Dynamic Stochastic Scheduler for Integrated Arrivals and Departures

Min Xue
University of California at Santa Cruz, Moffett Field, CA

Shannon J. Zelinski

NASA Ames Research Center, Moffett Field, CA

Outline

- Background \& motivation
- Problem
- Method
- Results
- Conclusions

Background

- Arrival or departure scheduling algorithms
- Constrained Position Shifting (CPS)
- CPS with Dynamic Programming
- Mixed Integer Linear Programming (MILP)
- Basic Genetic Algorithm (BGA)
- Heuristic Constraint based FCFS method
- Surface scheduling algorithms
- MILP [Gupta et al 2009, Malik et al 2012]
- Generalized Dynamic Programming [Montoya et al 2011]
- Integrated arrival and departure scheduling with shared resources
- MILP [Capozzi et al 2009 \& 2010]
- Multiple-point scheduling [Chen et al 2011]
- Non-dominated Sorting GA [Xue et al 2012, 2013]

Motivation

Dynamic \& stochastic scheduler is needed for finding robust and beneficial schedules and routes for continuous traffic under uncertain environment

Outline

- Background \& motivation

- Problem
- Method
- Results
- Conclusions

Interactions in LAX Terminal

- SADDE6: 28% of LAX arrivals or ~ 220 flights/day
- CASTA2: 10% of LAX departures or ~ 80 flights/day

- Total delay in a day due to the interaction is 380 minutes.

Outline

- Background \& motivation

- Problem
- Method
- Results
- Conclusions

Procedure

Speed options

Stochastic scheduler

$\left\{\begin{array}{l}J_{1}=\text { deterministic delay }+ \text { stochastic delay (mean value) } \\ J_{2}=\text { controller interventions (mean value) }\end{array}\right.$

Scheduling window (update frequency)

- Window size can be varied
- Windows can overlap with each other
- Some flights are included in multiple windows

Outline

- Background \& motivation

- Problem
- Method
- Results
- Conclusions

Experiment set-up

- Traffic scenario based on Dec. 4, 2012
- A total of 378 flights, including 290 arrivals \& 88 departures
- Separation based on wake category
- Buffers in deterministic cases

Combined Pareto front

Deterministic vs. Stochastic

Look-ahead time vs. Uncertainty

Surface Decision Support System (SDSS) prediction accuracy at DFW June, 2011 [courtesy picture from Capps et. al. 2011 ATIO]

Look-ahead time vs. Uncertainty

Impact of window-size/look-ahead time

Outline

- Background \& motivation

- Problem
- Method
- Results
- Conclusions

Conclusions

- A sequential/dynamic stochastic scheduler was developed to handle uncertainty and multi-objective for integrated departures and arrivals
- Stochastic scheduler is better than deterministic scheduler with buffers by reducing delay \& number of controller interventions
- Large window size is better when the controller intervention is low, and small window size is better when delay is low

Future work:

- Extend the application to all LAX arrivals, departures, and surface operations
- Apply to other multiple airport metroplex like NY

