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Abstract—The Secure Web Bulletin Board (WBB) is a
key component of verifiable election systems. However,
there is very little in the literature on their specification,
design and implementation, and there are no formally
analysed designs. The WBB is used in the context of
election verification to publish evidence of voting and
tallying that voters and officials can check, and where
challenges can be launched in the event of malfeasance.
In practice, the election authority has responsibility
for implementing the web bulletin board correctly
and reliably, and will wish to ensure that it behaves
correctly even in the presence of failures and attacks. To
ensure robustness, an implementation will typically use
a number of peers to be able to provide a correct service
even when some peers go down or behave dishonestly.
In this paper we propose a new protocol to implement
such a Web Bulletin Board, motivated by the needs of
the vVote verifiable voting system. Using a distributed
algorithm increases the complexity of the protocol
and requires careful reasoning in order to establish
correctness. Here we use the Event-B modelling and
refinement approach to establish correctness of the
peered design against an idealised specification of the
bulletin board behaviour. In particular we have shown
that for n peers, a threshold of t > 2n/3 peers behaving
correctly is sufficient to ensure correct behaviour of
the bulletin board distributed design. The algorithm
also behaves correctly even if honest or dishonest peers
temporarily drop out of the protocol and then return.
The verification approach also establishes that the
protocols used within the bulletin board do not interfere
with each other. This is the first time a peered secure
web bulletin board suite of protocols has been formally
verified.

I. INTRODUCTION

Verifiable voting systems such as Prêt à Voter

[CRS05], [RBH+09], Scantegrity [CCC+10],

Helios[Adi08], Wombat [BNFL+12], STAR-Vote

[BBB+13] and Civitas [CCM08] typically have a

requirement to publish information concerning votes

cast and how they have been processed, in order to

provide verifiability. Voters and other external parties

are able to check the published information and

challenge the election if any cheating has occurred.

Such systems are generally described using a

“Bulletin Board” for publication: a repository of the

information collected throughout the election, made

publicly available for inspection.

There are certain (generally implicit) security as-

sumptions on the bulletin board: that once items are

on the bulletin board then they will not be removed,

that the final information given at the end of the

election is fixed and cannot be adjusted, and that

it will provide the same view of that information

to all parties. For example, Adida’s characterisation

[Adi06] states that “Cryptographic voting protocols

revolve around a central, digital bulletin board. As its

name implies, the bulletin board is public and visible

to all, via, for example, phone and web interfaces. All

messages posted to the bulletin board are authenti-

cated, and it is assumed that any data written to the

bulletin board cannot be erased or tampered with.”

Alternatively a bulletin board has been described as a

“broadcast channel with memory” [Pet05], [CGS97],

[KTV12], with a Web Bulletin Board treated as a

public broadcast channel.

Achieving these properties in an implementation is

not so straightforward. A current view is that “we
don’t know how to build a secure bulletin board”

[Wag13], and to date there is no generally avail-

able implementation of a secure bulletin board. In

practice bulletin boards are generally implemented

by collecting election information as it progresses,

and publishing the information via a website, as done

for example by Helios, Wombat, and STAR-Vote,

or making it available via a git repository as in the

Norway 2013 e-voting trial[Nor13]. However, these

are not tamper proof, and information can be changed

on them unless there are additional safeguards such

as the cryptographic mechanisms based on hash

chains proposed by Heather and Lundin [HL08].

The design of STAR-VOTE uses multiple peers to

tolerate faulty or malicious components, and has the

election authority sign the bulletin board contents,

thus changes can occur only with the collusion of

the electoral authority.
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The bulletin board presented in this paper arises from

the need to implement a bulletin board as part of

the vVote system being developed for the Victorian

State election 2014 [BCH+12]. The Victorian State

election runs over a two week period of “early

voting” before election day itself, and the bulletin

board is required to publish its information daily

during the election. For robustness and trust the

bulletin board will be comprised of a number of

peers to receive items, provide receipts, and publish

information. The rate at which votes may be received

means that the peers cannot sustain the overhead of

a consensus protocol every time an item is posted, so

they each maintain a local copy of their view of the

bulletin board, and agree on the bulletin board only

when it is time to publish. A further challenge is that

the bulletin board may need to reject some items,

for example any vote on a ballot previously used or

audited, so that incompatible posts are not published.

We achieve this requirement provided a threshold

of the peers are honest and operational the bulletin

board will behave correctly, even in the presence of

individual peers going down, external attacks and a

minority of dishonest peers.

This paper presents a new bulletin board protocol

designed to run with a network of peers and to

operate correctly when a threshold of the peers are

honest and operational. We provide a formal model

and verification of the protocol, using the framework

of Event-B [Abr10]. We verify the protocol in the

context of a Dolev-Yao attacker [DY83], who has

control over the network and a minority of peers.

II. A PEERED BULLETIN BOARD PROTOCOL

We present an implementation of a bulletin board

that accepts items to be posted (if they do not clash

with previous posts), issues receipts, and periodically

publishes what it has received. The bulletin board

published for any particular period must include all

items that had receipts issued during that period.

Robustness is achieved through the use of several

peered servers which cooperate on accepting items,

issuing receipts, and publishing the bulletin board.

They make use of a threshold signature scheme

which allows a subset of the peers above a particular

threshold to jointly generate signatures on data. The

peers collectively provide the bulletin board service

as long as a threshold of them are honest, and as

long as a threshold of them are involved in handling

any item posted to the bulletin board. Thus the

implementation is correct in the presence of com-

munication failures, unavailability or failure of peers,

and also dishonesty of peers. The threshold t required

to achieve this must be greater than two-thirds of

the total number n of peers: t > 2n/3. There is no

single point of failure: the system can tolerate failure

or non-participation of any component, as long as a

threshold of peers remain operational at any stage.

It also allows for different threshold sets of peers to

be operational at different times. For example, a peer

may be rebooted during the protocol, missing some

item posts, and may then resume participation.

The key properties we require for this bulletin board

are:

(bb.1) only items that have been posted to the

bulletin board may appear on it;

(bb.2) any item that has a receipt issued must

appear on the published bulletin board;

(bb.3) two clashing items must not both appear on

the bulletin board;

(bb.4) items cannot be removed from the bulletin

board once they are published.

It follows from bb.2 and bb.3 that if two items clash

then receipts must not be issued for both of them.

The bulletin board provides a protocol for the posting

of an item and its acknowledgement with a receipt,

and provides another two related protocols for the

publishing of the bulleting board: an optimistic one,

and a fallback.

Notation: The protocols make use primarily of in-

dividual signatures and a threshold digital signature

key SSK. We use ski to refer to Peer i’s individual

signing key, and sski to refer to Peer i’s share of the

threshold signing key SSK. The item sigk(x) denotes

x signed with signature key k.

Posting and acknowledgement: The protocol for

posting an item x in period p, and issuing the

acknowledgement, is as follows:

1. User → Pi : x (i ∈ I)
each Pi checks no clash with previous posts

2. Pi → Pj : sigski(p, x) (i, j ∈ I, j �= i)
each Pi waits for a threshold number of signatures

3. Pi → User : sigsski(p, x) (i ∈ I)

To post an item x, the User should first send x
to each of the peers, as shown in Round 1. Each

peer checks that x does not clash with any posts

it has received previously (from the current period
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or previous periods). The peers then sign (p, x) with

their own individual signing key, and send the result

to each of the other peers, as shown in Round 2.

Peers store all of the received signatures into their

local database. Finally, once a peer has obtained a

threshold number of signatures on (p, x) (including

its own), it sends its share of the threshold signature

on (p, x) back to the User. Once the User has received

a threshold number of such shares it is able to

combine them to provide a signature on (p, x), and

this serves as the receipt. This protocol is shown in

Figure 1. It is repeated for each item to be posted in

the period.

Publishing the Bulletin Board: the bulletin board is

published at the end of the period. The aim is for the

peers to agree on the contents of the bulletin board

and to issue their signature share on it to a public

hosting service that can combine the signature shares

and make the resulting signature publicly available.

Peer i’s local record of the bulletin board Bi,p is

those items that it has received a threshold number

of signatures on, which are those items it issues a

signature share on towards the receipt.

The peers first of all run an optimistic protocol: this

will succeed if at least a threshold of the local bulletin

boards agree, which will be the case in practice if all

peers are working properly. The optmistic protocol

is given as follows:

1. Pi → Pj : sigski(p,Bi,p) (j �= i)
Pi checks a threshold of boards agree

2. Pi → WBB : Bi,p, sigsski(p,Bi,p) (i ∈ I)

The peers each sign their local copy of the bulletin

board, and send them to each other. If a threshold

agree then they can issue the bulletin board and a

share of the threshold signature on the board. This is

illustrated in Figure 2.

If the optimistic protocol does not run successfully,

because the signed boards do not agree, that indicates

that local bulletin boards are different. In this case

the peers exchange information about their bulletin

boards using the fallback protocol as follows:

1. Pi → Pj : Di,p (j �= i)
each Pi updates its database with new data

Each peer sends its database Di,p of signatures it

has collected from the posting period to all the

other peers, which update their databases with any

signatures that are missing. They can then recalcu-

late their local bulletin board. This is illustrated in

Figure 3. Observe that the database Di,p consists of

signed items, so any dishonest or compromised peer

can only include information that has been properly

signed by some peer. It can inject fake items by

adding its own signature, but such items will not

have been previously circulated so will have no other

signatures in the peers’ databases, thus the honest

peers will not include them in their versions of the

bulletin board Bi,p.

After the fallback protocol is completed, the peers

return to the optimistic protocol and repeat. This is

only required once under our liveness and threshold

assumptions. We assume for liveness either (1) that

all peers are online and able to communicate during

the fallback protocol (with no assumptions about the

posting phase or correct behaviour of users), or (2)

that a threshold of honest peers are online and able

to communicate during the fallback protocol, and at

every stage of the posting phase a threshold set of

peers were live and able to communicate and that the

posting users behaved honestly. Under either of these

two assumptions only one round of the fallback pro-

tocol is needed. If neither of the liveness assumptions

hold then the protocol still behaves safely and ensures

correctness of the bulletin board when it is published,

but additional rounds of the fallback protocol may be

required.

The difference with Byzantine Agreement protocols

[Lyn96], which tend to require up to (n−t)+1 rounds

to achieve agreement, is that the databases the peers

start with have some consistency between them. If

thresholds of peers received posts correctly in the

posting phase, then the honest peers involved in the

exchange of information in the fallback protocol will

all obtain the full bulletin board after one round.

III. MODELLING AND VERIFICATION

FRAMEWORK

We use the action systems approach of Event-

B [Abr10], [MAV05] as our formal framework to

model the protocol and to verify it. In this approach

systems are described in terms of the states that they

can be in, and the events that transform the state.

A system is defined as a machine, which encapsulates

its state, and its events. State information is described

in terms of state variables and invariants on them.

The machine describes how the state is initialised,

and how it can be updated with events.
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x

User Peer1 Peer2 Peer3 Peer4

sigsk1(p, x)

sigsk2(p, x)

sigsk4(p, x)

sigsk3(p, x)

sigssk1(p, x)
sigssk2(p, x)

sigssk3(p, x)
sigssk4(p, x)

x x
x

sigSSK(x)
construct

Round 1

Round 2

Round 3

Fig. 1. Posting Protocol

machine M
variables v
invariant I(v)
events init, ev, . . .
end

ev =̂
when G(v)
then v :| BA(v, v′)
end

Fig. 4. Template of an Event-B machine and an event.

The Event-B approach supports refinement, a re-

lationship showing when one system implements

another. This approach allows a specification to be

captured as an ideal machine that expresses the

required behaviour. An implementation satisfies the

specification if it is a refinement.

Figure 4 illustrates how a machine is defined. Ma-

chine M is given with a list of state variables v, a state

invariant I(v), and a set of events ev, . . . to update the

state. Initialisation is a special event init which sets

the initial state of the machine, and its guard is true.

Each event has a guard G(v) over the variables v,

and a body, usually written as an assignment S on

the variables. The assignment is associated with a

before-after predicate BA(v, v′) describing changes

of variables upon event execution, in terms of the

relationship between the variable values before (v)

and after (v′). In Event-B an event may also introduce

local variables, which can be included in the guard

(which constrains what values they can take), and in

the body where they can be used to define the change

of state. Such events are constructed as:

evt =̂ any x
where G(v, x)
then v :| BA(v, x, v′)
end

Some of the conditions on x may be included in

the any clause rather than the where clause for

readability (see e.g. post and a msg1 of Figure 5).

Nondeterministic assignment has its own syntax:

x :∈ S assigns x some arbitrary element of S. This is

an abbreviation for

any s where s ∈ S then x := s end.
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WBBPeer1 Peer2 Peer3 Peer4

sigsk1(p,B1)

sigsk2(p,B2)

sigsk4(p,B4)

sigsk3(p,B3)

B, sigssk4(p,B)

B, sigssk3(p,B)

B, sigssk2(p,B)

B, sigssk1(p,B)

Round 2

Public

Round 1

check threshold of Bi match

set B = Bi

Each

Peeri:

Fig. 2. Optimistic Protocol

We also note a technical Event-B condition: that in

these models all events have some feasible final state:

whenever G(v, x) is true then there is some v′ such

that BA(v, x, v′) holds. This means that we need not

be concerned with proof conditions for establishing

feasibility.

The Event-B approach to semantics, provided in

[Abr10], [MAV05], is to associate proof obligations

with machines. The key proof obligation on an event

is that it preserves the invariant: when an event is

called within its guard, then the state resulting from

executing the body should meet the invariant. This is

true for the machines presented in this paper.

A. Event-B refinement

In Event-B, the intended refinement relationship

between machines is directly written into the

refinement machine definitions. As a consequence

of writing a refining machine, a number of proof

obligations arise. Here, a machine and its refinement

take the following form:

machine M0

variables v
invariant I(v)
events init0, ev0, ev′0, . . .
end

machine M1

refines M0

variables w
invariant J(v,w)
events init1, ev1, ev′1, . . .
end

The machine M0 is refined by machine M1, written

M0 � M1, if the given linking invariant J(v,w) on

the variables of the two machines is established by

their initialisations, and preserved by all events. Any

transition performed by a concrete event of M1 can

be matched by a step of the corresponding abstract

event of M0, or matched by skip for newly introduced

events, in order to maintain J. This is similar to the

approach of downwards simulation data refinement
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Peer1 Peer2 Peer3 Peer4

D1,p

D2,p

D4,p

D3,p

D1,p = D1,p ∪ D2,p ∪ D3,p ∪ D4,p

D2,p = D1,p ∪ D2,p ∪ D3,p ∪ D4,p

D3,p = D1,p ∪ D2,p ∪ D3,p ∪ D4,p

D4,p = D1,p ∪ D2,p∪ D3,p ∪ D4,p

Round 1

Update

Fig. 3. Fallback Protocol

[DB01], where the simulation relation plays the role

of the linking invariant. Formally, the refinement

relation M0 � M1 between abstract machine M0 and

concrete machine M1 holds if the following proof

obligations given below hold for all events:

GRD REF: Guard Strengthening If a concrete

event matches an abstract one, then this rule requires

that when the concrete event is enabled, then so is

the matching abstract one.

INV REF: Simulation There are two parts to this

rule. INV REF1 ensures that the occurrence of

events (including initialisation) in the concrete ma-

chine can be matched in the abstract one. INV REF2

is concerned with new events, which are treated as

refinements of skip. In this case the abstract state

does not change.

Refinement with respect to A: It may be that an

environment interacts with a machine M0 only on

some subset A of its events. In that case we can

consider a refinement M1 of M0 with respect to A.

This requires that M1 also has all the events A, and

that GRD REF and INV REF1 must hold for all

the events in A. However, other events of M1 can

be matched either by skip, or by some matching

event (not in A) in M0, in which case the guard must

also match. We will use this notion of refinement

to express our requirements on the bulletin board

protocol, with the set A = {post, ack, publish}.

B. Framework for Bulletin Board Modelling and
Verification

We are concerned with developing a peered bulletin

board that can operate correctly in an unreliable

environment, and with some potentially misbehaving

peers. In particular, communications between the

bulletin board and its users may be under the control

of an adversary, who may intercept, divert, block,

duplicate and spoof messages. The bulletin board is

designed for use in in such an environment.

The specification of the bulletin board will encapsu-

late the required behaviour. This will be described

as an Event-B model BBSpec with a description

in terms of the architecture shown in Figure 5, of

an ideal bulletin board in the context of a reliable

communication medium. Users may use the events

post, ack and publish to interact with the bulletin

board, but communication occurs via the medium.
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EA

Ideal BB

a msg1

post publish

a msg2

a msg3

ack

Fig. 5. BBSpec: ideal bulletin board and communication medium

The bulletin board has its own corresponding inter-

actions with the medium, labelled a msg1, a msg2
and a msg3. These events are also within the model

BBSpec, but they are not accessible directly to users.

Hence it is the behaviour of BBSpec on the set of

events {post, ack, publish} that must be matched by

any implementation.

The bulletin board implementation uses a number

of peers, for robustness and in order to distribute

trust. There are a total of n peers, and we use a

threshold signature scheme in which we require t
shares in order to produce a signature. Our model

of the protocol will be an Event-B model BBProt, in

which we consider the adversary to control the com-

munication medium to and from the peers and the

WBB, and between them. Hence any communication

can be blocked. We also consider that the adversary

can control up to n − t peers. This means that such

peers can sign and create any messages for sending,

whether or not such messages are in accordance with

the protocol, provided they have the appropriate keys.

We consider that (at least) a threshold t of the n peers

are honest: that they follow the protocol. Without

loss of generality we will consider peers 1 to t to

be honest, and t + 1 to n may behave arbitrarily

(which includes honest behaviour). This labelling

of the peers captures the general case where some

arbitrary n − t peers may be dishonest, since the

protocol is symmetric with respect to the labelling

of the peers.

The model BBProt includes the Dolev-Yao adversary,

and peers t+1 to n considered to be under the control

E

Peer 1

Peer 2

Peer 4

Peer 3

post ack publish

Real BB

c msgi

Fig. 6. BBProt: Protocol model for analysis, with t = 3 and n = 4

of the adversary. The setup is illustrated in Figure 6.

BBProt offers the same three external events as

BBSpec, namely post, ack and publish. However it

contains the peers explicitly, including peers con-

trolled by the adversary, and so the communication

patterns with and between the peers will be quite

different to those in the specification. Those com-

munications are modelled by events c msgi. The

requirement for correctness will be that BBSpec �
BBProt with respect to {post, ack, publish}.
The model BBProt includes the events that make

up the various bulletin board protocols. Since these

events can be performed whenever their guards are

true, this means that interleavings of different proto-

cols are naturally considered within this framework.

Thus our approach to verification automatically al-

lows for possible interference between the protocols,

and a proof of correctness establishes that the proto-

cols cannot interfere in an adverse way.

IV. BULLETIN BOARD MODELLING

A. Specification

The ideal behaviour of the bulletin board is given

according to the specification BBSpec of Figure 7.

Receipts will be issued with the period the item was

posted in, and a bulletin board will be published for
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machine BBSpec
variables EA,Rp,Cp (p ∈ N)
invariant EA ⊆ ITEM ∪ RECEIPT ∪ PUBLISH

Rp ⊆ ITEM (p ∈ N)
Cp ⊆ ITEM (p ∈ N)

events
init =̂ EA := {} ‖ ‖p∈N

(Rp := {} ‖ Cp := {})
post(x) =̂ when x ∈ ITEM

then EA := EA ∪ {x} end;

r ←− ack =̂ r :∈ (EA ∩ RECEIPT);

P ←− publish =̂ P :∈ (EA ∩ PUBLISH);

a msg1 =̂
any x, p
where x ∈ EA ∩ ITEM

∧ p ∈ N ∧ clashset(x) ∩ (
⋃

p Rp) = {}
then Rp := Rp ∪ {x}
end;

a msg2 =̂
any x, p
where x ∈ Rp ∧ (sigSSK(p,B) ∈ EA ⇒ x ∈ B)
then EA := EA ∪ {sigSSK(p, x)}

‖ Cp := Cp ∪ {x}
end;

a msg3 =̂
any Y, p
where Cp ⊆ Y ⊆ Rp ∧ EA ∩ PUBLISHp = {}
then EA := EA ∪ {sigSSK(p, Y)}
end

end

Fig. 7. BBSpec: specification of ideal bulletin board behaviour

this period. We define

RECEIPT = {sigSSK(p, x) | x ∈ ITEM ∧ p ∈ N}
PUBLISH = {sigSSK(p,B) | B ⊆ ITEM ∧ p ∈ N}

PUBLISHp = {sigSSK(p,B) | B ⊆ ITEM}

The model uses the set EA to capture the contents

of the communication medium between the user and

the bulletin board as shown in Figure 5. Messages

are sent by adding messages to EA (as in the de-

scriptions of post, a msg2 and a msg3), and received

by obtaining them from EA (as in ack, publish and

a msg1).

The external events of BBSpec capture the interac-

tions available to the user: post(x) allows a value

x to be sent to the bulletin board; r ←− ack
occurs when a receipt r = sigSSK(p, x) is output

as acknowledgement of posting of an item x; and

P ←− publish is the output of a signed bulletin board

P = sigSSK(p,B).

The internal events describe the behaviour for the

bulletin board. The event a msg1 models the posting

of an item x in period p. The bulletin board may

refuse posts if they are inconsistent with previously

accepted posts. We express this by introducing an

irreflexive symmetric binary relation clash such that

clash(x, x′) captures when two items x and x′ should

not both appear on the bulletin board. For conve-

nience we define clashset(x) = {x′ | clash(x, x′)} to

be the set of all events that clash with x. The guard

of the event expresses that x will be accepted if there

is no x′ already received in any period clashing with

x: in other words, that clashset(x) ∩ (
⋃

p Rp) = {}.
Allowing for untrusted peers requires us to include

some nondeterminism within the specification of the

bulletin board. In particular, dishonest peers and

the untrusted medium can prevent or delay receipts

from being issued for some received posts, so the

specification must allow for this possibility. The

model specifying the bulletin board thus uses two

databases: R consisting of received posts, and C
consisting of confirmed posts—those which have

been acknowledged with receipts. a msg2 models

the issuing of a receipt, and in accordance with the

inherent nondeterminism allows for a receipt to be

issued even after the board is published, provided

the item is on the board as required by (bb.2).

Finally, a msg3 provides the published board: any

item published must be in R in accordance with

(bb.1); and all confirmed posts C must be published

in accordance with (bb.2). Thus we require C ⊆ Y ⊆
R for a published board Y . In other words, items

that have been submitted to the bulletin board but

not confirmed might or might not appear in Y . We

retain a level of uncertainty over what is published,

because this level of uncertainty is present in the

implementation when some of the bulletin board

peers are untrusted. a msg3 allows no more than one

bulletin board to be published for any period, meeting

requirement (bb.4): once published, the bulletin board

is fixed.

Observe that if every posting has a receipt, then the

bulletin board will contain all posted items: (C =
B = R).

The resulting Event-B model is given in Figure 7.
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This is the specification that we will show is met by

our design. The model includes a bulletin board and

its environment. As well as the state of the bulletin

board, we include the state EA of the environment,

containing the communications that it is managing,

because we will want to consider the bulletin board

protocol design in a model including the Dolev-Yao

adversary, which provides an asynchronous commu-

nication medium.

We see that BBSpec exhibits the original require-

ments (bb.1)–(bb.4). (bb.1) holds because any pub-

lished bulletin board is a subset of the items in Rp,

which is a subset of the items in E, and any item

x in E must be there as a result of post(x); hence

only posted items can appear on the bulletin board.

(bb.2) holds because Cp contains the items for which

a receipt has been provided, and a msg3 states that a

bulletin board for period p must contain at least the

events in Cp. (bb.3) holds because two clashing items

can never both be present in the set of all received

posts
⋃

p Rp, because the guard in a msg1 prevents

acceptance of items that clash with previous ones.

(bb.4) follows because a msg3 ensures that at most

one bulletin board will be published for any period p:

once a signed bulletin board is output then it cannot

be overwritten or superceded.

The fact that BBSpec satisfies the requirements

(bb.1)–(bb4) means that any refinement of BBSpec
will also meet these requirements.

B. Event-B Modelling and analysis

The threat model built into the model of the pro-

tocol incorporates our robustness considerations, in

particular that the correctness of the bulletin board

is not dependent on the correct behaviour of any

individual component, as long as a threshold behave

correctly. It allows for the case where peers behave

honestly but occasionally are down (either through

connection loss, or through temporary server loss):

this is modelled simply by the absence of messages

between the communication medium and the peer,

and allows for peers to miss some posts. The model

also includes the case where peers t+1 to n can lose

or otherwise alter their databases of received posts.

However, the honest peers 1 to t do not lose their

databases: for correctness we require that a threshold

of peers do not lose their data.

The set MESSAGE of all possible messages m in the

model is given as follows:

m ::= k | i | sigk(m) | {m1, . . . ,mn} | (p,m)

� {}
{k,m} � sigk(m)

#S � t ⇒ {sigsskk(m) | k ∈ S} � sigSSK(m)

{sigk(m)} � m

{m,B} � B ∪ {m}
m ∈ B ⇒ {B} � m

{p,m} � (p,m)

{(p,m)} � p,m

Fig. 8. Dolev-Yao adversary derivations

where k ∈ KEY , i ∈ ITEM, p ∈ N, {. . .} denotes

the set of messages listed, and (p,m) denotes a pair.

Observe that a message can itself consist of a set of

messages, and thus MESSAGE covers all rounds of

the protocol. In particular RECEIPT ⊆ MESSAGE
and PUBLISH ⊆ MESSAGE.

The Dolev-Yao environment: The Dolev-Yao adver-

sary is modelled through the use of the set E to retain

all messages that are sent and received by protocol

parties. The adversary is also able to generate new

messages to introduce into protocol executions. In

particular, he can sign any message with any key that

he possesses; he can combine shares of a signature

into a threshold signature; he can extract the message

from a signature; and he can add and remove mes-

sages from a set of messages. These capabilities are

captured in the derivation rules of Figure 8, which

show how a new message can be generated from a

set of messages. We will model adversary behaviour

by including an event for each rule, allowing the

adversary to introduce new events to the set E.

C. Simulation

We aim to establish that the concrete system BBProt
refines the abstract system BBSpec with respect to

the external events {post, ack, publish}.
To establish refinement we show that any concrete

move can be matched by an abstract move, or (for

events other that post, ack and publish) matched

by skip. To do this we need to identify the linking
invariant, the relationship between the abstract and

concrete states, and show that any concrete move

from a concrete state is matched for any correspond-

ing abstract state by some abstract move or skip.
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Linking invariant

We thus have to identify when, in the concrete sys-

tem, abstract events are considered to have occurred.

• abstract a msg1 occurs when the bulletin board

receives x. In the concrete model this corre-

sponds to t peers having received x and signed it.

Since there can be up to n − t dishonest peers,

this means t − (n − t) = 2t − n honest peers

having signed x.

• abstract a msg2 occurs when the bulletin board

issues a signature on (p, x). This corresponds to

the combining of t returns of signature shares

sigsskj(p, x).
• abstract a msg3 occurs when a signed database

sigSSK(p, t(D)) is produced. This corresponds to

the combining of t returns of signature shares

sigsskj(p, t(D)).

The abstract state sA is the pair of databases R and

C, and medium EA.

The concrete state sC is the set of databases Ij, Dj and

pubj for the peers, E for the Dolev-Yao environment.

For the linking invariant to relate the abstract state

to the concrete state:

• Rp is the set of items for which the adversary

(and possibly other peers) can provide a thresh-

old of sigskj(p, x), and so can include x on the

published bulletin board. If at least 2t−n honest

peers have signed (p, x), then it is within the

adversary’s control to produce a further n − t
signatures, giving a threshold of signatures on

(p, x).
• Cp is the set of items for which the adversary has

a receipt—evidence that sufficiently many peers

have a threshold of sigskj(p, x) to ensure that it

will appear on the published bulletin board.

These are expressed in Clauses (9) and (10) respec-

tively of BBProt given in Figure 9.

D. Implementation

In the implementation, each peer maintains a counter

pj which it uses to track the period it is currently

accepting posts for. The counter will be incremented

when it has finished accepting posts for one period

and begins accepting posts for the next. It also

maintains a separate state space for each period. For

example, BBProt will use Rj,p for j’s record of what

it received in period p, and so will have a separate

set for each period.

The resulting model BBProt is given in the various

clauses below. The model is shown in the events

within the description. The key to the refinement

proof is that the interleaving of the events across the

different periods do not interfere, even though peers

can progress their periods independently and can be

involved in publication of one bulletin board while

receiving items for another.

Declaration and Invariant: Two further definitions

will be useful when expressing the model:

SIG1p = {sigSSK(p, x) | x ∈ ITEM}
t(D) = {x | #{k | sigskk(x) ∈ D} � t}

Given a set D of signed items, the set t(D) is those

items for which D contains a threshold number of

different signatures. If D is used to track the signed

items received by a peer, then t(D) is those items for

which it has received a threshold number.

The invariant properties are the key to the proof of

refinement, and hence of correctness. These are given

in Figure 9. Clauses (1)–(8) are the key invariant

properties of the refinement machine BBProt itself,

and (9)–(11) capture the linking invariant which

relates the refinement to the abstract machine BBSpec
and hence establishes the refinement relationship.

The invariant clauses give relationships between var-

ious parts of the state of BBProt. (1)–(8) capture

behaviour exhibited by the honest peers j where

1 � j � t. (1) states that for any honest peer j,
if j has provided a signature share on x for period

p and also on board B for the same period, then

the post x must be on the board B. This captures

one aspect of honest behaviour. (2) states that if

j’s signature share on (p, x) has been communicated

then j has received at least the threshold t number

of signatures on (p, x). (3) states that if a threshold

signature on (p, x) has been constructed then at least

thre threshold number of signature shares on (p, x)
have been communicated. (4) states that if j has

communicated a signature share on a board B then j
must have received at least t peer signatures for each

item on B. (5) states that if a threshold signature

on (p,B) has been constructed then a threshold of

signature shares on (p,B) have been communicated.

(6) states that all the peer signatures received by an

honest peer have been communicated. (7) states that

if peer j has produced a signature share on (p,B) then

its current period must be greater than p. (8) states
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that j will provide a signature share on at most one

bulletin board for any period p. All of these clauses

are true after initialisation, and they are established

to be preserved by each of the events of BBProt,
including attacker events. Hence they are true in any

state that BBProt can be brought to.

The linking invariant is given by clauses (9)–(11).

Clauses (9) and (10) were described on the previous

page; clause (11) states that the abstract set of

communications is the projection of the concrete set

to the abstract messages. The linking invariant under-

pins Lemma IV.2, which establishes the refinement

relation between BBSpec and BBProt: given a pair

of linkes states of BBSpec and BBProt, each event

in BBProt can be matched either by no progress

(i.e. skip) within BBSpec, or by the equivalent event

within BBSpec, whereby the linking invariant contin-

ues to hold in the resulting states.

External events: External events are modelled as in

Figure 10.

Posting and acknowledgement protocol: Posting and

acknowledgement captures the protocol of Figure 1

as input and output events between the individual

peers and the medium. Peerj may only accept and

acknowledge items, and issue its share of the receipt,

for items in its current period. The associated events

are given in Figure 11.

Commit and publish protocol: The commit protocol

for the bulletin board of period pj is started by incre-

menting pj. Thus no further posts will be accepted for

that bulletin board, and the events in the commit and

publish protocols are then enabled. These are given

in Figure 12.

Dolev-Yao environment: As well as handling all com-

munication and thus having access to all messages

passed between the agents, the adversary has actions

corresponding to the derivations of Figure 8. These

are given in Figure 13.

This gives rise to some additional clauses in the

invariant as shown in Figure 14, to capture the

limits of what the adversary can introduce. These are

necessary for the refinement proof, in particular to

establish that the concrete adversary can only gener-

ate protocol messages that the abstract adversary can

generate, and that the additional message fragments

(for example shares of threshold signatures) do not

give the adversary any additional power.

machine BBProt

refines BBSpec

variables E, Ij,p, Dj,p, Sj,p, cj, pj (1 � j � t)

invariant
/* Types */

E ⊆ MESSAGE
Ij,p ⊆ ITEM
Dj,p ⊆ {sigskk(p, x) | x ∈ ITEM}
Sj,p ⊆ {sigskk(p,B) | B ⊆ ITEM}
cj ∈ N

pj ∈ N

/* Key invariant properties */

1 � j � t ⇒
(1) j ∈ c[p, x] ∧ j ∈ s[p,B]⇒ x ∈ B
(2) sigsskj(p, x) ∈ E ⇒ #dj[p, x] � t
(3) sigSSK(p, x) ∈ E ⇒ #c[p, x] � t
(4) sigsskj(p,B) ∈ E ⇒ B ⊆ t(Dj,p)

(5) sigSSK(p,B) ∈ E ⇒ #s[p,B] � t
(6) Dj,p ⊆ E
(7) j ∈ s[p,B]⇒ cj > p
(8) j ∈ s[p,B1]

∧ B1 �= B2 ⇒ j �∈ s[p,B2]

/* linking invariant */

(9) Rp =
{x ∈ ITEM | #{j | 1 � j � t

∧ sigskj(p, x) ∈ E} � 2t − n}
(10) Cp = {x ∈ ITEM | sigSSK(p, x) ∈ E}
(11) EA = E ∩ (ITEM ∪ RECEIPT

∪ PUBLISH)

where:

dj[p, x] = {1 � k � n | sigskk(p, x) ∈ Dj}
c[p, x] = {1 � k � n | sigsskk(p, x) ∈ E}
s[p,B] = {1 � k � n | sigsskk(p,B) ∈ E}

Fig. 9. BBProt: declaration of variables and invariant

E. Simulation

The following counting lemma is useful in the re-

finement proofs:

Lemma IV.1. If A ⊆ {1, . . . , n}, B ⊆ {1, . . . , n},
#A � t, #B � t, and t > 2n/3, then there is some
j � t such that j ∈ A and j ∈ B.

Thus we obtain the key result: that BBProt provides
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events
init =̂ E := {skk | k > t} ∪ {sskk | k > t} ‖

‖j,n
(Ij,n := {} ‖ Dj,n := {}
‖ Sj,n := {} ‖ pj := 0 ‖ cj := 0);

post(x) =̂ when x ∈ ITEM
then E := E ∪ {x} end;

r ←− ack =̂ r :∈ (E ∩ RECEIPT);

P ←− publish =̂ P :∈ E ∩ PUBLISH;

Fig. 10. BBProt: external events

c msg1j(x) =̂ /* receive item x */

when x ∈ E ∩ ITEM
then Ij,pj := Ij,pj ∪ {x}
end;

c msg2aj =̂ /* send signature share on x */

any x
where
x ∈ Ij,pj ∧
clashset(x) ∩ {y | ∃ p′. skj(p′, y) ∈ ⋃

p Dj,p}
= {}

then E := E ∪ {sigskj(pj, x)}
‖ Dj,pj := Dj,pj ∪ {sigskj(pj, x)}

end;

c msg2bj =̂ /* receive signature share on x */

any x, k
where sigskk(pj, x) ∈ E
then Dj,pj := Dj,pj ∪ {sigskk(pj, x)}
end;

c msg3j =̂ /* send signature share */

any x
where x ∈ t(Dj,pj)
then E := E ∪ {sigsskj(pj, x)}
end;

Fig. 11. BBProt: Posting and acknowledgement

an implementation of BBSpec:

Lemma IV.2. BBSpec � BBProt with respect to
{post, ack, publish}

Proof (sketch)

We need to prove that if J(sA, sC), and sC
mC−→ s′C then

either J(sA, s′C) (mc is matched by skip), or ∃mA, s′A
such that sA

mA−→ s′A and J(s′A, s′C) (mc is matched by

mA).

c msg4j =̂ /* start commit protocol */

begin
pj := pj + 1
end;

c msg5aj =̂ /* send database */

any p < pj

then E := E ∪ {Dj,p}
end;

c msg5bj =̂ /* receive k’s database */

any D, p
where D ∈ E ∧ D ⊆ SIG1p ∧ p < pj

then Dj,p := Dj,p ∪ D
end;

c msg6j =̂ /* publish signature share */

when cj < pj ∧
#{k | sigskk(cj, t(Dj,cj)) ∈ Sj,cj} � t

then E := E ∪ {sigsskj(cj, t(Dj,cj))}
‖ cj := cj + 1

end;

c msg7aj =̂ /* send signed board */

any p < pj

then E := E ∪ {sigskj(p, t(Dj,p))}
end;

c msg7bj =̂ /* receive signed board */

any B, p
where sigskj(p,B) ∈ E ∧ p < pj

then Sj,p := Sj,p ∪ {sigskj(p,B)}
end;

Fig. 12. BBProt: commitment protocols (fallback and optimistic)

The proof establishes each case in turn. We show two

key example cases: c msg2a and c dy2

Case c msg2a. Peer j → DY : sigskj(pj, x). If #{k |
1 � k � t ∧ sigskk(pj, x) ∈ E} = 2t − n − 1 and

#{k | 1 � k � t ∧ sigskk(pj, x) ∈ E′} = 2t − n
then matched by mA = a msg1 for x, pj. Otherwise

matched by skip.

Case c dy2. If x ∈ ITEM and sigSSK(p, x) �∈ E
and sigSSK(p, x) ∈ E′, then this is matched by

a msg2. It remains to show that (1) x ∈ Rp and (2)

sigSSK(p,B) ∈ EA ⇒ x ∈ B.

1) x ∈ Rp: We have that #c[p, x] � t. Hence

there is some k � t with k ∈ c[p, x], so by

invariant (2) it follows that #dk[p, x] � t. By

invariant (6) it follows that #{k | sigskk(p, x) ∈
E} � t, and hence that #({k | sigskk(p, x) ∈
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c dy1 =̂ /* signature share on m */

any m, s
where m ∈ E ∧ s ∈ E
then E := E ∪ {sigs(m)}
end;

c dy2 =̂ /* threshold signature on m */

any S,m
where #S � t ∧ {sigsskk(m) | k ∈ S} ⊆ E
then E := E ∪ {sigSSK(m)}
end;

c dy3 =̂ /* extracting m from signature */

any m, s
where sigs(m) ∈ E
then E := E ∪ {m}
end;

c dy4 =̂ /* adding m to B */

any m,B
where m ∈ E ∧ B ∈ E
then E := E ∪ {B ∪ {m}}
end;

c dy5 =̂ /* extracting m from B */

any m,B
where B ∈ E ∧ m ∈ B
then E := E ∪ {m}
end;

c dy6 =̂ /* pairing */

any m, p
where m ∈ E ∧ p ∈ N

then E := E ∪ {(p,m)}
end;

c dy7 =̂ /* splitting */

any m, p
where (p,m) ∈ E
then E := E ∪ {p,m}
end

Fig. 13. BBProt: adversary actions

E} − {t + 1 . . . n}) � t − (n − t) = 2t − n.

Hence by (9) x ∈ Rp, as required.

2) sigSSK(p,B) ∈ EA ⇒ x ∈ B: Assume

sigSSK(p,B) ∈ EA. Then #s[p,B] � t by (5).

Also we have #c[p, x] � t, so by Lemma IV.1

there is some k � t with k ∈ c[p, x] and

k ∈ s[p,B]. Hence from (1) it follows that

x ∈ B as required.

If BC ⊆ ITEM and sigSSK(p,BC) �∈ E and

sigSSK(p,BC) ∈ E′, then this is matched by a msg3,

/* adversary bound invariant */

E ∩ ({skk | k � t} ∪ {sskk | k � t}) = ∅
⋃

e∈E items(e) ⊆ E⋃
e∈E sigs(e) ⊆ E

where

items(k) = {}
items(i) = {i}

items(sigk(x)) = items(x)
items({m1, . . . ,mn}) =

⋃
i items(mi)

items((p,m)) = items(m)

sigs(k) = {}
sigs(i) = {}

sigs(sigk(m)) = {sigk(m)} ∪ sigs(m)
sigs({m1, . . . ,mn}) =

⋃
i sigs(mi)

sigs((p,m)) = sigs(m)

Fig. 14. BBProt: invariant for adversary actions

with B = BC. We must show that (1) EA ∩
PUBLISH = {}, (2) Cp ⊆ BC and (3) BC ⊆ Rp.

1) EA ∩ PUBLISH = {}: we establish this by

contradiction. If sigSSK(p,B) ∈ EA for some

B �= BC, then #s[p,B] � t by (5). Also we

have s[p,BC] � t by the guard of c dy2. Hence

from Lemma IV.1 there is some k � t with

k ∈ s[p,B] and k ∈ s[p,BC], contradicting (8).

2) C ⊆ BC: consider some x ∈ C. Then

sigSSK(p, x) ∈ E, so #c[p, x] � t by invari-

ant (3). Further, #s[BC] � t by invariant (5).

Hence from Lemma IV.1 there is some k � t
with k ∈ c[p, x] and k ∈ s[p,BC]. Hence by

invariant (1), x ∈ BC, as required.

3) BC ⊆ R: We have from invariant (3) that

sigsskj(p,BC) ∈ E for some j � t. Now consider

x ∈ BC. Then x ∈ t(Dj) by invariant (4).

Hence x ∈ t(E) by invariant (6), and so

#{k | 1 � k � n ∧ skk(x) ∈ E} � t from

the definition of t(E), and hence #{k | 1 �
k � t ∧ skk(x) ∈ E} � 2t − n. Thus x ∈ R as

required.

Otherwise c dy2 is matched by skip.

The other cases follow a similar pattern. Full proofs

are provided in an extended version of this paper

posted at [CS14].

This concludes the proof that BBSpec � BBProt
with respect to {post, ack, publish}, establishing the

correctness of the bulletin board, and in particular

that it meets properties (bb.1)–(bb.4).
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V. DISCUSSION

A. Summary

In this paper we have presented a distributed protocol

for running a bulletin board using a number of peers,

which can tolerate a number of them failing, in the

context of a threat model which has the communi-

cation between the peers controlled by a Dolev-Yao

adversary, who also is able to control some of the

peers. This provides robustness and distributed trust:

the bulletin board can tolerate some peers failing,

and we require that a threshold of peers should be

honest but no individual peer is required to be trusted.

Provided a threshold of the peers behave according

to the protocol, the key properties demanded of the

bulletin board hold. In particular, only items posted

to the bulletin board will be posted on it, any item

whose receipt is acknowledged by the bulletin board

must be posted on it, and the bulletin board will not

accept conflicting items.

The development of the modelling and verification

approach for this kind of protocol is also one of

the contributions of this paper. Correctness has been

established formally using the Event-B framework,

using simulation to show that the protocol is a

refinement of an idealised bulletin board which has

the desired properties. The model included a Dolev-

Yao attacker and the description of the protocol steps

followed by the peers. Carrying out the proof iden-

tified some nondeterminism inherent in the protocol

and enabled us to include it in the idealisation to

document the possible behaviour of the implementa-

tion. In particular, an adversary can create a situation

where he controls whether or not an unreceipted item

appears on the bulletin board, and so this is reflected

as nondeterminism at the abstract level. In the context

of the vVote system this will not be an issue in

practice, since the voting ceremony requires that any

unreceipted items should be cancelled. Hence the

nondeterminism will not affect the tallying of the

election: either the cancellation appears alongside a

vote, or it appears without the vote, and in both cases

the vote will not be counted.

B. Related work

Other proposals for bulletin board implementations

using a set of peers are given by Krummenacher

[Kru10], by Peters [Pet05], and in the STAR-Vote

system [BBB+13]. These proposals all provide for

some robustness, but differ in terms of threat models

and in the properties that they provide, none of them

have been formally analysed, and none of them are

suitable for the context of the system for the Victorian

State Election. Krummenacher’s proposal does not

scale well with the number of votes to be posted,

since any post requires a lock on the peers. Peters’

approach uses a dynamic group membership protocol

to manage the changing availability of peers, and

the interaction of this protocol with the vote casting

protocol is not fully understood or formally analysed.

STAR-Vote is designed for use in a single polling

station, and the emphasis is on using replication to

detect incorrect behaviour rather than its automatic

correction, and to resolve discrepancies forensically.

Byzantine Agreement Protocols: The general prob-

lem of achieving generalised agreement across com-

ponents where some might fail in adverse ways is

known as the Byzantine Agreement problem [LSP82],

and there is an extensive literature on approaches to

the problem [Lyn96]. Such protocols require correct

behaviour in strictly more than 2/3 of the peers, the

same requirement as we have on our bulletin board

peers. However, Byzantine Agreement protocols are

not really suitable for items being posted. These

protocols are typically synchronous and proceed in

rounds, which would be too inefficient for receiving

large quantities of votes: too many rounds and too

much synchronisation overhead would be required

to process each vote if we wish the peers to agree

on the receipt of every vote. Furthermore, not all

peers would necessarily be aware when a protocol

run is starting, since they may not receive the initial

item. Instead we have provided a protocol for the

peers simply to send messages to each other and

to respond to messages received in an asynchronous

fashion. This means that the peers do not all need

to agree on each vote. Our threat model is also

different to the typical threat model for Byzantine

agreement protocols: ours allows honest peers to be

excluded from the acceptance of some items to the

bulletin board, without being considered as dishonest,

whereas Byzantine agreement protocols consider any

non-participating peer as failing.

We are closer to the problem of Byzantine agreement

in the commit and publish phase, since this is where

the peers seek consensus to agree on a bulletin board

to publish. Our optimistic and fallback protocols are

indeed close to the Floodset protocol [Lyn96], a

basic agreement protocol. Even in this case we do

not require the full power of Byzantine agreement
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protocols: the use of signatures minimises the ability

of dishonest peers to introduce additional confusing

information to disrupt the protocol run, and we

can limit the adversarial behaviour simply to peers

ceasing to communicate.
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