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Background 

• Arrival or departure scheduling algorithms  
• Constrained Position Shifting (CPS) 
• CPS with Dynamic Programming  
• Mixed Integer Linear Programming (MILP) 
• Basic Genetic Algorithm (BGA) 
• Heuristic Constraint based FCFS method 

 

 • Surface scheduling algorithms 
• MILP [Gupta et al 2009, Malik et al 2012] 
• Generalized Dynamic Programming [Montoya et al 2011] 

• Integrated arrival and departure scheduling with 
shared resources 
• MILP [Capozzi et al 2009 & 2010]  

• Multiple-point scheduling [Chen et al 2011] 

• Non-dominated Sorting GA [Xue et al 2012, 2013] 
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Motivation 

    Dynamic & stochastic scheduler is needed 
 for finding robust and beneficial schedules 

and routes for continuous traffic under 
uncertain environment 
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Interactions in LAX Terminal 

 

 

• SADDE6: 28% of LAX arrivals or ~220 flights/day 

• CASTA2: 10% of LAX departures or ~80 flights/day 
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12,000 ft 

At 9,000 ft 

 
 

• Total delay in a day due to the interaction is 380 minutes. 
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Stochastic scheduler 

 

 

 

 

J1 = deterministic delay + stochastic delay (mean value) 
 
J2 = controller interventions (mean value) 

 

delay = d 

number of controller intervention = 1    

Distributions of 
departure/arrival times 



 
Scheduling window (update frequency)  

Planning 
horizon 30 minutes 30 minutes 

• Window size can be varied 
• Windows can overlap with each other 
• Some flights are included in multiple windows 
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Experiment set-up 

 • Traffic scenario based on Dec. 4, 2012 

• A total of 378 flights, including 290 arrivals & 88 
departures 

• Separation based on wake category 

• Buffers in deterministic cases 
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Combined Pareto front 
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Deterministic vs. Stochastic 
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Look-ahead time vs. Uncertainty 
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Conclusions 

• A sequential/dynamic stochastic scheduler was developed 
to handle uncertainty and multi-objective for integrated 
departures and arrivals 

• Stochastic scheduler is better than deterministic scheduler 
with buffers by reducing delay & number of controller 
interventions 

• Large window size is better when the controller 
intervention is low, and small window size is better when 
delay is low 

 

Future work: 
• Extend the application to all LAX arrivals, departures, and 

surface operations 
• Apply to other multiple airport metroplex like NY 
 


