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Abstract—The anonymous communication protocol Tor con-
stitutes the most widely deployed technology for providing
anonymity for user communication over the Internet. Several
frameworks have been proposed that show strong anonymity
guarantees for such protocols; none of these frameworks, how-
ever, are capable of modeling the class of traffic-related timing
attacks against Tor, such as traffic correlation and website
fingerprinting.

In this work, we present TUC: the first framework that
allows for rigorously proving strong anonymity guarantees in the
presence of time-sensitive adversaries that mount traffic-related
timing attacks. TUC incorporates a comprehensive notion of time
in an asynchronous communication model with sequential activa-
tion, while offering strong compositionality properties for security
proofs. We apply TUC to evaluate a novel countermeasure for
Tor against website fingerprinting attacks. Our analysis relies
on a formalization of the onion routing protocol that underlies
Tor and proves rigorous anonymity guarantees in the presence
of traffic-related timing attacks.

I. INTRODUCTION

Anonymous communication protocols, as provided by the

Tor network [1], are an increasingly popular way for users to

improve their privacy by hiding their location, i.e., their IP

address. The Tor network is currently used by hundreds of

thousands of users around the world [2].

For precisely understanding the anonymity guarantees pro-

vided by Tor, several rigorous analyses have been con-

ducted [3], [4], [5], [6], [7], [8], which show strong anonymity

guarantees for the onion routing protocol used by Tor; how-

ever, all of these analyses abstract from network-level timing

attacks, such as traffic correlation or website fingerprinting,

which arguably form the most important class of attacks

against Tor’s anonymity guarantees [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20]. One of the main ob-

stacles in including such time-sensitive attacks into a rigorous

analysis is the lack of a communication model that enables

a composable security analysis of complex protocols against

time-sensitive adversaries.

In this paper, we follow the successful line of research on

simulation-based composable security, started with Goldreich

et al. [21] and put forward by [22], [23], [24], [25], [26],

[27], which enable a composable security analysis of complex

cryptographic protocols.

Contribution. In this work, we present TUC: the first frame-

work that allows for rigorously proving strong anonymity

guarantees in the presence of time-sensitive adversaries that

mount traffic-related timing attacks. TUC incorporates a com-

prehensive notion of time in an asynchronous communication

model with sequential activation, while offering strong com-

positionality properties for security proofs. In particular, TUC

is based on a modified version of GNUC [25], which is one

of the recent pieces of work [23], [26] that address many

of the problems faced by earlier designs for simulation-based

security frameworks [23].

We discuss the modifications to the communication model

of GNUC in order to adequately account for time, and we show

solutions for problems that occur when handling time-sensitive

interaction between different parties over the network. In

particular, we discuss that previous frameworks inherently are

not suited for modeling time-sensitive asynchronous commu-

nication because they allow unrestricted activation orders: it

might, e.g., happen that a message that was sent in the past

(over a direct connection) arrives after a time-out mechanism

already closed a port, only because the sending party was not

activated early enough. We propose a remedy by only allowing

consistency enforcing activation orders, which enforce that all

parties receive all messages at the correct time. It turns out that

all consistency enforcing activation orders are equivalent. As

a result, we fix the activation order and thereby, in contrast to

previous work, neither the environment nor the adversary has

to learn any unrealistic information about activation requests.

We show that valued properties, such as universal composabil-

ity, hold in our time-sensitive framework as well.

Finally, we apply TUC to the onion routing protocol that

underlies Tor, and we show how traffic-related timing attacks,

such as inter-packet delay, traffic watermarking, and website

fingerprinting attacks, can be mounted by an adversary in

TUC. As a case study, we leverage TUC to analyze a simple

countermeasure against website fingerprinting attacks and to

prove k-recipient anonymity guarantees for this countermea-

sure.

Outline. Section II discusses related work. Section III in-

troduces the time-sensitive TUC framework, and presents

the activation order independence of TUC. Section IV then

introduces the notion of secure realization into this time

sensitive communication model and shows that classic results

of composable security are preserved in the time sensitive

setting. In Section V, we discuss how known traffic-related

timing attacks on Tor can be represented in TUC. Moreover,
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we provide a countermeasure against website fingerprinting

attacks and prove it secure in TUC.

II. RELATED WORK

Tor [1] is one of the most widely used anonymous com-

munication protocols to date [2] and is based on the (first

generation) onion routing protocol by Goldschlag et al. [28].

There has been significant work in analyzing the anonymity

guarantees provided by Tor [4], [5], [6], [7], [8], [29]. The

major shortcoming of previous work is that it does not

consider timing features of network traffic, which are used

in timing-based traffic analyses. Considering the amount of

proposed attacks [17], [13], [9], [19], [16], [30], [31], [32],

[33] in the literature that use these timing features, it is clear

that a rigorous framework that encompasses time-sensitive

adversaries is required.

Some protocols, such as the onion routing protocol, are

inherently insecure against global adversaries, but provide

guarantees against partially global adversaries, which might

only control servers or the user’s links (like ISPs), and are

useful in practice. Such systems cannot always be properly

analyzed in time-insensitive frameworks [22], [23], [24], [25],

[26], [27] because in these frameworks partially global ad-

versaries are too weak: they cannot measure time-sensitive

features, such as measure inter-packet delay or throughput per

time interval, and they thus can also not measure effects of

some active attacks, such as traffic watermarking or slowing

down certain parties by mounting denial-of-service attacks.

Since TUC enables the adversary to measure time-sensitive

features, this family of attacks can be mounted by an adversary

in TUC; thus, TUC is better suited for analyzing such weaker

adversary scenarios.

This work contributes to the successful line of work on

simulation-based universal composability frameworks [22],

[23], [24], [25], [26], [27]. These frameworks allow for a

composable analysis of large and complex multi-party pro-

tocols, where the security of the whole protocol is derived

from the security analysis of the sub-protocols of which it

is composed. We chose to base our TUC framework on the

GNUC framework by Hofheinz and Shoup [25]. While GNUC

is not as general as other frameworks due to its strict poly-time

notion and its tree-like structure of party-structure, it has the

advantage that a composed ideal poly-time protocol implies a

composed real poly-time protocol due to its strict polynomial-

time notion [25, Section 11.8], and simplifies the proof of the

composition theorem and thereby also our extension due to

its simple party-structure. We are, however, confident that the

main mechanisms for introducing our comprehensive notion of

time, including time-sensitive adversaries, can also be applied

to other frameworks, such as the RSIM[22], IITM [26], and

UC [23] framework.

Previous work on synchronous communication granting

protocol parties the capability to measure time or to proceed

round-wise in order to enable proofs about properties, such

as guaranteed termination or input termination [34], [35],

[24], [36], [37], [38]. Such approaches, however, do not grant

the adversary the capability to measure the time at which a

message arrives.

Modeling timing attacks in synchronous frameworks might

be possible, assuming very fast rounds and thus highly syn-

chronized clocks, (in the order of milliseconds), but such an

approach has two severe technical limitations: first, highly

synchronized clocks can seldom be assumed in practice, in par-

ticular not for commodity hardware; second, such an attempt

would technically only result in guarantees for protocols with

highly synchronized clocks but not for protocols with loosely

synchronized or unsynchronized clocks, while traffic-related

timing attacks solely depends on the adversary’s clock and

not on the protocol parties’ clocks. TUC grants the adversary

access to a precise clock, independent of the parties’ clocks.

Networks of timed automata are well studied. However, they

are seldom used for cryptographic purposes. While there has

been work on the time sensitive analysis of Dolev-Yao style

abstracted cryptographic protocols using timed automata [39],

[40], [41], [42], [43], [44], this line of work analyzes Dolev-

Yao style abstractions and does not allows for more fine-

grained adversary types we want to capture in our model.

We therefore stick to a Turing Machine based network model

which is typically used in the analysis of cryptographic pro-

tocols.

III. MODELING TIME FOR ANONYMITY ANALYSIS

In this section, we present TUC: the first simulation-based

composability framework that considers a time-sensitive ad-

versary. TUC builds upon previous asynchronous simulation-

based frameworks, such as GNUC [25], RSIM [22], UC [23]

and IITM [26], but fundamentally extends these frameworks

by incorporating a notion of time while preserving universal

composability.

We begin with presenting relevant aspects of TUC re-

garding time and explain how each of the design decisions

are motivated by our goal to produce a formal model for

the analysis of anonymous communication protocols. Due to

space-constraints, we concentrate on the non-trivial mecha-

nisms behind and the main problems for extending previous

frameworks to account for time-sensitive adversaries. For a

more detailed exposition we refer the interested reader to the

extended version of this paper [45].

Thereafter, we proceed with describing properties of TUC

that simplify a formal analysis of anonymous communication

protocols and serve as sanity checks that emphasize the

comprehensiveness of TUC. Finally, we discuss whether it is

possible to encode our time-sensitive extension in a traditional

simulation-based framework.

However, before we get to timing, we first need to lay the

formal groundwork in form of a formal communication model

to which we then apply our modifications.

Notation: Computational indistinguishability. We for two

distributions D and D′, we write D ≈ D′ to denote that D and

D′ are computationally indistinguishable, i.e., for a negligible
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function μ and for sufficiently large security parameter η
∣∣Pr[D = 1]− Pr[D′ = 1]

∣∣ < μ(η)

In this work, the distribution D and D′ typically describes

the output of a network execution, which internally runs an

arbitrary environment, the protocol parties, and the adversary.

A. Communication Model in TUC

Similar to previous frameworks, we model a network con-

sisting of regular network parties Pi, a network adversary A
and an environment ENV. A represents adversarial behavior in

the network, while ENV represents user behavior, an operating

systems, or other entities that call protocols.

Each machine M in the network is identified with a unique

machine id id(M) which is needed for identifying and ad-

dressing machines. This machine ID in particular includes the

protocol name protNAME, the session parameter sp, and the

role role, called basename name(M) = (protNAME, sp, role)
of M . This basename determines the code that M executes.

The code is supplied by the protocol Π of the network.

Definition 1. A protocol is a function Π : D → {0, 1}∗,
which for every machine-id id in its domain D gives the code
c ∈ {0, 1}∗ run by every machine d.

A regular network party P consists of a tree of machines

M1, . . . ,Ml that represents the protocol stack used by P :

every child-machine Mc of a parent-machine Mp executes

a sub-routine invoked by Mp. The protocol Π restricts the

set of protocol-names {d1, . . . dl} ⊂ D that a machine with

protocol-name d ∈ D can call as subroutines. We inherit this

tree-structure from GNUC [25] since it allows for a simple

definition of protocol composition (see Section IV).

Machines in the network communicate by sending messages

to each other. In TUC this is subject to several restrictions:

inside a regular network party P , machines can only commu-

nicate with their children and their parent machines, which

can be the environment ENV if the machine is the root of

P . Across the network, i.e. between parties, a machine M
can only communicate to another machine M with the same

protocol name in its basename, or with the adversary A. The

network adversary can further directly communicate with the

environment ENV, which is depicted in Figure 1.

The network execution. For each machine in the network

we maintain external parameters, needed to ensure concurrent

computation and local unsynchronized clocks. Hence, we

embed the entire network inside a single machine we call exe-

cution (EXEC). The execution runs all parties in the network as

sub-machines, delivers messages between these sub-machines,

and maintains a timer for every sub-machine. We define the

output of EXEC as the output of the environment ENV after

observing the communication between the involved parties. In

the following we also present pseudocode of fragments of the

execution. A detailed specification of EXEC can be found in

the extended version of this paper [45].

P1

P2

P3P3
Π

Env

A
NET

EXEC

Figure 1: The Communication Model in TUC. The party P3

exemplifies the machine tree that exists in each party.

Definition 2. The execution EXEC is a probabilistic, poly-
time Turing Machine which receives the security parameter
η and outputs a value in {0, 1}. EXECη(Π,A, ENV) denotes
the output of ENV after EXEC ran the network of machines
running protocols in Π together with the network adversary A
and the environment ENV. EXEC stops whenever ENV halts
and outputs a bit.

B. Adversary Model in TUC

An important part in the analysis of protocols is accurately

modeling adversarial capabilities, which includes restricting

the adversary’s access to the network, as well as differentiating

between active and passive adversaries.
1) Link corruption: Previous composability frameworks

assume a global adversary which intercepts all messages sent

between parties over the network. This is a necessity for

realization proofs between protocols which do not inherently

leak information to the adversary. However, in the special case

of anonymous communication (AC) protocols, a global adver-

sary poses a problem: Tor, e.g., is not secure against global

adversaries [19], [18], [16], [9]. Previous work on the analysis

of Tor shows how partial compromisation of the network

can be modeled by introducing special network functionalities

FNET, which are used as a link between parties [3]. FNET only

leaks a message to the network adversary if the communication

link they represent is compromised.

To simplify the analysis, especially with regard to AC

protocols, we assume an initially uncompromised network.

The environment ENV, however, can compromise network

communication links between two machines by sending a

compromise message to the execution EXEC indicating which

link should be compromised. Afterwards, any communication

on the compromised link is forwarded to the adversary A.

We assume that inner-party communication, i.e. communi-

cation between children and parent nodes inside a party P ,
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cannot be intercepted without compromising the party: a party

models a system that resides at one physical location.

In order to keep EXEC modular, we introduce a network

topology sub-machine NET, which handles all requests re-

garding compromised links: compromisation requests from

ENV are forwarded to NET, which internally maintains the

corruption status of the network, and on request from EXEC,

determines whether a message can be directly forwarded to the

recipient, or is intercepted by the network adversary. As we

discuss for future work in Section V-C and VI, NET can also

be extended to include network latency and other parameters

of the network.

2) Party corruption: The network machines themselves

can also be completely compromised by the environment

ENV. Upon receiving a compromisation message compromise,

EXEC replaces the code executed by the receiving machine M
with the following code of a compromised machine cdcomp

and forwards the corruption message to M , which in turn

responds with an answer to ENV containing the current state

of M and from then on is under full control of the adversary.

cdcomp is defined as follows: whenever M receives a message,

it is forwarded to the adversary, who in turn instructs M .

Since the adversary is modeled as a network party, we cover

passive as well as active adversaries: a passive adversary would

simply forward all messages he intercepts, while an active

adversary can send additional messages through the network

as well as change intercepted messages.

Static corruption can be modelled by only allowing the

environment to initially compromise machines and to ignore

all compromisation messages after an initial phase.

C. Timing in TUC

We extend the basic communication model presented in the

previous sections to include time. To each machine in the

network we attach a timer and utilize the execution EXEC to

maintain these timers. In order to allow unsynchronized clocks

between network parties, we introduce local-time functions,

which transform the timer’s value to the local time experienced

by each machine. We achieve time-consistency for messages

exchanged between machines by introducing time-stamps for

these messages. The execution EXEC utilizes these time-

stamps for delivering messages to the recipient at the correct

time.

We introduce time into our model by assigning a timer to

every machine in the system.

Definition 3. The timer TM ∈ Q of a machine M is a rational-
valued variable associated with M that is maintained by the
execution.

The timer TM is initialized to 0 at the beginning of the

execution. TM records the current global time of M and is

updated every time M returns control to the execution. How

much TM is updated depends on the speed of M . Each ma-

chine has a different speed. Except for the environment and the

adversary, the speed of each machine M is characterized by a

speed coefficient cM , which specifies how many computation

steps M does per time unit. Hence, for the timer TM of M
we have

TM := TM +
n

cM

where n is the number of steps M did in its last activation.

The poly-time notion we use in our communication model

[45, Section 3.1.8] necessitates that a machine makes a poly-

nomially bounded number of steps per time unit: a machine

with an exponential speed coefficient would not be able

to meaningfully progress in time as each machine in our

network model is restricted to at most a polynomial number of

computation steps per activation. Hence, we require the speed

coefficients be polynomials.

Definition 4. The speed coefficient of a machine M specifies
the number of computation steps that M can perform per
unit time. The speed coefficient is a polynomial cM ∈ N[X].
Whenever M returns control to the execution, TM is updated
by TM := TM + n

cM (η) where n is the number of steps M did
in its last activation and η is the security parameter.

Local time functions are needed to model unsynchronized

local clocks, only loosely synchronized clocks, or too fast

or too slow clocks. Each machine M can request its local

time by sending a (time) request to the execution. EXEC then

computes the local time of M by applying M ’s local time

function fM to its current global time TM .

The execution needs to be able to efficiently compute and

invert the local time; thus, we require that the local time

function be efficiently computable and efficiently invertible.

We additionally capture low-precision local clocks by not

requiring that the local time function is injective. We only

require that the local time function is pseudo invertible in the

following sense: the pre-image of a local time fM (t) is a

closed interval [T, T ′) from which the corresponding global

time is randomly chosen.

Definition 5. A function f : Q→ Q is pseudo-invertible if for
every value x ∈ f [Q] there is exactly one non-empty, closed
or right-open interval I (i.e. I = [T, T ′] with T ≤ T ′ or
I = [T, T ′) with T < T ′) such that ∀y ∈ I : f(y) = x and
∀y′ ∈ Q \ I : f(y′) �= x. We denote the interval I as the
pseudo-pre-image of x.
Given a pseudo-invertible function f , we denote with f (−1) the
pseudo-inverse of f , which, given a value x ∈ f [Q], returns
its pseudo-pre-image f (−1)(x) = I.

With the definition of pseudo-invertible functions, we can

now define local time functions.

Definition 6. The local time function fM : Q → Q of
M is a monotonically increasing, efficiently computable and
efficiently pseudo-invertible function that transforms the value
of TM to M ’s local time fM (TM ).

We make a worst case assumption and define the local time

function of the environment ENV and the network adversary

A to be the identity function. Figure 2 illustrates the methods

used by EXEC to manage basic timing information.
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Initialization: All input tapes are set to empty, all timer-variables are set to the initial value and no links are compromised.
Machine Activation: Every time a party M ∈M gives control to the network execution, the current global time TM for M is updated:
TM := TM + n

c(M)
, where n is the number of steps performed by M in its last activation, and c(M) is its speed coefficient.

upon input (time) from M ∈M
1: retrieve TM

2: compute local time tM := fM (TM )
3: activate M with input tM on the time tape

before every input (cmd, t) from M ∈ {A, ENV}
1: if t > 0 then
2: set TM := TM + t
3: proceed with cmd
4: else activate M with error

Figure 2: Timing and Initialization in EXEC with machine set M, where fM is the M ′s local time function and fM = id for

M ∈ {ENV,A}

Speed coefficients and local time functions are fixed once

the respective machine is spawned. Formally, the speed coef-

ficient and the local time function depend on the machine ID,

i.e, on the party ID and the basename. In order to assign speed

coefficients to dynamically created machines, we suitably

extend our definition of protocol introduced earlier.

We require that the protocol Π consists of two functions:

one function that maps machine IDs to distributions of speed

coefficients and local time functions and one function that

maps basenames to the protocol code (see Definition 1).

The execution draws the speed coefficients and local time

functions from these distributions whenever a new machines

is created during runtime. In the definition below, we denote

with Dist(X) ⊂ X → [0, 1] the set of distributions over the

natural numbers (without 0). Moreover, we denote with Mon
the set of local time functions functions from A to B and with

D the set of machine IDs.

Definition 7 (Protocol). For a set P of party IDs and
a set of basenames D, a protocol is a pair of functions
π := (πp, πc) consisting of a function πp : P × D →
Dist(N[X]) × Dist(Mon) from party IDs to an efficiently
computable distribution of speed coefficients and an efficiently
computable distribution of local-time functions local time
functions and a function πc : D → {0, 1}∗ from basenames to
a code.
A protocol π′ = (π′p, π

′
c) is a subprotocol of π = (πp, πc) over

domain D′ if D′ ⊆ D and πc restricted to D′ equals π′c and
π′p = πp.

In the real world, the environment and the adversary might

consist of several machines that work in parallel. A natural

way of modeling this strength is to represent the environment

and the adversary as a set of parallel machines. While such

a model is more accurate, we abstract this strength of the

environment and the adversary by allowing both parties to

make an arbitrary amount of computation steps per point in

time, for the sake of simplifying proofs.1

Definition 8. A machine M is timeless if it does not have
a speed coefficient and M itself tells the execution the time-
difference by which its timer increases next time it returns
control to the execution.

In contrast to other sequential activation models, messages

in TUC are not directly delivered to the recipient as there

might be another message from a yet unactivated machine

that has to arrive earlier. The execution remedies this problem

by utilizing time stamps.

Definition 9. The time-stamp of a message m sent by a
machine M is the updated value of the timer TM at the point
when M sends the message.

This time-stamp is attached to each message before it is sent

to the recipient. On the recipient’s end we use time-ordered

queues, called input queues, which organize all messages that

still need to be received, and release them once the recipient

has progressed far enough in time.

Definition 10. The input queue QM of a machine M is a
priority queue which receives all messages directed to M as
input and uses their time-stamp as the keys which are sorted.
On request with a time-stamp T , QM returns all messages
with time-stamp Tm ≤ T .

D. Activation Order

1) Consistency Enforcing Scheduling: Other simulation-

based frameworks use a sequential activation model: machines

in the network directly activate each other by sending mes-

sages and the environment or the adversary decides which

machine is activated in case no messages are sent. We call

these decisions the activation strategy. Keeping to this un-

restricted sequential activation model, however, causes several

1For the completeness of the dummy adversary, the adversary needs to be
able to forward message in a way that is unobservable for the protocol even
though every message-forwarding costs time. For that situation, we make use
of the timelessness of the dummy adversary and show that if the dummy
adversary proceeds in exponentially small steps, message-forwards remains
unobservable for the protocol (see Lemma 1).
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problems as soon as time is introduced: messages from the past

arrive at nodes which are already in the future or the activation

order (which is usually represented by the adversary or the

environment) can push machines arbitrarily far into the future.

The example below shows how this can lead into problems

with a timeout mechanism, assuming the adversary decides

the activation order.

Example 1: Inconsistencies with unrestricted sequential
activation strategies. Consider machines M and M ′ which

go into a timeout state if they do not receive a message up to

some point in time T ∗

1: ENV repeatedly actives machine M through A, which

causes M to activate for one step and then return to the

listening state. This effectively pushes M to time T > T ∗

the future.

2: M goes into the timeout state, as it did not receive any

message until time T ∗

3: ENV tells machine M ′ to send a message to M at time T0.

Including processing the command, the message is sent at

time T ′

4: M receives a message from time T ′ < T ∗ at time T ∗.
M now erroneously went into the timeout state, even though

M ′ sent a message to M before the timeout should have

occurred. 

We avoid such inconsistencies as follows: we introduce a spe-

cial (listen, T ) state for the machines in the network, in which

they have to be in order to receive messages. Furthermore,

we deviate slightly from the traditional sequential activation

model by discarding activation commands that do not satisfy

the following consistency enforcing property.

Definition 11 (Consistency Enforcing). An activation order of
machines is consistency enforcing, if ∀M ′ �= M : T̃M ≤ T̃M ′

whenever M is activated from the listening state. Here T̃M is
the virtual time of the machine M defined as follows:
• T̃M = min{T, Tm}, where Tm is the smallest time-stamp

of a message in QM (or ∞ if no such message exists), if
M is in the (listen, T ) state

• T̃M = TM , if M is not in the (listen, T ) state

Consistency enforcing activation orders resolve inconsisten-

cies regarding timing that might otherwise occur in decisions

made by machines in the network: for example, a machine

deciding to cause a time-out after not receiving messages up

to some point in time T can be sure that it will not receive

any messages “from the past” after doing so.

Corollary 1. Under consistency enforcing activation orders,
whenever a machine M is activated from the listen state at
time T , M receives all messages m with time-stamp Tm ≤ T
and any messages not yet received were sent at a time T ′ > T .

2) Activation strategies: We need an activation strategy
to determine the machine to be activated next whenever a

machine turns inactive after switching into the listen state.

Under consistency enforcing activation orders, however, we

cannot take the same approach as previous frameworks, in

which the adversary decides the activation strategy: since the

adversary is a time-sensitive component of the network and

thus also affected by consistency enforcing activation orders,

the network can end up in a deadlock situation where all

machines can either not be activated, or are stuck in the

listen state. To avoid this problem we introduce the activation

strategy as a sub-machine of the execution EXEC.

Definition 12. The activation strategy ACT is a probabilistic,
poly-time TM, which, given the state of the network as input,
determines the next machine to be activated.

ACT does not have a timer and implements the activation

order based on the current state of the network. EXEC enforces

the consistency enforcing property by checking the required

conditions whenever ACT wants to activate a machine. The

activation methods in EXEC are depicted in Figure 3.

3) Simplified Activation Strategy: It turns out that under

consistency enforcing all activation strategies are equivalent to

the following activation strategy SAS, as long as no deadlocks

occur: the next machine to be activated is selected based on

each machine’s timer T by randomly selecting a machine with

the lowest timer value.

Theorem 1 (SAS is equivalent to all deadlock-free activation

strategies). The activation strategy SAS is indistinguishable
from any other, deadlock-free activation strategy.

4) Discussion:

Modeling asynchronous communication despite consis-
tency enforcing scheduling. In other simulation-based

frameworks, such as UC, GNUC, RSIM, IITM, the environ-

ment (or sometimes the network adversary) decides which

machines are activated next. Quantifying over all possible

activation strategies in particular includes those scenarios in

which a message transmission is arbitrarily delayed. Canetti

argues that such an activation order is chosen for modeling

asynchronous communication [23, page 28].

In spite of consistency enforcing activation orders, TUC can

be used to model asynchronous communication by protocols

that do not use their local clock.2 Arbitrary networks delays for

compromised links can be modeled in TUC since the network

adversary can arbitrarily delay a message.

Beside the advantage that asynchronous communication can

be modeled by arbitrary activation strategies, another effect

of (traditional) arbitrary activation strategies is that they can

model disabled or crashed network nodes by not activating

the respective machine, but only if this machine would not

have received any message (otherwise this message would

have activated the machine). However, since this mechanism

only covers machines that would not have received any mes-

sages, we believe that such crashes should rather be modeled

explicitly, i.e. in the same way as node corruptions, and not

via an activation strategy.

2Even the slightly stronger setting in which each party uses its local
clock, but the clocks are completely unsynchronized can be modeled by
unsynchronized local time functions (see Section III-C).
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activate listen(M )
1: if ∀M ′ ∈M \ {M} : ˜TM′ ≥ ˜TM then
2: if M is timeless then
3: set TM = ˜TM

4: else
5: set TM =

� ˜TM ·cM�
cM

6: if QM is not empty then
7: Pull messages (m1, Tm1 , p1), . . . , (ml, Tml , pl) with

time-stamps Tmi ≤ TM from QM

8: activate M with m1, . . . ,ml on ports p1, . . . , pl
9: else

10: activate M without input
11: activate ACT with a activation request

upon output (listen, T ) from M ∈M
1: set ˜TM := T
2: activate listen(M )

upon activation by M ∈M without output
1: activate ACT with activation request

upon input (activate,M) from ACT

1: if M in listen state then
2: call activate listen(M )
3: else
4: activate M

Figure 3: Activation order methods in EXEC with machine set M and activation strategy ACT

Encoding time-sensitive adversaries in previous frame-
works. It might be possible to wrap each machine M in

the network in a local wrapper W that performs the same

actions as the execution EXEC in TUC. W would count the

number of steps that M performs and divides these steps by

the speed of that party to calculate M ’s current time. This

wrapper W would for each outgoing message from M add a

timestamp and for each incoming remove the timestamp before

forwarding it to the recipient. Moreover, W would order every

incoming messages in a time-ordered input queue and only

deliver those message to M for which M already proceeded

far enough in time.

Such a network of locally wrapped machines

W (M1), . . . ,W (Mn), however, does not ensure the

consistency enforcing property for activation orders, i.e.,

allows inconsistent activation orders (see Example 1). Since

consistency enforcing is a global property the local wrappers

W would have to synchronize their timer information to find

the next, eligible party and activate this party (by sending

some dummy message). Although it might be possible to

show that such an encoding is equivalent to our approach,

we believe that it is more elegant and easier to understand to

incorporate time-sensitive adversaries as done in TUC.

E. More realistic machine models

For the sake of a simpler presentation, we assume in this

work Turing machines as the underlying machine model. As

soon as timing information is taken into account, Turing

machines do not properly model real-world systems: e.g., a

Turing machine needs in the worst case linear time (in the

size of the already written cells) for a memory access, whereas

a real-world system performs a memory access in constant

time. Such a behavior is much more accurately modelled

by other machine models, such as random access machines

(RAMs) [46].

It is possible to extend our model to more realistic machine

models. Interpreting a single step of a machine as a clock

cycle, we can formalize more realistic machine models by

mapping different basic instructions, such as addition and

multiplication, to different amounts of clock cycles. We can

even formalize architectures with caches by mapping the

internal state and a basic instruction to some amount of clock

cycles.

With such a modular treatment of the machine models, we

can, moreover, capture scenarios in which different parties in

the network use different machine architectures. Similar to

the distribution of the speed coefficients and the local time

functions, we require that the machine model is determined by

the machine ID, i.e, party ID and the basename. Accordingly,

the execution EXEC has be adjusted such that the clock cycle

functions are maintained, and instead of increasing the time

of a party by 1 for each instruction EXEC increases the time

by the sum of cycles given by the clock cycle function. We

stress that all the results about our framework are independent

of the machine model; hence, our results hold for generalized

machine models as well.

IV. SECURE REALIZATION

We present the notion of secure realization adopted in TUC

and show that important properties of secure realization such

as the completeness of the dummy adversary and universal

composability hold.

A. Security Definition

In the same spirit as in other simulation-based frameworks,

we adopt the notion of secure realization. A protocol π is

compared to a simplified protocol ρ and is shown to be at

least as secure: π securely realizes ρ, if every attack against π
is also possible against ρ. More formally we require that the

output distribution of the execution running the protocol π,

an adversary A and an environment ENV is indistinguishable

from the output distribution of the execution running the sim-

plified protocol ρ with a simulator S and the same environment

ENV.

Definition 13. A protocol π securely realizes another protocol
ρ, written π ≥t ρ, if for all PPT adversaries A there is a PPT
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〈pid, (α1)〉

〈pid, (α1, α2)〉

〈pid, (α1, α2, α3)〉

〈pid, (α1, α
′
2)〉

〈pid, (α1, α
′
2, α4)〉

〈env〉

〈adv, (β1, β2)〉

〈adv, (β1)〉

〈adv, (β1, β3)〉

〈adv, (β1, β4)〉

(a) Real Protocol

〈pid, (α1)〉

〈pid, (α1, α2)〉

〈pid, (α1, α2, α3)〉

〈pid, (α1, α
′
2)〉

〈pid, (α1, α
′
2, αideal)〉

〈env〉

〈adv, (β1, β2)〉

〈adv, (β1)〉

〈adv, (β1, β3)〉

〈adv, (β1, βideal)〉

F

S

(b) Substitution with Ideal Functionality

Figure 4: Substitution operation and the construction for the universal composability theorem – a sub-protocol is substituted

for an ideal functionality F and its sub-adversary by the simulator S used in the universal composability proof

simulator S such that for all PPT environments ENV

EXEC(π,A, ENV) ≈ EXEC(ρ,S, ENV)

We stress that typically, the (distribution of the) speed coef-

ficient of the realized protocol ρ depends on the (distribution

of the) speed coefficient of the realizing protocol π.

As the notion of secure realization is based on the notion

of indistinguishability, we get as a direct consequence the

transitivity and reflexivity of ≥t.

Corollary 2.

Π ≥t Π and Π1 ≥t Π2 ∧Π2 ≥t Π3 =⇒ Π1 ≥t Π3

B. Properties of Secure Realization

In order to simplify the analysis of complex protocols, tradi-

tional composability frameworks depend on central properties

of secure realization in their frameworks.

The most important design decisions with regard to showing

these properties include making ENV and A timeless as well

as having machines run with polynomially bounded speed

coefficients (see Section III).

Completeness of the dummy adversary. The definition of

secure realization quantifies over all possible adversaries for

the realizing protocol. In order to simplify this, we show that it

is sufficient to only consider the dummy adversary Ad, which

just forwards all messages (with timing information) between

environment and network parties. Furthermore, whenever Ad

is activated without a message, it turns into the (listen,∞)
state and waits until it receives a message.

Lemma 1 (Completeness of the dummy adversary). If there
exists an adversary S for a protocol Π such that for all
environments ENV,

EXEC(Π′,Ad, ENV) ≈ EXEC(Π,S, ENV)

then Π′ ≥t Π.

Composition theorem. The central building block of

simulation-based security is the notion of composability: the

composition of secure protocols is secure as well. Composition

of protocols here is defined by substituting a sub-protocol Π′

of the protocol Π used in the execution with another sub-

protocol Π′1.

We denote with Π \ x the protocol which contains all

protocol names that are reachable from the root protocol name

r of Π without going through a node with basename x.

Definition 14. Let Π′ = Π|x be a sub-protocol of Π and let
Π′1 be a protocol rooted at x. Π′1 is substitutable for Π′ if for
all y ∈ D(Π \ x) it holds that Π(y) = Π′1(y)

We denote the substitution of Π′ in Π as Π1 = Π[Π′/Π′1].
That is, Π1|x = Π′1 and Π1 \ x = Π \ x. Figure 4 illustrates

protocol substitution in our model.

Using this notion of substitution, we can show that the

composition of securely realized protocols yields securely

realized protocols in TUC as well.

Theorem 2. Let Π be a protocol and Π′ = Π|x a sub-protocol
of Π rooted at x. Suppose that Π′1 is a protocol rooted at x
such that Π′1 ≥t Π

′. Then

Π[Π′/Π′1] ≥t Π.

C. Ideal Functionalities

Typically, the notion of secure realization is used to prove

that a protocol Π is as secure as a simpler protocol π that

has some additional capabilities, such as a shared memory for

all machines running π. Protocols that have such additional

capabilities are called ideal functionalities.

An ideal functionality is a protocol, i.e., every party contains

a copy of the ideal functionality in its protocol tree, and all

of these copies share a common state (via shared memory).

We adopt the restriction from GNUC that ideal machines can

only communicate with ideal peers in the network and that

ideal machines upon a compromise-message do not reveal their

entire internal state to the network adversary A but can see

the compromise-message in plain, i.e., as a normal message.

Depending on the code of the ideal functionality protocol, the

ideal machine then, e.g., just marks a party as compromised

or sends sensitive information to the network adversary A.
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upon input (createcircuit,P = 〈P, P1, . . . , P�〉)
1: set Start to the current time
2: store P and C ← 〈P 〉
3: let t← d3
4: ExtendCircuit(P, C, t)

upon receiving a handle (P ′, P, h) from the network
1: if (P, cid , relay, (data,m)) = lookup(h)

and P is the OP for cid then
2: lookup the current t; let t′ ← d6
3: if prev(cid) = ⊥ then
4: output (received, cid ,m) at time t+ t′

upon input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P�〉,m)

1: if current time− Start(cid1) ≤ ttlC then
2: let t← d4
3: SendMessage(P1, cid1, relay, (data,m), t)
4: else
5: DestroyCircuit(C, cid1)
6: lookup the current time t
7: let t′ ← d5
8: output (destroyed, C,m) at time t+ t′

Figure 5: The ideal functionality FNOR (short FOR) for Machine P : Client

Previous work [23], [25], [26] models ideal functionalities

as a single, separate machine that has a direct connection to

the rest of the protocol via a so-called dummy nodes that

solely forwards messages between the ideal functionality and

the parent protocol.

In a time-sensitive setting, however, an ideal functionality

has to abstract several machines, each of which has their own

timer. It is therefore much more natural to consider distributed

ideal functionalities than having a central ideal functionality:

in the centralized setting the ideal functionality would have

to manage the timers of each machine it replaced (each of

which was in different parties in the network), as well as

manage the additional delay the dummy nodes create. In the

distributed setting, on the other hand, each instance of the

ideal functionality is a separate machine with its own timer,

allowing for a much simpler construction.

In the following, we therefore use distributed ideal function-

alities, in particular for our abstraction of the onion routing

protocol used in Tor (see Section V). A discussion about the

equivalence of distributed and centralized ideal functionalities

can be found in the extended version of this paper [45].

Shared memory. As mentioned above, we have to equip

ideal functionalities with additional capabilities in order to be

able to successfully abstract from more complex protocols. We

captures these capabilities in form of shared memory between

all ideal peers in the network. Access to shared memory is

granted via a special port through which parties can request

read/write actions on the memory.

Definition 15. A shared memory MEM is a machine without a
timer which, given the current state of the network, implements
time-sensitive data exchange outside of message passing. The
set of machines with access to MEM is denoted with MMEM.

MEM maintains every version D[T1,T2] of each data-set D
with respect to time (organizing them through time-intervals
[T1, T2] between changes) and on request at time T returns
the version D[Ti,Ti+1] of data set D with T ∈ [T1, Ti+1)

Note that, similar to the activation strategy presented in

the last section, shared memory does not have a timer, is

therefore outside of time. Technically this means that both

activation strategy as well as shared memory are part of the

execution, which is the only part of our network model that

is not time-sensitive. We however separate them from EXEC
as sub-machines for a more modular definition.

In the next section we present the application of TUC to

analyzing the onion routing protocol used in Tor.

V. APPLICATION

In this section we show how TUC can be used to analyze Tor

to provide formal anonymity guarantees, even against time-

sensitive adversaries. We first introduce the formalization of

the onion routing (OR) protocol [28] that is used in Tor,

which is an extension of an existing formalization presented

by Backes et al. [3]. We then provide an overview about

prominent timing-features of internet traffic that are used in

traffic analysis attacks on Tor and show how they are repre-

sented in TUC. We conclude by proposing a countermeasure

against website-fingerprinting attacks and by proving that this

countermeasure provides k-anonymity.

A. Overview of the Onion Routing Network Tor

In Tor messages are sent using a technique called onion

routing where the message is routed via three proxies, called

onion routers. On a regular basis (typically every 10 min-

utes), the client chooses the onion routers and establishes a

ephemeral shared key with each of the onion routers. The

routers together with the ephemeral keys form a so-called

circuit. The client then sends a layered encryptions of the

messages via the current circuit. The anonymity guarantee of

Tor follows from the fact that every onion router in a circuit

only knows its predecessor and its successor. However, as a

low-latency protocol, Tor is prone to all kinds of traffic pattern

attacks, such as traffic correlation or website fingerprinting.

Clients, entry nodes, exit nodes, and entry links. For

illustration, we partition the Tor network into clients nodes,

called onion proxies, entry nodes, i.e., nodes that are connected

to a client node, and exit nodes, i.e., nodes that communicate

with web servers outside of the Tor network. With such a

partitioning an entry link is an edge between a client node

and an entry node.
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B. Formalization of Onion Routing
We formalize the onion routing protocol that underlies Tor

as a protocol ΠOR in TUC, and we prove that it securely

realizes (see Definition 13) an ideal functionality FOR. This

ideal functionality abstracts from all cryptographic operations

in ΠOR, stores messages in a shared memory, and sends handles

for these messages through the network. Secure realization

implies that all traffic-related timing attacks, such as traffic cor-

relation or website fingerprinting, that are successful against

ΠOR, are successful against FOR as well. Thus, we use FOR for

proving anonymity guarantees for ΠOR.

Ideal onion routing FOR. The abstraction FOR, the protocol

ΠOR, and the realization proof tightly follow previous work [3].

In contrast to previous work, however, the construction for the

realization proof in TUC has to compensate for differences

in computation times of the real protocol ΠOR and the ideal

functionality FOR. We achieve this compensation by requiring

that the number of computation step each cryptographic oper-

ation in ΠOR causes is predictable3. Furthermore, we make use

of TUC’s delayed sending command, which allows the ideal

functionality to pre-compute the time at which ΠOR would have

sent a message and send its messages for exactly the same

time.4 We write our protocol specification reactively (using

upon). Technically, the protocol transitions into a (listen,∞)
state after each upon command is processed.

Due to space constraints, and since the formulation of

ΠOR, FOR and the realization proof closely follow previous

work, we refer to the full version of this paper for a detailed

description [45, Section 5]. For illustration purposes we solely

depict the client-subprotocol of FOR (See Figure 5).
The client expects two types of commands from the envi-

ronment, which in this case represents the operating system:

(send, C,m) and (createcircuit,P). Upon input (send, C,m),
FOR checks whether the time-to-live of the current circuit

is already exceeded. If not, this circuit is used for sending

the message m, calling the subroutine SendMessage . This

subroutine stores the message in the shared memory and

creates a handle that is then sent over the network to the

next onion router in the circuit. If the time-to-live of the

current circuit is exceeded, the circuit is destroyed, calling the

subroutine DestroyCircuit , which in turn uses SendMessage
to send destroy-messages to the onion routers in the circuit.

Upon input (createcircuit,P), FOR creates a new circuit.
Upon a receiving a handle (P ′, P, h) from the network, FOR

checks looks up the information for h in the shared memory

and checks whether P indeed created the circuit. If so, it

computes the delay d[6] (for being synchronized with ΠOR)

and outputs the message m and the circuit id cid .
We show that ΠOR securely realizes FOR in a setting with

secure channels, modeled as FSCS, and a public-key infrastruc-

ture, modeled as FNREG for some delay vector v (which depends

3Formally, our abstraction FOR is thereby parametric in the cryptographic
implementation. Since we use our ideal functionality for the analysis of a
concrete protocol, we do not consider this limitation a severe restriction.

4We stress that at this point, we need that the protocol code can depend on
the speed coefficient.

on the speed coefficients of FOR and ΠOR) that quantifies

how long the ideal functionality has to wait to produce an

indistinguishable input/output pattern (from ΠOR). The proof

tightly follows previous work [3].

Theorem 3. ΠOR securely realizes FOR in the FSCS,FNREG−
hybrid model for some delay vector v.

Protocol interface ΠWOR. The protocol ΠOR (and thus also

FOR) model the basic onion routing protocol for single mes-

sage blocks. In order to have a more convenient protocol

interface, we introduce a wrapper ΠWOR (see Figure 6) that

performs the circuit construction, splits messages into message

blocks and sends these message blocks over a subprotocol (in

our case ΠOR or FOR), and re-assembles the messages blocks

received from the subprotocol. For the sake of brevity, we

omit commands, such as setup and destroyed, that are merely

forwarded to the subprotocol.

ΠWOR uses a uniform path selection algorithm

PathSelection; however, note that by adjusting the

distribution used in PathSelection, any path selection

algorithm can be utilized.

Re-assembling and splitting in ΠWOR. The stateful routine

Reassemble(m, s) expects as input a message block m (and

a state s) and outputs, together with a new state s′, either a

dummy message ready, if a complete message could not be

reassembled yet, or a re-assembled message m′ �= ready, if

m and the state s allowed re-assembling a complete message.

The current state of Reassemble inside an instance of ΠWOR

is saved in the variable s. If looking up s fails, we assign the

empty state, i.e., the empty string, to s.

Dual to the re-assembling routine, ΠWOR contains the routine

Split(m), which splits a message m into message blocks mi

of length blockln and potentially pads the last block.

As a corollary of Theorem 2, we conclude that it suffices

to analyze ΠWORFOR
instead of ΠWORΠOR

.

Corollary 3. ΠWORΠOR
securely realizes ΠWORFOR

in the
FSCS,FNREG− hybrid model for some delay vector v.

C. Timing Attacks in TUC

While previous frameworks only allowed modeling time-

independent traffic features such as packets-counts or

direction-changes, the communication model in TUC allows

us to capture common timing features of traffic such as inter–

packet delay, throughput and round–trip–times. Subsequently,

we briefly discuss how these features are represented in TUC

and how they can be exploited by the network adversary. Our

analysis is inspired by the adaptive extension of the AnoA

framework [47]. Due to space constraints, we use a simplified

version of the anonymity notions presented therein.

1) The Set-Up: We consider the class of environments that

consist of two sub-machines, an environment adversary AENV

and the challenger Ch. The environment adversary AENV is

connected to the network adversary and the challenger is

connected to the users and defines the security game. In

the following, we will use the term adversary to denote the
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upon a message (received, (m, cid)) from ρ

1: lookup the state s of Reassemble for sid′

2: call (m′, s′)← Reassemble(m, s); store s′ for sid′

3: if ready �= m′ then
4: send (received,m′) to parent

upon a message (exit, (m, sid)) from ρ

1: lookup the state s of Reassemble for sid′

2: call (m′, s′)← Reassemble(m, s); store s′ for sid′

3: if ready �= m′ = (m′′, sid′′, a) and a is a server then
4: send (exit, (m′′, sid′′, a), sid) to parent

upon input (response, (sid,m)) from parent
1: m1, . . . ,mq := Split(m) (for q = �|m|/blockln�)
2: for all i ∈ {1, . . . , q} do
3: send message (response, sid,mi) to ρ

upon input (send,m) from parent
1: P ← PathSelection(Pu)
2: if if there is no open circuit cid then
3: send message (createcircuit,P) to Pu

4: wait for response (created, C)
5: m1, . . . ,mq := Split(m) (for q = �|m|/blockln�)
6: for all i ∈ {1, . . . , q} do
7: send message (send, C,mi) to ρ

Figure 6: Wrapper ΠWORρ for client Pu and a sub-protocol ρ

collaboration of the environment adversary and the network

adversary. By the completeness of the dummy adversary

(Lemma 1) it suffices to consider the network dummy ad-

versary and the environment adversary.

Each party consists of a the ΠWOR protocol with the onion

routing protocol as a child. By Corollary 3, we directly

consider the ideal functionality FOR instead of the onion

routing protocol ΠOR (FOR is depicted in Figure 5).

This set-up is exemplified in Figure 7. It depicts three

instances of FOR together with the wrapper ΠWOR, the shared

memory MEM used by FOR, a challenger Ch, the network

adversary and the environment adversary AENV.

Sender anonymity challenger SACh. For illustrating at-

tacks, we present a guessing-based sender anonymity game via

a sender anonymity challenger SACh (which instantiates Ch
in Figure 7). In this sender anonymity game the environment

adversary AENV has to determine the sender of a specific

message-stream in the presence of noise, i.e., other message-

streams. AENV has to link at least one session to the correct

sender address. Recall that AENV can observe all compromised

network links L though the dummy adversary.

We model a scenario in which users are randomly assigned

to addresses, and (in the case of the sender anonymity game)

the adversary has to guess which user sits at which address.

An address in our model is represented by a party, and a user

is represented by a user model. For each server S ∈ S :=
{S1, . . . , Sl}, there is a user model UMS that reactively creates

messages for a (potentially interactive) communication with a

server S. The user model in particular also decides, when a

specific message is sent.

Technically, a user model UMS is a randomized PPT
machine that upon a server message r outputs a sequence

((msg1, t1), . . . , (msga, ta)), consisting of a client message

msg i and the time ti at which msg i shall be sent. Initially, it

expects a distinguished message fresh to start a new session.

The sender anonymity challenger SACh allows the adver-

sary to initially register a user model for every server. Then,

SACh randomly assigns parties P1, . . . , Pl (i.e., addresses) to

servers S1, . . . , Sl (i.e., to user models) and internally runs the

user models UMS . SACh forwards each message msg i from

UMS as a send-command from P to S at time ti and forwards

any response r from S to P to the user model UMS as input.

Moreover, for the analysis of sender anonymity, we can as-

sume that all servers are compromised. Hence, SACh forwards

all messages from the servers to the environment adversary

AENV. Finally, upon an input (guess, (P ′, S′)), SACh checks

whether the user u is assigned to the user model UMS for the

server S. If so, SACh outputs 1; otherwise it outputs 0.

Onion routers Oi. In addition to the regular users, i.e.,

protocol parties that are controlled through user models, we

also assume protocol parties O1, . . . , Ov that run the same

protocol code but only serve as onion routers. We assume that

users and onion routers are distinct, i.e., ∀i, j.Oi �= Pj .

2) Mounting Attacks that use Timing Features: In TUC

timing-based traffic features can be measured by the adversary.

Example 2 details how timing features can be measured

in TUC. Subsequently, we discuss how timing based traffic

analysis attacks from the literature can be mounted using these

features [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],

[19], [20].

Example 2: Observing timing features in TUC. We examine

how the time at which a message is sent from a party P cor-

relates to P ’s speed coefficient cP . For simplicity, we assume

that party P just created a new circuit before receiving the

message from SACh. We further assume that both machines

inside P have the same speed coefficient cP .

1: SACh sends (send,m) to party P at time T
2: ΠWOR in P receives (send,m) at T ′ = k

cP
≥ T , where T ′

is the first time after T where ΠWOR is in the listen state

3: Let n be the number of steps needed to split m into q :=
�|m| /blockln� packets m1, . . . ,mq .

ΠWOR sends mi at time Ti = T ′ + n+i
cP

to FOR

4: Let n′ be the time that FOR needs to send a message and

d4 the delay for being synchronized with ΠOR.
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Figure 7: The Attack Scenario

FOR forwards mi at time T ′ + d4 + n+1+i·n′
cP

=: T ′ +
g(cP , i), since messages m2, . . . ,mq arrive at FOR before

n′/cP time has passed.

The traffic pattern a user model UMS generates is the stream

of message blocks that are generated if, for the sequence of

messages ((msg1, t1), . . . , (msga, ta)), the message msg i is

sent at the instructed time ti. Thus, the corresponding traffic

pattern is preserved when ΠWORFOR
sends its message blocks.

If the network links through which the messages, or in the

case of FOR the message handles, are sent are compromised,

the network adversary A learns the time at which the messages

cross the network. From this A can determine different timing

features of the traffic, e.g, he can determine the difference

g(cP , i + 1) − g(cP , i) between the two messages mi and

mi+1, or A can learn at which time how much throughput,

i.e., how many message blocks per time, passed through the

link. Thus, it learns the traffic patterns of the message stream

generated by the user model.

Similarly to the function g, which estimates the delay

created by creating a stream of cells from a message mi,

we can also determine a function h for the delay created by

relaying a message through a onion router. This function h
solely depends on the speed of the onion router and i.

Consider a circuit with the onion routers O1, O2, O3. The

time at which a message mi is sent from an exit link O over

the network to the server is g(cP , i) + h(cO1 , i) + h(cO2 , i) +
h(cO3 , i) + d + w for some network delay d that is caused

by other messages that the onion routers have to concurrently

process and, optionally, for some watermarking delay w that

the adversary deliberately introduces for recognizing traffic (as

studied in previous work [10], [11], [12], [20]).

Let |L| be the number of compromised links and M be the

number of total links between the protocol parties. Then, the

probability that the entry link from P to the entry node, i.e.,

to the first onion router, is compromised is |L|/M . This is

therefore the probability with which A observes the links that

belong to the same connection and can then try to correlate

the traffic. The success of this correlation however depends on

the methods used by A.

For a passive network adversary, which does not introduce

any watermarking delay, we get the following: if the traffic

patterns of all user models are sufficiently well distinguishable

and the network delay is sufficiently small (i.e., there is not

much traffic on the onion routing network), then the traffic

pattern of a user model is recognizable, i.e., the traffic can be

correlated, for an adversary in TUC. For an active adversary,

which does introduce watermarking delays, it is possible to

compensate the network delay, and such an adversary can even

recognize a stream if the user models produce exactly the same

traffic patterns. Thus, an active adversary can recognize a user

model as soon as it controls the entry, i.e., with more than

|L|/M probability.5 

Inter-packet delay. Inter-packet delay is the time difference

in the time stamps of two consecutive packets sent through

a connection. Example 2 illustrates how the time distance

ti+1− ti between two messages ((mi, ti), (mi+1, ti+1)) from

the user model is preserved in the sequence of message blocks

that ΠWORFOR
produces. Moreover, it illustrates how a delay

g(cP , i+1)−g(cP , i) between two message blocks that belong

to the same message is produced and that this delay depends

on the speed coefficient of the party. These delays reflect the

inter-packet delays used in traffic analysis attacks from the

literature. We are aware that we abstract from the delays that,

in the real world, are produced by low-level network protocols,

such as TCP and IP and from machine specific hardware

delays, e.g., induced by a machine’s network card. In principle,

however, TUC and FOR allow for fine-grained modeling of

these timing features by introducing the respective protocols

as sub-protocols of the onion routing protocol.

As discussed in Example 2, if the network delay is small

and the traffic patterns of the user models are distinguishable,

the inter-packet delays in the traffic pattern of a user model

can be correlated even for a passive adversary.

Traffic watermarking attack. In a traffic watermarking

attack, the adversary deliberately causes a delay pattern, called

a watermark, for a packet stream, e.g., at the entry link, and

measures at the other links, e.g., at exit links, whether it

recognizes such a watermarked message stream. We illustrated

in Example 2 how such a traffic watermarking attack could be

modeled in TUC.

Similar to recognizing watermarks and inter-packet delays,

the adversary can measure other timing features such as

throughput and round-trip-times in the network. For round-trip

times, the speed coefficients of the onion routers potentially

give a unique fingerprint if they are sufficiently different. For

simplicity, we omit network latency on links. Network latency

5For simplicity, we give a very coarse approximation of the probability
that the adversary control the entry link. The adversary could additionally
compromise onion routers and thereby increase its chance to control the entry
point of a circuit.
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Exit node: upon (exit, ((m′′, sid′′, a), sid′)) from ρ

1: if bunsid′′ = ⊥ ∧ a is a server then
2: lookup and store current time in reqStart(sid′)
3: store ((m′′, sid′, a), sid′) in bunsid′′
4: while ∃ request(loc, a) in bunsid′′ do
5: remove request(loc, a) from bunsid′′

6: send (loc, (a, sid′)) over the network
7: store the response res in bunsid′′
8: lookup the smallest bucket size n′ ≥ |bunsid′′ | in pageBuck
9: pad bunsid′′ to a size of n′ and store it in m′

10: let t← tbuf + reqStart(sid′)
11: send (response, (sid′,m′)) to ρ at time t

Figure 8: The protocol WFCρ for party pid, where sid is its session ID

can however be modeled by refining the network topology

NET in the execution EXEC.

Modeling website-fingerprinting attacks. A website finger-

printing attack assumes that the adversary up-front possesses

a list of fingerprints for each server, which characterizes

connections to these servers based on traffic features, e.g.,

direction changes in traffic, throughput, round-trip-times and

inter-packet-delays. A then only needs to listen to the entry

links from users to the onion routing network and collect the

messages (together with time-stamps) that go through this

entry link. After collecting sufficiently many messages, he

can then match the fingerprints he possesses to the traffic he

intercepted. In the literature [30], [31], [32] several successful

website-fingerprinting attacks are known.

While previous frameworks already allowed fingerprinting

websites based on time-insensitive traffic features, such as

overall size of traffic and direction changes in traffic, an adver-

sary in TUC can utilize timing features of traffic for website-

fingerprinting as well. In turn, proving the absence of attacks

in TUC excludes the entire family of attacks that use time-

sensitive traffic features, such as throughput in time and inter-

packet delay. In the next section we propose a countermeasure

against the class of website fingerprinting attacks against the

onion routing protocol and prove this countermeasure to be

secure.

D. Analyzing a Countermeasure against Website Fingerprint-
ing

As a case study, we leverage our time-sensitive framework

and our Tor abstraction to analyze a simple countermeasure

against website fingerprinting and to prove it secure. The

countermeasure achieves k-recipient anonymity for web pages

without dynamic requests, such as Ajax.

The countermeasure protocol, called WFC, is plugged on

top of the Tor protocol. At exit nodes, WFC performs all web

page requests until the web page is fully loaded and returns

the entire web page at once to the user. In order to remove size

features of web pages, the response packet-stream are padded

to a common denominator for all web pages. WFC additionally

waits until a time buffer tbuf has passed in order to remove

traffic-related timing features.

In order to improve performance, the countermeasure uses

buckets for common web page sizes and pads the web pages

up to the next larger bucket (instead of padding to a common

size of all web pages). The data structure pageBuck contains

a bucket for each target web page size and upon input of a

size n, pageBuck(n) returns the list of web pages that have

size n or are padded to size n. The countermeasure protocol

WFC is depicted in Figure 8.

We next describe the k-recipient anonymity challenger.

1) The k-recipient anonymity challenger RACh: We con-

sider following notion of recipient anonymity: an adversary

that control all entry links of a party P , e.g., an ISP-level

adversary, should not be able to determine the web pages that

the party P visits. The set-up for recipient anonymity is exactly

as for the sender anonymity game (See Section V-C1) except

that the challenger Ch is replaced by the following k-recipient

anonymity challenger RACh. This challenger RACh initially

allows the environment adversary to define the page-buckets

used in the game, but requires that each bucket in pageBuck
contains exactly k web pages.

In contrast to the sender anonymity game, RACh does

not allow the environment adversary to control the servers.

Instead, we assume that the adversary solely controls all links

connected to the parties representing users (i.e., controls entry

links to the onion routing network).

In order to strengthen the adversary, we allow it to choose

the time at which a user sends a web page request to a

server. Similar to the sender anonymity game the environment

adversary has to guess the correct server/request pair.

In the following, we describe the code of the web servers.

Web pages. For our purposes it suffices to represent web

pages as lists of elements, which are associated with locations
on the web server and are returned upon requests for these

locations. Elements are arbitrary bit-strings m that are marked

as elements; we denote them as element(m).

A page request consists of a pair of party ID a and a

location loc (represented by a bit-string), which we denote

as request(loc, a). The pair (loc, a) can be understood as

the url that is requested from the user, where a denotes the

domain and loc denotes the path to a specific web page on the

domain a. Note that the countermeasure WFC only provides

recipient anonymity guarantees for web pages that do not

dynamically load content upon user inputs, e.g., by using

JavaScript techniques such as Ajax.
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upon (register-webpages, pageBuck) from AENV

1: for all sizes n do
2: if |pageBuck(n)| = k then
3: for all (a, loc, pg) ∈ pageBuck(n) do
4: if (a, loc) is unregistered and loc �= challenge then
5: send (register, loc, pg) to Πserver at party a
6: else
7: return error

upon (challenge, n) from AENV

1: draw a random j ∈ {1, . . . , k}
2: let (aj , locj , pgj)← pageBuck(n)
3: (ach, locch)← (aj , locj)

upon (send, (a, loc)) from AENV

1: in the first call: send setup to ρ; wait for ready
2: if loc = challenge then (a, loc)← (ach, locch)
3: send (a, loc) to P

upon (guess, (a, loc)) from the AENV

1: if (a, loc) = (ach, locch) then output (guess, 1)
2: else (guess, 0)

Figure 9: k-recipient anonymity challenger: RAChk

Server protocol Πserver. Web servers are modeled as a

protocol Πserver, which can be thought of an abstraction of

server software, e.g., Apache HTTP Server.6

The server protocol can register several locations on the

machine it runs on. Formally, upon a message of the form

(register, loc, pg) from its parent, Πserver registers a web page

pg at the location loc. Upon a network message (loc, (a, sid′)),
the server then responds with the web page pg .

The k-recipient anonymity for WFC follows from the com-

position theorem (Theorem 2), the realization theorem (Theo-

rem 3), the definition of FOR and from the fact that all web-

pages in the same bucket are padded to the same size and that

WFC removes timing features from the traffic by introducing

artificial delays.

Lemma 2. Let EXEC′ be defined as EXEC except that
EXEC′ outputs the bit b from the first output of the form
(guess, b) by RACh. Let 〈RACh,AENV〉 denote the machine
that contains RACh and AENV, as described in Section V-C1.
Let 〈WFCΠWORΠOR

,Πserver〉 denote the combined protocol with
the countermeasure along with the wrapper and the onion
routing protocol and the server protocol.

For any PPT environment adversary AENV and a dummy
network adversary Ad that only compromises entry links or
entry nodes , for sufficiently large tbuf and η and a negligible
function μ we have

Pr[EXEC′η(〈WFCΠWORΠOR
,Πserver〉,Ad, 〈RACh,AENV〉) = 1]

≤ 1/k + μ(η)

6Technically, Πserver is the “server” role in the WFC protocol; otherwise
they cannot be peers.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented TUC, a formal framework for the

analysis of complex mutil-party protocols that includes a com-

prehensive notion of time, which is suitable for and tailored

to the demands of analyzing AC protocols. Our framework

provides all properties that allow for strong compositionality:

a universal composability result, and the completeness of the

dummy adversary. We apply this framework to the widely

deployed Tor network and showed that a previous abstraction

of the onion routing protocol [3] can be suitably extended

to account for timing and that it is realized in TUC by a

similarly extended onion routing protocol. We then leveraged

this abstraction and our framework to formalize, as a case

study, a simple countermeasure against website fingerprinting

attacks and proved this countermeasure secure.

An interesting direction for future work is the evalua-

tion of more elaborate countermeasures against known time-

sensitive attacks, in particular traffic correlation attacks. Since

our framework comprehensively models timing attacks, every

verification of the abstraction for onion routing yields security

guarantees for the actual OR protocol.

For future work there are scenarios in which it is crucial

to characterize the network topology in a more detailed

way. Possible extensions include adding the latency and the

throughput of a link, allowing not only single links between

two parties but several links (a multigraph topology), and

including weights to each link to model routing preferences.

Such extensions could for example be used for the analysis

of denial-of-service resistance mechanisms or for the for the

analysis of more sophisticated path selection algorithms for

onion routing or analyzing denial of service attacks.

There is a line of work on automated verification techniques

for timed automata. It would be interesting to extend existing

models based on timed automata to better capture real world

networks and adversaries, and explore in which cases timed

automata are a sound abstraction for TUC protocols. Such a re-

sult would allow obtaining strong guarantees, i.e., against com-

putational adversaries that can perform time-measurements,

from established automated verification tools [40], [41], [39],

[44], [43], [42].

Moreover, there is an information theoretic analysis of web

traffic which uses an abstraction of web-traffic [48]. It would

be interesting to utilize TUC to prove that their abstraction

is sound, i.e., that all attacks in TUC are reflected in their

abstraction.
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