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Abstract—Distributed power meters (also termed smart plugs)
are embedded systems that measure the electric power consump-
tion of individual appliances at a fine temporal resolution. They
enable a wide range of novel smart services, e.g., accurately
forecasting power consumption or making recommendations how
to save energy. However, distributed power metering combines
high sampling rates with a potentially large number of monitored
outlets. A torrent of power readings may thus be generated, in-
curring high bandwidth requirements for their transmission and
a significant computational power demand for their processing.
In this paper, we present a concept for the efficient local storage
and processing of power consumption data called PowerSAX.
Instead of operating on raw sensor readings, PowerSAX converts
consumption data into their symbolic representations and thus
mitigates their storage requirement. Subsequently, it enables
embedded systems to recognize relevant patterns (motifs) in the
symbolic representations of collected data. By only transmitting
a message when a known motif is encountered in the sensor data,
PowerSAX can significantly reduce an application’s bandwidth
requirements. We evaluate PowerSAX using real-world power
consumption data and show to which extent smart plugs can
make predictions of an appliance’s future power demand.

I. INTRODUCTION

The evolution of home automation technology has given

rise to numerous novel smart building services. These services

combine data from multimodal sources like wireless sensors,

smartphones, and power meters. Based on the fusion of the

collected data, smart home automation systems may control

a building by means of actuator devices or make recommen-

dations to the users, e.g., how to save energy. The potentially

large volume of building sensor data required to realize these

services, however, poses a new technological challenge for

home automation systems. Phenomena with high dynamics,

such as electric power consumption, require short response

times and thus need to be sampled frequently, incurring a high

bandwidth requirement for their data transmissions.

Numerous means for data compression have consequently

been explored on embedded sensing systems (e.g., [1]) to

reduce this demand for bandwidth while allowing for the

reconstruction of the original data. In many cases, however, the

detection of specific patterns in the data (e.g., indicators for an

electric appliance’s mode of operation) is much more relevant

than the device’s actual consumption data. As a result, the use

of events was proposed in literature (e.g., [2], [3]). Events are

defined before a sensor network is deployed. During runtime,

all participating systems locally evaluate their readings and

only transmit a message when all preconditions for an event

are fulfilled. However, based on our prior observations in [4],

the local detection of events in incoming sensor data streams

often incurs a high demand for computational power.

We thus address these challenges by presenting PowerSAX,

a novel approach for the lightweight representation of sensor

data and the recognition of patterns therein. It achieves size

reductions by converting sensing consumption values into their

symbolic representations. In other words, it turns a time series

of raw data points into a sequence of symbols. In contrast to

existing work in this domain (e.g., [5]), however, the actual

mapping between raw data and the symbolic representations

is determined by a clustering algorithm and based on the

histogram of the collected data. Besides creating near-optimal

mappings for each appliance type, this approach also lowers

the system’s susceptibility to measurement noise. Characteris-

tic patterns (motifs) are then identified in the symbol sequences

for their later recognition in live data streams. Again, symbolic

representations prove beneficial because they reduce the need

for computation to recognize motifs; in fact, even embedded

systems can recognize motifs composed of symbol sequences

locally. Transmitting symbols instead of raw data points al-

ready leads to smaller packet sizes, and even higher savings

can be achieved when only the identifiers of recognized motifs

are transmitted instead of symbol streams. PowerSAX can thus

measurably reduce the data volume while retaining all relevant

features to enable smart home automation.

First, we summarize work related to symbolic approxima-

tions and pattern recognition in power time series in Sec. II.

Next, we highlight the fundamental concept behind PowerSAX

in Sec. III. We show how the symbol alphabets are defined

based on historic sensor data in Sec. IV, and describe how

characteristic motifs are extracted and subsequently recognized

in real-time input data streams in Sec. V. We evaluate the

accuracy of our motif detection system using real-world input

data in Sec. VI and conclude this paper in Sec. VII.

II. RELATED WORK

The realization of smart home services is generally based on

the analysis of sensor data time series and their correlations.

For example, identifying recurring patterns allows such sys-

tems to determine the user’s habits and preferences. Similarly,

deviations from regular patterns can indicate situations in

which a home automation system’s action is required to

maintain the user’s comfort and safety. Suitable means for

the efficient analysis of time series are thus needed.
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Transforming time series data into the frequency domain is

a viable approach to lower the computational efforts required

for their analysis, and widely used across many application

domains, e.g., astronomy [6]. It reduces the computationally

intensive analysis of time series data to the determination of

the signal’s spectral components. However, information about

the temporal sequence of events is lost in this process. This

effectively renders it inapplicable for smart home automation

systems, where the order of events plays a major role.

In order to retain the temporal sequence of events in time

series data and reduce the computational complexity at the

same time, the concept of symbolic approximations (SAX) has

been introduced in [5]. By converting raw data to symbolic

representations prior to their analysis, the computational over-

head for motif and discord detection (i.e., the identification

of recurring patterns and outliers) is significantly lower than

for raw time series. Symbolic representations inherently allow

to suppress noise on signals and can even be used to detect

scaling in both signal amplitude and duration (dynamic time

warping). As symbolic approximations hence allow for the

signal analysis in the temporal domain and alleviate the

bandwidth requirement of sampled data points, they have been

selected as the foundation for the work presented in this paper.

The extraction of higher-level information from smart power

meter data has been presented in several papers. Initially

started as Nonintrusive Appliance Load Monitoring (NALM)

by George Hart [7], many further ideas to identify the presence

and activity of appliances in buildings have been published

(e.g., [8], [9], [10], [11]). While all of the approaches rely

on the analysis of consumption data, however, temporal de-

pendencies of more than a couple of seconds are generally

not taken into account. Instead, the solutions are based on

momentary measurements and at most short-term time series

of the transients during appliance (de)activation.

In a preliminary experiment, we have extracted patterns

from raw power consumption time series in order to make

predictions of an appliance’s deactivation time [4]. While

confirming the general viability and potential of the approach,

we have observed high computational efforts, even for small

experiments. These are likely to hamper an implementation

at large scale and have motivated us to explore the appli-

cability of symbolic representations which have only been

considered in the following two other works to the best of

our knowledge. Wijaya et al. use symbolic approximations in

order to make load predictions based on patterns in aggregate

consumption data of complete households [12]. However, a

log-normal distribution is being used to approximate the power

consumption data characteristics. Thus, the approach can be

expected to be suboptimal when consumption characteristics

do not fit the chosen unimodal distribution. Similarly, Bondu et

al. list the smart grid as a potential application domain for their

OSAX approach, but do not consider such data in their evalua-

tion [13]. PowerSAX overcomes these limitations by adapting

to the actual distribution of the underlying power consumption

data. Thus, it allows for higher precision when operating on

time series that follow multimodal symbol distributions.
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Fig. 1. PowerSAX system overview.

III. THE POWERSAX CONCEPT

The core idea behind PowerSAX is to use symbolic repre-

sentations of power meter data in order to facilitate the efficient

discovery and recognition of recurring patterns. We visualize

its general data processing sequence in Fig. 1.

1) The input sequence is converted into its symbolic rep-

resentation. This step is fundamental to both SAX and

PowerSAX and is the simplification that speeds up any

subsequent processing. In essence, the range of potential

values in the input sequence is divided into a number of

intervals, and each interval is allocated a unique symbol

in the symbol alphabet. More details about this process

step as well as its limitations when applied to power

sensor data are explained in Sec. IV.

2) Characteristic motifs are extracted from historic data and

stored in a repository. When analyzing electrical loads,

these motifs often model the change of an appliance’s

operational mode or any characteristic sequences of

power consumptions exhibited during the appliance’s

operation. Due to the translation of input sequences

into their symbolic representations, these motifs are

represented as sequences of symbols, as shown in Fig. 1.

The criterion for adding a motif to the repository in this

step is its recurring nature; PowerSAX only considers

motifs that occur at least twice in the input data set.

More details on the actual recognition of motifs and the

allowed error thresholds are presented in Sec. V.

3) Live input data are converted to their symbolic represen-

tations in order to determine if they match any of the mo-

tifs in the repository. To this end, a window containing

the most recent symbols is compared to all motifs in the

repository. Once a previously stored motif is recognized,

additional functionalities like load forecasts or the de-

tection of abnormal appliance behavior become possible.

We evaluate the potential of symbolic approximations to

realize one such functionality in Sec. VI.
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(a) Histogram of a washing machine.
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(b) Histogram of a dishwasher.
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(c) Histogram of a cooking stove.

Fig. 2. Power consumption histograms for different appliance types. Consumption values below 2 W (e.g., standby power) have been omitted for visual clarity.

IV. SYMBOL ALPHABET DEFINITION

Traditionally, the input data used in conjunction with sym-

bolic approximations has been assumed to follow a Gaussian

distribution (cf. [14]). Under this assumption, the conversion

of raw data to their symbolic form works as follows. At first,

a z-normalization step is applied to the signal to make it zero-

mean and of unit variance [15]. Subsequently, the area under

the probability density function curve is divided into segments

of equal area, each of which represents the mapping from an

input data range to its corresponding symbol.

However, a major limitation arises for the use of this ap-

proach with distributed power data. Firstly, the normalization

to unit variance effectively removes the absolute dimension

of the input data. As a result, symbolic representations lose

all information about the amplitude of the original signal.

However, electrical appliances can be expected to exhibit

highly characteristic power consumption levels throughout all

operation cycles in their lifetime. To retain the amplitude infor-

mation of power measurements, PowerSAX hence omits the

z-normalization step. Secondly, the assumption of a Gaussian

symbol distribution no longer holds true for data that has not

undergone z-normalization. We have visualized the symbol

distribution histograms of three household appliances from

the Tracebase project [16] in Fig. 2. With the exception of

the electric stove depicted in Fig. 2c, all histograms show

several power consumption peaks. As power consumption

values around zero occur for all devices (but were omitted

from the diagrams for the sake of clarity), each appliance

type has at least two distinct power consumption values. In

other words, all analyzed power consumption data follow mul-

timodal distributions and thus cannot be modeled as unimodal

Gaussian distributions without introducing significant errors.

A. Alphabet Definition in PowerSAX

Having shown that unimodal distributions are unsuited to

reflect the characteristics of distributed power meter data

properly (cf. Fig. 2), an alternative solution needs to be found.

Let us reconsider the histogram of the dishwasher shown

in Fig. 2b. It shows two distinct consumption peaks. While

values around 100 W can be attributed to the rinsing phases,

consumptions above 2,100 W originate from the activity of the

heater elements. A third peak of 0 W amplitude (not shown)

exists which reflects phases during which the appliance was

turned off.

Intuitively, the optimal number of symbols thus appears to

be dependent on the number of distinct clusters in the power

consumption histogram. Allocating too few symbols for the

alphabet would result in two distinct consumption clusters to

be merged, thus losing the ability to distinguish between the

appliance’s heating and rinsing phases. Similarly, using too

many clusters would potentially lead to situations in which two

similar consumption values are being associated to different

symbols, although they relate to the same operational mode.

Defining the number of used symbols in traditional SAX

mainly serves to optimize the trade-off between speed and

accuracy. As highlighted above, however, an appliance’s power

consumption histogram often reveals the distinct power con-

sumption clusters that relate to the most frequently occurring

operational modes. We hence propose to use a clustering-based

approach to extract the symbol alphabet from historic data,

which works as follows.

1) We use historic power consumption data from the appli-

ance, segment them into non-overlapping windows of a

constant size w
s

(cf. Sec. V for details), and calculate

the mean value for each window. Subsequently, the

histogram of all resulting mean values is computed.

2) The histogram is clustered by applying the MeanShift

algorithm [17]. It annotates each data point in the

histogram by its membership to a cluster. Power con-

sumption clusters are thus implicitly created, with their

boundaries represented by the extremal members of each

determined cluster. MeanShift has been chosen as it can

determine the optimal number of required clusters itself.

3) Once all clusters have been detected, PowerSAX an-

alyzes whether all possible input values are covered

by the alphabet. If gaps exist between two neighboring

cluster boundaries, additional intervals are added to the

symbol alphabet. Despite the fact that these values have

never or very rarely occurred in the past, we define them

in the model in case they occur in data measured later.

4) PowerSAX finally adds intervals for (−∞, 0) and

(Pmax,∞) that capture erroneous readings. Herein,

Pmax is the maximum output value of the sensors. As a

result, the resulting alphabet is capable of mapping the

entire range of potential input values to their symbols.

5) Finally, symbolic names are attributed to the extracted

clusters by consecutively labeling them and storing them

in the form of a look-up table.
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(a) Actual input data trace of a dishwasher’s power consumption over a sampling period of 30 days.
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(b) Histogram of the power consumption values with extracted symbol clusters and corresponding symbol annotations.

Fig. 3. Output mapping based on histogram clustering by means of the MeanShift algorithm.

This process is visualized in Fig. 3 for a 30-day power

consumption trace from a dishwasher. The actual power con-

sumption is shown in Fig. 3a and alternates between phases of

activity (with peaks around 100 W and 2,100 W) and inactivity

(0 W). The corresponding histogram entries are shown as dots

in Fig. 3b, which also shows the resulting clusters and their

corresponding symbols. Clusters boundaries are indicated by

dashed vertical lines, and the gaps between any two clusters

determined by the MeanShift algorithm (e.g., all values be-

tween 110 W and 2,008 W) were covered by adding a new

cluster D (cf. step 3). The measurement limit Pmax of the

hardware power sensors was 3,680 W. Hence, clusters A and G

are exclusively comprised of invalid values, and such symbols

will be disregarded in subsequent processing steps in order to

avoid the consideration of erroneous data.

V. MOTIF RECOGNITION

After having converted the time series data to their sym-

bolic representations, recurring sequences and their temporal

dependencies can be determined. We use the notion of motifs

as defined by Lin et al. as “previously unknown, frequently

occurring patterns” [18], and describe the process of their

extraction from historically observed data as follows.

A. Windowing

Sensor data are commonly sampled at a fixed rate (e.g.,

one reading per second). As motifs are designed to represent

temporal dependencies of the input data, however, they need to

model the activity within an analysis time window. PowerSAX

uses a sliding sampling window of length w, upon which

all further data processing operations are based. The window

size w needs to be defined depending on application and

performance constraints. Exactly w input readings are required

to decide if the real-time input data matches a known motif.

While low delays can be achieved by selecting small window

sizes, motifs that exceed the window size cannot be captured

completely and in consequence not be detected easily, if at

all. In contrast, large window sizes may help to extract more

relevant motifs, but come at the cost of larger detection delays.

B. Motif Extraction

Let us assume that the analysis window size w has been

defined based on the characteristics of the raw input data and

the actual application requirements. In order to allow for the

extraction of motifs, the raw input data in each of the windows

must be converted to their symbolic representations first. This

process is performed based on the look-up table extracted

according to Sec. IV. However, the time window is first

segmented into s sub-windows of equal size (each comprised

of w
s

raw data points, as mentioned in Sec. IV-A). Besides

eliminating further measurement noise, sub-windowing also

reduces the number of symbols in each motif and thus in-

creases the applicability of PowerSAX on embedded systems.

All resulting motifs are exactly s symbols long, which we

call their symbolic length. Naturally, the number of resulting

symbols s in each window w cannot be larger than the number

of input data points (i.e., s ≤ w). Only one output symbol is

being generated for each of the sub-windows by converting the

mean value of all samples in the sub-window to its symbolic

representation. E.g., to convert w = 128 entries into a sequence

with symbolic length of s= 16, at first w is divided into s sub-

windows, comprised of w
s

= 8 raw data points each. Then, the

mean values of the 8 values in each sub-window are computed,

and the corresponding symbolic representations returned.
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In the training phase, PowerSAX extracts all candidate

motifs (i.e., series of s symbols) from the historic data by

means of sliding a window of size w across the entire input

sequence. Each of the resulting symbolic strings is added to

a list of candidate motifs, and annotated by the number of

its occurrences. Keeping track of each candidate’s number of

occurrences is an integral part of PowerSAX in order to later

determine whether a sequence fulfills the motif criterion (i.e.,

it occurs sufficiently frequently). Due to the applied averaging

and quantization, the same symbolic string often occurs in two

or more adjacent time windows. However, as the actual data

only contain a single occurrence of the underlying motif, we

merge all its subsequently detected occurrences into a single

candidate entry without increasing its occurrence counter.

Upon completion of the motif extraction, the algorithm

outputs a list of tuples, which store the candidate motifs as

well as their number of unique occurrences. From this list,

the features to be used in the real-time recognition phase can

be selected based on the required characteristics. An example

selection criterion for electrical appliances is the number of a

motif’s occurrences, as frequently occurring motifs often relate

to changes in the underlying appliance’s mode of operation.

In the implementation described in this paper, PowerSAX thus

adds all motifs with more than one disjunct occurrence to its

motif repository, i.e., the list of motifs that can be matched

later. The minimum occurrence requirement of motifs can,

however, be easily adjusted to meet the application’s needs.

C. Motif Recognition

The static definition of motif lengths allows for an efficient

matching between the last s symbols of incoming stream

data and the motifs stored in the repository. To this end, the

most recent w values of streamed input data are converted

to their symbolic representation and used as a query to the

motif repository. As both sequences have the same length,

determining their similarity can be easily done by means of

computing the distance between each of the symbol pairs

according to a distance metric.

With the symbol alphabet being autonomously extracted

from the histogram, situations might occur in which very small

clusters exist. As a result, motifs may not exactly match the

real-time input data exactly, but show small discrepancies, e.g.,

deviate by just a single symbol. To encounter this case, we

have designed PowerSAX to not only consider exact matches,

but allow for a configurable error margin. For this purpose, we

define the distance between two symbols c (in the candidate

motif) and q (in the query) according to Eq. (1).

d(c, q) = |βc − βq| (1)

We use the value of each symbol’s upper cluster boundary

βc (i.e., the highest power consumption value of this cluster)

as its nominated weight. Only for the first cluster, which spans

all values from negative infinity to zero, this value is assumed

to be −∞ to allow for easier processing of erroneous readings.

The resulting distance matrix for the example made in Fig. 3b

is shown in Table I. This distance matrix is subsequently used

TABLE I
DISTANCE MATRIX FOR DATA FROM FIG. 3.

A B C D E F G

A ∞ ∞ ∞ ∞ ∞ ∞ ∞

B ∞ 0 109 2007 2124 3679 ∞

C ∞ 109 0 1898 2015 3570 ∞

D ∞ 2007 1898 0 117 1672 ∞

E ∞ 2124 2015 117 0 1555 ∞

F ∞ 3679 3570 1672 1555 0 ∞

G ∞ ∞ ∞ ∞ ∞ ∞ ∞

in combination with the Euclidean distance calculation (cf.

Eq. (2)) when determining the distance between the candidate

motif Ĉ and query motif Q̂, both of which are PowerSAX

sequences of s symbols length.

dist(Ĉ, Q̂) =

v

u

u

t

w

s
×

s
X

i=1

d(ci, qi)
2

(2)

Unless the symbolic representation of the input sequence

contains the invalid value of ∞, PowerSAX thus queries the

motif database by calculating the distance between the input

sequence and every stored motif. Any resulting value below a

user-definable threshold distance will be reported as a match.

VI. EVALUATION

After having described the operation of PowerSAX, we

assess its benefits for a potential use case of future smart

homes, namely appliance power consumption prediction. We

analyze the impact of the parameter selections on the predic-

tion accuracy of PowerSAX first, and subsequently assess its

potential for operation on embedded sensing systems.

A. Test Case: Power Consumption Prediction

By enabling smart plugs to make predictions for the power

consumption of an attached load, they can help utility compa-

nies predict power peaks and thus help them to avert blackouts.

To achieve this functionality, we use PowerSAX with a minor

modification. In addition to the extraction of recurring motifs

from the training data set, we annotate each of them by

the 4× s symbols observed after their occurrence. Thus, we

ensure that each recognized motif allows PowerSAX to make

a consumption forecast, which is subsequently reported.

To cater for the realistic nature of the evaluation, we have

used device-level power consumption data from the Tracebase

project [16]. Thirty consecutive days of a dishwasher’s power

consumption (ID B82F81) were used, with sixteen of them for

the training phase, and fourteen traces to test the system’s pre-

diction performance. Again, PowerSAX has been configured

to add all motifs with at least two occurrences in the training

data set to the repository. Subsequently, a sliding window of

s symbols length is moved along the testing time series. The

distance between all saved motifs and the sequence in the

sliding window (Q̂) is calculated according to Eq. (2), and the

closest match that fulfills dist(Ĉ, Q̂) < 2W is reported. Note

that we have particularly chosen a threshold value slightly
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(d) w = 512 input values, s = 8 symbols

Fig. 4. Comparison of prediction errors for four different window sizes.

greater than zero in order to minimize the impact of measure-

ment noise introduced by the power sensor hardware. Once

a motif in the repository is recognized during the system’s

operation, its annotation is returned as the estimated future

power consumption of the testing time series.

In order to evaluate the accuracy of a prediction, we also

use the aggregate distance measure dist. More precisely, we

compute the distance between the actual power consumption

(i.e., the subsequently recorded data points of the testing time

series) and the motif’s annotated prediction. As highlighted

above, the distance is calculated across the complete prediction

window of 4× s symbols length.

B. Impact of Window Size w and Symbolic Length s

Let us start our evaluation with an analysis of the impact of

the window size w. As highlighted in Sec. V-A, the window

size determines the number of input samples required before

a prediction can be made. In case of predicting an appliance’s

power consumption, however, the window size also determines

the duration for which a prediction can be emitted. We use

window sizes of 64, 128, 256, and 512 seconds to evaluate the

error between the actual consumption observed in our testing

data and the predictions emitted by PowerSAX.

The resulting distances between prediction and actual con-

sumption for s= 8 are visualized in Fig. 4. In the subfigures,

the x-axis lists all motifs that have been extracted from the

training data set. For each of them, black dots visualize the

distance between its made predictions and the actual testing

data following the position where the motif has matched. The

average prediction error for each motif is furthermore shown

in red. We have sorted the x-axis by the observed average

prediction errors for better visual clarity. The interpretation

of the figures is straightforward. For example, Fig. 4a conveys

that a total number of 356 motifs were extracted from the train-

ing data. Of these, 134 led to predictions with small average

errors (below 60W ), whereas the remaining 222 motifs led

to predictions with significantly larger average errors. All four

figures confirm that some motifs have very good prediction

capabilities across all analyzed parameter variations.

Across all regarded window sizes, the number of motifs that

lead to predictions below the 60W error threshold varies (134

for w = 64, 80 for w = 128, 72 for w = 256, 146 for w = 512;

values for other symbolic lengths in Table II). However, while

a large number of motifs in the repository may increase the

likeliness that one of them is recognized in the testing data,

a much more important aspect is the overall accuracy of

their predictions. Returning an erroneous prediction is less

favourable than not emitting a prediction at all. We have thus

determined the overall fraction of motif matches that lead to

correct forecasts in Fig. 5.
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Fig. 5. Overall percentage of correct predictions when up to 60W error
between prediction and actual data are allowed.
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TABLE II
COMPARISON OF NUMBER OF MOTIFS WITH PREDICTION ERRORS BELOW

60 W AND TOTAL NUMBER OF EXTRACTED MOTIFS (IN BRACKETS).

Symbolic Window size
length w=64 w=128 w=256 w=512

s=2 3 (53) 6 (73) 16 (92) 9 (128)
s=4 28 (133) 25 (126) 36 (194) 60 (434)
s=8 134 (356) 80 (289) 72 (328) 146 (788)
s=16 5827 (6162) 528 (1003) 176 (683) 257 (1188)

From the figure, it can be observed that the motifs extracted

when using smaller window sizes succeed much better in

making correct predictions. In fact, up to 96% of its predictions

are correct when applying the combination of long symbolic

lengths and short windows. This can be primarily explained

by the fact that smaller matching windows also lead to smaller

prediction horizons, which are easier to predict accurately.

Moreover, the distance definition in Eq. (2), which we have

adopted from SAX [5], includes a dependency on the window

size and thus implicitly penalizes prediction errors made

when longer windows are being used. However, we have also

observed that the averaging effect of larger window sizes

in conjunction with shorter symbolic lengths creates more

confusion between similar motifs. For these parameter ranges,

PowerSAX is no longer able to discriminate between similar

motifs with different predictions, resulting in a large percent-

age of incorrect forecasts. To sum up our general observations,

the results allow us to conclude that motifs composed of

more symbols are better suited to correctly predict the future

consumption, and this observation is independent of the used

window size.

Increasing the symbolic length hence appears as a promising

means to cater for more correct predictions. However, practical

consideration of the memory size restrictions of the embedded

systems in smart plugs may hamper the use of long motifs.

We have tabulated the number of motifs that are suited to

make accurate predictions along with the total number of

extracted motifs (numbers in brackets) in Table II. Given that

each motif requires at least 5× s symbols (s for the motif

and 4× s for the forecast), the local motif repository can be

expected to represent the main contributor to PowerSAX’s

memory requirement on embedded power metering systems.

In fact, even when each symbol can be represented in one

byte of memory, more than 91 kB of memory are required to

store the 5,827 motifs resulting from w = 64 and s= 16. If the

embedded system shall also be capable of emitting the pre-

dictions itself instead of just relaying the motif’s identifier to

the home gateway, this memory demand increases to 455 kB.

With current embedded systems in smart metering equipment

usually featuring significantly less resources1, this memory

demand immediately renders the presented load forecasting

solution inapplicable for such embedded systems.

1For example, the Maxim 71M6542F device designed for its use in smart
meters offers 64 kB of program memory and 5 kB of RAM, according to
http://www.maximintegrated.com/datasheet/index.mvp/id/6866

C. Operation on Embedded Sensing Systems

In order to complement our analysis of the prediction ac-

curacy, we also assess the resource requirement when running

PowerSAX on embedded sensing systems. We have hence set

up the evaluation systems based on a typical smart home setup,

where a computationally powerful home gateway is commonly

present. The home gateway is used for the system’s initial

configuration. First, it extracts the symbol mappings based

on the histogram of the previously observed consumption

data. Subsequently, it converts all historic input data to their

symbolic representations and extracts the characteristic motifs

as well as annotating them by their predictions. Finally, the

resulting alphabet and the motifs that have resulted in good

predictions are uploaded to the embedded power metering

system. We have used the TelosB platform to this end, because

it is comparable to the specifications of embedded systems in

state-of-the-art smart plugs and smart meters.

We base our evaluation on a simple TinyOS application

that takes an analog reading once per second. By default, the

application uses 15,642 bytes in ROM and 466 bytes in RAM

when compiled for the TelosB. When adding the PowerSAX

alphabet as an array that only contains the upper values βc

of each cluster (cf. Eq. (1)), only 2 additional bytes in the

program memory are required for each symbol in the alphabet.

Our implemented function to convert raw input data to their

symbolic representations requires 6 bytes of ROM and no

additional RAM.

As highlighted before, storing the motifs has a significantly

higher memory demand and thus represents the main limitation

when deploying PowerSAX on embedded systems. When

implemented in the application introduced above, two new

buffers need to be allocated; one of size w
s

in order to allow

for the averaging over the raw data prior to their conversion

to the corresponding symbol, and one of size s, on which the

motif recognition is performed. These buffers require between

24 bytes (for w = 64 and symbolic lengths of 8 or 16) and

514 bytes (for w = 512 and s= 2) of RAM. In terms of the

program memory, the main contributor is the array of motifs

to detect in the real-time data, and s bytes are required for each

motif. Hence, between 418 (for s= 16) and 3,348 (for s= 2)

motifs including their predictions can be stored if no further

program memory is required by the application. However,

when keeping the actual predictions on the home gateway and

transferring the motif identifiers instead, the memory available

on a TelosB allows for the storage of between 2,092 (for

s= 16) and over 16,700 (for s= 2) motifs on the nodes. The

actual implementation to recognize motifs and return their

identifier to the home gateway is also very small; it can be

implemented in 18 bytes of application code.

While proving the lightweight nature of PowerSAX, our

evaluation has shown that the storage of motifs dominates

its memory requirement. Consequently, additional assessment

steps should be employed on the home gateway in order to

reduce the number of used motifs, e.g., by raising the required

number of occurrences to add a motif to the repository.
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Fig. 6. Prediction accuracy of the original SAX implementation.

D. Comparison to Original SAX

In a final experiment, we compare PowerSAX to the original

SAX approach. In both cases, we have set the window size

to 512 values of input data, leading to a prediction horizon

of 34 minutes for a sampling period of 1 Hz. We have used

a symbolic length of s= 8. As PowerSAX has extracted nine

symbols for these parameters, we have also defined an alphabet

of nine symbols for SAX. As SAX applies z-normalization

to each sampling window, the resulting prediction errors

cannot be measured in watts, but are based on the following

different distance definition. For identical and neighboring

symbols, the symbolic distance is assumed to be zero (i.e.,

dist(C,C) = 0 and dist(C,D) = 0). For all larger distances,

such as dist(B,E), the distance is calculated as the difference

between their closest cluster boundaries (the largest value of

B and the smallest value of E). The results for the analysis

of SAX’s ability to predict future power consumption are

visualized in Fig. 6. A total of 935 distinct motifs could

be extracted from the input data, as opposed to 788 motifs

for the same configuration of PowerSAX. When allowing for

no symbolic distance between the SAX-based prediction and

the actual consumption, however, only 36 of 464,229 motif

matches, i.e., 0.008%, led to correct predictions, as compared

to 11.1% achieved by PowerSAX (cf. Fig. 5).

VII. CONCLUSION

Consumption data from distributed power meters are a rich

resource, upon which manifold novel smart home services

can be based. However, the centralized processing of power

data streams poses significant requirements to both bandwidth

and processing power. To alleviate these problems, we have

presented PowerSAX. It converts time series input data to

their symbolic representations and allows for the extraction

of motifs from these symbolic representations as well as

their efficient recognition in real-time data. We have eval-

uated PowerSAX using real-world power consumption data

for the use case of predicting an appliance’s future power

consumption. The comprehensive analysis of the parameter

space has shown that an appliance’s future power consumption

can be correctly predicted in 96% of the cases (w = 64, s= 16)

when previously extracted motifs are recognized. PowerSAX

is lightweight and can be easily integrated into the applications

on embedded power metering systems. It thus represents an

ideal substrate for the realization of novel smart home automa-

tion services based on power consumption data analysis.

VIII. ACKNOWLEDGMENTS

We would like to thank Frank Englert for his support.

REFERENCES

[1] N. Kimura and S. Latifi, “A Survey on Data Compression in Wireless
Sensor Networks,” in Proceedings of the International Conference on

Information Technology: Coding and Computing (ITCC), vol. 2, 2005,
pp. 8–13.
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