
Stateful Declassification Policies for Event-Driven Programs

Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens
iMinds-DistriNet, KU Leuven

{firstname.lastname}@cs.kuleuven.be

Tamara Rezk
INRIA

tamara.rezk@inria.fr

Abstract—We propose a novel mechanism for enforcing
information flow policies with support for declassification
on event-driven programs. Declassification policies consist of
two functions. First, a projection function specifies for each
confidential event what information in the event can be
declassified directly. This generalizes the traditional security
labelling of inputs. Second, a stateful release function specifies
the aggregate information about all confidential events seen so
far that can be declassified.

We provide evidence that such declassification policies are
useful in the context of JavaScript web applications. An
enforcement mechanism for our policies is presented and its
soundness and precision is proven. Finally, we give evidence of
practicality by implementing and evaluating the mechanism in
a browser.

I. INTRODUCTION

Browsers commonly run untrusted JavaScript code. These
scripts can handle user interface events such as key presses
and mouse clicks, and network events such as the arrival of
HTTP responses. By handling these events, scripts can inter-
act with the user and one or more services on the network.
Since scripts have, and need, access to both user information
and to remote HTTP servers, they are commonly used to leak
private information to untrusted network servers [1].

Listing 1 shows an example that implements a simple key
logger in JavaScript. It installs an event handler to monitor
key presses, and leaks every keystroke to hacker.com. It
does this by encoding the character code of the key in an
image URL and asking the browser to fetch that URL.

Researchers [2], [3], [4] have realized that mechanisms for
information flow security are a promising countermeasure
for such curious or malicious scripts, since such mechanisms
allow the script to have access to private information but at
the same time prevent it from leaking that information to
untrusted servers. As a consequence, impressive progress has
been made in dynamic mechanisms supporting information
flow security for event-driven programs such as JavaScript
web applications [5], [2], [3], [4]. Unfortunately, this strict
information flow control breaks some functionality that is
important for the web today. Consider the following simple
variant of web analytics: a web-based application that wants
to analyse which keyboard shortcuts are commonly used.
It is common practice on the web to include third party
analytics scripts to gather such information [6]. For this use
case, there is no need to know in what order keys were

Listing 1: Keylogger

1 var url = ’http://hacker.com/?=’;
2 window.onkeypress = function(e) {
3 var leak = e.charCode;
4 new Image().src = url + leak; }

Listing 2: Shortkey usage

1 var d = 0, url = ’http://analytic.com/?=’;
2 window.onkeypress = function(e) {
3 if (e.charCode == 101) d = 1; }
4 window.onunload = function() {
5 $.ajax(url + d); }

pressed nor how many times a particular key was pressed,
only whether a certain key was pressed at least once during
the interaction with the web application. Releasing such
limited information poses negligible security risks, and can
be considered acceptable and even useful in many situations.
Listing 2 shows the implementation of a script that sends this
minimal amount of information to analytic.com. This is
a simple example of a very broad set of practices on the web
today, where third party web analytics companies monitor
application usage and gather statistics (such as mouse heat
maps or the geographical spread of users).

Another example where strict information flow control
breaks functionality is when the labelling of incoming infor-
mation is too coarse grained. For instance, when cookies are
marked as confidential to defend against cross-site scripting
attacks [7], also non-sensitive information stored in cookies
(such as the preferred language) is no longer accessible to
low observers, and this can break script functionality.

Existing information flow secure browsers such as Flow-
Fox [3] do not distinguish between the malicious key logger
from Listing 1 and the useful benign script from Listing 2:
both scripts leak private information (key presses) to network
servers. They also do not support a fine grained approach
to label incoming event information: events are either high
or low. What is needed is some form of declassification: a
policy should specify what kind of aggregate, derived, or
partial information is safe to release to low observers.

This paper proposes a specific type of stateful declassifi-
cation policies for event-driven programs such as JavaScript
applications, and develops an enforcement mechanism for

2014 IEEE 27th Computer Security Foundations Symposium

© 2014, Mathy Vanhoef. Under license to IEEE.

DOI 10.1109/CSF.2014.28

293

these policies on top of the existing secure multi-execution
(SME) mechanism [8], [9]. The main contributions of this
paper are:

∙ We propose a notion of declassification policy for
event-driven programs that can handle web analytics
style declassifications.

∙ We extend SME to enforce such declassification poli-
cies, develop a formal model of the essence of our
approach, and prove its security and precision. The
formal model has been mechanized in Redex [10] and
is available for download [11].

∙ We implement the mechanism as an extension to Flow-
Fox [3] and discuss its evaluation for performance and
usefulness. Our implementation is also available for
download [11].

The remainder of this paper is organized as follows. Sec-
tion II specifies a simple formal event-driven programming
language. Section III introduces stateful declassification
policies, and Section IV develops an enforcement mecha-
nism with security and precision proofs. Section V discusses
our implementation of the mechanism for JavaScript in a
web browser, and in Section VI we discuss limitations and
strengths of our mechanism. Finally, Sections VII and VIII
discuss related work and conclude.

II. MODEL LANGUAGE

In this section we introduce a simple formal model
language and define traditional information flow policies.

A. Syntax and semantics

Our formal language models the essence of an event-
driven programming language [12]. The syntax of our model
language is defined in Figure 1. The language supports five
types of events: Load, MouseClick, KeyPress, GpsUpdate
and Unload. Additionally it has two output channels: Send 𝑛
outputs the integer 𝑛 to the network, and Display 𝑛 outputs
𝑛 to the user. The set of event types and output channels
are denoted by, respectively, ev and out . A program 𝑝
consists of a sequence of handler declarations ℎ, where
each handler declaration defines a command that is to be
run on occurrence of a specific event type. Events carry
a single integer value containing event information, and
the handler command can refer to that value by means of
the formal parameter 𝑥. All handlers share a single store
mapping global variables 𝑔 to integers. Commands 𝑐 and
expressions 𝑒 are completely standard. To avoid confusion
between formal parameters 𝑥 and global variables 𝑔, we
make the simple assumption that a formal parameter 𝑥 is
always the identifier x. Since event handlers only bind one
parameter and since nested bindings are not possible in our
language, this is sufficient. Listing 3 shows the shortcut key
monitoring example (Listing 2) in our model language.

The semantics of the model language is straightforward.
A program configuration (𝜇, 𝑐) consists of a store 𝜇, and

Listing 3: Monitoring if a shortkey has been pressed

1 on KeyPress(x) { if x = 101 then
2 { keyPressed = 1 } else { skip } }
3 on Unload(x) { Send(keyPressed) }

the currently executing command 𝑐. The program 𝑝 is clear
from the context and is not explicitly included.

We use the following semantic judgements:
∙ 𝜇 ⊢ 𝑒 ⇓ 𝑛 says that the ground expression 𝑒 evaluates

under the variable store 𝜇 to the integer 𝑛. A ground
expression does not contain any parameters 𝑥, but it can
contain global variables 𝑔. A store 𝜇 is a mapping from
global variable names 𝑔 to integers 𝑛. The definition
of this judgement is completely standard and hence
omitted.

∙ (𝜇, 𝑐)
𝛼→ (𝜇′, 𝑐′) says that program configuration (𝜇, 𝑐)

can step to (𝜇′, 𝑐′) by performing transition 𝛼. A
transition 𝛼 can be a program action 𝑜, which can be
an observable output 𝑜𝑢𝑡 𝑛 (for instance Send 𝑛) or an
unobservable (silent) action denoted by ⋅. A transition
𝛼 can also be an input action 𝑖, i.e. the occurrence of
a new event 𝑒𝑣 𝑛 (for instance KeyPress 𝑛).
The definition of this judgment is given in Figure 2,
where the function lookup(𝑝, ev) looks up the handler
for ev in the program 𝑝. If no handler for ev is present
it returns skip. We use the notation 𝜇[𝑔 �→ 𝑛] for an
update of the store 𝜇 that sets global variable 𝑔 to 𝑛,
and the notation 𝑐[𝑥← 𝑛] for the substitution of integer
𝑛 for formal parameter 𝑥 in command 𝑐.

ev ::= GpsUpdate ∣ MouseClick
∣ KeyPress ∣ Load ∣ Unload

out ::= Send ∣ Display
𝑝 ::= ℎ∗
ℎ ::= on ev(𝑥) {𝑐}
𝑐 ::= skip

∣ 𝑐; 𝑐
∣ 𝑔 := 𝑒
∣ if 𝑒 then {𝑐1} else {𝑐2}
∣ while 𝑒 {𝑐}
∣ out(𝑒)

𝑒 ::= 𝑥 ∣ 𝑛 ∣ 𝑔 ∣ 𝑒⊙ 𝑒
⊙ ::= + ∣ − ∣ = ∣ <
𝑜 ::= out 𝑛 ∣ ⋅
𝑖 ::= ev 𝑛
𝛼 ::= 𝑜 ∣ 𝑖

Figure 1: Syntax

The initial state of a program is (𝜇0, skip) where 𝜇0 maps
every global variable to the integer 0. A program state is pas-
sive if it has the form (𝜇, skip). It is straightforward to prove

294

(𝜇, skip; 𝑐)
⋅→ (𝜇, 𝑐)

(1)

(𝜇, 𝑐1)
𝑜→ (𝜇′, 𝑐′1)

(𝜇, 𝑐1; 𝑐2)
𝑜→ (𝜇′, 𝑐′1; 𝑐2)

(2)

𝜇 ⊢ 𝑒 ⇓ 𝑛

(𝜇, 𝑔 := 𝑒)
⋅→ (𝜇[𝑔 �→ 𝑛], skip)

(3)

𝑐 = if 𝑒 then {𝑐1} else {𝑐2} 𝜇 ⊢ 𝑒 ⇓ 𝑛 𝑛 ∕= 0

(𝜇, 𝑐)
⋅→ (𝜇, 𝑐1)

(4)

𝑐 = if 𝑒 then {𝑐1} else {𝑐2} 𝜇 ⊢ 𝑒 ⇓ 0

(𝜇, 𝑐)
⋅→ (𝜇, 𝑐2)

(5)

𝑐 = while 𝑒 {𝑐loop} 𝜇 ⊢ 𝑒 ⇓ 0

(𝜇, 𝑐)
⋅→ (𝜇, skip)

(6)

𝑐 = while 𝑒 {𝑐loop} 𝜇 ⊢ 𝑒 ⇓ 𝑛 𝑛 ∕= 0

(𝜇, 𝑐)
⋅→ (𝜇, 𝑐loop; 𝑐)

(7)

𝜇 ⊢ 𝑒 ⇓ 𝑛

(𝜇, out(𝑒))
out 𝑛→ (𝜇, skip)

(8)

lookup(𝑝, 𝑒𝑣) = 𝑐

(𝜇, skip)
𝑒𝑣 𝑛→ (𝜇, 𝑐[𝑥← 𝑛])

(9)

Figure 2: Small-step semantics.

that programs that are not in a passive state can always make
a deterministic step. The only non-deterministic transitions
are transitions that consume a new event, and these are only
possible from a passive state. Since 𝜇 is a total mapping from
global variable names to integers, the only way a program
could get stuck is by reading a formal parameter 𝑥 during
expression evaluation. However, because of our assumption
that there is only a single parameter name x, and because
on instantiation of a handler this single name always gets
substituted, this case can not occur. (Alternatively, we could
define expression evaluation to handle the case of reading
from an unbound parameter by returning 0.)

An execution of a program is a sequence of transitions 𝛼
starting from the initial state:

(𝜇0, skip)
𝛼0→ (𝜇1, 𝑐1)

𝛼1→ (𝜇2, 𝑐2) ⋅ ⋅ ⋅
We say an execution is event-complete if it ends in a

passive state: this means that all the input events the program
has received have been fully handled, and that the only way
to further extend the execution is by giving it a new input
event.

Given a (finite) list of input events 𝐼 , we say that
𝑝(𝐼)→∗ 𝑂 iff there exists an event-complete execution 𝛼
of 𝑝 where 𝐼 is exactly the list of input events occurring
in 𝛼 and 𝑂 is the list of non-silent outputs occurring in 𝛼.
This defines a partial function from lists of inputs to lists of

outputs. It is a function because the only non-determinism in
programs is input non-determinism. The function is partial
because for some sequences of inputs the program may go
into an infinite loop, and hence there is no event-complete
execution (the program never reaches a passive state).

For the purposes of this paper, we limit our attention to
event-complete executions, and we ignore programs that go
into an infinite loop on handling one specific event (i.e.
scripts can run arbitrary long while handling many events,
but the handling of a single event is typically short). This
is a realistic assumption for web scripts: because JavaScript
is single-threaded, event-handlers that do not complete very
quickly will “freeze” the browser, and most browsers will
detect it if an event handler runs for more than a few seconds
and offer the user the option to terminate the script. We
discuss in Section VI how this assumption could be removed.

As an example of an event-complete execution, let 𝑝 be
the program from Listing 3 and let 𝐼 = [KeyPress 101,
KeyPress 102, Unload 0], then 𝑝(𝐼) →∗ 𝑂 with output list
𝑂 = [Send 1].

B. Noninterference

An information flow policy maps event types 𝑒𝑣 and
output channels 𝑜𝑢𝑡 to labels chosen from a lattice ℒ of
security levels. To keep definitions simple we specialize all
definitions in this paper to the case of a two-element lattice
with 𝐻 (high, confidential) ordered above 𝐿 (low, public).
A policy then is just a function 𝜎 : ev ∪ out → {𝐿,𝐻}. We
overload 𝜎 to also apply to events and outputs. For instance
if 𝜎(KeyPress) = 𝐿, we also define 𝜎(KeyPress 𝑛) = 𝐿, and
similarly for output channels 𝑜𝑢𝑡 and corresponding outputs
𝑜𝑢𝑡 𝑛.

Definition 1 (𝐿-similarity): Two lists 𝑆 and 𝑆′ are
𝐿-similar, denoted by 𝑆 ≈𝐿 𝑆′, iff they are equal after
removing all elements 𝑠 with 𝜎(𝑠) = 𝐻 .

Definition 2: A program 𝑝 is noninterferent iff for all lists
𝐼, 𝐼 ′, 𝑂,𝑂′ such that 𝑝(𝐼)→∗ 𝑂 and 𝑝(𝐼 ′)→∗ 𝑂′ it holds
that 𝐼 ≈𝐿 𝐼 ′ =⇒ 𝑂 ≈𝐿 𝑂′.

This definition coincides with Bohannon et al.’s definition
of ID-security [12], for the case of finite streams of events.
The definition is termination-insensitive: for an input list 𝐼
for which there is no event-complete execution (i.e. the
program diverges on handling one of the events in 𝐼), there
is no 𝑂 such that 𝑝(𝐼)→∗ 𝑂, and hence the definition
does not impose any restrictions on the handling of such 𝐼 .
Because we only care about event-complete executions, this
limitation is not important. Nevertheless, our enforcement
mechanism also closes information leaks in such diverging
event-handlers as we discuss in Section VI - even if they
are not covered by our definition of non-interference.

If we label KeyPress as 𝐻 and Unload and Send as 𝐿,
then the program 𝑝 in Listing 3 is not noninterferent, as:

𝑝([KeyPress 101, KeyPress 102, Unload 0])→∗ Send 1

𝑝([KeyPress 103, KeyPress 102, Unload 0])→∗ Send 0

295

and hence the program maps two 𝐿-similar inputs to outputs
that are not 𝐿-similar. Obviously, the key logger program
from Listing 1 (when rendered in our model language) would
also be interferent.

Note that this traditional definition of noninterference
cannot separate programs like the key logger from programs
like the shortcut key monitor.

III. DECLASSIFICATION POLICIES

In this section we design information flow policies sup-
porting declassification for event-driven programs. They
should be expressive enough to support for instance the
following use cases:

1) Declassification of approximate information. A pro-
totypical example is geolocation information: scripts
may need access to precise GPS coordinates of a mo-
bile browser, for instance to graphically display one’s
location on a map. Sending these precise coordinates
to a map server is a potential violation of privacy, but
sending approximate coordinates still allows a script to
download the correct map. Also, even with approximate
location information, web analytics services can still
compute geographical spread of users.

2) Declassification of aggregate or statistical informa-
tion. The shortcut key example in Listing 2 in the
Introduction provides a prototypical example: we want
to be able to set policies that make this program secure,
yet still forbid key loggers such as the one in Listing 1.

In order to support declassification with such expressivity
we propose the notion of event projection and information
release, defined using a projection and release function,
respectively. The intuition is that these functions, on each
new input, define the information made available to low
observers. Both functions are specified by means of a
declarative, functional program.

Event projection can be used to specify that it is OK for
low observables to depend on the occurrence of the event
and on the projected (approximated) event information.
Projection is done per individual event occurrence and thus
stateless. As an example, specifying that low observers may
depend on rounded GPS coordinates can be achieved by
projecting GPS updates using a floor function. A policy
writer can choose to only project events satisfying some
condition, yet hide the occurrence of others. For example,
we can define a projection which reveals shortcut key presses
while hiding the occurrence of other keys. Declassifying
only the occurrence of an event is possible by always
projecting the event information to a constant value.

In contrast, information release can be used to specify
which aggregate or derived information from past events can
be declassified, and thus is stateful. For example, using it we
can specify that the average of mouse click coordinates can
be declassified after 100 clicks. It is defined by declaring
the type of the state to be maintained by the policy, and by

declaring a function which, on each input event, updates the
state and specifies what information can be released to low
observers.

A. Event Projection

Event projection is defined by a function project which
takes an event 𝑒𝑣 𝑛 as input argument, and returns either
“Project 𝑛′” or “Nothing”. A result of the form “Project 𝑛′”
specifies that the event argument 𝑛 should be projected to
𝑛′, i.e., that low observers can depend on the occurrence of
the event and on the value 𝑛′. Returning “Nothing” specifies
that the event remains confidential (both the event argument
as well as the occurrence of the event).

We consider only idempotent projections, which map the
projected event to itself when applied twice. More precisely:

Definition 3: A function 𝜋 is an idempotent projection iff
for all events ev 𝑛, and for all 𝑛′, it holds that: 𝜋(ev 𝑛) =
Project 𝑛′ =⇒ 𝜋(ev 𝑛′) = Project 𝑛′.

The restriction to idempotent projections is in line with
the intuition behind projections as functions that “remove
the confidential information from the event argument”.
Moreover, limiting the policy to idempotent projections is
required to prove precision of our enforcement mecha-
nism (see Section IV). In case the policy does not define the
project function, it is assumed to always return “Nothing”.

As an example, the following policy specifies that key
presses of the shortcut key (with key code 101) can be
declassified, and that Unload events are L:

1 project(KeyPress 101) = Project 101
2 project(Unload x) = Project x

Intuitively, under this policy the shortcut key monitoring pro-
gram in Listing 3 is secure, but a key logger is not (security
under our policies is defined formally in section III-C).

The policy below declassifies the occurrence of key press
events, but keeps the key code confidential:

1 project(KeyPress x) = Project 0

Under this policy, a program that counts key presses and
sends the total number on a low output channel would be
secure.

Finally, the policy below declassifies approximate GPS
coordinates by projecting the location information using a
floor function.

1 project(GpsUpdate x) = Project floor(x)

Under this policy a program requesting the map of a region
(identified by rounded coordinates) in response to a GPS
update is secure. That is, a web service can display the
precise location to the user (as this is a high output), but it
can only communicate the approximate, rounded coordinates
to the service providing the map.

Projections generalize the labelling of event types. We
can consider a labelling 𝜎(𝑒𝑣) = 𝐿 to be syntactic sugar

296

for 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(ev 𝑛) = Project 𝑛. Similarly, 𝜎(ev) = 𝐻 is
syntactic sugar for 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(ev 𝑛) = Nothing. Labellings
of output channels of course remain relevant and are not
subsumed by projections.

B. Information Release

We think of information release as specifying a release
channel that can be sampled by low observers (on oc-
currence of a low observable event). The release channel
always contains the latest value released by the policy. For
simplicity, we only consider a single release channel, but
extending to multiple release channels is straightforward. A
released (declassified) value can depend on past events, and
hence the policy needs some way of maintaining state.

Information release is specified by declaring (1) a state
space; (2) initial values 𝑆init and 𝑅init for respectively the
policy state and the value on the release channel; and (3) a
function release that on each event occurrence updates the
state and the value on the release channel.

The function release takes as input parameters the current
value of the state, and an input event. It returns a new policy
state, and either “Unchanged” or “Release 𝑥”. If it returns
“Unchanged” then no new information is released to low
observers. Otherwise, when it returns “Release 𝑥”, the value
𝑥 is released to low observers and 𝑥 becomes the new value
on the release channel.

The default value for 𝑅init is 0, for the policy state space
the default value is a singleton state space {∗} with 𝑆init the
single state value ∗, and for release the default value is the
function that always returns “Unchanged”.

For example, the policy below (in Listing 4) uses infor-
mation release to declassify whether a shortcut key was used
so far. The state space is the set of booleans, and the initial
value of the state is False. The value on the release channel
(that is initially 0) switches to 1 after the shortcut key was
pressed the first time. Note that the type of the release chan-
nel is always an integer (in line with the fact that our simple
scripting language only handles integer values), but the type
of the policy state can be anything (in this case Bool).

Listing 4: Declassifying shortcut key presses with release

1 state :: Bool = False
2 release(s, i) = if i = KeyPress 101 and not s
3 then (True, Release 1)
4 else (s, Unchanged)

Under this policy the shortcut key monitoring program in
Listing 3 is secure, but a key logger is not. This policy
releases less information than the projection-based policy
above, as it does not release how often the shortcut key was
pressed.

The following policy releases the average mouse click
coordinate each time 100 mouse clicks have been observed:

1 state :: Int * Int = (0,0)

2 release((n,sum), MouseClick x) =
3 if (n+1 = 100) then ((0, 0), Release (sum+x) / (n+1))
4 else ((n+1, sum + x), Unchanged)

Finally, we give an example of a policy that combines
projection and release. The policy below reveals the occur-
rence of all GPS updates by projecting them to the constant
coordinate zero. Additionally, once the user has agreed to
sharing his location (by pressing a button at mouse coordi-
nate 45), rounded GPS coordinates are released. This allows
low observers to depend on (rounded) GPS coordinates once
the user has agreed to this.

1 state :: Bool = False
2 project(GpsUpdate x) = Project 0
3

4 release(x, MouseClick 45) = (True, Unchanged)
5 release(True, GpsUpdate x) = (True, Release (floor x))
6 release(s, x) = (s, Unchanged)

The state is a boolean indicating whether the user has clicked
at coordinate 45. GPS updates under a True state result in
the release of approximate coordinates.

C. Noninterference with Declassification

We combine the functions 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 and 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 in a single
declassification policy function 𝒟:

1 𝒟(s, r, i) = let (s’, d) = release(s, i) in case d of
2 Release x = (s’, x, project i)
3 Unchanged = (s’, r, project i)

We write 𝒟(𝑠, 𝑟, 𝑖) = (𝑠′, 𝑟′, 𝑝𝑟) to say that processing
the event 𝑖 by policy 𝒟 in the context of a state 𝑠 and value
𝑟 on the release channel results in the state 𝑠′, value 𝑟′ on
the release channel, and a projection 𝑝𝑟 for event 𝑖.

Our policies define what can be declassified when, without
restricting where something can be declassified. They are
a black-box, extensional definition of secure information
flow. Such extensional notions of noninterference can be
formalized as: low-similar (i.e., low-indistinguishable) input
event lists should lead to low-similar output lists [13]. In
our simple definition of non-interference (Definition 2), low-
similarity of input event lists was instantiated as “equality
after removing all high input events”. In the presence of de-
classification policies we refine the notion of low-similarity:
the declassification policy says that low observers can also
observe some aspects of high input events.

If we think of a declassification policy 𝒟 as defining a
function 𝒟∗(𝐼) that returns all the information in input event
list 𝐼 that low observers can depend upon, then we can define
noninterfence as follows (we define the function 𝒟∗ more
precisely below).

Definition 4 (𝐿-similarity under 𝒟): Two lists 𝐼 and 𝐼 ′

are 𝐿-similar under 𝒟 iff 𝒟∗(𝐼) = 𝒟∗(𝐼 ′). We denote this
by 𝐼 ≈𝒟

𝐿 𝐼 ′.

297

Definition 5 (Noninterference under 𝒟): A program 𝑝 is
noninterferent under a declassification policy 𝒟 iff for all
lists 𝐼, 𝐼 ′, 𝑂,𝑂′ such that 𝑝(𝐼) →∗ 𝑂 and 𝑝(𝐼 ′) →∗ 𝑂′ it
holds that: 𝐼 ≈𝒟

𝐿 𝐼 ′ =⇒ 𝑂 ≈𝐿 𝑂′.
It remains to define the function 𝒟∗(𝐼). On occurrence

of an input event 𝑒𝑣 𝑛, the policy defines that the following
information is observable: (1) the projected event, and (2) the
current value on the release channel if the event does not
project to Nothing. Since release can be state dependent,
we first define the function 𝒟∗(𝑠, 𝑟, 𝐼) that specifies what
information low observers can depend upon if inputs 𝐼 are
received when the policy state is 𝑠 and the current value on
the release channel is 𝑟.

𝒟∗(𝑠, 𝑟, []) = []

𝒟∗(𝑠, 𝑟, (𝑒𝑣 𝑛) :: 𝐼) = 𝒟∗(𝑠′, 𝑟′, 𝐼)
if 𝒟(𝑠, 𝑟, 𝑒𝑣 𝑛) = (𝑠′, 𝑟′, Nothing)

𝒟∗(𝑠, 𝑟, (𝑒𝑣 𝑛) :: 𝐼) = [𝑒𝑣 𝑥, 𝑟′] ++𝒟∗(𝑠′, 𝑟′, 𝐼)
if 𝒟(𝑠, 𝑟, 𝑒𝑣 𝑛) = (𝑠′, 𝑟′, Project 𝑥)

where ++ is a notation for list concatenation. So, for an event
that projects to Nothing, no information is made available
to low observers. Otherwise, the projected event and current
value on the release channel are made available.

Finally, we can define 𝒟∗(𝐼) = 𝒟∗(𝑆init, 𝑅init, 𝐼). When
𝒟 consists of only projections desugared from a labelling of
event types, the new definition coincides with Definition 2
(then 𝒟∗(𝐼) is the list of low events in 𝐼).

IV. ENFORCING DECLASSIFICATION POLICIES

We now set out to design an enforcement mechanism.
We extend the technique of Secure Multi-Execution (SME)
to handle the declassification policies. First, we briefly recap
how plain SME works on reactive programs [9]. Then we
introduce our extensions and prove security and precision.

A. Plain SME

SME [8], [14], [9] is a dynamic enforcement mechanism
for information flow security with practical advantages when
applied in the context of JavaScript web applications [8,
§VI.D].

The core idea of SME for reactive systems [9] is to
maintain two executions of the program: a low and a high
execution. Low events are handled by both executions, and
high events are only handled by the high execution. Outputs
on low channels are only performed in the low execution
and outputs on high channels only in the high execution.
This technique assures noninterference. Additionally, if the
program is noninterferent and low and high executions are
scheduled correctly, outputs remain the same [15], [16].
However, in many cases it is sufficient to maintain order
only within security levels. For instance, in the case of web
scripts, if graphical outputs to the browser user are H and
outputs to the network are L, it is sufficient to maintain order

Listing 5: Declassify in the shortkey usage program

1 on KeyPress(x) { if x = 101 then
2 { keyPressed := 1 } else { skip } }
3 on Unload(x) { r := declassify keyPressed; Send(r) }

per security level. That is, the relative order of graphical
outputs in relation to networks outputs is not important. This
observation allows for simple schedulers which first execute
the low execution, and then the high execution. In this paper
we focus on the case where the scheduler is simple, and only
maintain output order per security level.

For a detailed overview of SME the reader is referred
to [8], [9], [17], [15].

B. Declassify annotations

The core idea of our extension is to first run the declas-
sification policy on each input event. This determines what
should be passed to the low and high executions. Events
that project to Nothing are only given to the high execution.
For all other events, the low execution receives the projected
event, and the high execution receives the original event.

It remains to specify how the low execution can access
the release channel. In order for the program to do this,
we extend the language with a declassify annotation. To the
syntax in Figure 1 we add the following clause:

𝑐 ::= . . . ∣ 𝑔 := declassify 𝑒

The programmer has to use this annotation to indicate where
in the program he has computed the value that the policy
allows to be declassified. Our enforcement mechanism will
then process declassify expressions by reading from the
release channel.

The annotation only has effect when the program is run
under SME. Otherwise it is an identity function: for the
standard semantics, →, the command 𝑔 := declassify 𝑒 is
handled as 𝑔 := 𝑒. The programmer writes the annotation to
indicate that the expression 𝑒 evaluates (under the standard
semantics) to exactly the value that is declassified by the
policy on the release channel.

As an example, consider again the program in Listing 3
under the policy of Listing 4. If the program is run under
SME, it will only output a 0 in response to the Unload
event, as the low execution never gets to see any of the
key presses. In order to benefit from the declassification
policy, the developer should change his program as shown
in Listing 5. Our enforcement mechanism will plug in the
correct value, denoting whether the shortcut key was used,
during execution of the declassify statement in the low
execution.

Note that security does not depend on how the program
uses declassify expressions: the low execution will only

298

ever get to see values that were declassified by the policy,
meaning an adversary cannot abuse them to leak secret infor-
mation. We will formally prove that in the security theorem
(Theorem 3). Declassify annotations are only required to
improve precision for release policies: they make sure that
secure programs that run under our enforcement mechanism
run unmodified.

When declassify annotations are used, it is important that
the program is run under the declassification policy expected
by the programmer. Otherwise the value computed by the
declassification policy might differ from the value computed
by the expression 𝑒 in the declassify command, leading to
unexpected results. For instance, a policy 𝒟 might declassify
a number rounded down to three decimal places, yet the
program itself could round the number to only one decimal
place in the declassify command. In this case the behaviour
of the program will be modified under SME. To formalize

(𝑠, 𝑟, 𝜇, 𝑔 := declassify 𝑒)
⋅→𝒟 (𝑠, 𝑟, 𝜇[𝑔 �→ 𝑟], skip)

(1)

𝒟(𝑠, 𝑟, 𝑖) = (𝑠′, 𝑟′, 𝑝𝑟) 𝑖 = 𝑒𝑣 𝑛 lookup(𝑝, 𝑒𝑣) = 𝑐

(𝑠, 𝑟, 𝜇, skip)
𝑖→𝒟 (𝑠′, 𝑟′, 𝜇, 𝑐[𝑥← 𝑛])

(2)

Figure 3: Extended model language semantics handling
declassification policies.

this requirement, we first define a variation on the standard
semantics where declassify is treated as reading from the
release channel. This is done by extending the program
configuration to (𝑠, 𝑟, 𝜇, 𝑐) where 𝑟 is the value on the
release channel and 𝑠 is the policy state. Declassification
commands are handled by assigning 𝑟 to the appropriate
variable, leading to the semantics defined in Figure 3. We
only show the rules for declassify and for handling a new
event; all other rules remain as in Figure 2.

We can define the notion of execution, event-complete
execution and the judgment 𝑝(𝐼) →∗

𝒟 𝑂 analogous to
how we defined these notions for the standard semantics
(with proper initial values for 𝑠 and 𝑟). Now we can
formally define what it means for a program with declassify
annotations to be compatible with a policy:

Definition 6 (Compatible declassification policy): A pro-
gram 𝑝 is compatible with a declassification policy 𝒟 if for
all inputs 𝐼 we have 𝑝(𝐼)→∗ 𝑂 iff 𝑝(𝐼)→∗

𝒟 𝑂.
In other words: treating declassify as reading from the

declassification channel should always give the same results
as treating declassify as the identity function.

C. SME with declassification

We now turn to the formalization of our enforcement
mechanism. SME enforces policies by executing programs
under the SME semantics. Under this semantics, a program

configuration consists of the tuple (𝑠, 𝑟, (𝜇𝐿, 𝑐𝐿), (𝜇𝐻 , 𝑐𝐻))
where 𝑠 is the state of the declassification policy, 𝑟 the
value on the release channel, and (𝜇𝐿, 𝑐𝐿) and (𝜇𝐻 , 𝑐𝐻)
the execution states of the low and the high execution.

The definition of the SME transition relation
𝛼⇒ is shown

in Figure 4. The first two rules define how a new event must
be handled. In both cases, the policy will process the event,
leading to a new policy state and released value.

∙ (Rule SME-1a) If the event is projected to Nothing by
the policy, then it is handled by the high execution only.

∙ (Rule SME-1b) If the event is projected to Project 𝑛′

by the policy, then the projected event is handled by
the low execution, and the original event is handled by
the high execution.

The last two rules say that first the low execution runs
until it has processed the event completely, and then the high
execution runs until it has processed the event completely.
Each of the two executions progresses with its own store
according to the standard semantics of commands where
declassify is handled by reading from the release channel
as defined in Figure 3. Outputs are suppressed (turned into
unobservable outputs) unless they are of the same level as
the execution.

An SME program configuration of the form
(𝑠, 𝑟, (𝜇𝐿, skip), (𝜇𝐻 , skip)) is called passive. That is,
both the low and high executions are done handling the last
input event.

We again define the notion of execution, event-complete
execution and the judgment 𝑝(𝐼) ⇒∗ 𝑂 analogous to how
we defined these notions for the standard semantics.

We are now ready to prove the two main properties of
our enforcement mechanism: security and precision.

D. SME with declassification is secure

The security property says that the execution of any
program under SME with declassification policy 𝒟 is non-
interferent under that policy.

To avoid repeating the definition of SME states we use
the convention that 𝑆𝑖 = (𝑠𝑖, 𝑟𝑖, 𝐿𝑖, 𝐻𝑖). We extend this
convention to 𝑆′

𝑖 and 𝑆′′
𝑖 as expected. An SME state is

either passive or it can make a deterministic step. Adding
an element 𝑖 to the beginning of a list 𝐼 is denoted by 𝑖.𝐼 .
The proof uses the following equivalence relation:

Definition 7 (𝐿-Equivalent States): Given two SME
states 𝑆1 and 𝑆2 we write 𝑆1 ≈𝐿 𝑆2 iff 𝐿1 = 𝐿2 and 𝐿1

not passive implies 𝑟1 = 𝑟2.
Next we need a lemma which states that if two inputs are

currently similar under a policy, then we can always take a
step while maintaining this similarity.

Lemma 1 (Policy Preservation): The following proper-
ties hold given that 𝒟∗(𝑠1, 𝑟1, 𝑖1.𝐼 ′1) = 𝒟∗(𝑠2, 𝑟2, 𝐼2):

1) If 𝒟(𝑠1, 𝑟1, 𝑖1) = (𝑠′1, 𝑟
′
1, Nothing) then we know that

𝒟∗(𝑠′1, 𝑟
′
1, 𝐼

′
1) = 𝒟∗(𝑠2, 𝑟2, 𝐼2).

299

𝒟(𝑠, 𝑟, 𝑖) = (𝑠′, 𝑟′, Nothing) 𝑐 = lookup(𝑝, 𝑒𝑣)

(𝑠, 𝑟, (𝜇𝐿, skip), (𝜇𝐻 , skip))
𝑒𝑣 𝑛⇒ (𝑠′, 𝑟′, (𝜇𝐿, skip), (𝜇𝐻 , 𝑐[𝑥← 𝑛]))

(SME-1a)

𝒟(𝑠, 𝑟, 𝑖) = (𝑠′, 𝑟′, Project 𝑛′) 𝑐 = lookup(𝑝, 𝑒𝑣)

(𝑠, 𝑟, (𝜇𝐿, skip), (𝜇𝐻 , skip))
𝑒𝑣 𝑛⇒ (𝑠′, 𝑟′, (𝜇𝐿, 𝑐[𝑥← 𝑛′]), (𝜇𝐻 , 𝑐[𝑥← 𝑛]))

(SME-1b)

(𝑠, 𝑟, 𝜇𝐿, 𝑐𝐿)
𝑜→𝒟 (𝑠, 𝑟, 𝜇′

𝐿, 𝑐
′
𝐿) if 𝜎(𝑜) = 𝐿 then 𝑜′ = 𝑜 else 𝑜′ = ⋅

(𝑠, 𝑟, (𝜇𝐿, 𝑐𝐿), (𝜇𝐻 , 𝑐𝐻))
𝑜′⇒ (𝑠, 𝑟, (𝜇′

𝐿, 𝑐
′
𝐿), (𝜇𝐻 , 𝑐𝐻))

(SME-2)

(𝑠, 𝑟, 𝜇𝐻 , 𝑐𝐻)
𝑜→𝒟 (𝑠, 𝑟, 𝜇′

𝐻 , 𝑐′𝐻) if 𝜎(𝑜) = 𝐻 then 𝑜′ = 𝑜 else 𝑜′ = ⋅
(𝑠, 𝑟, (𝜇𝐿, skip), (𝜇𝐻 , 𝑐𝐻))

𝑜′⇒ (𝑠, 𝑟, (𝜇𝐿, skip), (𝜇′
𝐻 , 𝑐′𝐻))

(SME-3)

Figure 4: Small-step semantics of SME with declassification.

2) If it holds that 𝒟(𝑠1, 𝑟1, 𝑖1) = (𝑠′1, 𝑟
′
1, Project 𝑥1)

and 𝒟(𝑠2, 𝑟2, 𝑖2) = (𝑠′2, 𝑟
′
2, Project 𝑥2) with 𝐼2 = 𝑖2.𝐼

′
2

then 𝑥1 = 𝑥2 and 𝒟∗(𝑠′1, 𝑟
′
1, 𝐼

′
1) = 𝒟∗(𝑠′2, 𝑟

′
2, 𝐼

′
2).

Proof: This follows directly from the definition of 𝒟∗.

For the security proof we introduce a new notation de-
noting an execution starting from a given state 𝑆: we write
𝑆(𝐼)⇒∗ 𝑂 iff there exists an event-complete execution 𝛼
of 𝑆 where 𝐼 is exactly the list of input events occurring
in 𝛼 and 𝑂 is the list of output events occurring in 𝛼. An
execution 𝛼 of state 𝑆 is a sequence of transitions 𝛼 starting
from 𝑆.

Lemma 2 (State Security): If 𝑆1 ≈𝐿 𝑆2, 𝑆1(𝐼1) ⇒∗ 𝑂1,
𝑆2(𝐼2) ⇒∗ 𝑂2, and 𝒟∗(𝑠1, 𝑟1, 𝐼1) = 𝒟∗(𝑠2, 𝑟2, 𝐼2), then
we have 𝑂1 ≈𝐿 𝑂2.

Proof: The proof is by induction on the execution 𝛼 of
𝑆1(𝐼1)⇒∗ 𝑂1.

Base case. Given an empty execution 𝛼, 𝐼1 and 𝑂1

are also empty. Hence 𝒟∗(𝑠1, 𝑟1, 𝐼1) and 𝒟∗(𝑠2, 𝑟2, 𝐼2) are
empty as well, meaning that 𝐼2 can only contain non-
projected inputs, and that rule SME-1b is never used in
𝑆2(𝐼2)⇒∗ 𝑂2. Additionally we know that 𝑆1 must be
passive, so from 𝑆1 ≈𝐿 𝑆2 we know that 𝐿2 is also passive.
Since SME-1b is not used in 𝑆2(𝐼2)⇒∗ 𝑂2, and 𝐿2 is pas-
sive, SME-2b is also not used in 𝑆2(𝐼2)⇒∗ 𝑂2. Therefore
𝑂2 contains no low outputs, proving that [] = 𝑂1 ≈𝐿 𝑂2.

Inductive Step. We assume it holds for 𝛼 and prove it
for 𝛼0.𝛼. Either 𝛼0 is an output 𝑜 or an input 𝑖, leading to
the following two cases:

𝑆1
𝑜⇒ 𝑆′

1: If 𝜎(𝑜) ∕= L then we know rule SME-3 was used
and only 𝐻1 has changed, from this it follows that
𝑆′
1 ≈𝐿 𝑆2 and 𝒟∗(𝑠′1, 𝑟

′
1, 𝐼1) = 𝒟∗(𝑠2, 𝑟2, 𝐼2). Since

𝑜 is a high output we also have 𝑆′
1(𝐼1) ⇒∗ 𝑂′

1 with
𝑂1 ≈𝐿 𝑂′

1. Applying the induction hypothesis gives
𝑂′

1 ≈𝐿 𝑂2 and thus 𝑂1 ≈𝐿 𝑂2.
If 𝜎(𝑜) = L then rule SME-2 was used. From 𝑆1 ≈𝐿 𝑆2

we know that SME-2 can also be applied to 𝑆2 and that
it produces the same output and low execution state.
Hence we have 𝑆2

𝑜⇒ 𝑆′
2 with 𝑆′

1 ≈ 𝑆′
2, 𝑆′

2(𝐼2) ⇒∗

𝑂′
2, and 𝑆′

1(𝐼1) ⇒∗ 𝑂′
1 with 𝑂2 = 𝑜.𝑂′

2 and 𝑂1 =
𝑜.𝑂′

1. Since 𝑠 and 𝑟 are not modified by SME-2 we
know that 𝒟∗(𝑠′1, 𝑟

′
1, 𝐼1) = 𝒟∗(𝑠′2, 𝑟

′
2, 𝐼2). From the

induction hypothesis we get 𝑂′
1 ≈𝐿 𝑂′

2 and thus 𝑂1 ≈𝐿

𝑂2.
𝑆1

𝑖⇒ 𝑆′
1 : Assuming that 𝒟(𝑠1, 𝑟1, 𝑖) = (𝑠′1, 𝑟

′
1, Nothing)

we can apply Lemma 1 case 1 to obtain that
𝒟∗(𝑠′1, 𝑟

′
1, 𝐼

′
1) = 𝒟∗(𝑠2, 𝑟2, 𝐼2) with 𝐼1 = 𝑖.𝐼 ′1. Since

SME-1a must be used we have 𝑆′
1 ≈𝐿 𝑆2 and

𝑆′
1(𝐼

′
1) ⇒∗ 𝑂1. Applying the induction hypothesis

results in 𝑂1 ≈𝐿 𝑂2.
If 𝒟(𝑠1, 𝑟1, 𝑖) = (𝑠′1, 𝑟

′
1, Project 𝑥) then rule SME-

1b was used in 𝑆1
𝑖⇒ 𝑆′

1 and 𝒟∗(𝑠1, 𝑟1, 𝐼1) starts
with a projected event ev 𝑥. Hence 𝒟∗(𝑠2, 𝑟2, 𝐼2) also
contains the same projected event ev 𝑥, meaning at
some point SME-1b must be used in 𝑆2(𝐼2) ⇒∗ 𝑂2.
We now show that the first state 𝑆′

2 to which SME-
1b is applicable, is L-equivalent with 𝑆2, and that no
low outputs are generated in the execution from 𝑆2

to 𝑆′
2. Since 𝑆1 ≈𝐿 𝑆2 we know that 𝐿2 is passive

and that SME-2 isn’t applicable to 𝑆2. Rules SME-1a
and SME-3 don’t change 𝐿2, meaning after applying
them rule SME-2 still isn’t applicable. We conclude
that, starting with 𝑆2, we keep executing either SME-1a
or SME-3 until we get to a state 𝑆′

2 for which SME-1b
is applicable.

In other words there exists an 𝑆′
2 such that 𝑆′

2
𝑖′⇒ 𝑆′′

2

with 𝑆′′
2 (𝐼

′′
2)⇒∗ 𝑂′′

2 , 𝑆1 ≈𝐿 𝑆′
2, and 𝑂2 ≈𝐿 𝑂′′

2 . Since
SME-2 doesn’t change 𝑠2 and 𝑟2, and we can apply
Lemma 1 case 1 after using SME-1a, we also have
𝒟∗(𝑠2, 𝑟2, 𝐼2) = 𝒟∗(𝑠′2, 𝑟

′
2, 𝐼

′
2). Applying Lemma 1

results in 𝒟∗(𝑠′1, 𝑟
′
1, 𝐼

′
1) = 𝒟∗(𝑠′′2 , 𝑟

′′
2 , 𝐼

′′
2). As the

same value 𝑥 is projected for both 𝑆1 and 𝑆′
2 we get

𝑆′
1 ≈𝐿 𝑆′′

2 . We also know that 𝑆′
1(𝐼

′
1) ⇒∗ 𝑂1. From

the induction hypothesis it follows that 𝑂1 ≈𝐿 𝑂′′
2 and

hence 𝑂1 ≈𝐿 𝑂2.

With this lemma we can prove the main security theorem.

300

Theorem 3 (Security): Execution of any program 𝑝 un-
der SME with declassification policy 𝒟 is noninterferent
under 𝒟.

Proof: This follows directly from lemma 2.

E. SME with declassification is precise

The SME execution of a program can potentially change
the behaviour of the program. For example, if the program
is not noninterferent under 𝒟, the security theorem tells
us that the behaviour will definitely change, as it will
become noninterferent. Hence it is important to show that the
behaviour of secure programs does not change observably.
As mentioned in Section IV-A, depending on the scheduler
used, plain SME can change the behaviour of noninterferent
programs in the sense that outputs can be reordered. But
within a given security level outputs remain in the same
order.

Definition 8 (Observer Indistinguishable): Let
ℓ ∈ {𝐿,𝐻} and let 𝑆 and 𝑆′ be lists. We say 𝑆 =ℓ 𝑆′

if the two lists are equal after dropping all elements
having 𝜎(𝑠) ∕= ℓ. We say two lists 𝑆 and 𝑆′ are observer
indistinguishable, denoted by 𝑆 ≈obs 𝑆′, iff 𝑆 =𝐿 𝑆′ and
𝑆 =𝐻 𝑆′.

As explained previously, in many cases maintaining order
within security levels is sufficient.

Now we want to prove precision, the property that “good”
programs produce identical outputs when run with or with-
out our enforcement mechanism, i.e., that our mechanism is
transparent for secure programs.

We begin by proving precision for high observers.
Lemma 4 (Precision for H observers): If 𝑝(𝐼) →∗ 𝑂,

𝑝(𝐼)⇒∗ 𝑂′, and 𝒟 is compatible with 𝑝, then 𝑂 =𝐻 𝑂′.
Proof: Let 𝑆 = (𝑠, 𝑟, (𝜇𝐿, 𝑐𝐿), (𝜇𝐻 , 𝑐𝐻)) be a state in

the SME semantics, and let 𝑆′ = (𝑠′, 𝑟′, 𝜇, 𝑐) be a state in
the extended model semantics→𝒟 handling declassification
policies. We say ℛ(𝑆, 𝑆′) if and only if 𝑐 = 𝑐𝐻 , 𝜇 = 𝜇𝐻 ,
𝑠 = 𝑠′, and 𝑟 = 𝑟′. It is easy to check that this relation is a
simulation and that the produced high outputs are identical.
Hence it follows from 𝑝(𝐼) ⇒∗ 𝑂′ that 𝑝(𝐼) →∗

𝒟 𝑂′′

with 𝑂′ =𝐻 𝑂′′. Applying definition 6 of a compatible
declassification policy results in 𝑂 =𝐻 𝑂′.

For low observers, precision is more intricate. Ideally the
mechanism enforcing a declassification policy 𝒟 would be
transparent for any program that is noninterferent under it. In
case a projection-only policy is used, we can deliver such
strong guarantees. A projection-only policy is one which
does not define a release function. When such a policy
is used the program requires no annotations in order to
run properly under our enforcement mechanism. Intuitively,
a program which is noninterferent under a projection-only
policy internally “projects” the inputs itself. Since we require
that such projections must be idempotent, letting SME
project the input before giving it to the program will not
change its behaviour.

Proving this requires the following lemma, describing the
behaviour of the low execution using the →𝒟 semantics.
The notation 𝒟∗

ev (𝐼) denotes 𝒟∗(𝐼) with all released values
filtered, i.e., only containing events.

Lemma 5 (Behaviour Low Execution): Given
𝑝(𝐼)⇒∗ 𝑂, for all 𝐼 ′ and 𝒟′ with 𝐼 ′ = 𝒟∗

ev (𝐼) and
𝒟∗(𝐼) = 𝒟′∗(𝐼 ′), we have 𝑝(𝐼 ′)→∗

𝒟′ 𝑂′ with 𝑂 =𝐿 𝑂′.
Proof: This can be proven by means of a straightfor-

ward simulation between the execution of 𝑝(𝐼)⇒∗
𝒟 𝑂 and

𝑝(𝐼 ′)→∗
𝒟′ 𝑂′. The only non-trivial case is the handling of

inputs, for which we need to rely on 𝐼 ′ = 𝒟∗
ev (𝐼) and

𝒟∗(𝐼) = 𝒟′∗(𝐼 ′).
Using this Lemma we can prove precision for low ob-

servers when using a projection-only policy.
Lemma 6: If 𝑝(𝐼) →∗ 𝑂 and 𝑝(𝐼) ⇒∗ 𝑂′ with 𝑝

compatible with, and noninterferent under, a projection-only
policy 𝒟, then 𝑂 =𝐿 𝑂′.

Proof: Let 𝐼 ′ = 𝒟∗
ev (𝐼). We first prove

𝒟∗(𝐼) = 𝒟∗(𝐼 ′) using induction. The base case is
when 𝐼 is the empty list, for which it is trivially true. For
the induction hypothesis we assume 𝒟∗(𝐼) = 𝒟∗(𝒟∗

ev (𝐼))
and prove 𝒟∗(𝑖.𝐼) = 𝒟∗(𝒟∗

ev (𝑖.𝐼)). Note that line 2 in
the definition of 𝒟 is never executed because 𝒟 is a
projection-only policy, and thus that 𝑟 is never modified
and always remains zero. We now consider the two cases
in the definition of 𝒟∗:
Input not Projected. In this case nothing is added to the out-

put. Hence 𝒟∗(𝑖.𝐼𝑠) = 𝒟(𝐼𝑠), from which the desired
result follows.

Input Projected. Now ev 𝑥 is added to the output fol-
lowed by 𝑟, which we know is zero for both lists. In
𝒟∗(𝒟∗

ev (𝑖.𝐼)) the projection function returns ev 𝑥 the
second time it is applied, since it is a idempotent projec-
tion. We get 𝒟∗(𝒟∗

ev (𝑖.𝐼)) = ev 𝑥.0.𝒟∗(𝒟∗
ev (𝐼)) and

𝒟∗(𝑖.𝐼) = ev 𝑥.0.𝒟∗(𝐼), applying the induction hy-
pothesis completes this case.

We conclude that 𝒟∗(𝐼) = 𝒟∗(𝐼 ′). Applying Lemma 5 on
𝒟∗(𝐼) = 𝒟∗(𝐼 ′) and 𝑝(𝐼)⇒∗

𝒟 𝑂′ results in 𝑝(𝐼 ′) →∗
𝒟 𝑂′′

with 𝑂′′ =𝐿 𝑂′. Since 𝑝 is compatible with 𝒟 we get
𝑝(𝐼 ′)→∗ 𝑂′′.

As 𝑝 is noninterferent under 𝒟, 𝑝(𝐼 ′)→∗ 𝑂′′, 𝑝(𝐼)→∗ 𝑂,
and 𝒟∗(𝐼) = 𝒟∗(𝐼 ′), we get 𝑂′′ =𝐿 𝑂. We conclude that
𝑂 =𝐿 𝑂′.

Theorem 7 (Projection Precision): If 𝑝(𝐼) →∗ 𝑂,
𝑝(𝐼)⇒∗ 𝑂′, 𝑝 has no declassify statements and is noninter-
ferent under a projection-only policy 𝒟, then 𝑂 ≈obs 𝑂′.

Proof: The policy is vacuously compatible with 𝒟, as
there are no declassify statements. Applying lemma 4 and
lemma 6 completes the proof.

Though this only covers projection-only policies, it is
a powerful result. Most examples discussed so far can be
handled using a projection-only policy.

For information release policies, precision for low ob-
servers is subject to more conditions. Consider for instance

301

the program in Listing 3 running under the policy in List-
ing 4. The program is noninterferent under the policy, and
the policy is vacuously compatible with the program since
there are no declassify statements. But for low observers
there will be a difference if the program is run with key
presses of the shortcut key as input. It will perform Send 1
if it is run without enforcement mechanism and Send 0 if
it is run under our enforcement mechanism. The problem is
the lack of declassify annotations: the programmer should
explicitly annotate information that he wants to declassify.
The program in Listing 5 adds the necessary declassify
annotation so the program runs correctly under SME.

Hence the additional requirement is that there must be
“enough” declassify annotations. A first attempt to formalize
this could be to require that the program must be noninter-
ferent after removal of declassify statements: removing all
the assignments with a declassify annotation should remove
all information leaks from H to L. But that is not sufficient,
as removal of the declassify statements may render some
parts of the program unreachable. For instance, consider the
program in Listing 6, where num can be any number. If
in some run the policy would declassify 𝑛𝑢𝑚 the program
would be interferent as it leaks gps coordinates in the then-
branch of the conditional on line 3.

Intuitively we want to assure that replacing the result of
any reachable declassify command with any constant, always
results in low-equivalent outputs (given equivalent inputs).

Definition 9 (No leaks outside declassify): A program 𝑝
does not leak outside declassify under policy 𝒟 if for all
inputs 𝐼, 𝐼 ′ and policies 𝒟′,𝒟′′ having the same projection
functions as 𝒟, it holds that 𝒟′∗(𝐼) = 𝒟′′∗(𝐼 ′), 𝑝(𝐼) →∗

𝒟′

𝑂, and 𝑝(𝐼 ′)→∗
𝒟′′ 𝑂′ implies 𝑂 ≈𝐿 𝑂′.

The reasoning behind this definition is that, if we quantify
over all declassification policies, we are effectively replacing
all reachable declassify commands with any constant. Since
we want to do this without changing the security labellings
of inputs we have to require that the projection functions
are identical. Finally we can easily require that inputs are
equivalent by stating that 𝒟′∗(𝐼) = 𝒟′′∗(𝐼 ′). For example,
consider again Listing 6, where num can be any number,
under a policy 𝒟 labelling GpsUpdates as high security
inputs. Two policies 𝒟′ and 𝒟′′ declassifying num at the
appropriate time will detect that it leaks outside of declassify
(given two inputs where one contains a GPS update and
the other one does not). Furthermore, if a program tries to
declassify information without using annotations, it would
be detected when 𝒟′ and 𝒟′′ are instantiated to policies
without release functions.

With this definition precision for 𝐿 observers can be
proven.

Lemma 8 (Precision for L observers): If 𝑝(𝐼) →∗ 𝑂,
𝑝(𝐼) ⇒∗ 𝑂′, 𝒟 compatible with 𝑝, and 𝑝 does not leak
outside declassify commands, then 𝑂′ ≈𝐿 𝑂.

Listing 6: Information leak outside of declassify

1 on GpsUpdate(x) { g = x }
2 on Unload(x) { d = declassify e;
3 if d = 𝑛𝑢𝑚 then { Send(g) } else { skip } }

Proof: Let 𝐼 ′ = 𝒟∗
ev (𝐼). We construct a declassification

policy 𝒟′ such that 𝒟∗(𝐼) = 𝒟′∗(𝐼 ′). This can be done by
using the same projection functions as in 𝒟 and using the
following release function:

1 state :: Int = 0
2 release(n, input) = (n+1, Release 𝒟∗(𝐼)[2n + 1])

Where 𝒟∗(𝐼)[i] returns the 𝑖-th entry in the list 𝒟∗(𝐼)
and zero if 𝑖 is out of bounds (the index is zero based).
Because projections must be idempotent, and 𝐼 ′ has half
the length of 𝒟∗(𝐼), it is now straightforward to prove that
𝒟∗(𝐼) = 𝒟′∗(𝐼 ′). Applying Lemma 5 on 𝑝(𝐼) ⇒∗ 𝑂′ and
𝒟∗(𝐼) = 𝒟′∗(𝐼 ′) results in 𝑝(𝐼 ′)→∗

𝒟′ 𝑂′′ with 𝑂′′ ≈𝐿 𝑂′.
From 𝑝(𝐼)→∗ 𝑂 and the fact that 𝒟 is compatible with

𝑝 it follows that 𝑝(𝐼) →∗
𝒟 𝑂. We now have 𝑝(𝐼) →∗

𝒟 𝑂,
𝑝(𝐼 ′) →∗

𝒟′ 𝑂′′, and 𝒟∗(𝐼) = 𝒟′∗(𝐼 ′) where 𝒟 and 𝒟′

share the same projection functions. These are precisely the
conditions needed to apply definition 9, namely that 𝑝 does
not leak outside of declassify. We get 𝑂 ≈𝐿 𝑂′′.

From 𝑂′′ ≈𝐿 𝑂′ and 𝑂 ≈𝐿 𝑂′′ it follows that 𝑂 ≈𝐿 𝑂′.

Since precision for both low and high observers has been
proven, we can conclude with:

Theorem 9 (Full Precision): Given that 𝑝(𝐼) →∗ 𝑂 and
𝑝(𝐼)⇒∗ 𝑂′, 𝒟 compatible with 𝑝, and that 𝑝 does not leak
outside declassify under 𝒟, then 𝑂 ≈obs 𝑂′.

V. IMPLEMENTATION IN A REAL BROWSER

To show both practicality and usefulness of our approach,
we have implemented the mechanism for full JavaScript
in a real-world browser by extending and enhancing the
SME-enabled browser FlowFox [3], [18]. Our implemen-
tation supports writing dynamic declassification policies in
JavaScript and is successfully tested on real-life examples.
The implementation, together with some examples and the
Redex mechanization of the formal model are all available
for download [11].

A. Implementation Details

FlowFox is a modified Mozilla Firefox browser where
each JavaScript program is executed within a specific
JavaScript context subject to the SME I/O rules. Each
implementation of a JavaScript API method is wrapped with
code that consults the policy and enforces the SME I/O rules.
This section will cover our updates and modifications to
FlowFox to enable stateful declassification support.

302

The original FlowFox handles events as follows: both the
low and the high execution can set handlers. FlowFox saves
the security level for each handler that gets installed. For
example, if a JavaScript program installs an event handler
for the onload event by setting window.onload, FlowFox will
run this program for each available security level and as a
result will store two event handlers (one to be executed in
the low context and one in the high context). Whenever the
onload event is triggered, FlowFox looks up all available
event handlers for the event and executes each one – within
the correct JavaScript context with the associated security
level – sequentially. Hence, events can be made H by
labelling the methods that set handlers for the event as H;
in that case the low execution will skip setting the handler
and hence will never receive the event.

To generalize this to our projection policies, we change
the code responsible for handling events. For each event that
enters the system, first the release function will be called
so that it can update the state space and the value on the
release channel. Before dispatching the event to its registered
event handler(s), the policy must also be consulted about
event projection. If the event projects to Nothing, the event
is not dispatched to L handlers. All other types of projections
are achieved by carefully modifying the return value of the
relevant API methods of the associated event object in order
to mimic the behavior of the projection function. Finally, we
extended the global scope, available for JavaScript programs
on web pages, with a new declassify operator that returns
the value of the release channel contained within the policy.

The last place where we had to change FlowFox, is the
code for events that are not strictly DOM events, but still call
a callback function after a specific task has finished. This
is for example the case with the getCurrentPosition method
of the geolocation object. The method requires two callback
functions – one for a successful lookup and one to handle a
failure. In the background, the geolocation implementation
will try several strategies to acquire the user’s position.
When successful the callback will be executed as if it was
an event handler, so the same logic for event handlers needs
to be applied. We implemented similar logic as for DOM
event handlers for the geolocation events.

B. Examples

To test our implementation and to show both practicality
and usefulness, we implemented some examples from this
paper in full JavaScript, and we verified by means of testing
that they behave as expected. As an example, an annotated
shortkey monitoring script is given in Listing 7, along with
the corresponding information release part of the FlowFox
policy in Listing 8. The policy has the same behaviour as
the one given in Listing 4 for the formal model. A policy
written for FlowFox updates the state and release channel
by setting stateSpace and releaseValue, respectively. A more

Listing 7: JavaScript Program

1 var d=0, u=’http://analytic.com/?=’;
2 window.onkeypress = function(e) {
3 if (e.charCode == 101) d = 1; }
4 window.onunload = function() {
5 v = declassify(d);
6 $.ajax(u + v);
7 }

Listing 8: Information Release Policy

1 SME.stateSpace = false;
2 SME.release = function (ev, arg) {
3 if (ev == ’keypress’ && !this.stateSpace
4 && arg.charCode == 101) {
5 this.stateSpace = true;
6 this.releaseValue = 1;
7 } };

detailed explanation of the policy syntax, together with more
examples, are available for download [11].

As with all policy-based mechanisms, an important ques-
tion is: who will write the policies? It is not realistic to
expect browser users to do this. In our view, at least two
approaches are feasible. For simple and widely useful de-
classification policies (such as the approximate GPS location
policy) the browser can offer them as part of a privacy
profile. For more application-specific policies, policies can
be server-driven: the integrator of a web mashup will set a
policy and push it to the browser. The policy will need to
be agreed upon between the integrator and the various script
providers. Legacy scripts (not using declassify annotations)
are enforced to be noninterferent (without declassification),
whereas scripts that have been annotated are enforced to
be noninterferent under the enforced declassification policy.
The browser user no longer needs to trust third-party scripts
to protect his data, but only the main site he interacts with.

Obviously, it is important to come up with a better surface
syntax for the policy language; but this is an orthogonal
problem not addressed in this paper.

C. Benchmarks

We performed benchmarks to give evidence that the per-
formance cost of our approach is acceptable. All measure-
ments we report below were done on a virtualized Ubuntu
11.04 with 2.6GHz and 3.5GB RAM.

The performance cost of our approach can be broken
down in (1) additional processing for each event (consulting
the policy, updating the state space, and checking if an event
handler for an event must be skipped), and (2) the cost
of calling the declassify function in a handler. The cost
of updating the policy store depends on the policy being
enforced, but we expect policies to be simple computations
(e.g., computing an average or rounding a result) so the main

303

costs are the additional context switches between JavaScript
and C++.

To measure the cost of (1), we conducted an experiment in
which FlowFox visits a web page that triggers 1000 rounds
of 1000 clicks via JavaScript on an HTML button with an
empty event handler, and we measure how long it takes to
handle these 1000 events. The average time for handling
1000 clicks (averaged over 1000 runs) was 136 ms, i.e.,
handling a single event costs around 0.14 ms.

The cost of (2) can be expected to be fairly low, as it is
just a getter of a value set by the policy. To measure it, we
conduct an experiment that triggers an event handler that
calls the declassify function 1000 times. The average cost
of a single call to declassify was 5.5 𝜇s, which is mostly
due to the switching cost between JavaScript and C++ (and
back).

The setup of our macro benchmark experiment consisted
of an automated version of both the short key example
from Listing 2 and a mouse click example that leaks the
average mouse position after multiple clicks. The policy file
consisted of an aggregation of the first two declassification
policies from Section III-B. The timing results between
FlowFox with and without declassification support, show an
insignificant overhead.1

We believe all these results are evidence of the fact that
adding declassification to FlowFox has a negligible impact
on the overall performance of the browser.

VI. DISCUSSION

Limitations of the approach: Our approach to declas-
sification is the first extensional fine-grained approach to
declassification for SME. We believe that our theoretical
results and implementation experience show that it is a
useful approach. However, there also some disadvantages
or limitations with respect to competing approaches.

First, because declassification policies are essentially pro-
grams (in a declarative functional language), understanding
what information a given policy leaks can be complex. So
mistakes in policies are more likely than for approaches that
use simpler (e.g. type based) specifications of information
flow policies. There is an inherent trade-off between (1)
supporting more expressive policies and (2) making policies
easy to analyze. Our policies emphasize expressiveness over
analyzability.

Second, by giving an extensional definition of secure
information flow, our approach can not handle policies that
depend on the structure of the program being monitored.
Consider for instance, a policy such as: declassify all
keypress events, except the ones that are sent to a credit-
card number submit form. This can not be specified as an
extensional policy, as only the program knows which form

1The source code of the scenarios and the exact timing results and logs
of the experiments can all be downloaded from [11].

is the credit-card number submit form. Such policies can
be specified in approaches that support intensional policies,
usually by allowing trusted parts of the program to declassify
values. For instance, in the approach of Rafnsson and
Sabelfeld [15], such intensional policies can be supported.
The flip-side of the coin is that this makes it harder to
give guarantees on programs from untrusted sources (such
as third party analytics scripts). Rafnsson and Sabelfeld’s
approach can only impose coarse grained extensional limita-
tions on the power of declassification (essentially specifying
between what labels of the security lattice information can
potentially be declassified by means of their release policy
𝜌). In our approach the declassify annotations are not trusted,
and we can enforce more fine grained policies on programs
from untrusted sources.

It is interesting to note that – while our policies and
our definition of noninterference are purely extensional –
our enforcement mechanism in addition gives guarantees
about where declassification happens: it can only happen
in parts of the program that the programmer has annotated
with declassify annotations. But these declassify annotations
are not trusted: if the programmer would cheat, and leave
out a declassify annotation, our enforcement mechanism
would modify executions of the program so that they become
secure. Similarly, if a programmer would cheat and use
declassify annotations to leak information that is not allowed
to leak by the policy, the enforcement mechanism would
modify the execution of the program to make it secure. So
there is no need to review untrusted code for appropriate use
of declassify annotations to ensure security. Inappropriate
use of declassify only harms precision.

Simplifications in the formal model: There are some
simplifications in our formal model, and we discuss how
they impact the practicality of our approach.

A first simplification is that we have restricted our at-
tention to event-complete executions, essentially assuming
that handling a single event always terminates. This allows
us to work with a simple notion of termination-insensitive
noninterference. However, it is well-known that programs
that can do many outputs (as our event handlers) can
leak a substantial amount of information even if they are
termination-insensitively non-interferent [19]. Fortunately, it
is easy to see that our enforcement mechanism only leaks
one bit (whether the event handler terminates or not). This
follows for instance from the fact that noninterference holds
for any approximation of a non-terminating event handler
that performs the same first 𝑛 steps and then terminates.
While it would be possible to prove security for a stronger
notion of noninterference (that also puts demands on non-
event-complete executions), this would complicate the the-
ory without significant practical benefits.

Second, our model language is significantly simpler than
JavaScript. Hence, an important questions is in how far
our approach extends to more complex language features.

304

Fortunately, a nice aspect of SME is that it is language-
independent: it treats the language as a black box [15].
This language-independence makes it feasible to implement
SME-based enforcement relatively easily even for real and
complex languages like JavaScript.

Third, the event model and API available to scripts in our
formal model is significantly simpler than the actual DOM
API that JavaScript can use in web applications. This gap
between the formal model and actual web applications is
more important. SME has to deal with all I/O operations and
so wherever the I/O behaviour is more complex in the real
system than in the model there is a significant engineering
challenge and a risk for introducing vulnerabilities.

From a foundational point of view: treating events and
API calls as inputs and outputs with a specific noninterfer-
ence policy only makes sense if the context that provides
these events and implements these API calls does not itself
leak information (e.g. if a high output API call triggers a
low event, there is an information leak in the context, and
scripts could use this to “launder” information).

From a practical point of view: ensuring that a real
browser (the “context” for our scripts) is fine in this sense
is non-trivial. The implementation currently addresses this
in the same way as FlowFox does [18]: by imposing on the
policy writer the obligation to write policies that are such
that the context does not leak information with respect to
these policies. The complexity of API and event model in
real browsers makes this a difficult obligation for the policy
writer.

There is no simple solution here: a browser is a complex
beast, and any formal model must simplify tremendously.
We believe our model makes the right simplifications to
study the essence of declassification for event driven pro-
grams, but the gap with a real system is of course still
significant. The model helps us engineer declassification into
FlowFox in the right way, but our formal proofs apply only
to the model not to the full browser.

VII. RELATED WORK

A. Information flow security and declassification

Sabelfeld and Sands [20] survey information declassifi-
cation policies and enforcement mechanisms, and provide a
set of dimensions for declassification models. The identified
dimensions take into account the nature of the released data,
its location in the program, its time, and its owner (the
so-called what, where, when and who dimensions). These
dimensions have been extensively studied in the literature
[21], [22], [23], [24], [25], [26], [27]. We discuss closely
related work and refer to the survey for a wider overview.

Declassification policies: Li and Zdancewic [28] have
proposed relaxed noninterference. Like our notion of nonin-
terference, this is an extensional security property that speci-
fies the declassification policy in a simple separate language.
They consider such policies to be security levels and study

enforcement by means of type systems. For enforcement by
means of SME, an approach that considers policies as levels
would likely be expensive, as the performance cost of SME
grows linearly with the number of levels.

Sabelfeld and Myers [29] present delimited release,
a security policy to declassify information through es-
cape hatches specified using a special language operator
declassify(𝑒), where 𝑒 is globally considered as declassi-
fied (what dimension). Our information release mechanism
is similar to such escape hatches: one can think of the
release function as specifying an escape hatch expression
on the entire list of inputs seen so far. Later, Askarov and
Sabelfeld [30] combined the what and where dimensions
into the definition of localized delimited release. They
use an instrumented semantics with the set of declassified
expressions. Magazinius et al. [31] proposed decentralized
delimited released, combining the what and who dimensions
in decentralized settings and consider a web attacker model.
In the context of multiple facets [5], Austin and Flanagan
show how to perform robust declassification (who dimen-
sion) with integrity guarantees against active attackers.

Our security policy is inspired by delimited release, and
thus released information is considered as declassified in
the what dimension. However, SME enforcement releases
information only where a declassify 𝑒 expression appears.
Thus released information can be considered as declassified
in the where dimension. In fact, our precision theorem uses
as hypothesis that the program does not leak outside of
declassify expressions. Thus, information can only be re-
leased where the programmer explicitly marks the program.

There are some existing approaches in the literature where
declassification policies can be computationally specified by
means of a program, as in our work. Fournet and Planul [32]
propose to implement declassification code in a trusted
platform module in order to minimize trust assumptions.
The idea of handling declassification in SME by means of
an additional subprogram was mentioned by Kashyap et al.
[17] as possible future work. Swamy and Hicks [33] specify
information release policies as security automata in the AIR
language, and use a combination of program transformation
and static typing to ensure that programs in a core functional
programming language comply with the policy.

Rafnsson and Sabelfeld [15] extend the technique of
SME in many directions, one of them being declassification.
Like us, they distinguish between occurrence and content of
events. For input channels, our projection policies generalize
their distinction. This generality allows us to write a policy
to only project events satisfying some condition, yet hide the
occurrence of others. For example, in our declassification
framework we can express a policy that reveals shortcut
key presses while hiding the occurrence of other keys (see
Section 3.1). For output channels, Rafnsson and Sabelfeld
also support the occurrence/content distinction, allowing
them to support intensional declassification policies. In con-

305

strast, our declassification policies are extensional, enabling
safe execution of programs from an untrusted source, as
discussed in Section VI .

Information flow policies in web scripts: Information
flow control in web scripts is usually proposed by means
of dynamic mechanisms [34] due to the dynamic nature of
the JavaScript language, the de facto programming language
on the client side web applications. Several authors [5],
[2], [4] study runtime monitors for noninterference in
JavaScript-like languages. Bohannon et al. [12] propose
reactive noninterference, a noninterference property for re-
active programs such as web scripts that is proposed to
replace the Same Origin Policy in browsers, and Bohannon
and Pierce [35] developed Featherweight Firefox, a formal
model of a simple browser, with the purpose of formally
studying confidentiality and integrity policies for browsers,
including reactive noninterference policies. Bielova et al. [9]
later propose an enforcement mechanism for reactive non-
interference based on secure multi-execution and implement
it in the Featherweight Firefox browser model. Barthe et
al. [36] implement SME by program transformation and
report on Python and JavaScript prototypes. None of these
works target declassification policies. Our proposal is based
on dynamic enforcement by secure multi-execution [8].
Secure multi-execution was implemented in the Flowfox
browser [3], [18], but could only handle noninterference
policies before this work. To the best of our knowledge,
decentralized delimited released [31] and multiple facets [5]
are the only works that attempt to control declassication in
real web scripts. In particular the work targets a subset of
the JavaScript language.

B. Other web script security countermeasures

Information flow security is one promising approach
to web script security, but two other general-purpose ap-
proaches have been applied to script security as well: isola-
tion and taint-tracking.

Isolation / sandboxing: Isolation or sandboxing based
approaches develop techniques where scripts can be included
in web pages without giving them (full) access to the
surrounding page and the browser API. Several practical
systems have been proposed, including Webjail [37], AD-
Safe [38], Caja [39], and JSand [40]. Maffeis et al. [41]
formalize the key mechanisms underlying these techniques
and prove they can be used to create secure sandboxes. They
also discuss several other existing proposals, and we point
the reader to their paper for a more extensive discussion
of work in this area. Isolation is easier to achieve than
non-interference, but it is also more restrictive: often access
needs to be denied to make sure the script cannot leak the
information, but it would be perfectly fine to have the script
use the information locally in the browser. Isolation-based
systems do not deal with declassification: if access is given
to information, the script can send any derived information

through any output methods in the API made available to
the script.

Taint tracking: Taint tracking is an approximation to
information flow security, that only takes explicit flows into
account. Several authors have proposed taint tracking sys-
tems for web security. Two representative examples are Xu et
al. [42], who propose taint-enhanced policy enforcement as
a general approach to mitigate implementation-level vulner-
abilities, and Vogt et al. [43] who propose taint tracking to
defend against cross-site scripting. In taint-tracking systems,
declassification happens through trusted code that removes
the taint. For instance, taint can be removed after passing
the input through an input sanitization method.

VIII. CONCLUSION

Motivated by the desire to support web analytics in infor-
mation flow secure browsers, we have proposed an approach
to specify declassification policies for event-driven programs
and we have developed an enforcement mechanism that
we proved to be secure and precise. We implemented the
mechanism in an existing information flow secure browser
thus providing evidence of practicality.

The implementation, some example policies and scripts,
and the Redex mechanization of the formal model are all
available for download [11].

ACKNOWLEDGEMENTS

This research is partially funded by the Research Fund KU
Leuven, by the EU FP7 projects WebSand and NESSoS, and
by the IWT project SPION. Mathy Vanhoef and Dominique
Devriese hold a PhD fellowship of the Research Foundation -
Flanders (FWO). Willem De Groef holds a PhD grant from
the Agency for Innovation by Science and Technology in
Flanders (IWT).

REFERENCES

[1] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An Empirical
Study of Privacy-Violating Information Flows in JavaScript
Web Applications,” in ACM CCS, 2010.

[2] D. Hedin and A. Sabelfeld, “Information-Flow Security for a
Core of JavaScript,” in CSF, 2012.

[3] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens,
“FlowFox: a Web Browser with Flexible and Precise Infor-
mation Flow Control,” in ACM CCS, 2012.

[4] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, “Infor-
mation Flow Control in WebKit’s JavaScript Bytecode,” in
POST, 2014.

[5] T. H. Austin and C. Flanagan, “Multiple Facets for Dynamic
Information Flow,” in POPL, 2012.

[6] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “You
Are What You Include: Large-scale Evaluation of Remote
JavaScript Inclusions,” in ACM CCS, 2012.

306

[7] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and
G. Vigna, “Cross Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis,” in NDSS, 2007.

[8] D. Devriese and F. Piessens, “Noninterference Through Se-
cure Multi-Execution,” in IEEE Symposium on Security and
Privacy, 2010.

[9] N. Bielova, D. Devriese, F. Massacci, and F. Piessens, “Re-
active non-interference for a browser model,” in NSS, 2011.

[10] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen,
M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and
R. B. Findler, “Run Your Research: On the Effectiveness of
Lightweight Mechanization,” in POPL, 2012.

[11] https://distrinet.cs.kuleuven.be/software/FlowFox/.

[12] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic, “Reactive Noninterference,” in ACM CCS,
2009.

[13] A. Sabelfeld and D. Sands, “A Per Model of Secure Infor-
mation Flow in Sequential Programs,” Higher Order Symbol.
Comput., vol. 14, no. 1, pp. 59–91, Mar. 2001.

[14] R. Capizzi, A. Longo, V. Venkatakrishnan, and A. Sistla,
“Preventing Information Leaks through Shadow Executions,”
in ACSAC, 2008.

[15] W. Rafnsson and A. Sabelfeld, “Secure multi-execution: fine-
grained, declassification-aware, and transparent,” in CSF,
2013.

[16] D. Zanarini, M. Jaskelioff, and A. Russo, “Precise enforce-
ment of confidentiality for reactive systems,” in CSF, 2013.

[17] V. Kashyap, B. Wiedermann, and B. Hardekopf, “Timing- and
Termination-Sensitive Secure Information Flow: Exploring
a New Approach,” in IEEE Symposium on Security and
Privacy, 2011.

[18] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens,
“Secure multi-execution of web scripts: Theory and practice,”
Journal of Computer Security, 2014.

[19] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands,
“Termination-insensitive noninterference leaks more than just
a bit,” in ESORICS, 2008.

[20] A. Sabelfeld and D. Sands, “Dimensions and Principles of
Declassification,” in CSF, 2005.

[21] S. Chong and A. C. Myers, “Language-based Information
Erasure,” in CSF, 2005.

[22] A. A. Matos and G. Boudol, “On Declassification and the
Non-Disclosure Policy,” in CSF, 2005.

[23] N. Broberg and D. Sands, “Flow Locks: Towards a Core
Calculus for Dynamic Flow Policies,” in ESOP, 2006.

[24] H. Mantel and A. Reinhard, “Controlling the What and Where
of Declassification in Language-Based Security,” in ESOP,
2007.

[25] G. Barthe, S. Cavadini, and T. Rezk, “Tractable Enforcement
of Declassification Policies,” in CSF, 2008.

[26] S. Chong and A. C. Myers, “End-to-End Enforcement of
Erasure and Declassification,” in CSF, 2008.

[27] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive
Declassification Policies and Modular Static Enforcement,” in
IEEE Symposium on Security and Privacy, 2008.

[28] P. Li and S. Zdancewic, “Downgrading policies and relaxed
noninterference,” in POPL, 2005.

[29] A. Sabelfeld and A. C. Myers, “A model for delimited
information release,” in International Symposium on Software
Security, 2003.

[30] A. Askarov and A. Sabelfeld, “Localized Delimited Release:
Combining the What and Where Dimensions of Information
Release,” in PLAS, 2007.

[31] J. Magazinius, A. Askarov, and A. Sabelfeld, “Decentralized
Delimited Release,” in APLAS, 2011.

[32] C. Fournet and J. Planul, “Compiling Information-Flow Se-
curity to Minimal Trusted Computing Bases,” in ESOP, 2011.

[33] N. Swamy and M. Hicks, “Verified enforcement of stateful
information release policies,” in PLAS, 2008.

[34] G. Le Guernic, “Confidentiality Enforcement Using Dynamic
Information Flow Analyses,” Ph.D. dissertation, Kansas State
University, 2007.

[35] A. Bohannon and B. C. Pierce, “Featherweight firefox: For-
malizing the core of a web browser,” in USENIX Conference
on Web Application Development, 2010.

[36] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and
E. Rivas, “Secure multi-execution through static program
transformation,” in FMOODS/FORTE, 2012.

[37] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and
W. Joosen, “Webjail: Least-privilege integration of third-party
components in web mashups,” in ACSAC, 2011.

[38] D. Crockford, “Adsafe,” http://www.adsafe.org/, 2009.

[39] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay,
“Caja: Safe active content in sanitized javascript,” http://
google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf.

[40] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung,
L. Desmet, and F. Piessens, “JSand: Complete Client-Side
Sandboxing of Third-Party JavaScript without Browser Mod-
ifications,” in ACSAC, 2012.

[41] S. Maffeis, J. C. Mitchell, and A. Taly, “Object Capabilities
and Isolation of Untrusted Web Applications,” in IEEE Sym-
posium on Security and Privacy, 2010.

[42] W. Xu, S. Bhatkar, and R. Sekar, “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range
of Attacks,” in USENIX Security, 2006.

[43] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and
G. Vigna, “Cross Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis,” in NDSS, 2007.

307

