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Abstract— Rib cage structure and morphology is important
for anatomical analysis of chest CT scans. A fundamental
challenge in rib cage extraction is varying intensity levels and
connection with adjacent bone structures including shoulder
blade and sternum. In this study, we present a fully automated
3-D algorithm to segment the rib cage by detection and separa-
tion of other bone structures. The proposed approach consists
of four steps. First, all high-intensity bone structures are
segmented. Second, multi-scale Hessian analysis is performed
to capture plateness and vesselness information. Third, with
the plate/vessel features, bone structures other than rib cage
are detected. Last, the detected bones are separated from
rib cage with iterative relative fuzzy connectedness method.
The algorithm was evaluated using 400 human CT scans and
100 small animal images with various resolution. The results
suggested that the percent accuracy of rib cage extraction is
over 95% with the proposed algorithm.

Index Terms— Rib cage segmentation, multi-scale Hessian
analysis, iterative relative fuzzy connectedness

I. INTRODUCTION

Accurate and robust segmentation of the rib cage from
CT images is of significant clinical value. The structure and
morphology of rib bones can serve as a stable reference
for multiple analysis and quantification tasks including lung
volume estimation, organ localization, and bone abnormality
quantification. As 3-D tubular structures, manual identifi-
cation of rib cage is a tedious and time consuming task.
Therefore, automatic segmentation algorithms are necessary
for reliable localization and assessment of rib bones. Many
algorithms have been proposed for rib cage segmentation in
the literature. Most of them make use of existing general
elongated structure segmentation techniques that can also be
applied for vasculature scenario. For instance, in [1], a 3-D
region growing algorithm is proposed with local adaptive
thresholding for skeletal structure segmentation. In [2],
seed points for ribs are first identified in from central slice,
and centerline tracing algorithm is subsequently utilized for
extracting individual ribs. A classification based method was
further presented in [3], where a classifier was trained to
distinguish the primitives in ribs and background. Recently,
centerline of the spinal canal is employed to generate seed
region for every rib in [4], and region growing is further
performed to extract rib structures. Another tracking method
was reported in [5] where anatomical and other prior knowl-
edge were added to assist the process.
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Almost all previous methods follow the “adding” model,
i.e., increasingly capturing the voxels that belong to rib
structure. While such approach works well for many cases,
it may be limited by two major challenges of growing-based
methods: early termination (false negative) and leakage (false
positive). Large variations in the appearance, resolution, and
pathology of bones also contribute to limited robustness
for model-based methods. Therefore, in this paper, instead
of “adding”, we focus on a “subtracting” model. All bone
structures are first segmented, then extra bones such as
shoulder blade and sternum are detected and discarded from
the previous segmentation, resulting in rib cage alone. Our
method makes use of the priori shape information from
different bone structures within chest CT scans, and is fully
automatic and model-free.

Fig. 1. Flowchart of the rib cage segmentation algorithm

Fig. 1 illustrates the flowchart of the proposed method. As
can be noticed, the proposed method segments the rib cage
by removing the “irrelevant” bone structures from the whole
bone extraction. First, all connected bone structures are
detected using fuzzy connectedness (FC) method, including
rib cage, sternum, clavicle, and scapula. Then, plateness and
vesselness are calculated via Hessian analysis to enhance
the plate-like bones of sternum and scapula while excluding
tubular ribs. Next, plate-like bones are detected based on
the plateness and vesselness information. Last, rib cage
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is separated from whole bone segmentation with iterative
relative fuzzy connectedness (IRFC) method, resulting in the
final rib cage segmentation.

II. THEORY AND ALGORITHMS

In this section, we first briefly present the theory of FC [6]
and IRFC [7]. Then, details of vesselness and plateness
computation based on Hessian analysis [8] is provided.
Subsequently, the theory and algorithm of the proposed
method is formulated that combines the above methods to
capture rib cage.

A. FC Segmentation

Under FC framework, a fuzzy topological description at
every image location characterizes how the voxels hang
together locally with their neighbors to form an object. This
notion is defiend through a predefined function called affinity
( [6]). Let V ⊂ Z3 denotes a 3-D cubic grid representing
the image space, where each element of V is a voxel, an
adjacency relation (µα) can be defined such that it determines
which pairs of voxels are close enough to be considered
connected: µα : V×V → {0, 1}. Theoretically, if p and q are
α-adjacent to each other, then µα(p, q) = 1, ‘0’ otherwise.
In practice, we set α = 26 for adjacency in 3-D analysis.
While affinity is intended to be a local relation, a global fuzzy
relation called fuzzy connectedness is induced on the image
domain by the affinity functions. This is done by considering
all possible paths between any two voxels p and q in the
image, and assigning the strength of fuzzy connectedness
according to the strongest path between p and q.

The affinity κ is the most fundamental measure of lo-
cal hanging togetherness of nearby voxels. For a path π,
which is a sequence of voxels 〈p1, p2, ..., pl〉 with every
two successive voxels being adjacent, given fuzzy affinity
function µκ(pi, pi+1), the strength of the path is defined as
the minimum affinity along the path:

µN (π) = min
1≤i<l

µκ(pi, pi+1). (1)

Then, the strength of connectedness µK(p, q) between any
two voxels p and q is the strength of the strongest path
between them as

µK(p, q) = max
π∈P(p,q)

µN (π), (2)

where P(p, q) denotes the set of all paths between p and q.
Therefore, a fuzzy connected object O in an image can be
defined for a predetermined set of seeds S. Since the level
of FC between any two voxels p and q is considered to be
the maximum of the strengths of all paths between them, for
multiple seeds, the fuzzy object membership function for O
or the strength of connectedness of O is defined as follows:

µO(p) = max
s∈S

µK(p, s). (3)

An efficient computational solution is presented ( [6]) for
computing µO(p), given κ and S and an image.

Absolute FC segmentation is based on computing the
FC strength between a set of seed points and all other

voxels within the image and set a proper threshold to
the resulting FC image. For object and background with
moderate contrast, it has been proven to be effective in
segmentation. Hence, FC is employed to segment whole
bone structures from CT images. The seed points are au-
tomatically initialized at voxels with Hounsfield unit (HU)
intensity > 800HU . To avoid arbitrary threshold, relative
fuzzy connectedness provides a solution where sets of seeds
Sn|n = 1, 2, ..., N are available for N different objects.
Seeds compete among each other, and an voxel p is assigned
to the object with the largest fuzzy connectedness strength
as

L(p) = L(Sn), n = arg max
n

µOn(p), (4)

where L(p) provides the label of voxel p. Relative FC
can be regard as the extension of FC when multiple seeds
are available for different objects. The basic computation
remains the same, the label of voxels can be automatically
assigned.

One challenge for FC is that the performance can be
limited for cases where different objects have similar in-
tensity and separated by low contrast gaps. For this study,
plate bones need to be separated from ribs at their con-
nection locations, and the interval between them is often
narrow with low contrast. Therefore, the sensitivity and
specificity of absolute FC or relative FC can be limited.
Here, we further use iterative relative FC that leads to more
effective segmentations using relative FC with two seed
sets of plate-like bones and rib cage. The basic idea is to
iteratively identify the range of each object through relative
connectedness, and the identified range is then excluded from
being considered by other objects for path tracking. Hence,
this method keeps track of the growing process from each
seed sets and effectively minimizes the strong paths going
through the object of interest, so that structures with similar
intensities can be separated. See [7] for more details.

B. Multi-Scale Hessian Analysis

In 3-D CT images, ribs can be regarded as bright tubu-
lar structures on the dark background, while sternum and
scapula can be described as bright plate-like structures. Iden-
tification and delineation of such structures can be improved
by enhancement algorithms. As shown in [8], analyzing
the second-order information (Hessian) of a Gaussian con-
voluted image provides local information of the structure.
Specifically, eigenvalue decomposition is performed over the
Hessian matrix and the resulting ordered eigenvalues, i.e.,
(|λ1| ≤ |λ2| ≤ |λ3|), are examined. For tubular structures, it
was expected that λ1 was small and the other two were large
and of equal sign; while for plate structures, it was expected
that both λ1 and λ2 were small and λ3 was large. Explicitly,
for a bright structure on a dark background, vesselness can
be formulated as

Vσ =

0, if λ2 > 0 or λ3 > 0;

(1− e−
R2
A

2α2 )e
−R

2
B

2β2 (1− e−
S2

2γ2 ), else,
(5)

2900



Fig. 2. Example axial (first row) and coronal (second row) slices for each step of the proposed method. (A) Original CT image with
whole bone segmentation (the largest connected group is selected). (B) Plateness computation result. (C) Vesselness computation result.
(D) Detected plate-like structures. (E) Rib cage segmentation after separation.

where RA = |λ2|/|λ3|, RB = |λ1|/
√
|λ2λ3| and S =√

λ2
1 + λ2

2 + λ2
3; and plateness can be formulated as

Pσ =

0, if λ3 > 0;

e
−R

2
B

2β2 (1− e−
S2

2γ2 ), else,
(6)

where α, β, γ are parameters determined by user according
to image and structural details, RB = |λ2|/|λ3|, and S =√
λ2

1 + λ2
2 + λ2

3.
The vesselness and plateness measurements (i.e., V and

P ) were calculated at different scales (σ) and the maximum
response was achieved at a scale that matches the size of the
structure. Therefore, by using a multi-scale approach which
covers a range of structure widths and finding the maximum
value V = max(Vσ), P = max(Pσ), σmin ≤ σ ≤ σmax,
we enhanced the local tubular and plate structures. For rib
cage application, we first briefly estimated the minimum and
maximum rib size according to normal rib radius and image
spacing, and then set σmin and σmax accordingly.

C. Rib cage extraction

Let S denote the plate-like bones to be excluded and
S̄ denote the rib cage bones such that B = S ∪ S̄. S
can be characterized by high P and low V responses,
while S̄ features high V and moderate P values. Therefore,
thresholding was applied to extract candidate plate voxels
SdS ∈ S and rib voxels SdS̄ ∈ S̄. Since SdS and SdS̄
usually cover only part of the entire rib and scapula, these
points were used as seed points to initiate a IRFC within the
initial bone segmentation B. With IRFC, the two objects are
separated at the low-intensity connection location, hence all
voxels belonging to plate bones were excluded from rib cage
segmentation.

As illustrated in Fig. 2, initial bone segmentation can
contain scapula that is locally connected to rib cage (A). With
plateness (B) and vesselness (C) enhancement, it is obvious
that scapula can be detected and distinguished from rib

structures using high plateness and low vesselness (D). Last,
IRFC is employed to separate scapula from rib cage using
seed point from (D), resulting in final rib cage segmentation
(E). In this way, the region grow process for rib extraction,
which can be limited by false negatives and false positives,
is avoided. Also, seed points are assigned robustly within the
candidate structures, ensuring efficient and accurate rib cage
segmentation.

III. RESULTS

To evaluate the performance of our rib cage segmentation
method, we used 400 human and 100 small animal data
sets. Images were acquired using 64-detector row Phillips
Brilliance 64 or GE Medical Systems Light Speed Ultra.
Scans were performed at end-inspiration with 1.0 or 2.0
collimation and obtained at 10 or 20 mm intervals from the
base of the neck to upper abdomen. For human image, slice
thickness ranges from 1 mm to 5 mm (200 of them have
thickness 5 mm, 90 of them have thickness 2.5 mm and
the rest have thickness < 2 mm), while in-plane resolution
ranges from 0.5×0.5 mm to 0.8×0.8 mm. For small animal
images (rabbits and ferrets), the spatial resolution range from
0.2× 0.2 mm to 0.3× 0.3 mm in plane and 0.2 mm to 0.6
mm between slices ( [9], [10]).

For segmentation algorithm evaluation, manual delineation
is often used as reference standard. However, for rib cage
segmentation, as it appears tubular structures in 3-D space, it
is tedious and time consuming for human to define the exact
boundaries by tracing the voxels for the entire 3-D image.
Here, we first performed a visual qualitative evaluation of all
images by two experts for the performance of the proposed
algorithm. Experts were asked to evaluate if rib cage has
been extracted successfully by identifying errors including
residual scapula (false positive) and mistakenly removed rib
(false negative). The count of error-free cases is counted
and comprised with the total image number as the success
rate. Fig. 3 shows an example of the rib cage extraction
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Fig. 3. 3-D Segmentation results on small animals (A-F) and human
subject (G-I). (A, D, G) whole bone structure extraction result; (B,
E, H) rib cage result after subtraction; (C, F, I) fused illustration of
segmentation and CT image.

performance on small animals (rib shown in blue with other
bone structure shown in red) (A-F) and human subject (rib
shown in green with other bone structure shown in red) (G-I).
(A, D, G) illustrates whole bone structure extraction result;
(B, E, H) shows rib cage result after subtraction; and (C, F,
I) are fused illustrations of segmentation and CT image. This
example confirms the observation that the proposed method
can successfully capture and exclude other bone structures
from rib cage. The overall success rate is 95%, and no
failure has been identified for small animal images given
that there is better contast and larger separation. For the 27
unsuccessful cases, 24 of them have 5 mm thickness, one 2.5
mm and two below 2 mm. 16 of them suffers from major
false positives, and 11 have mistakenly removed rib structure.
Also, it appears that most of the unsuccessful cases are of
low resolution and high noise/artifacts, which jeopardize the
performance of IRFC due to local intensity variance and
broken connectivity. As one future work to address this
problem, extra step of manual intervention can be helpful in
adding more accurate seed points, defining separation, and
fine parameter tuning.

For quantitative evaluation, instead of manually tracing
the rib structures, we selected 50 slices (45 human images
and 5 small animal images) containing connection areas of
rib cage and other bones, covering object, resolution, and
appearance variations. Experts are asked to manually draw
the separation curves between the rib cage and other bones on

the overlapping whole bone segmentation. For quantification
purpose, Hausdorff distance (HD) is computed between the
result from proposed method and the reference. The experi-
mental results showed that by applying the proposed IRFC
method, the separation line can be accurately estimated, and
the average HD is 0.7 pixels. The computation time including
Hessian analysis and FC/IRFC computation is five minutes
for an image with size 512×512×422 on a 3.7 GHz machine
running Linux system.

IV. CONCLUSION

A fully automated 3-D algorithm to segment the rib cage
by detection and separation of other bone structures has
been developed. The proposed approach combines Hessian
analysis and fuzzy connectedness segmentation. By detection
shape information for different bone structure, the algorithm
separates other bone structures from rib cage. The method
is fully automatic with seed identification algorithm and the
performance of the method has been evaluated on both small
animal and human CT images from diverse subjects. The
results found are promising with high accuracy and low
time cost. As one limitation and future direction, current
framework includes vertebral discs in the result and vertebrae
bone structures are not individually numbered. To address
this challenge, further tracking and identification will be
needed with the help of shape and spatial information.
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