
From Input Private to Universally Composable Secure Multi-party
Computation Primitives

Dan Bogdanov1 and Peeter Laud1 and Sven Laur2 and Pille Pullonen1,2

Abstract— Secure multi-party computation systems are com-
monly built from a small set of primitive components. The
composability of security notions has a central role in the
analysis of such systems, as it allows us to deduce security
properties of complex protocols from the properties of its
components. We show that the standard notions of universally
composable security are overly restrictive in this context and
can lead to protocols with sub-optimal performance. As a
remedy, we introduce a weaker notion of privacy that is satisfied
by simpler protocols and is preserved by composition. After
that we fix a passive security model and show how to convert
a private protocol into a universally composable protocol. As a
result, we obtain modular security proofs without performance
penalties.

I. INTRODUCTION

Secure multi-party computation is a tool for privacy-

preserving collaborative computation. In general, the desired

functionality is represented by either a boolean or arithmetic

circuit and jointly evaluated. In this context, it is not suffi-

cient to prove that individual protocols for gate operations

leak nothing beyond the desired outputs. We additionally

require composability, meaning that these protocols should

remain secure, independently of the context in which they are

executed. There have been different formalisations of com-

posable security: universal composability [1], reactive sim-

ulatability [2], abstract cryptography [3] and inexhaustible

interactive Turing machines [4]. In this work, we use reactive

simulatability (RSIM) for the asynchronous communication

[5], [6] due to the precision it offers us in modelling the

adversarial network activities.

In this paper, we define privacy for the RSIM framework

and show that our definition is composable. There are big

differences between privacy and other standard notions of

security, such as sequential and universal composability.

First, privacy protects only the inputs of honest parties.

Separately taken, privacy is insufficient for guaranteeing the

integrity or confidentiality of protocol outputs. A malicious

adversary may control the outputs of a private protocol, while

passive corruption might be enough for learning them.

Second, privacy guarantees that the adversary does not

learn extra information only if the outputs of the protocol are

not used in further computations. A private protocol may leak

a significant amount of information about the inputs if all

parties publish their outputs. Thus, privacy as an intermediate

proof goal is useful in very restricted settings.

Nevertheless, the notion of privacy is indispensable in the

analysis of secure multi-party computation protocols based

1Cybernetica AS
2University of Tartu, Institute of Computer Science

on secret sharing [7], [8], [9] that is the focus of this work. In

such protocols, no party obtains the desired output. Instead,

the desired output y is secret-shared among all participants.

This assures that the outputs of the corrupted parties are

independent of y and can be simulated without knowing the

outcome. Similarly, we can show that the inputs of such

protocols never reach the corrupted parties. As a result,

privacy provides sufficient security guarantees as long as the

parties do not publish the output shares.

Although our current exposition focuses on computing on

secret-shared data, the same approach is applicable for all

protocols, which use temporary values to pass the state from

one sub-protocol to the other. If these values are deleted after

the protocol execution, they do not have to be as secure as

the outputs of a protocol. Hence, we can compose less secure

versions of sub-protocols as long as we finally convert the

obtained private protocol into a secure protocol.

To create a clear distinction between protocol outputs

and intermediate values, we define a restricted version of

composition where two composed systems can only have

one-way communication. This notion is a complement to

the previous compositions and helps us in clarifying the data

dependency graph of the composition.

As the main result, we show that the ordered composition

of a private and a secure protocol is secure in the passive

model, provided that all outputs of the composed protocol

are produced by the secure protocol, i.e., the outputs of

the private protocol are indeed temporary. The exact set of

conditions that are needed for achieving similar results in the

active model is out of our scope in this paper.

The implications of these results are two-fold. First, pri-

vate versions of protocols can be more efficient than their

secure counterparts. Second, proofs of privacy are often more

straightforward and easier for the protocol designer.

We stress that the RSIM framework gives complete control

over protocol scheduling to the adversary who controls when

the messages are delivered. The latter is an appropriate way

for modelling standard deployments of SMC frameworks

where the underlying communication network is not under

our direct control and secrecy and integrity are provided by

cryptographic means. To simplify the analysis, we consider

the standard adaptive passive security model from RSIM with

secure authenticated channels. Such a model is an obvious

choice, as we want to model the cases where some of the

parties of the computation are corrupted and not to focus on

independent network intruders.

The initial idea for our composition of private and secure

protocols as well as the main motivation comes from the

2014 IEEE 27th Computer Security Foundations Symposium

© 2014, Dan Bogdanov. Under license to IEEE.

DOI 10.1109/CSF.2014.21

184

Sharemind secure multi-party computation framework [7],

[10]. The most up-to-date version of this approach can

be found in [11]. However, the current treatment in this

paper is more general and more rigorous than the original

exposition. This technique has also been used for obtaining

other efficient secure multi-party computation protocols that

are introduced in Sec. III-C. Previously, the security of each

protocol obtained in this manner had to be proven separately.

Our work establishes a framework for analogous protocol

compositions that simplifies the proofs.

In the following, Sec. II gives an overview of the reactive

simulatability framework with a focus on the adaptive adver-

saries and sets the ground for the rest of the paper. Sec. III

gives further motivation for our work as well as concrete

examples of using private sub-protocols in compositions.

Sec. IV gives a formal definition of privacy and specifies the

ideal functionalities for private systems. In Sec. V, we define

an ordered composition and discuss the ideal functionalities

of composed systems. Our main goal is to show that the

fully ordered composition of private and secure systems is

secure and that privacy is composable. For these purposes,

Sec. VI explores the necessary modifications of the original

simulators required for building simulators for the composed

systems. Finally, Sec. VII proves the main composability

results by introducing intermediate models of corruption,

which simplify the analysis without losing generality.

II. REACTIVE SIMULATABILITY

This section gives a high-level overview of the RSIM

framework and exposes only the details that are necessary to

understand our main results. Further information and detailed

discussions be found in the original papers [5], [6].

A. Interaction model for asynchronous reactive systems

In this model, different parties are described by machines

that are connected through ports and each connection is

actually a buffer that may be under adversarial control.

Reactive means that the environment and the system can

interact multiple times and asynchronous means that the

adversary may control delays in the message delivery.

A party in the RSIM framework is modelled as a machine
specified by tuple (Name, Ports, States, σ, Ini, F in). A

string Name is the name of the machine, Ports is a

sequence of ports of that machine, States is a set of

states, σ is a probabilistic state transition function, Ini and

Fin are the sets of initial and final states. We sometimes

write ports(M̂) to stress that they belong to the set M̂ of

machines. The set ports(M̂) can be further split into the

ports that connect machines in the collection M̂ and the set

of free ports free(M̂) that can be accessed from outside.

Data transfer from one machine to another goes through a

buffer that connects an output port p! with and input port p?.

A buffer is a dedicated machine that has exactly three ports:

clock-in port, buffer in-port and buffer out-port. Each state

transition in the system either appends or retrieves an element

from a buffer. Ports are named after the buffer they are

connected to. A question mark after the port name denotes

H

M̂

M1

M2

. . .

A

iniouti in1out1

in2out2

net1
out1,Sys

in1,Sys

out2,Sys

in2,Sys

outi,Sys

ini,Sys

netj,Sys

S
S

Fig. 1. Canonical interface between adversary, honest user and system

input ports and the exclamation mark denotes output ports.

The shorthand pc denotes a port that is complementary to

p. For a set S of ports, we use Sc in a similar manner. On

figures, we use labelled arrows to denote buffers and ports.

Buffer clocking channels are denoted as dashed lines where

the name corresponds to the name of the buffer.

As an illustrative example, consider the most common

setting in the RSIM framework depicted on Fig. 1. In this

configuration, a complex system Sys, composed of several

subsystems and parties, is under the influence of an adversary

A and an environment H , which uses Sys to obtain an

output. All machines, except for H , are assumed to have

input and output buffers denoted by properly indexed in and

out symbols. As the system can be a collection of machines,

we use double indexing. In addition, there is a buffer for

each network connection j defined for the machines in

the system. The double indexing of buffers is necessary

for differentiating between analogous buffers in protocol

composition. Finally, the adversary A schedules all buffers

on figure Fig. 1.

The execution of the machines is controlled by clocking

and inputs. A machine is clocked when it receives an input.

The corresponding machine uses the state transition function

to determine the next state and write data to the output

buffers. A machine can clock at most one of the output

buffers by sending an input to a clock-in port of the buffer.

Upon a clocking input, the buffer releases the desired value

and the recipient of the value is clocked. If no machine

is scheduled then the control goes to the adversary. The

execution ends when the adversary reaches a final state.

A collection is a finite set of machines. A collection is

closed if the only free port is the master clock-in port.
Given a closed collection of machines M̂ with a master

scheduler X , a run of this collection is a sequence of steps

(N, cin, vin, s, ((c1, v1), . . . , (cn, vn)), cclk), where N is the

name of the machine that made the step after receiving the

input vin from an input port cin?, going to state s, writing

vi to output port ci! and possibly clocking the channel cclk,

which may also be ⊥. For a collection M̂ , a completion

185

[M̂] is M̂ together with all of the buffers connected to

its ports except the master clock port. The main use of a

completion is that often, the collections are defined as sets

of simple machines, as these are the main objects to work

with. However, occasionally we need to specify that all the

buffers are included.

A structure (M̂, S) is collection of machines M̂ together

with a set of ports S ⊆ free(M̂). Let S = free(M̂)\S.

Ports in S are for communicating with the environment H
and ports in S are for communicating with the adversary A.

To avoid naming collisions, H cannot have ports belonging

to S or ports used to send messages between machines of

M̂ . We denote these forbidden ports by forb(M̂, S).
A system Sys is defined as a set of structures. In cryptog-

raphy, these structures commonly correspond to different sets

of statically corrupted parties. Surprisingly enough, adaptive

corruption can be modelled by systems with exactly one

structure and machines that accept corruption requests during

their work. Hence, we simplify the original theory [5], [6] for

the cases where Sys = {(M̂, S)}. Also, note that the model

provides a fine-grained way to specify what the adversary can

control and influence during the execution of the protocol. By

altering the interface S we can specify what kind of messages

the adversary can delay or read. In our work, the adversary

has full control over the protocol and message scheduling,

but does not see the messages of uncorrupted parties.

A configuration of a system is a tuple (M̂, S,H,A) where

H is a simple machine without forbidden ports forb(M̂, S)
and the collection M̂,H,A is closed with A being the master

scheduler. We use a shorthand Conf(Sys) to denote the set

of all configurations.

B. Security definitions

Security in the RSIM framework is defined by contrasting

two systems Sys1 and Sys2 where Sys2 is the system that

is known to be secure and Sys1 is the system we want to

use. Both systems must have the same interface S towards

the environment H and there must exist a way to convert a

valid adversary A1 against (M̂1, S) ∈ Sys1 to a comparable

adversary against (M̂2, S) ∈ Sys2.

For each machine M , when it is scheduled, we store the

state transition as well as respective input and outputs into

the run. A view of a set of parties M0 ⊆ M̂ is a subset of

a run that corresponds to the steps relating to machines in

M0 as is denoted by view(M0). Note that the view does not

contain port names and therefore we are allowed to rename

ports and buffers when composing systems.

Definition 1 (Simulatability). Let systems Sys1 and Sys2
be given. We say that Sys1 is perfectly as secure as Sys2
(denoted as Sys1 ≥perf

sec Sys2) if, for every configuration

conf1 = (M̂1, S,H,A1) ∈ Conf(Sys1) where ports(H) ∩
forb(M̂2, S) = ∅, there exists a configuration conf2 =
(M̂2, S,H,A2) ∈ Conf(Sys2) such that the environments

have coinciding views viewconf1(H) = viewconf2(H).

We can give analogous definitions for computational and

statistical security by restricting the set of plausible config-

urations and by varying the requirements on the views. For

computational security Sys1 ≥poly
sec Sys2, we require com-

putational indistinguishability of views created by all poly-

nomial configurations Conf(Sys1). For statistical security

Sys1 ≥stat
sec Sys2, we require statistical indistinguishability

of views for all configurations Conf(Sys1). The running-

time of A2 must be polynomial in the running-time of A1.

Black-box simulatability means that A2 = Sim∪A1 must

be the combination of a simulator machine Sim and the

adversary A1. Two machines are combined simply by taking

the Cartesian product of their sets of states and the union

of their ports and transition functions. The simulator Sim
depends only on M̂ and S.

Definition 2 (Simulatability for a class of adversaries). Let

systems Sys1 and Sys2 be given. We say that Sys1 is

perfectly as secure as Sys2 for class A adversaries (de-

noted as Sys1 ≥perf,A
sec Sys2) if, for every configuration

conf1 = (M̂1, S,H,A1) ∈ Conf(Sys1) where A1 ∈ A and

ports(H) ∩ forb(M̂2, S) = ∅, there exists a configuration

conf2 = (M̂2, S,H,A2) ∈ Conf(Sys2) with A2 ∈ A such

that viewconf1(H) = viewconf2(H).

C. Security of compositions

The main result of the RSIM framework assures that the

security is preserved under the composition. A composition

of systems in this setting means that the composed systems

are connected using the respective ports.

Definition 3 (Composability and composition). Structures

(M̂1, S1), . . . , (M̂n, Sn) are composable if they have com-

patible port layouts:

∀i
= j : ports(M̂i) ∩ forb(M̂j , Sj) = ∅ ,

∀i
= j : Si ∩ free([M̂j])
c = Sc

j ∩ free([M̂i]) .

Their composition (M̂1, S1)|| . . . ||(M̂n, Sn) is a structure

consisting of all machines M̂ = M̂1 ∪ . . . ∪ M̂n that has

the interface (S1∪ . . .∪Sn)∩free([M̂]) for communicating

with the environment.

For any systems Sys1 and Sys2, let Sys1 ◦ Sys2 denote

the system of all valid compositions (M̂1, S1)||(M̂2, S2) for

(M̂1, S1) ∈ Sys1 and (M̂2, S2) ∈ Sys2. Let (M̂2, S2) ∈
Sys2 be composable with Sys1 if there exists (M̂1, S1) ∈
Sys1 such that (M̂1, S1)||(M̂2, S2) ∈ Sys1 ◦Sys2. Then we

can state the following profound result.

Theorem 1 (Secure two-system composition). Assume
that we have three systems Sys1, Sys′1, Sys2 such that
Sys1 ≥sec Sys

′
1. If for every structure (M̂2, S2) ∈ Sys2 that

is composable with Sys1 and for every structure (M̂ ′
1, S1) ∈

Sys′1 the composition (M̂ ′
1, S1)||(M̂2, S2) exists and satisfies

ports(M̂ ′
1)∩ Sc

2 = ports(M̂1)∩ Sc
2, then Sys1 ◦ Sys2 ≥sec

Sys′1 ◦ Sys2.

Note that the theorem holds for statistical, perfect and

computational security as well as universal and black-box

simulatability. We use these definitions and the main the-

orem to add the privacy notion to this formalisation. The

186

composition theorem also holds for the restricted classes of

simulatability.

D. Security proofs for passive security

Proving that a system is secure requires defining a simu-

lator or several simulators that unify the adversaries’ views

on the ideal and real world. An important implication of

unified views is that the simulation output has to agree with

the output of the ideal party. An ideal system should provide

abstract interfaces, but should also specify all weaknesses or

imperfections of the system.

In the passive security model, the adversary must behave

as an observer and thus can not modify the behaviour of the

corrupted parties. In the context of Fig. 1, the only message A
can send on ini,Sys is (corrupt) to corrupt party i for system

Sys. Afterwards, each time the machine Mi is clocked, it

writes its view to outi,Sys where the adversary can see this.

Otherwise, the corrupted machines follow the protocol as the

honest machines and A can not affect their behaviour.

Hence, the security proof for a passive adversary requires a

simulator that can simulate the view of the corrupted parties

and the network scheduling. In addition, the joint view of

the environment and the adversary has to be consistent. For

that, the simulator has to ensure that the view of the corrupted

parties is such that it leads to the same output value as defined

by the corresponding ideal functionality.

III. SECURE MULTI-PARTY COMPUTATION

In the following, we consider secure multi-party com-

putation based on secret-shared data. In this setting, all

inputs are distributed between the computing parties who

collaboratively compute the outputs. The inputs and outputs

of the computation can either be plain or secret shared values.

A plain value is denoted by x and a shared value by [[x]]
where xi denotes the share of party CPi. W.l.o.g., we can

assume that all protocol inputs x1, . . . , xk are in a secret-

shared form and that the protocol produces outputs in the

secret-shared form [[y1]], . . . , [[y�]]. If needed, the shares [[yi]]
can be opened to the party who needs the output yi. The

functionality of the protocol is determined by the function

(y1, . . . , y�) = f(x1, . . . , xk). As any function f can be

expressed as an arithmetic circuit, all computations can be

reduced to securely evaluating a few arithmetic primitives.

A. Arithmetic black box

The arithmetic black box (ABB), first specified by

Damgård and Nielsen [12], is a possible representation

for the set of protocols for securely evaluating arithmetic

primitives. It is an ideal functionality FABB, the internal

state of which contains a mapping from (public) handles
to (secret) values. The computing parties can store new

values inside FABB under the handles they have chosen. The

functionality can do arithmetic with the values stored in it.

If the computing parties specify the operation, the handles

of the operands, and the handle of the result, then FABB

applies the chosen operation to the values associated with

the operand handles, and stores the result of the operation

under the result handle. Finally, the computing parties can

instruct FABB to publish a value stored under a certain

handle. The functionality FABB performs these operations

only if a majority of parties give the same command to FABB.

The availability of the functionality FABB makes the se-

cure computation of a function f represented as an arithmetic

circuit conceptually simple. The computing parties first store

their inputs in the ABB. They will then interpret the circuit,

requesting the ABB to evaluate each gate in turn. Finally,

they request the ABB to publish the outputs.

The intermediate values of the computation are stored

inside the ABB, accessible to the computing parties only

through abstract handles. The only values received from

FABB are the published outputs. Thus, FABB is a mono-

lithic ideal functionality, similar to the UC cryptographic

library [13], and contrasting with smaller, “lower-level” com-

posable ideal functionalities (e.g. [14], [15], [16]), where the

inputs and outputs of operations, represented as bit-strings,

are exposed at the interface of the functionality.

The notion of ABB has proven itself as a highly suitable

abstraction of SMC, when building applications [17], [18]

and tools [19], [20] for SMC. Its monolithic nature makes

it less suitable as a specification for large SMC libraries. A

monolithic FABB would change each time a new operation

is added to the library, requiring the security proof (Def. 1)

to be redone from scratch, thereby complicating the mainte-

nance of the library. In this paper, we show how to define

lower-level abstract privacy-preserving operations, and how

to compose them. These allow for more modular abstractions

and security proofs. The high-level abstraction in the form of

an ABB can be easily composed from the abstract operations.

B. Lightweight functionalities

In practice, ABB systems are built using primitive proto-

cols that process input shares [[x1]], . . . , [[xk]] to get output

shares [[y]]. The corresponding ideal functionality [[y]] =
f([[x1]], . . . , [[xk]]) reconstructs x1, . . . , xk from the shares

and returns uniformly randomly chosen shares of y. The

ideal functionality also accepts corruption requests from the

adversary and releases the inputs of the corrupted parties to

the adversary. In case of secure protocols also the outputs of

the corrupted parties are given to the adversary as common

for ideal functionalities. As usual, a protocol is secure, if it

is as secure as the corresponding ideal functionality.

The corresponding real functionality defines a machine

Mf
i for each party CPi, based on the protocol description.

The machines are connected to each other with secure,

authenticated channels, the messages on which the adversary

cannot see or modify. Still, the adversary can fix the timings

of these channels. Additionally, the machines allow passive

corruption and the corrupted machines send all of their views

to the adversary. Each machine Mf
i can receive a corruption

request on the input port ini,Sys?, and will afterwards output

the elements of its view to the port outi,Sys!. The channels

ini,Sys and outi,Sys are clocked by the adversary.

This setup is a standard way for modelling passive adap-

tive corruption in the RSIM framework. The same setup

187

Algorithm 1 Resharing protocol [[w]]← Reshare([[u]]).

Data: Shared value [[u]].
Result: Shared value [[w]] such that w = u and freshly

generated shares wi are uniformly distributed.

CP1 generates an uniformly distributed r12 ← Z2n .

CP2 generates an uniformly distributed r23 ← Z2n .

CP3 generates an uniformly distributed r31 ← Z2n .

All values rij are sent from CPi to CPj .

CP1 computes w1 ← u1 + r12 − r31.

CP2 computes w2 ← u2 + r23 − r12.

CP3 computes w3 ← u3 + r31 − r23.

return [[w]].

can be used to model static corruption, if we additionally

require that all corruption request must be submitted before

execution starts. All corrupted machines notify the adversary

about their outputs when they are computed as (output, �x)
where �x is the label of the output and output is a keyword.

We assume that the state s recorded in the view of the

machine contains all computed outputs as (output, �x, x) for

each value x and possibly other parts of the previous protocol

run. After receiving the corruption request, the corresponding

machine sends its current state s to the adversary. Then, the

machine sends its view (vin, s, ((c1, v1), . . . , (cn, vn)), cclk)
to the adversary each time it is clocked. The adversary can

learn all the previous outputs because they are contained in

the state s.

We stress that, according to this definition, addition pro-

tocols in most ABB-s are insecure. The employed sharings

are usually additively homomorphic [12], [7] and the real

functionality just consists of each party’s machine adding up

the shares by itself. As a result, the protocol does not produce

freshly generated uniformly random shares.

C. Efficient composed protocols

Consider a three-party secure computation that is based

on additive secret sharing as in Sharemind. We have three

participants CP1, CP2, CP3 and each secret value v is dis-

tributed as shares v1, v2, v3 where v = v1+v2+v3 mod 2n.

Beside arithmetic operations, we have Reshare() protocol

in Algorithm 1 that for a shared input value [[v]] outputs a

uniformly random sharing [[w]] such that w = v.

Sharemind’s secure multiplication protocol [11] is given

in Algorithm 2. We can consider this protocol as a compo-

sition of Reshare() and other computations. The protocol is

passively secure according to Def. 1.

We can consider the multiplication protocol without the

last line, so that the output is [[w′]]. However, in this case

it is not secure. But composing it with other protocols may

give secure protocols. E.g., it’s possible to show that in com-

puting ([[t]] · [[u]]) · [[v]], only the second multiplication needs

Reshare() at the end. Even more strikingly, when computing

the inner product of two vectors, it is sufficient to perform

a Reshare() at the very end of the computation, not after

each multiplication. The performance gain of this approach

Algorithm 2 Sharemind protocol for secure multiplication

Data: CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: CP1, CP2, CP3 hold a shared value [[w]] = [[uv]].

[[u′]]← Reshare([[u]])
[[v′]]← Reshare([[v]])
CP1 sends u′

1 and v′1 to CP2.

CP2 sends u′
2 and v′2 to CP3.

CP3 sends u′
3 and v′3 to CP1.

CP1 computes w′
1 ← u′

1v
′
1 + u′

1v
′
3 + u′

3v
′
1.

CP2 computes w′
2 ← u′

2v
′
2 + u′

2v
′
1 + u′

1v
′
2.

CP3 computes w′
3 ← u′

3v
′
3 + u′

3v
′
2 + u′

2v
′
3.

return [[w]]← Reshare([[w′]]).

is illustrated by the performance of Carter-Wegman hash

construction in [18]. Their implementation of the optimised

construction proved to be twice as fast as the straightforward

composition of secure protocols. An analogous idea is also

used for obtaining efficient inner products for Shamir secret

sharing in [21]. Moreover, there are specific instantiations of

Shamir secret sharing schemes, which allow us to perform

up to k multiplication through local operations before shares

must be re-randomised. As a result, all functions with a

multiplicative depth k can be computed locally before the

resharing step must be carried out. This significantly reduces

the communication overhead.

In the Sharemind ABB, many complex protocols use mul-

tiplication as a primitive sub-protocol. Each such a protocol

can be made more efficient by replacing a secure multipli-

cation with a private multiplication. Besides multiplication,

other primitive protocols such as share conversion, equal-

ity check and comparison also benefit from this approach.

Among these, share conversion is most like multiplication,

that performs some protocol specific computations and then

needs the resharing step. Comparison and equality protocols

are even further compositions that perform some private

protocols for specific computations and then use other sub-

protocols and finish with a resharing step.

IV. INPUT PRIVACY

Our definition of privacy has roots in earlier research.

Goldreich, in his seminal book Foundations of Cryptogra-
phy [22], defines privacy as indistinquishability of the party’s

view and the simulation of this view, whereas the simulation

is based on the input and output of that party. However,

in the context of secret sharing, we can say that the party

has no output before the final result is published and the

simulation can rely only on the inputs. For private protocols,

we also have to consider the correctness of the protocol

corresponding to the ideal functionality.

A. Privacy definition

Consider an environment that completely ignores the

protocol outcomes. Formally, such an environment H is

modelled as a composition of two machines, H = H ′∪H⊥,

where only H ′ is allowed to communicate with A and the

system and only H⊥ sees the outputs of the protocols. An

188

illustration of this can be found on Fig. 2 where arrows

show the direction of communication and lines illustrate

possible two-way communication. A privacy configuration
is a configuration conf = (M̂, S,H ′ ∪H⊥, A).

H ′

M̂

H⊥

A

Fig. 2. Privacy configuration with two distinct parts for an honest user
H

Definition 4 (Input privacy). Let Sys1 = (M̂1, S) and

Sys2 = (M̂2, S) be given. We say that Sys1 is perfectly at

least as input-private as Sys2 (Sys1 ≥perf
priv Sys2) if, for ev-

ery privacy configuration conf1 = (M̂1, S,H
′ ∪H⊥, A1) ∈

Conf(Sys1) where ports(H)∩forb(M̂2, S) = ∅, there ex-

ists a privacy configuration conf2 = (M̂2, S,H
′∪H⊥, A2) ∈

Conf(Sys2) with the same H ′∪H⊥, such that the restricted

views coincide viewconf1(H
′) = viewconf2(H

′).

We can give analogous definitions for computational and

statistical privacy by restricting the set of plausible config-

urations and by varying the requirements on the views. In

addition, we can give this definition for restricted classes of

adversaries analogously to Def. 2.

We say that a protocol is black-box-private, if A2 is the

combination of a simulator Sim and the adversary A1, where

Sim depends only on M̂1, S and ports(A1). In the following,

we are only interested in the black-box case.

We show later in Thm. 3 that the privacy definition is

composable in a sense that a composition of several private

systems is as private as the corresponding monolithic ideal

functionality. In addition, a trivial composition result about

independent composition holds. The composition of two

systems Sys1 and Sys2 that do not have any connections is

private, if both systems are private. Namely, for both of them,

we can define a suitable privacy configuration by including

the other system in H ′.

B. Ideal functionality for private protocols

The ideal functionality for a private system is defined

analogously to common ideal functionalities, except it does

not give outputs to the adversary. This captures the idea, that

before the output is published, the SMC protocols have no

outputs. A protocol is said to be private, if it is as private as

the corresponding ideal functionality.

Let us now formally define when a structure can be

considered to be an ideal functionality.

Definition 5 (Ideal functionality). A structure {(M̂, S)} is

an ideal functionality for n parties, if the following holds.

1) M̂ consists of a single machine I.

2) The ports in S have been partitioned to S1 ∪ · · · ∪
Sn, where Si contains the input and output ports for

providing the functionality to the i-th party.

3) The machine I has the ports in S, as well as the ports

inI? and outI ! to communicate with the adversary. It

clocks the channel outI . There are no channels from

I to I.

4) I expects exactly one input at each input port in S (i.e.

it will ignore any subsequent inputs). In the course of

its work, it will write exactly once to each of the output

ports in S. All outputs are produced when all inputs

necessary for computing them have been received.

5) On input (corrupt, i) from inI?, it will write the inputs

it has so far received from the i-th party (from the

input ports in Si) to outI ! and clock that channel.

Subsequently, it forwards any input from the input

ports in Si to outI ! and clocks that channel.

6) It will not react to any other commands from inI? nor

write anything else to outI !.
7) The commands from inI? do not affect the input-output

behaviour of I, restricted to the ports in S.

This gives a hint about why we call our property privacy.

Clearly, all that the adversary sees in the ideal world are the

inputs of the corrupted party. Thus, if its outputs in the real

and the ideal world coincide, then it means that the output

of the adversary is not interestingly affected by the messages

seen in the real world. Hence, the inputs of honest parties

are protected in the real world, since the messages corrupted

party sees can not depend on the inputs of the other parties.

Also, note that privacy means that the adversary has the

same view in different protocol runs as long as the inputs of

the corrupted parties are the same.

As an ideal functionality ({I}, S) is uniquely determined

by the machine I, we will, by slight abuse of notation,

identify them with each other in the rest of this paper. In

addition, note that our lightweight ideal functionalities from

Sec. III-B will satisfy this definition if we modify them so

that they do not send outputs to corrupted parties.

Since the definitions of ideal functionalities differ for

private and secure protocols, we cannot conclude directly

that all secure protocols are also private. However, if the

output is secret-shared and the corresponding sharing is

secure against adaptive corruption, then we can perfectly

simulate the outputs of the protocol by sharing a random

value. Thus, any secure protocol is also a private protocol.

V. COMPOSITION

In this section, we define a restricted version of compo-

sition that is sufficient for composing arithmetic circuits. In

addition, we specify a way to obtain an ideal functionality

for the composed circuits from the ideal functionalities

of the composed systems. This formalism is necessary to

enforce the requirement that only intermediate values in

the composed protocol are allowed to be less secure than

required by the traditional UC security definitions.

189

A. Ordered composition

We define an ordered composition that restricts the data

dependency of the composed protocols. Namely, we assume

that the first system can give inputs to the second, but not

vice versa. In addition, this definition reduces the complexity

of the proofs of the following composition theorems.

Definition 6 (Ordered composition). The ordered composi-

tion Sys1 → Sys2 of two structures Sys1 = {(M1, S1)}
and Sys2 = {(M2, S2)} is defined if the structures are

composable and the data flow is limited to passing from M1

to M2.

More formally, the structures have to satisfy the following

conditions. First, the port structure must be compatible:

ports(M1) ∩ forb(M2, S2) = ∅ ,

ports(M2) ∩ forb(M1, S1) = ∅ ,

and input-output ports must match:

S1 ∩ free([M2])
c = Sc

2 ∩ free([M1]) .

Second, all ports S1 ∩ free([M2])
c must be output ports

and all ports S2 ∩ free([M1])
c must be input ports to force

unidirectional connections from M1 to M2.

Definition 7 (Fully ordered composition). The composition

Sys1 → Sys2 is fully ordered if all the outputs of M1 go

to M2, i.e., all output ports in S1 belong to free([M2])
c.

Note that machines in ordered composition can work either

sequentially or in parallel and the only thing limited by this

definition is the data dependency. Hence, this definition is a

complement to traditional composition definitions, that pro-

pose additional restrictions. Machines that are not connected

directly or through other machines in the system, can trivially

be said to be in ordered–but not fully ordered–composition.

Moreover, ordered composition is sufficient for arithmetic

circuits, because the circuits are acyclic directed graphs. We

can topologically sort such a circuit and define an ordering

of the system based on the result.

B. Composition of ideal functionalities

We emphasize that the composition of ideal functionalities

is no longer an ideal functionality, because it consists of

several machines and has a wrong set of ports. We will thus

define a separate notion of what it means to compose ideal

functionalities. This notion will also be ordered.

Definition 8 (Ideal composition of ideal functionalities). Let

Sys1 = {({I1}, S1)} and Sys2 = {({I2}, S2)} be two ideal

functionalities for n parties, such that Sys1 → Sys2 can be

defined. Let inIj? and outIj ! be the ports that Ij uses for

communicating with the adversary. Let S1 = S1i ∪ S1o and

S2 = S2i ∪ S2o be the partitions on S1 and S2 to input and

output ports. The ideal composition of Sys1 and Sys2 is the

ideal functionality Sys = {(I, S)}, where

1) S = S1i ∪ (S2i\Sc
1o) ∪ S2o ∪ (S1o\Sc

2i);
2) ports in S are divided among n parties according to

the partitioning of S1 and S2, i.e., Si = (Si
1∪Si

2)∩S;

I

H

I1
Filter A

I2

Fig. 3. Composition for the ideal functionality

3) machine I has the ports in S, as well as the ports inI?
and outI ! to communicate with the adversary;

4) machine I executes by waiting for input on all input

ports in S, then runs I1 and I2, and writes the output

to output ports in S;

5) on input (corrupt, i) from inI , machine I will behave

as required in Def. 5 for the ports in Si defined for

party CPi only.

As a shorthand, we denote this resulting machine by I1|I2.

We see that the ideal composition of ideal functionalities

Sys1 and Sys2 behaves as a standard composition, except

that the intermediate results of the computation that I1 sends

to I2 are not sent to the adversary, even if certain parties

are corrupted. This corresponds to our intuition of ideal

functionalities for secure multi-party composition.

Lemma 1. The machine I = I1|I2 can be obtained from
I1 and I2 with a filter Filter where the filter is uniquely
determined by the composition.

Proof. This is trivial as the output behaviour on outI and

inI is defined based on the set S of ports. Hence, the

Filter has to be such that for both functionalities I1 and

I2, it forwards all messages from A to corresponding inIj .

However, for all messages from outI , it only forwards the

message corresponding to S1 or S2, if the given port is in S.

The set S is uniquely fixed by the composition, therefore,

Filter is fixed. The Filter always clocks its outputs. This

construction is shown on Fig. 3.

Note that for fully ordered composition, we can assume

that the Filter only affects the I2 part of the composition.

C. Ordered composition with predictable outputs

Privacy is a fragile notion of security. A private protocol

might leak extra information about inputs when all output

shares are sent to a dedicated computing party. For instance,

the multiplication protocol depicted in Fig. 2 is private

without the resharing step, but it can leak the factors u and

v besides the desired output uv, when shares are revealed.

As a result, an ordered composition Sys1 → Sys2 can be

insecure if Sys1 is a private protocol and Sys2 somehow

reveals the output shares to party CPi. As such a protocol

Sys2 is a secure implementation of a functionality I2 that

reveals inputs of all other parties to CPi, the security of Sys2
is not sufficient for the security of Sys1 → Sys2.

190

To seal such leakages, we must guarantee that the ideal

functionality corresponding to the system Sys1 → Sys2
does not reference intermediate values and thus the outputs

can be predicted from the inputs. As Sys2 is assumed to be

a secure implementation of I2, we can formalise the notion

in terms of I2 and consider the system Sys1 → I2.

Also, note that we can always assume that I2 has no other

inputs as the outputs of Sys1 or I1, since we can always add

extra inputs that are locally forwarded as outputs.

H

Sys1

A1

I2

H

I1
A2

I2
conf1 conf2

H

Split

Sys1

Mux

A1

I∗
conf3

H

Split

I1

Mux

A2

I∗
conf4

Fig. 4. Configurations for predictable output

Fig. 4 depicts all configurations that are needed to define

the predictability of the outputs. Each line or arrow in Fig. 4

may denote several channels. In particular, Sys1, I1 and I2
have several input and output ports for the environment H
corresponding to the different computing parties CPi.

The configuration conf1 depicts a normal interaction

between the system Sys1 → I2 and the adversary A1. The

configuration conf3 depicts an interaction between A1 and

a modified system where the outputs of I2 are generated by

an output predictor I∗ that sees only the inputs of Sys1.

Configuration conf2 and conf4 depict the same interaction

for the ideal functionality I1 corresponding to Sys1.

More precisely, the machine Split in conf3 and conf4
copies each input to both output channels. After that, it

clocks the channel leading to I∗. The machine Split has

another input port ctrlSplit?; the machine I∗ is intended to

have the corresponding output and clocking ports ctrlSplit!
and ctrlSplit

�!. The machine Split ignores the inputs it

receives from ctrlSplit?. But whenever Split is invoked with

an input from this port, it clocks the other output channel, to

which it had copied its input. In this manner, Split is able to

immediately pass its input to both machines expecting them,

with slight help from the machine I∗.

The machine Mux works as follows. It has a set C of the

identities of parties that the adversary A has corrupted, and

a list E to store the messages it received from Sys1 or I1
and did not yet send to the adversary.

1) On input (output, �x, x), on behalf of party CPi from

Sys1 (or I1), it sends (output, �x, i) to I∗, and clocks

the channel to I∗. Immediately after that, it expects

to get a message on a channel from I∗ (this channel

is clocked by I∗). Mux ignores the received message.

Instead, it sends m = (input, �x, x, i) to A, if i ∈ C.

Otherwise, it adds m to E.

2) On input (corrupt, i) from A it adds i to C and sends

to A all entries (input, �x, x, i) ∈ E. It forwards the

corruption request to I∗.

3) On input (output, �x, x, i) from I∗ it sends an entry

(output, �x, x, i) to A and clocks the output.

4) On input (input, �x, x, i) from I∗ it does nothing.

We see that, similarly to Split, the machine Mux expects the

help of I∗ in sending a message both to it and to the adver-

sary. The machine I∗ is expected to use these notifications

to keep track of the progression of the computation, in order

to provide the outputs to H at the same time it would have

received them in conf1 and conf2.

Definition 9. We say that the composition Sys1 → I2 has

a predictable outcome if there exists a predictor machine I∗
such that, for the following configurations on Fig. 4, we have

viewconf1(H) = viewconf3(H).

Definition 10. We say that the compositions Sys1 → I2 and

I1 → I2 have a jointly predictable outcome if there exists a

single output predictor I∗ such that, for the following config-

urations on Fig. 4, we have viewconf1(H) = viewconf3(H)
and viewconf2(H) = viewconf4(H).

Lemma 2. If Sys1 is a correct implementation of I1 then
Sys1 → I2 has a predictable outcome iff Sys1 → I2 and
I1 → I2 have a jointly predictable outcome.

Proof. Let I∗ be a predictor for Sys1 → I2. Then it must

be a suitable predictor also for I1 → I2. Indeed, if A2

could cause viewconf2(H)
= viewconf4(H), then we could

construct A1 that runs A2, but filters out all extra messages

sent by Sys1. Since Sys1 is a correct implementation of I1,

the resulting configurations would be equivalent to conf2 and

conf4. Consequently, viewconf1(H)
= viewconf3(H).

This result assures that all output predictability is not

an issue for the compositions Sys1 → Sys2 that evaluate

arithmetic circuits, as long as the protocols are correct. The

same holds for randomised functions, as long as the outputs

are predictable from the inputs and protocols are correct.

Output predictability requires separate checks only if the

protocols produce approximate results.

D. Composition theorems

Using the definition of privacy and ordered composition,

we can state the main theorems of this work. These show

191

that the privacy notion is composable and that our approach

of combining private and secure protocols is secure.

Theorem 2 (Secure composition, informal). The fully or-
dered composition of black-box private and black-box simu-
latable protocols with jointly predictable outcome is black-
box simulatable.

Theorem 3 (Black-box privacy composition, informal). The
ordered composition of black-box private protocols is black-
box private.

The formal versions of these theorems are stated and

proven in Sec. VII. In general, these proofs show how to

construct a simulator for the composed system by using

the simulators of the sub-protocols. This simulator has to

be a simulator for the composed ideal functionality and

the composed real system. For that, we show that the

indistinguishability of the view of H can be reduced to the

privacy definition. The proofs use output predictability to

guarantee that the ideal functionality is properly defined and

that intermediate values are not revealed in the protocol.

VI. SIMULATORS

For proving theorems 2 and 3, we have to construct the

simulators for the composed systems. These constructions

are more complex and invasive than in the proof of Thm. 1.

Hence, we must set up some definitions for combining the

simulators that we have from the premises of the theorems.

Especially, we need to extend the stand-alone simulators so

that they can be combined with each other in order to form

a simulator for the composed system.

A. Privacy simulator

A simulator is a mediator between a real world adversary

and the matching ideal functionality I. Let RS = (M̂, S)
be a real structure and Id = ({I} , S) be the corresponding

ideal structure. Then a black-box privacy simulator for an

ideal structure Id and a real structure RS is a machine

SimId,RS that has ports inIdI ! and outIdI ? for communicating

with Id and the set of ports APRS for communicating with

the adversary that expects to run in parallel to RS .

The channel inIdI is clocked by the simulator, while outIdI
is clocked by Id . The set APRS contains the ports outi,Sys!
for each machine Mi in the structure RS . The channels

outi,Sys are clocked by the adversary. W.l.o.g. we may

assume that, each time the simulator is activated, it only

writes to the output ports in APRS that belong to a single

machine in RS . This is because the adversary completely

controls the scheduling of RS . In particular, the simulator

writes into at most one outi,Sys during each invocation.

A simulator provides perfect privacy if the condition

viewconf1(H
′) = viewconf2(H

′) is satisfied for any H =
H ′ ∪ H⊥ and A, such that conf1 = (M̂, S,H,A) and

conf2 = (I, S,H, SimId,RS ∪A) are privacy configurations.

Similarly, one can define simulators that provide statistical

and computational privacy. In the following, we consider

only simulators that provide perfect privacy and reference

them as privacy simulators.

B. Extended simulator

An extended simulator is a simulator that additionally

computes the outputs of corrupted parties. When composing

the structures, these outputs have to be given as inputs to the

simulator(s) of the next stage(s) of the composition.

Let Sys1 and Sys2 be the composed systems. In the real

world, there will be channels pipe1, . . . , pipek between Sys1
and Sys2 that are clocked by the adversary. However, as

discussed previously, the composition of the respective ideal

world machines I1 and I2 is a single machine I without the

ideal world equivalents of pipei. Therefore, these buffers will

have to be part of the simulator of the composed system. We

call the respective buffers outputi as they carry the outputs

of the simulator for Sys1 to the simulator of Sys2.

Let n be the number of parties that could be potentially

corrupted by the adversary. Then the extended simulator

writes the outputs of corrupted parties into dedicated output

ports output1!, . . . , outputn!. As we allow adaptive cor-

ruption, the adversary may sometimes corrupt the party

after the protocol has been executed. Nevertheless, we

might need the output of the corresponding protocol to

proceed. Hence, the extended simulator has dedicated ports

foutput1!, . . . , foutputn! for sending such outputs so that the

adversary can not control their timing.

Let conf be a configuration with n parties, containing the

channels ini,Sys, outi, outputi, and possibly foutputi for

i ∈ {1, . . . , n}. As the adversary does not have matching

ports, we need a dummy machine Sink to formally com-

plete the configurations. Let Sink be a machine with ports

outputi?, foutputi? for i ∈ {1, . . . , n} that just consumes

inputs. In protocol composition, the machine Sink would be

removed and outputi and foutputi would be connected to

the simulator of the next protocol. This connection is defined

using a multiplexer that joins these channels and the inputs

that the simulator commonly obtains from the respective

ideal functionality.

Besides Sink, we need another dummy machine Sink′ with

ports outputi?, outputi! for i ∈ {1, . . . , n} in the real world.

The sole purpose of Sink′ is to allow the adversary A to clock

the non-existing outputi channels in the real configuration.

This is needed to assure closeness under the composition.

Although real-world adversaries have no access to outputi
channels, the adversaries created in the composability proofs

may clock these channels due to channel renaming intro-

duced by a reduction.

Let τ be a trace of this configuration, i.e. a list of

pairs (channel name, message), recording which messages

were sent on which channel in which order during a run.

Let O(τ) = (m1, . . . ,mn) be the list of protocol outputs

observed by the adversary. That is, mi is either the list of

messages output on channel outi if there was a corruption

request on ini,Sys or ⊥ if there was no such request.

Recall that outi is the channel that takes the outputs of

the system to H or the next system in composition. Let

O′(τ) = (m1, . . . ,mn) be the list of outputs generated by

the extended simulator. Again, mi will be ⊥ if there was

192

no corruption request on ini,Sys. Otherwise, let mi be the

concatenation of lists of messages that appeared on foutputi
and on outputi. For the configuration conf , let Oconf and

O′
conf be the distributions of O(τ) and O′(τ) over all

possible runs of conf .

Definition 11 (Extended simulator). An extended simulator
for an n-party ideal structure Id = ({I}, S) and real

structure RS = (M̂, S) is a machine ExtSimId,RS , that

1) has the ports in the set APRS ∪{inIdI !, outIdI ?} and in

the set {output1!, foutput1!, . . . , outputn!, foutputn!};
2) clocks the channels foutputi;
3) in case the corruption request on ini,Sys? comes after

(output , �x) has been sent on outi,Sys, forwards this

request to Id , and after learning the input of i-th
party, immediately makes an output (output , �x, x) on

foutputi and clocks that channel;

4) never outputs on foutputi, except for point 3;

5) is a simulator that provides privacy: viewconf1(H
′) =

viewconf2(H
′) for any H = H ′ ∪ H⊥ and A, and

privacy configurations conf1 = (M̂, S,H,A ∪ Sink′)
and conf2 = (I, S,H,ExtSimId,RS ∪A ∪ Sink);

6) correctly computes the outputs: Oconf1 = O′
conf2

, for

the same H = H ′∪H⊥, A, conf1 and conf2 as before.

Lemma 3 (Extended simulators exist). Let SimId,RS be a
privacy simulator for ideal structure Id and real structure
RS . Then there exists an extended simulator ExtSimId,RS .

Proof. An extended simulator can be constructed as follows.

Let SimId,RS
∗ be a machine obtained from SimId,RS by

renaming its ports outi,Sys! to outi,sim! and allowing it to

clock the channels outi,sim. The machine SimId,RS
∗ clocks

the channel outi,sim at each invocation when it outputs a

message in it. As explained before, there is always at most

one such i, that SimId,RS
∗ has written in outi,sim!.

Let Extri be a machine with ports outi,sim?, extri! and

outi,Sys!, clocking the channel extri. The machine Extri
copies the inputs from outi,sim? to outi,Sys!. If the input is

of the form (output, . . .), then it copies that input to extri!
as well and clocks that channel.

Let OutFilteri be a machine with ports extri?, outputi!
and foutputi!, clocking the channel foutputi. The machine

OutFilteri has a buffer M for output notifications and

processes two kinds of output tuples: in the form (output, �x)
for output notifications of the honest parties for a label

�x, and in the form (output, x, �x) for the outputs of

corrupted parties where x is the output value. On input

(output, �x) from extri? OutFilteri saves �x as a label from

i to M and forwards the message out on outputi!. On input

(output, x, �x) from extri? OutFilteri works as follows:

1) if the label �x has been stored in M for party i then this

input is forwarded on foutputi!, �x is removed from

M and the channel foutputi is clocked;

2) if this label �x has not been stored then OutFilter
forwards the message on outputi!.

We let ExtSimId,RS be the composition of the machines

SimId,RS
∗ , Extri and OutFilteri for all i ∈ {1, . . . , n}, see

Fig. 5. Clearly, it satisfies the structural properties 1, 2 and

4 of Def. 11. It also satisfies the third property due to

the manner how the real functionality notifies the adversary

of computed outputs, and the manner OutFilteri handles

these notifications. The 5th property is satisfied because the

configurations described there behave in exactly the same

way as the privacy configurations in Def. 4, except for

the occasional invocations of Sink or Sink′ which do not

affect the view of H ′. The sixth property is satisfied because

SimId,RS correctly simulates the outputs of corrupted parties,

which are then output on channels foutputi and outputi.

ExtSim

I1

Sink

Sim∗ Extri

OutFilteri A

outIdI

inIdI outi,sim

outi,Sys

neti,Sys

extri
foutputi

ini,Sys

outputi
neti,out

Fig. 5. An extended simulator construction with the ideal world
functionality, adversary and connection to the rest of the simulator

VII. SECURITY OF COMPOSED PROTOCOLS

In this section, we prove that the ordered composition of

private and secure protocols is secure. For this we first show

that we can limit the class of adversaries (Lemma 4) and then

use this new class to show the security of the composed

protocol (Thm. 2). From these results we know that our

composition is secure with respect to general adversaries.

Furthermore, in Thm 3 we also show that privacy is com-

posable.

A. Restricted adversary model

The analysis of ordered compositions can be simplified

by restricting the adversarial behaviour. Let Sys1 → Sys2
be an ordered composition with the same set of corruptible

parties CP1, . . . , CPn. Let A0 be a subclass of adversaries

that never corrupt a party CPi in Sys2 before they corrupt

the party CPi in Sys1 and let A1 ⊆ A0 be a subclass of

adversaries that corrupts each party CPi simultaneously in

both systems. Then it is easy to see that these restrictions

are not limiting.

Lemma 4. Let two systems Sys1 and Sys2 be composed
in the ordered composition as Sys1 → Sys2. Then the
composed system is as secure with respect to the general
set of adversaries as it is for adversaries in class A0.

Proof. For the proof, we show how to construct a restricted

adversary from a general adversary A so that the view of

H in the two constructions coincides, therefore satisfying

the security requirement. For that, we have to show that the

original system is as secure as the composed system with

the construction on Fig. 6.

193

A0

H

Sys1

A

Sys2

Filter

Cor

outi

ini
out∗i,Sys1

outi,Sys1

neti,Sys1
ini,Sys1

ini,Sys2

neti,Sys2

outi,Sys2

filter

in∗i,Sys1

in∗i,Sys2

outputi

Fig. 6. Construction for the restricted adversary

A simple stateless machine Cor assures that a party is

always corrupted in Sys1 before in Sys2. It has two input

ports ini,Sys1? and ini,Sys2? for receiving corruption requests

for the machines in Sys1 or Sys2 and output ports ini,Sys2 !
and ini,Sys1 ! for forwarding the corruption requests. The

output port filter! is used for controlling a delay box Filter.
The machine Cor works as follows:

• on an input (corrupt, i) from ini,Sys1? it forwards the

input to the ports filter! and in∗i,Sys1 !.
• on an input (corrupt, i) from ini,Sys2? it forwards the

input to the ports in∗i,Sys1 ! and in∗i,Sys2 !.

To prevent A from receiving unrequested information, we

have inserted Filter between Sys1 and A. Filter keeps a set

of corrupted parties C whose input must go through. For

other parties, the filter stores the last message or passes the

messages (output, �x) that the honest parties are supposed

to send to A. The port filter? is for updating the list C. If an

input (corrupt, i) is written to filter? then i is added to C and

the last message from CPi is released for A as the current

state of CPi. The scheduling of Cor and Filter is fixed by the

clocking signals so that the list C is always updated before

(corrupt, i) is written to in∗i,Sys1 !.
Sys1 may have received more corruption requests in this

setting than in the original construction, but the Filter reduces

the view to only corrupted parties. It is easy to see that

the reduced view has the same probability distribution as

the simulation output if only this set of parties is corrupted,

because it clearly holds in the real world. Hence, the outputs

of A in different worlds coincide. The correspondence of this

construction and the restriction on class A0 is trivial.

Corollary 1. Let two systems Sys1 and Sys2 be composed
in the ordered composition Sys1 → Sys2. Then the com-
posed system is as secure with respect to the general set of
adversaries as it is for adversaries in class A1.

Proof. It is sufficient to show the construction for a restricted

adversary A ∈ A1. The corresponding construction is anal-

ogous to the proof of Lemma 4. We must define a machine

Cor that corrupts a party simultaneously in Sys1 and Sys2
and a filter Filter for deleting unexpected messages. As a

result, we get an adversary that behaves identically.

Based on these results, we define and prove composition

theorems for the class A1, since their behaviour is more

easy to understand and analyse. Note that this approach is

suitable for cases of static or adaptive corruption, but not for

modelling mobile corruption where parties can be corrupted

for some time, but can become uncorrupted afterwards.

B. Secure composition

In this section, we restate the main theorem and prove

the security of the fully ordered composition of private and

secure systems. In general, the idea is that a private protocol

finished by a secure protocol is secure. Informally, we know

that both simulators ensure that the view of A in the protocol

is indistinguishable from the real world. In addition, the

simulator of the secure protocol ensures that the view of

A is consistent with the view of H .

Theorem 2. Let Sys1 ≥model
priv I1 in a black-box manner

and Sys2 ≥model
sec I2 in a black-box manner, where model

may be perfect, statistical, or computational. Let the ordered
compositions Sys1 → I2 and I1 → I2 have a jointly
predictable outcome. Then Sys1 → Sys2 ≥model,A1

sec I in
a black-box manner, where the composition Sys1 → Sys2
is fully ordered and I is the ideal composition of I1 and I2.

Proof. Fig. 7 illustrates the ordered composition of two sys-

tems that is our conf0. Due to the black-box simulatability

of Sys2 ≥model
sec I2 and Thm. 1 we have viewconf0(H) ≈

viewconf1(H) for some simulator Sim2. See Fig. 8.

H

Sys1

A

Sys2

Fig. 7. Composition of two real systems, conf0

H

Sys1

A

I2 Sim2

Fig. 8. Composition of a real and an ideal system, conf1

As the next step of the proof, we use output predictability

(formalised as Def. 9) of Sys1 → I2 to separate systems

Sys1 and Sys2. We consider Sim2 as a part of the ad-

versary and obtain viewconf1(H) = viewconf2(H) for the

configuration conf2 depicted in Fig. 9. Recall that we have

194

H

I∗

A

Sim2

Sys1

Split

Mux

Fig. 9. Splitting the composition to two independent parts, conf2

H∗

Sys1

A

Sim2

Mux

Fig. 10. Regrouping the machines, conf3

joint predictability, hence, the same I∗ also demonstrates the

predictable outcome of I1 → I2.

Now we can do a cosmetic step that simplifies the expo-

sition by introducing a new machine H∗ that is the combi-

nation H∗ = H ∪ I∗ ∪ Split. This can be seen on Fig. 10.

For the machine H trivially viewconf2(H) = viewconf3(H).
The scheduling does not change.

Next, we use the assumption about the adversary in class

A1. Namely, we assume that the adversary has corrupted

party CPi in either both systems or in none. This implies that

it has seen all inputs of Sim2 as corrupted parties’ outputs in

Sys1. This enables us to do one more rewiring that results

in Fig. 11 with a new adversary A∗ that acts like Mux with

the difference that it does not receive the honest parties’

outputs from Sys1. The part H⊥ that was previously used

for honest parties’ outputs as part of Mux is now used for

all outputs of Sys1. In the case of static corruption, this step

could be done trivially because we could divide Mux based

on corrupted and not corrupted ports. In the general case, this

step can still be done by introducing the Extr and OutFilter
from the ExtSim construction to the channel from Sys1 to A.

The outputs from OutFilter serve as the inputs of the Mux∗
that in is just Mux with different input ports. Note that an

analogous setup can be seen on Fig. 15 except we have just

Extr and OutFilter and not full ExtSim. We then use the

machines Extr, OutFilter and Mux∗ together with A to form

A∗. The scheduling, in general, remains the same, but each

time the adversary A clocks the outputs Sys1 to H∗⊥, A∗
also clocks the outputi of the OutFilter. The simulator Sim2

also changes in a non-essential way to Sim∗
2, as some of its

inputs and outputs now move over different channels.

Therefore, viewconf3(H∗) = viewconf4(H∗).

H ′
∗

Sys1

A∗

H∗⊥ Sim∗
2

Fig. 11. Splitting the Mux by its two roles, conf4

Finally we finish with another cosmetic change to join

A∗ and Sim2 to A∗∗ as shown on Fig. 12. Trivially,

viewconf4(H∗) = viewconf5(H∗). Hence, by tracing back

the changes, we have viewconf0(H) ≈ viewconf5(H) as H
is a sub-machine of H∗ and the view of H does not change

if the view of H∗ remains the same.

H ′
∗

Sys1

A∗∗

H∗⊥

Fig. 12. Redefining the adversary, conf5

So far, we just simplified the composition Sys1 → Sys2.

To complete the proof, we must provide the simulator that

works in conjunction with the ideal functionality I in the

configuration corresponding to conf0. Let this be conf ′
0.

Lemma 1 allows us to express I as a composition of I1,

I2 and Filter. Then this composition corresponds to the left

grey box in Fig. 13. We claim that a combination of machines

ExtSim1 (the existence of which is shown in Lemma 3), Sim2

and Muxt defined below serves as a suitable simulator that

proves the theorem. The corresponding configuration conf ′
1

with these machines is depicted on Fig. 13.

The machine Muxt acts like Mux in Sec. V-C in the

predictable output definition except that ExtSim is in the

role of Sys1 and Filter is in the role of I∗. In addition, Mux
has two types of input channels, outputi and foutputi from

ExtSim, that are both used as inputs from Sys1 in Sec. V-

C. The scheduling is fixed by the description of individual

machines.

We consider A, ExtSim, Muxt, Filter and Sim2 as an

adversary in Def. 10 to obtain the composition conf ′
2 anal-

ogous to conf2. For this, we introduce the machines Split,

195

I
Sim

H

I1 ExtSim1

A

I2

Muxt

Filter Sim2

Fig. 13. Sys1 replaced by the ideal system, conf ′
1

I∗ and Mux according to the predictable output definition

illustrated on Fig. 4. Secondly, we also do the simplification

step to push I∗ and Split to H to obtain H∗ and the resulting

configuration conf ′
3 can be seen on Fig. 14. The scheduling

is defined by Def. 10 and conf ′
1.

Mux∗
∪H∗⊥

H∗

I1 ExtSim

A

Muxt

Sim2

Mux

Filter

Fig. 14. Introduced intermediate machines, conf ′
3

This results in a quite complicated composition of small

machines. At first, note that we can discard Filter which

only affects the input values that move out from Mux, but by

definition Muxt does not do anything with inputs from Filter.
The machine Mux has two roles, it can either forward the

inputs of the second composed protocol based on the outputs

of ExtSim (that represent the outputs of the first system) or

the outputs of the composition it gets from H∗. For the same

reasons that we used to discard Filter, we can also discard

the part of Mux that uses the values from I1 because Muxt
never uses them. Hence, we join this part of Mux with Muxt
to obtain Mux∗ as on Fig. 15. The part of Mux that does not

use inputs from I1 is represented by H∗⊥. This is analogous

to Fig. 10, except that Mux has been split to two distinct

parts.

As the final step, we decompose ExtSim to its parts Sim1,

Extr and OutFilter as illustrated on Fig. 5. Then we introduce

A∗∗ by combining A with Extr, OutFilter, Mux∗ and Sim2

to arrive at configuration conf ′
5 on Fig. 16. With this we

have shown that the view of the adversary in the ideal case

is equivalent to conf ′
5 or more formally viewconf ′

0
(H) ≈

viewconf ′
5
(H) as H is a sub-machine of H ′

∗.

H ′
∗

I1 ExtSim

A

Mux∗

Sim2

H∗⊥

Fig. 15. Simplification of conf ′
3, conf ′′

3

H ′
∗

I1 Sim1

A∗∗

H∗⊥

Fig. 16. Final configuration, conf ′
5

Note that the party H∗ in both of the reductions is the same

if initial H is the same. This is trivial as the machines Split
and I∗ are the same due to joint predictability (Def. 10). The

same holds for A∗∗. Trivially, the machine Sim∗
2 included to

A is the same. In addition, for conf3 we argued that the step

to conf4 can be done by adding Extr and OutFilter which

is exactly what we added in conf ′
4. Finally, the part Mux∗

has exactly the same functionality in the two descriptions.

With these two reductions we have shown that the question

if Sys1 → Sys2 is as secure as I is reduced to question if

conf5 is indistinguishable from conf ′
5. For that we can view

the final state conf5 as a privacy configuration. By definition

Sys1 is as private as I1 only if for each adversary A∗∗ we

can use the same simulator Sim1 such that viewconf5(H) ≈
viewconf ′

5
(H). The claim follows.

Corollary 2. Let Sys1 ≥model
priv I1 in black-box manner

and Sys2 ≥model
sec I2 in black-box manner, where model

may be perfect, statistical, or computational. Let the ordered
compositions Sys1 → I2 and I1 → I2 have jointly
predictable outcome. Then Sys1 → Sys2 ≥model

sec I in a
black-box manner, where the composition Sys1 → Sys2 is
fully ordered and I is the ideal composition of I1 and I2.

Proof. The proof is a direct result from Lemma 4 and

Thm. 2.

C. Composability of privacy

In this section, we show that the composition of black-box-

private protocols is black-box-private. We prove the theorem

for the composition of two systems and based on this it

can be extended for larger compositions. Note that a plain

196

channel that does not use or modify the inputs is always

private and based on privacy configuration definition, it is

easy to see that a composition of two systems, that do not

communicate, is private.

Theorem 3. Let Sys1 ≥model
priv I1 and Sys2 ≥model

priv I2 in a
black-box manner, where model may be perfect, statistical,
or computational. Then Sys1 → Sys2 ≥model,A1

priv I in a
black-box manner, where the composition Sys1 → Sys2 is
ordered and I is the ideal composition of I1 and I2.

Proof. Note that we can make several simplifying assump-

tions to the compositions. First, we can assume that all inputs

are inputs to Sys1. If it is not the case, then we can add inputs

of Sys2 as inputs of Sys1 that are just forwarded as outputs.

Similarly, we can assume that all outputs of Sys1 are used

as inputs of Sys2 by using similar input forwarding. Hence,

we can prove the claim only for fully ordered composition.
Consider a configuration analogous to Fig. 7 except with

a privacy configuration with H = H ′ ∪ H⊥, such that the

output of Sys2 goes to H⊥ in conf0. Let conf ′
0 be the

corresponding ideal configuration. For the proof, we need

a simulator Sim that can be inserted between the ideal

functionality I and the real world adversary. In the following,

we build this simulator step by step.
As the first step, we can replace Sys2 with the correspond-

ing ideal functionality and corresponding simulator Sim2

by joining H ′ and Sys1 to new H ′
∗ and using this as a

new privacy configuration. The proof for this substitution

is analogous to the proof of the original Thm. 1 about

the composability of security [2]. We get a configuration

confr where viewconfr (H
′
∗) ≈ viewconf0(H

′
∗). Thus, also

viewconf0(H
′) ≈ viewconfr (H

′) because H ′ is a subma-

chine of H ′
∗. We get a situation illustrated on Fig. 17.

H ′

Sys1

A

I2 Sim2

H⊥

Fig. 17. Composition of real and ideal private systems, confr

Next, consider the ideal configuration conf ′
0 with I, H

and A, and the desired simulator Sim. We use Lemma 1 to

replace I with a combination of I1, I2, and Filter. Note that

if A ∈ A1, then Filter only needs to connect to I2, because

all messages between I1 and the adversary are simply passed

through. As the simulator, we propose the combination of

machines Sim1, Extr, OutFilter, Mux and Sim2, let confs
be the resulting configuration (see Fig. 18).

Note that the collection Sim1, Extr and OutFilter is

actually ExtSim1. In addition, Mux works as described in

Sim

H∗⊥

H

I1 Sim1
Extr

OutFilter

A

I2

H⊥

Mux

Filter Sim2

Fig. 18. Simulator construction for the I and Sys1 → Sys2, confs

Sec. V-C without the special scheduling and two equivalent

input channels from OutFilter.
As we consider fully ordered composition, all inputs of I2

are stopped by the Filter and the private ideal functionality

I2 does not give outputs, accordingly, there is no communi-

cation from Filter to Mux. Hence, we can define a new H∗⊥
that is a collection I2, Filter and H⊥. If we consider a new

adversary A∗ that is the combination of A, Extr, OutFilter,
Mux and Sim2 then we have a privacy configuration. We

can thus replace I1 and Sim1 in confs with Sys1 without

changing the view of H .

We claim that the setup of confs results in the same

view as confr. By definition, we know that Sim1 and Sim2

can produce a view that is indistinguishable from the real

protocol run. Therefore, the only thing to argue is that

Sim2 sees equivalent inputs in the two configurations. By

definition, in confr the machine Sim2 receives from I2
exactly the inputs that are the corrupted parties’ outputs in

Sys1. However, this is also the case in confs because, by

definition, Extr can also extract the outputs of the corrupted

parties in a real protocol run and, therefore, the corrupted

parties’ outputs in Sys1.

Corollary 3. Let Sys1 ≥model
priv I1 and Sys2 ≥model

priv I2 in a
black-box manner, where model may be perfect, statistical,
or computational. Then Sys1 → Sys2 ≥model

priv I in a black-
box manner, where the composition Sys1 → Sys2 is ordered
and I is the ideal composition of I1 and I2.

Proof. Again, a direct result from Lemma 4 and Thm. 3.

D. Applicability of the composition theorems

By using structural induction and Cor. 3 it is straightfor-

ward to prove that an ordered composition of two or more

private protocols remains private. To achieve universally

composable security, we must rerandomise the outputs of

the resulting private protocol. The main restriction posed by

Cor. 2 is that all outputs of the private system have to be used

by the secure system so that the outputs of the composition

are the outputs of the secure system.

197

This result is especially valuable when we consider the

secure evaluation of arithmetic circuits, since it allows us to

define a solution based on private protocols and use secure

resharing protocols to achieve universal composability. The

resulting efficiency gain can be significant when the com-

putational procedure requires many intermediate values to

compute the outcome. Moreover, the corresponding choice

between private and secure operations can be completely

automated. Secure protocols are mainly required for pub-

lishing or resharing a value which can be used for finishing

computations or finishing some stage of computations.

VIII. CONCLUSIONS

We have shown that the privacy requirement is sufficient

for most secure computation primitives in the passive secu-

rity model in order to obtain universally composable secure

multi-party computation protocols.

Private protocols are often more efficient, while their

composition is no more complex than composing secure pro-

tocols. Therefore, we can obtain better performance without

compromising the rigour of security arguments. We have also

shown that privacy and security are tightly related, and a

private protocol can be made secure by introducing a secure

finalising step, which can be very simple.

We believe our ideas are applicable also in the case of

active adversaries against secure multi-party computation

protocols. There will be additional difficulties because the

adversarial behaviour is more complex and the validity of

the sharing has to be taken into account. Still, we can make

some observations about these extended notions.

First, it is easy to see that the formal extension of privacy

for the setting with active corruption leads to a notion that

prohibits protocol faults that depend on the inputs. Hence,

many weaker notions of security, such as consistency and

covert security, are insufficient for privacy. At the same time,

protocols without consistency checks remain private.

Consequently, it might turn out that a further decompo-

sition of the protocols into an evaluation and a verification

phase might be necessary to simplify reasoning about privacy

in the active setting.

Second, it is much harder to extend the notion of output

predictability, as the active adversary can alter protocol

inputs. Thus, the output predictor must have some interaction

with the adversary. However, the amount of the adversarial

influence must be precisely limited. The current definition

of output privacy can be formally extended only for robust

multi-party computations where the inputs are uniquely de-

termined regardless of adversarial actions.

ACKNOWLEDGEMENTS

This research was supported by the European Regional

Development Fund through the Estonian Center of Excel-

lence in Computer Science, EXCS, by the European Social

Fund through the the ICT doctoral school, IKTDK, European

Union 7th Framework Programme under grant agreement

No. 284731, and by Estonian Research Council through

grants IUT27-1 and IUT2-1.

REFERENCES

[1] R. Canetti, “Universally Composable Security: A New Paradigm for
Cryptographic Protocols,” in Proceedings of the 42nd IEEE Sympo-
sium on Foundations of Computer Science, 2001, pp. 136–145.

[2] B. Pfitzmann and M. Waidner, “Composition and integrity preservation
of secure reactive systems,” in Proceedings of the 7th ACM Conference
on Computer and Communications Security, 2000, pp. 245–254.

[3] U. Maurer and R. Renner, “Abstract Cryptography,” in The Second
Symposium in Innovations in Computer Science, ICS 2011, 2011, pp.
1–21.

[4] R. Küsters and M. Tuengerthal, “The IITM Model: a Simple and
Expressive Model for Universal Composability,” Cryptology ePrint
Archive, Report 2013/025, 2013.

[5] B. Pfitzmann and M. Waidner, “A Model for Asynchronous Reactive
Systems and its Application to Secure Message Transmission,” in
Proceedings of the 2001 IEEE Symposium on Security and Privacy,
2001, pp. 184–.

[6] M. Backes, B. Pfitzmann, and M. Waidner, “The reactive simulata-
bility (RSIM) framework for asynchronous systems,” Information and
Computation, vol. 205, no. 12, pp. 1685–1720, 2007.

[7] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A Frame-
work for Fast Privacy-Preserving Computations,” in Proceedings of
the 13th European Symposium on Research in Computer Security -
ESORICS’08, vol. 5283, 2008, pp. 192–206.

[8] M. Geisler, “Cryptographic Protocols: Theory and Implementation,”
Ph.D. dissertation, Aarhus University, February 2010.

[9] M. Burkhart, M. Strasser, D. Many, and X. A. Dimitropoulos, “SEPIA:
Privacy-Preserving Aggregation of Multi-Domain Network Events and
Statistics,” in USENIX Security Symposium, 2010, pp. 223–240.

[10] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson, “High-
performance secure multi-party computation for data mining appli-
cations,” International Journal of Information Security, vol. 11, no. 6,
pp. 403–418, 2012.

[11] D. Bogdanov, “Sharemind: programmable secure computations with
practical applications,” Ph.D. dissertation, University of Tartu, 2013.

[12] I. Damgård and J. B. Nielsen, “Universally Composable Efficient
Multiparty Computation from Threshold Homomorphic Encryption,”
in Advances in Cryptology - CRYPTO 2003, vol. 2729, 2003, pp. 247–
264.

[13] M. Backes, B. Pfitzmann, and M. Waidner, “A composable cryp-
tographic library with nested operations,” in ACM Conference on
Computer and Communications Security, 2003, pp. 220–230.

[14] R. Küsters and M. Tuengerthal, “Universally Composable Symmetric
Encryption,” in Proceedings of the 22nd IEEE Computer Security
Foundations Symposium, CSF 2009, Port Jefferson, New York, USA,
July 8-10, 2009, 2009, pp. 293–307.

[15] R. Canetti and J. Herzog, “Universally Composable Symbolic Security
Analysis,” Journal of Cryptology, vol. 24, no. 1, pp. 83–147, 2011.

[16] J. Groth, R. Ostrovsky, and A. Sahai, “New Techniques for Noninterac-
tive Zero-Knowledge,” Journal of ACM, vol. 59, no. 3, pp. 11:1–11:35,
2012.

[17] T. Toft, “Solving linear programs using multiparty computation,” in
Financial Cryptography, vol. 5628, 2009, pp. 90–107.

[18] S. Laur, R. Talviste, and J. Willemson, “From oblivious AES to
efficient and secure database join in the multiparty setting,” Cryptology
ePrint Archive, Report 2013/203, 2013.

[19] D. Bogdanov, P. Laud, and J. Randmets, “Domain-Polymorphic
Programming of Privacy-Preserving Applications,” Cryptology ePrint
Archive, Report 2013/371, 2013.

[20] C. Liu, Y. Huang, E. Shi, M. Hicks, and J. Katz, “Automating
Efficient RAM-Model Secure Computation,” in 35th IEEE Symposium
on Security and Privacy, 2014.

[21] O. Catrina and S. Hoogh, “Secure Multiparty Linear Programming
Using Fixed-Point Arithmetic,” in Computer Security ESORICS 2010,
2010, vol. 6345, pp. 134–150.

[22] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge University Press, 2004.

198

