

Dynamic Stochastic Scheduler for Integrated Arrivals and Departures

Min Xue

University of California at Santa Cruz, Moffett Field, CA

Shannon J. Zelinski

NASA Ames Research Center, Moffett Field, CA

- Background & motivation
- Problem
- Method
- Results
- Conclusions

Background

- Arrival or departure scheduling algorithms
 - Constrained Position Shifting (CPS)
 - CPS with Dynamic Programming
 - Mixed Integer Linear Programming (MILP)
 - Basic Genetic Algorithm (BGA)
 - Heuristic Constraint based FCFS method
- Surface scheduling algorithms
 - MILP [Gupta et al 2009, Malik et al 2012]
 - Generalized Dynamic Programming [Montoya et al 2011]
- Integrated arrival and departure scheduling with shared resources
 - MILP [Capozzi et al 2009 & 2010]
 - Multiple-point scheduling [Chen et al 2011]
 - Non-dominated Sorting GA [Xue et al 2012, 2013]

Motivation

Dynamic & stochastic scheduler is needed for finding robust and beneficial schedules and routes for continuous traffic under uncertain environment

- Background & motivation
- Problem
- Method
- Results
- Conclusions

Interactions in LAX Terminal

- SADDE6: 28% of LAX arrivals or ~220 flights/day
- CASTA2: 10% of LAX departures or ~80 flights/day

• Total delay in a day due to the interaction is 380 minutes.

- Background & motivation
- Problem
- Method
- Results
- Conclusions

Procedure

Speed options

Stochastic scheduler

 $\int_{J_2} J_1 = \text{deterministic delay} + \frac{\text{stochastic delay}}{\text{stochastic delay}} \text{ (mean value)}$

Scheduling window (update frequency)

	30 minutes		30 minutes		Planning horizon	
1						

- Window size can be varied
- Windows can overlap with each other
- Some flights are included in multiple windows

- Background & motivation
- Problem
- Method
- Results
- Conclusions

Experiment set-up

- Traffic scenario based on Dec. 4, 2012
- A total of 378 flights, including 290 arrivals & 88 departures
- Separation based on wake category
- Buffers in deterministic cases

Combined Pareto front

Deterministic vs. Stochastic

Look-ahead time vs. Uncertainty

Look-ahead time vs. Uncertainty

Look-ahead time (s)

Impact of window-size/look-ahead time

- Background & motivation
- Problem
- Method
- Results
- Conclusions

Conclusions

- A sequential/dynamic stochastic scheduler was developed to handle uncertainty and multi-objective for integrated departures and arrivals
- Stochastic scheduler is better than deterministic scheduler with buffers by reducing delay & number of controller interventions
- Large window size is better when the controller intervention is low, and small window size is better when delay is low

Future work:

- Extend the application to all LAX arrivals, departures, and surface operations
- Apply to other multiple airport metroplex like NY