ε,δ )-private algorithms are more accurate than their pure

privacy counterparts; let us consider such an example.

B. Revisiting MWEM

In Section V, we analyzed the cost of MWEM. We will

now revisit that example with an (ε,δ )-private version of

MWEM. The setting remains the same: we wish to answer

a large number of counting queries with good accuracy, while

preserving privacy.

The main difference is the accuracy guarantee, due to Hardt

and Rothblum [13]. Suppose the space of records is X and

we want to answer queries C to accuracy T with probability

at least 1−β . The (ε,δ )-private MWEM has accuracy

T =
8(ln |X | ln(1/δ ))1/4 ln1/2

(
32|C | ln |X |

βT 2

)
N1/2ε1/2

.

We define our accuracy measure A(ε,N) to be the failure

probability β . Solving, this means

A(ε,N) := β =
32|C | ln |X |

T 2
exp

(
− εNT 2

8(ln |X | ln(1/δ ))1/2

)
.

If α is the target accuracy, we need A(ε,N)≤ α .

For the budget constraint, we need (eε−1)EN+δWN ≤ B.

Suppose we are in the social network scenario we described

in Section V, with the same budget B = 2.0× 106 we used

for the (ε,0)-private MWEM algorithm. We use our running

estimate of the base cost for this scenario, E = 1, and the

worst-case cost, W = 106. For the other parameters, sup-

pose the records are bit strings with 15 attributes (versus 8

before): X = {0,1}15 and |X | = 215. We want to answer
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|C | = 200000 queries (versus 10000 before), to 5% error

(versus 20% before), so T = 0.05, with probability at least

95% (α = 0.05, same as before).

Plugging in the numbers, we find that the accuracy and

budget constraints can both be satisfied, for ε = 0.9, δ = 10−8,

and N = 9.1×105. Each individual is compensated (eε−1)E+
δW = 1.46, for a total cost of 1.9×106 ≤ B. Thus, the (ε,δ )-
private version of MWEM answers more queries, over a larger

space of records, to better accuracy, than the (ε,0)-version we

previously considered.

IX. DISCUSSION

A. Is all this complexity necessary?

Compared to earlier threat models from the differential pri-

vacy literature, our model may seem overly complex: the orig-

inal definition from Dwork et al. [8] had only one parameter

(ε), while our model involves a number of different parameters

(α , AM (ε,N), B, and E). So, at first glance, the original model

seems preferable. However, we argue that this complexity

is present in the real world: the individuals really do have

to consider the possible consequences of participating in the

study, the researchers really do require a certain accuracy,

etc. The original definition blends these considerations into a

single, abstract number ε . Our model is more detailed, makes

the choices explicit, and forces the user to think quantitatively

about how a private study could affect real events.

B. Possible refinements

The key challenge in designing any model is to balance

complexity and accuracy. Our model is intended to produce

reasonable suggestions for ε in most situations while keeping

only the essential parameters. Below, we review some areas

where our model could be refined or generalized.

Estimating the base cost. Our model does not describe

how to estimate the base cost for individuals. There is no

totally rigorous way to derive the base cost: this quantity

depends on how individuals perceive their privacy loss, and

how individuals think about uncertain events. These are both

active areas of research—for instance, research in psychology

has identified a number of cognitive biases when people reason

about uncertain events [15]. Thus, if the consequences of

participation are uncertain, the individuals might under- or

over-estimate their expected cost.11 More research is needed

to incorporate these (and other) aspects of human behavior

into our model.

Another refinement would be to model individuals heteroge-

neously, with different base costs and desired compensations.

For instance, an individual who has participated in many

studies may be at greater risk than an individual who has never

participated in any studies. However, care must be taken to

avoid sampling bias when varying the level of compensation.

Empirical attacks on privacy. Our model assumes that all

ε-private studies could potentially increase the probability of

11In some experiments, people give up their private data for as little as a
dollar [3].

bad events by a factor of eε . It is not clear whether (a) this

is true for private algorithms considered in the literature, and

(b) whether this can be effectively and practically exploited.

The field of differential privacy (and our model) could benefit

from empirical attacks on private algorithms, to shed light on

how harm actually depends on ε , much like parameters in

cryptography are chosen to defend against known attacks.

Collusion. Our model assumes the study will happen re-

gardless of a single individual’s choice. However, this may

not be realistic if individuals collude: in an extreme case,

all individuals could collectively opt out, perhaps making a

study impossible to run. While widespread collusion could be

problematic, assumptions about the size of limited coalitions

could be incorporated into our model.

Large ε . As ε increases, our model predicts that the indi-

vidual’s marginal expected harm increases endlessly. This is

unreasonable—there should be a maximum expected cost for

participating in a study, perhaps the worst case cost W . The

cost curve could be refined for very small and very large values

of ε .

Modeling the cost of non-private studies. Our comparison

of the cost of private and non-private studies uses a very

crude (and not very realistic) model of the cost of non-private

studies. More research into how much individuals want to be

compensated for their private data would give a better estimate

of the true tradeoff between private and non-private studies.

X. RELATED WORK

There is by now a vast literature on differential privacy,

which we do not attempt to survey. We direct the interested

reader to an excellent survey by Dwork [6].

The question of how to set ε has been present since the

introduction of differential privacy. Indeed, in early work on

differential privacy, Dwork [6] indicates that the value of ε ,

in economic terms or otherwise, is a “social question.” Since

then, few works have taken an in-depth look at this question.

Works applying differential privacy have used a variety of

choices for ε , mostly ranging from 0.01–10, with little or no

convincing justification.

The most detailed discussion of ε we are aware of is due

to Lee and Clifton [16]. They consider what ε means for a

hypothetical adversary, who is trying to discover whether an

individual has participated in a database or not. The core idea

is to model the adversary as a Bayesian agent, maintaining a

belief about whether the individual is in the database or not.

After observing the output of a private mechanism, he updates

his belief depending on whether the outcome was more or less

likely if the individual had participated.

As Lee and Clifton show, ε controls how much an adver-

sary’s belief can change, so it is possible to derive a bound

on ε in order for the adversary’s belief to remain below a

given threshold. We share the goal of Lee and Clifton of

deriving a bound for ε , and we improve on their work. First,

the “bad event” they consider is the adversary discovering an

individual’s participation in a study. However, by itself, this
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knowledge might be relatively harmless—indeed, a goal of

differential privacy is to consider harm beyond reidentification.

Second, and more seriously, the adversary’s Bayesian up-

dates (as functions of the private output of the mechanism)

are themselves differentially private: the distribution over his

posterior beliefs conditioned on the output of the mechanism is

nearly unchanged regardless of a particular agent’s participa-

tion. In other words, an individual’s participation (or not) will

usually lead to the same update by the adversary. Therefore,

it is not clear why an individual should be concerned about

the adversary’s potential belief updates when thinking about

participating in the study.

Related to our paper, there are several papers investigating

(and each proposing different models for) how rational agents

should evaluate their costs for differential privacy [26], [11],

[23], [4], [18]. We adopt the simplest and most conservative of

these approaches, advocated by Nissim, et al. [23], and assume

that agents costs are upper bounded by a linear function of ε .

Alternatively, privacy (quantified by ε) can be thought of as

a fungible commodity, with the price discovered by a market.

Li, et al. [17] consider how to set arbitrage-free prices for

queries. Another line of papers [11], [10], [18], [2], [5], [24]

consider how to discover the value of ε via an auction, when

ε is set to be the largest value that the data analyst can afford.

XI. CONCLUSION

We have proposed a simple economic model that enables

users of differential privacy to choose the key parameters ε
and δ in a principled way, based on quantities that can be

estimated in practice. To the best of our knowledge, this is

the first comprehensive model of its kind. We have applied

our model in two case studies, and we have used it to explore

the surprising observation that a private study can be cheaper

than a non-private study with the same accuracy. We have

discussed ways in which our model could be refined, but even

in its current form the model provides useful guidance for

practical applications of differential privacy.
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