IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

1359

Noise Removal in Embedded Image
With Bit Approximation

Xianquan Zhang ™, Xuelong Li, Fellow, IEEE, Zhenjun Tang
, Senior Member, IEEE, and Shaomin Xie

Shichao Zhang

, Member, IEEE,

Abstract—Stego-images are often contaminated by interchannel noise or active noise attack when communicating on the Web. And itis
challenging to restore embedded image from corrupted stego-image. This paper studies a kNN-bit approximation algorithm to remove
noises in embedded image. The proposed algorithm distinguishes reliable bits from extracted bits, and estimates pixel values by keeping
reliable bits unchanged and correcting unreliable bits. Specifically, the 8th (highest) unreliable bit of a pixel can be approximated with its
nearest neighbor pixels. And then, if an unreliable bit locates at any one of the 5 ~ 7'/ bits of a pixel, it is adjusted with two nearest
neighbors of the pixel, where the pixel is in-between these two nearest neighbors. Finally, for other unreliable bits, each one is approximated
by the maximum and minimum possible values of nearest neighbors of its pixel. We conduct experiments for illustrating the efficiency, and
demonstrate that the proposed algorithm can recover the embedded images with good visual quality from corrupted stego-images.

Index Terms—Embedded image, data hiding, noise removal, bit approximation, k nearest neighbors (kNN)

1 INTRODUCTION

N the digital era, people must pay much attention to pri-
vacy protection when communicating on the Web. Conse-
quently, information security has become an important
issue. Data hiding [1],[2],[3] is one of information security
techniques, which has widely been used in, such as copy-
right protection [4], covert communication, image forensics,
content authentication, and data binding. Image-based data
hiding is an important kind of data hiding algorithms, where
secret message and cover signal are both digital images. This
kind of techniques finds many useful applications. For exam-
ple, a sender can achieve secure transmission of a military
map from one place to another place by embedding it into a
landscape photograph. After data embedding, stego-image
can be transmitted through the Internet. At the receiver’s
side, the military map can be restored from stego-image. As
digital images are easily corrupted by interchannel noise [5],
[6] or active noise attack, visual quality of the secret image
extracted /decrypted from corrupted stego-image is inevita-
bly hurt. To overcome this problem, a possible strategy is to
use filtering algorithms [7].
The existing filtering algorithms have shown good per-
formance in noise removal for those images directly con-
taminated, but they are ineffective in recovering/restoring

o X. Zhang, Z. Tang, S. Zhang, and S. Xie are with the Guangxi Key
Lab of Multi-Source Information Mining & Security, Department of
Computer Science, Guangxi Normal University, Guilin 541004, P.R.
China. E-mail: {zxq6622, tangzj230}@163.com, zhangsc@gxnu.edu.cn,
568413949@qq.com.

e X. Li is with the School of Computer Science and Center for OPTical
IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical
University, Xi'an 710072, P.R. China. E-mail: xuelong_li@nwpu.edu.cn.

Manuscript received 2 Aug. 2018; revised 25 Mar. 2020; accepted 30 Apr. 2020.
Date of publication 14 May 2020; date of current version 3 Feb. 2022.
(Corresponding authors: Zhenjun Tang, Shichao Zhang.)

Recommended for acceptance by J. Tang.

Digital Object Identifier no. 10.1109/TKDE.2020.2992572

embedded image from corrupted stego-image due to the fol-
lowing fact. When stego-image is contaminated by impulse
noise, some bits per pixel in the decrypted (extracted embed-
ded) image are altered, whereas the other bits can be kept
unchanged. In other words, for embedded image extracted
from corrupted stego-image, a dirty/noisy pixel can contain
both reliable and unreliable bits together. This indicates that
noise removal in embedded image should be done by bit
approximation instead of pixel replacement. In general, con-
ventional filtering algorithms improve visual quality of the
contaminated images by identifying noisy pixels and replac-
ing their values regardless of the actual bit values. As pixel
replacement strategy does not utilize those reliable bits of a
pixel, it is difficult to guarantee visual quality of embedded
image.

To address this actual yet challenging issue, we propose
a kNN-bit approximation algorithm to remove noises in
embedded image, referred to bit-approximation algorithm.
Different from the existing filtering algorithms, our algo-
rithm distinguishes reliable bits from the extracted bits, and
estimates pixel values by keeping reliable bits unchanged
and correcting unreliable bits. Our contributions are sum-
marized as follows.

(1) Reliable bits of a pixel are kept unchanged during
pixel restoration. We exploit an efficient noise detection
method to find noisy pixels in stego-image, and classify
the extracted bits into reliable bits and unreliable bits. Dur-
ing bit approximation, reliable bits are kept unchanged.
This is helpful to make the restored pixel close to its origi-
nal value.

(2) Unreliable bits of a pixel are approximated by the corre-
sponding bits of its kNN pixels. As high bits are important
than low bits in pixel value, the highest unreliable bit (i.e., the
8th bit) is first corrected, the 5! ~ 7' unreliable bits are then
verified, and other unreliable bits are finally approximated.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3359-117X
https://orcid.org/0000-0003-3359-117X
https://orcid.org/0000-0003-3359-117X
https://orcid.org/0000-0003-3359-117X
https://orcid.org/0000-0003-3359-117X
https://orcid.org/0000-0003-3664-1363
https://orcid.org/0000-0003-3664-1363
https://orcid.org/0000-0003-3664-1363
https://orcid.org/0000-0003-3664-1363
https://orcid.org/0000-0003-3664-1363
https://orcid.org/0000-0001-9981-2970
https://orcid.org/0000-0001-9981-2970
https://orcid.org/0000-0001-9981-2970
https://orcid.org/0000-0001-9981-2970
https://orcid.org/0000-0001-9981-2970
mailto:zxq6622@163.com
mailto:tangzj230@163.com
mailto:zhangsc@gxnu.edu.cn
mailto:568413949@qq.com
mailto:xuelong_li@nwpu.edu.cn

1360

The corrected unreliable bits and reliable bits jointly contrib-
ute efficient pixel restoration.

We conduct performance comparisons with some well-
known filtering algorithms for illustrating the efficiency.
Our experiments demonstrate that our algorithm can
restore embedded images with good visual quality, and out-
performs the compared algorithms.

The rest of this paper is organized as follows. Section 2
review the related work. Section 3 presents our algorithm.
Section 4 describes experimental results. Conclusions are
finally given in Section 5.

2 RELATED WORK

Many researchers have devoted to developing high perfor-
mance filtering methods. For example, Sun and Neuvo [8]
proposed a median and weighted median based impulse
detector to remove impulse noises in digital images. Alajlan
et al.[9] exploited a recursive minimum-maximum method to
build a variation of peak-and-valley filter. This filter can
recover dirty images with high impulsive noise contamina-
tion. Luo[10] introduced a two-phase method. It first detects
impulse noise and then removes impulse noise. This method
does not require a training step. Ibrahim ef al. [11] exploited
two median filters (adaptive filter and switching filter) to
remove impulsive noise. In this scheme, threshold parameter
is not needed. Chen and Lien[12] presented a method without
previous training. In this method, noisy pixels are determined
by a detector and restored by an edge-preserving filter.

In another study, Kang and Wang [13] removed image
noises by a modified switching median filter. Wang and Wu
[14] proposed a fast algorithm preserving image details.
This algorithm is based on convolution results of Laplacian
operators. Wan et al.[15] developed a robust method for
noise density estimation and applied it to iterative denois-
ing process. Zhang[16] proposed an iterative algorithm for
recovering noisy images. In this algorithm, noisy pixels are
found by an adaptive center-weighted median filter and
restored by iteratively using a median filter. This algorithm
cannot reach fast speed due to iterative computation. In
another work, Fabijaniska and Sankowski[17] exploited local
intensity extreme to identify noisy pixels and corrected
them by median filter. This method has good performance
in image recovery under a high noise density. However, for
the cases of low and medium noise densities, its restoration
results are worse than standard median filter.

Recently, Zhang and Li[18] presented an adaptive
weighted mean filter. This filter finds noisy pixel with adap-
tive window size and replaces its value with the weighted
mean of the window. Ahmed and Das[19] proposed two-
stage method for removing salt-and-pepper noise. This
method uses an adaptive fuzzy filter to detect noisy pixel
and restores pixel value by a weighted mean filtering opera-
tion on nearby uncorrupt pixels. In another work, Bai et al.
[20] replaced median filter with continued fractions interpo-
lation filter for salt and pepper noise removal. Pyatykh and
Hesser[21] designed a method for removing salt and pepper
noise in binary images. This method requires computation of
block prior probabilities from training noise-free images.
Sun et al.[22] achieved salt and pepper noise removal by
introducing shearlet transform to the filtering stage. Zhang

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

et al.[23] took noisy pixels as missing data for inpainting, and
adaptively selected convolution mask for iterative filtering
in terms of local image texture. Gupta et al.[24] introduced a
novel de-noising scheme based on adaptive dual thresholds
and simple median filter. Varatharajan et al.[25] proposed a
high density salt and pepper noise removal method based
on kriging interpolation. The noise pixel is replaced by a
value which is interpolated with the weights calculated
using semi-variance between the noise pixel and the non-
noisy pixels. Veerakumar ef al.[26] adopted an edge preserv-
ing contextual model to restore the noisy pixels, in which
Gaussian kernel is used for edge preserving of the processing
pixel. Li et al.[27] presented a novel filter based on local and
global image information. The local image information is
used to estimate noise density and the global information is
exploited to guide noise detection rectification.

In recent years, learning based methods including sparse
representation and deep learning draw much attention for
their outstanding image restoration performance[28], [29].
For example, Chen et al.[30] proposed a weighted couple
sparse representation model for removing impulse noise. A
weighted rank-one minimization problem is addressed to
train a dictionary on the noisy raw data, which enables to
acquire more original data features. Huang et al.[31] utilized
Laplacian scale mixture (LSM) modeling and nonlocal low-
rank regularization to remove mixture noise efficiently. In
[32], a deep convolutional neural network (CNN) architec-
ture and particle swarm optimization are adopted to detect
impulse noise pixels accurately, and the median filter is used
to clean noise pixels. Wang et al.[33] introduced a low-rank
prior in small oriented noise-free image patches, then inte-
grated low-rank and sparse matrix recovery to detect and
remove nonpointwise random-valued impulse noise simul-
taneously. Wang et al.[34] proposed a variational method to
automatically classify noise according to different statistical
parameters and integrated the CNN regularizer to improve
quality of the restored images significantly. Xing et al.[35]
employed CNN with the multi-layer structure to remove salt
and pepper noise. In [36], a deep CNN (DCNN) is used to
remove Gaussian noises, where residual learning is
employed to separate noise from noisy observation. The
batch normalization and residual learning are integrated to
accelerate the training process as well as boost the denoising
performance. To improve the flexibility for dealing with spa-
tially variant noise, Zhang et al. [37] proposed a fast and flexi-
ble denoising CNN, namely FFDNet. The FFDNet is able to
handle noise with different levels and drive outstanding res-
toration performance on both synthetic noisy images cor-
rupted by additive white Gaussian noise and real-world
noisy images. In another work, Dong et al. [38] presented a
new deep-learning framework for removing noises in three-
dimensional hyperspectral images and achieved excellent
denoising performance.

3 KNN-BIT APPROXIMATION

Our algorithm first finds those unreliable bits of every pixel
extracted from the stego-image and then conducts bit
approximation with those bits of its k nearest neighbor
(kNN) [39],[40],[41] pixels. The k(NN imputation method is
an efficient technique for recovering missing numerical data

ZHANG ETAL.: NOISE REMOVAL IN EMBEDDED IMAGE WITH BIT APPROXIMATION

(b)

Fig. 1. Cover image and corrupted stego-images generated by different
methods. (a)Cover image; (b)Corrupted stego-image generated by LSB
substitution; (c)Corrupted stego-image generated by [42]; (d)Corrupted
stego-image generated by [43].

and has been successfully applied to many real applications
[39]. Here, the KNN method is used to approximate unreli-
able bits of noisy pixel. Let p be a noisy pixel. Take p as the
center of a window sized (2D + 1) x (2D + 1). Thus, the
pixels in the window (except p itself) are the kNN pixels of
p. Suppose that pi, po, ..., p, represent the kNN pixels of p,
where k= (2D +1)(2D + 1) — 1. In this study, the unreli-
able bits of p are approximated by the corresponding bits of
its kNN pixels. The detailed procedures of unreliable bit
identification and bit correction are described as follows.

3.1 Identifying Unreliable Bits

Image-based data hiding algorithm includes two parts: data
embedding and data extraction. In data embedding, the
algorithm converts a secret image into a binary stream and
embeds these bits into one or several lowest bit-planes of
the cover image. Data extraction is an inverse procedure of
data embedding. Embedded bits are first extracted from the
used bit-planes and the extracted binary stream is then
exploited to reconstruct the secret image. It is clear that if
the stego-image is corrupted by noises, the used bit-planes
of the stego-image are changed and therefore the decrypted
image is also corrupted. Fig. la is a gray image of size
512 x 512 and Fig. 2a is a gray image of size 256 x 256. We

o §

Fig. 2. Secret image and extracted results from different corrupted
stego-images. (a) Secret image; (b) Result of Fig. 1b; (c) Result of
Fig. 1c; (d) Result of Fig. 1d.

1361
TABLE 1
Noise Density Comparisons Between the
Stego-Images and the Decrypted Images
Stego-images 0.1 0.2 0.3 0.4 0.5

Extracted results of LSB substitution 0.3337 0.5684 0.7245 0.8335 0.9002
Extracted results of [42] 0.2787 0.4922 0.6546 0.7758 0.8623
Extracted results of [43] 0.2763 0.4898 0.6518 0.7781 0.8608

embedded Fig. 2a into Fig. 1a by least-significant-bit (LSB)
substitution using two lowest bit-planes and the methods
[42], [43], and added different salt and pepper noises into
the stego-images. Figs. 1b, 1c, and 1d are the corrupted
stego-images generated by LSB substitution and the meth-
ods [42], [43] under the salt and pepper noise with 0.1 densi-
ties, respectively. Figs. 2b, 2c, and 2d are the extracted
results of the Figs. 1b, 1c, and 1d, respectively. As each pixel
of the secret image is concealed in several pixels of the
stego-image, noise density in the decrypted image will be
bigger than that in the corrupted stego-image. We calcu-
lated noise densities in the decrypted images when the
stego-images are corrupted by different densities. The
results are listed in Table 1. From the results, we observe
that, as the noise density in the stego-image reaches 0.5,
the density in the decrypted images is about 0.86, leading to
badly degraded images. Therefore, in the following experi-
ments, we only consider the cases that noise densities in the
stego-image are not bigger than 0.5.

To identify corrupted bits of the decrypted image, we
exploit the noise detection method [44] to find noisy pixels
in the stego-image. Thus, we mark all bits during data
extraction. Let b(p, n) be the nth bit of the pixel p, and ¢(p, n)
be the sign of the nth bit of p, where n =1,2,3,4,5,6,7,8.
Thus, we have

c(pn) = 1 if b(p,n) is extracted from a noisy pixel.
P =0 i b(p,n) is not extracted from a noisy pixel. "

Y

Clearly, the nth bit of p is unreliable when ¢(p,n) = 1. If
¢(p,n) = 0, the nth bit of p is reliable.

As the pixel value of p is calculated by 35 _, 2"~ x b(p,n),
restoration is achieved when all unreliable bits of p are cor-
rected. Clearly, those high bits are important than those low
bits in pixel value. Therefore, we first correct the highest bit
(i.e., the 8th bit), verify those the 5" ~ 7' bits, and finally
approximate other unreliable bits using kNN bits.

3.2 Correcting the 8th Bit

Let a, be the original pixel value of p. Thus, we can correct
the 8th bit of p by using the 8th bits of its KNN pixels. Let cv;
and cv, be two signs for approximate estimation, whose ini-
tial values are both 0. We perform the 8th bit approximation
in terms of the following conditions.

(1) Case 1:¢(p,7) = 0.

We correct the 8th bit of p by using its kNN pixels whose
7th and 8th bits are both reliable. This is achieved by two
schemes as follows.

Scheme 1: Correct the 8th bit of p by exploiting those
kNN pixels whose 7th bits are equal to the 7th bit of p.

1362

TABLE 2
Bit Values With Minimum Difference

od
=
=}
I
]
1
S

=
S

=N Wk 010N
OO OO %=
S U P Y

To do so, find

c(pi,8) =0
c(pi,7) =0 (i=1,2,...
label them as p;,, pi,,....pi, , Where r = Zle[l —
c(pi, DI[L = [b(pi, 7) — b(pi, 7)[]. Let ap, ,ap,,...,a, be the
original values of p; ,pi,, ..., pi, , respectively. Thus, the 8th
bit of p can be determined as follows.

If b(p;,.8) # b(pi,.8)(2 < j <7) , we have {b@iwg) -l

b(pzl) 8) =0
b(pi;,8) = (pi;,8) = s

T {b(p,j,8) _1 If {b(pqi,S) o let the 15! ~ 6 bits of
pi; and p;; be 0 and 1, respectively. Then suppose that the
values of p;, and p; are a<0 and a . As the 7th bits of
Diy»> Pigs - - -, Pi, are equal andlrehable, the1r Values will not
affect the minimum difference between ap) and ap . Table 2
is an example of the detailed bit values with minimum dif-
ference, where “* represents 0 or 1. In this case, we have

_ <0 _ 6 b(pi;,8) =0
la’PzﬁJ a’I’ | > |a’ | > 2 b(p;j78) =1’

let the 1 ~ 6" b1ts of pi; and p;; be 1 and 0, respectively.

Suppose that the values of pi; and p;, are af!) and a<0 Thus,

wealso have |a,, — a,, | > \a a<0 | > 26 "From the above
J

the pixels satisfying

k) from pi, po,...,pr and

c(pi, 8)][1—

. Similarly, if

analysis, we find that pixel d1fference in neighbor is large
when b(p;;, 8) # b(p;,, 8) . So we don’t correct the 8th bit of p.

If b(pi178) = b(piz,g) = .. = b(pi,,,S), let v = b(p,jl,S),
where v; € {0, 1}. Suppose that b(p, 8) # v;. Thus, we have
{b(pija 8) =1 or { b(pija 8) =

b(p,8) =0 b(p,8) =1
\apl —ap| > 2° with similar analysis presented in the last
paragraph. Then, v, is the probable value of b(p,8). So let
cv; = 1.

Scheme 2: Correct the 8th bit of p by using those kNN pix-
els whose 7th bits are not equal to the 7th bit of p.

For those kNN pixels whose 7th and 8th bits are both reli-
able, if their 7th bits are not equal to the 7th bit of p, these
bits will have the same value. If their 8th bit values are dif-
ferent, b(p,8) cannot be corrected in terms of Scheme 1. If
their 8th bits and the 7th bits are not equal, b(p, 8) cannot be
determined. Therefore, we exploit those neighbor pixels,
whose 7" ~ 8" bits are reliable and equal, to estimate
b(p, 8). Detailed steps are as follows.

. Therefore, we can conclude

Calculate the pixels D1, P2,eerDke satisfying
C(p'i7 8) =0

Egl: ; ; 2(])7) (Z = 13 27 ceey k) and label them as
b(p’ta) = b(p,)

c(pi, 8)][1 = e(pi, D[[b(pi
—b(p;, 8)|]- Let Ay, s Ay s - - -5 Gy, DE

Diy» Digr-rPis, Where s = Zle[l—
7) = bp, DL — [b(pi, 7)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

their original pixel values, i.e., the values without noise con-
tamination. Thus, we use their high bits to estimate b(p, 8).
Clearly, we have b(p;,7)="0(pi,,7)=..=0bp,7),
b(pi,8) = b(pi,,8) = ... = b(p;,,8), and b(p;,8) =b(p;,7),
where i =1,2,...,s. Let vy =b(p;,,8), where v, € {0,1}.

b(pi;,8) =1
Assume that b(p, 8) # vy. Then, we have 87’))=1 or
b(p,7) =
b(pi]‘7 8) =0 b(p7jv 8) =
b(pl7 7) =0 b(p77 7) =1 st th i
b(p,j8) 1 If b(p,j8) —0 , let the 1 6" bits of
b(p,7) = b(p,7) =0

pi; and p be 0 and 1, and the results of p;; and p be labeled as

a<° and al!), respectively. Thus, lap,, — ap| > \a 0> —aV| >
(pz]7 8) = 0
b(pi,,7) =
b(p,8) = 1
and p be 1 and 0, and the results of pi; and p be labeled as
a<1 and a) , respectively. Thus Ay, —ap| = lal) — al?| >
j1s also ava1lable Therefore, let cvy = 1, and v 1é the prob—
able value of b(p, 8).

In summary, when ¢(p,7) =0, the 8th bit of p can be
approximated as follows.

If cvy =0 and cvy =0, pixel difference in neighbor is
large, indicating that p is probably in a textural or edge
region. So the 8th bit estimation is not needed.

If cv; = 1and cvy = 1, the 8th bit approximation is also not
needed when v; # vs. This is because no matter which value
the 8th bit is, large pixel difference in neighbor still exists,
meaning that this region is a textural or edge region. When
v = vy, let b(p,8) =v; and ¢(p,8) = 0. This operation can
make a small difference between p and its neighbor pixels.

Ifcv; =1,cv9 = 0and r > 2,letb(p,8) = vy and ¢(p, 8) = 0.

If cvy =0,cve =1and s > 2,1letb(p,8) = v2and ¢(p, 8) = 0.

During the approximation, calculation is performed in
the 3 x 3 window. If the approximation is not achieved, we
repeat the calculation in 5 x 5 window. If the conditions are
still not satisfied, the 8th bit estimation is discarded.

(2) Case 2: ¢(p,7) = 1.

If the 7th and 8th bits of neighbor pixels are all reliable
but different and the 7th and 8th bits of p are both unreli-
able, the actual value of b(p, 8) cannot be determined. So the
8th bit of p is not corrected. If the 7th and 8th bits of some
neighbor pixels are reliable and equal, we use them to
approximate the 8th bit of p as follows.

27. Similarly, if , let the 1%t ~ 6" bits of i

Calculate the pixels D1y P2, Dk satisfying
c(pi,8) =0
e(pi,7) =0 (i=1,2,...,k) and label them as p;,
b(pi, 7) = b(pi, 8) .
pigr"-/ pii/ Where t= Zi:l []‘ —cC (pl7 8)”1 - C(pi7 7)][1 -
|b(pi, 7)— b(ps,8)|]. Approximation is done in terms of the
8th bit values of these pixels. b(p;;,8) = 1
. b(pi;,7) =1
If b(pi;,8) # b(pi;,8)(2 < j < t),we have bglj,sl _gOr
b(pi;,8) =0 b(pi,7) =0
b(pi;,7) =0 . In both cases, we have |a, —a, | > 27
b(piu 8) =1 ’ Pi; Piy ’
b(pi,,7) =

ZHANG ET AL.: NOISE REMOVAL IN EMBEDDED IMAGE WITH BIT APPROXIMATION 1363
TABLE 3 TABLE 5
Restoration Ratios Under Different Noise Densities Restoration Ratios of Bit Estimation Between Two Reliable Bits
Noise density 0.1 0.2 0.3 0.4 0.5 Noise density 0.1 0.2 0.3 0.4 0.5
Nright 5870 10921 14909 17753 19178 Niight 10028 17297 21463 21528 17865
total 5878 10938 14930 17803 19234 Niotal 10111 17443 21690 21783 18062
99.86% 99.84% 99.86% 99.72% 99.71% R 99.18% 99.16% 98.95% 98.83% 98.91%

Thus, if b(pq;j, 8) # b(ps, , 8), the difference of neighbor pixels
is large. This means that the pixel is probably in a textural
or edge region. So the 8th bit estimation is not needed.

b(pij78) =1
If b(pi,, 8) = b(pi,, 8)= ... = b(p;,,8), we have ¢ b(p;;,7) =1
b(p,7) =0
b(pi;,8) =0
or ¢ b(pi;;7)=0 under the assumption that b(p,8) #
b(p,7) =1
b(piy,8)- If § b(p;;,7) =1 , let the 1*" ~ 6" bits of p;; and p
b(p,8) =0
be 0 and 1, respectively. Suppose that the values of p;; and p
are af and Y. Thus ap, —ap| > 2°. Slmllarly, if
b(plj78) =0
b(pi;,7) =0 , let the 1* ~ 6 bits of p;, and p be 1 and 0,
b(p,8) =1

respectively. Suppose that the values of p;; and p are ap) and
a(O Thus,|ap — ay| > 2°. Therefore, when c(p,7) # 0, we let
b(8) = b(p,.8) and c(p.8) =0 if b(pi,.8) = blpi,,8) =

= b(p;,,8), wheret > 2.

During the bit approximation, computation is only per-
formed in 3 x 3 window. Similarly, if the restoration is not
achieved, we repeat the computation in the 5 x 5 window.
If restoration conditions are still not satisfied, bit approxi-
mation is discarded.

To validate the performance of the 8th bit approximation,
we took different cover images and secret images as test
images, exploited LSB substitution to perform data embed-
ding, and obtained a series of stego-images. To produce cor-
rupted stego-images, we added salt and pepper noises with
different densities to the stego-images. During the opera-
tion, we recorded the positions of noisy pixels. Next, we
exploited our approach to perform bit restoration and
counted the right bit number. To measure the estimation
performance, a restoration ratio is defined as

N,
R =" 100%, 2
Ntotal

TABLE 4
Correct Unreliable Bits Between
Two Reliable Bits

Bit no. p Di,
Nji1 * *

n b(p,n) b(pi,,n)
n] * *

where Ny is the number of those corrupted bits correctly
restored and N, is the total number of corrupted bits. For
each noise density, we calculated the R values of different
corrupted stego-images to find the average value. The
results are listed in Table 3. We observe that all values are
bigger than 99 percent, indicating a good restoration perfor-
mance. In the experiments, we have used other data hiding
methods [42], [43] to embed secret images and found that
different methods have similar results.

3.3 Correcting the 5" ~ 7' Bits

A pixel value is mainly determined by its high bits. As the
weights of low bits are small, the low bit values have small
effect on the pixel value. Therefore, in this paper, we correct
those unreliable values in the 5 ~ 8" bits and discard
direct approximation on the 1% ~ 4% bits.

Let ni,ne,...,n.(5<nm < ng < .. <n.<8) be the
reliable bit indices of p. If [n; — ;4| > 1(j =1,2,...,e — 1),
there is unreliable bit between the n;-th bit and the n;;-th
bit, i.e., c¢(p,n) =1 (n; < n < n;1). Thus, we can correct
the nth bit as follows.

We select the pixels from py, ps, ..., pr, which satisfy two
conditions: (1) Their nj-th, nth and n;,-th bits are all reli-
able. (2) Their nj-th and n;,,-th bits are equal to those of p.
These pixels are then labeled as p;,, pi,,...,0i,, Where w =
i [L = elping)][1 = blpiyny) = bp,my)l][1 = ¢ (piynjia)]
[1— [b(pi,nj1) — b(p,nj1)|][1 — c(pi,n)]. We use the nth
bits to correct the corresponding bit of p.

If w>3 and b(p;,n) = b(pi,,n) =,...,= b(pi,,n), there
are some neighbor pixels whose high bits are the same with
that of p. In this case, neighbor pixels have small difference.
So let b(p,n) = b(p;,,n) and ¢(p,n) = 0. Table 4 is an exam-
ple of unreliable bit approximation between two reliable
bits, where * represents those bits with the same values.

If w < 3 or there exists p;;(j = 2,3,...,w) whose nth bit
is not equal to that of p;,, this means that p is not in a smooth
region. So the approximation is not needed.

During the above restoration, calculation is performed in
the 3 x 3 window. If the restoration is not achieved, we
repeat the computation in the 5 x 5 window. If the condi-
tions are still not satisfied, the estimation is discarded.

To test the performance of our strategy, we used differ-
ent images to produce stego-images, added different salt
and pepper noises to the stego-images, and then calculated
restoration ratios of different corrupted stego-images to
find the average ratio under different noise densities. The
results are illustrated in Table 5. We observe that all R val-
ues are bigger than 98 percent, indicating good restoration
performance.

3.4 Approximating Other Unreliable Bits
Generally, pixels in a local region are similar. Therefore, we
calculate the maximum and the minimum possible values of

1364

kNN pixels of p, and use them to approximate the probable
value of p. To do so, for the kNN pixels of p in the 3 x 3 win-
dow, we set their unreliable bits to 1 and use my, msy,...,ms1
to represent their values. Similarly, we set their unreliable
bits to 0 and use mjg, may,...,msy to represent their values.
Next, we use M; = min{mq1,mai,...,mg1} and M; = max
{m1g, may, ..., mgy} to represent the minimum and the maxi-
mum values of {mqi,ma1,...,mg1} and { mqg, mag,...,mso },
respectively. If M, > M, let h= Ml and [= M. Otherwise,
we sort {mn, mai,...,MMg1 and])(), magp,...,MM80 } Let
{mgll), méll),...,m81 } and {m10 7m20 , ,m80 be the sorted ver-
sions of {m1y, ma1,...,mg1} and {m1g, mao,...,mgo} in ascendin;

order, respectively. Also, leti=1and j=38.If m£1) > §0 ,

leth = mzp and [= m! Jo Otherwise, we increase the ¢ value,
i.e., i =1+ 1, and judge the condition again. If mfl) > m§0) is
not satisfied, we decrease the j value, i.e., j = j — 1, and ver-
ify the condition again. We repeat the above operations until
the condition is satisfied ori = 8 and j = 1.

Suppose that there are d bits of p for approximation. As
each bit has two possible values (i.e., 1 or 0), the p value has
u=24 possible values. Let m;, ms,...,m, be these u values in
ascending order. We determine the p value in terms of the
following conditions.

(1) If there are two values m, and m, satisfying m, < [
and mgy1 > h, we choose the p value as follows. If
|mg — 1| < |mgs1 — h|, let p = my. Otherwise, let p = mgy1.

) Ifmy > h,letp=m;.

3)Ifm, > h,letp =m,.

(4) If there are two values m, and m, satisfying m, > [
and m,, < h, we select the p value from {m,, my;,..., m, }. Let
the total number of possible values of p; (1 = 1,2,...,8) be g;,
and these values be fi1, fo,..., fi,.-Thus, we calculate
=30, miny<j<, (|m. — fi;|)(z=g,9+1,...,v). If there
is only one minimum value z;, in {z...,, z,}, its corre-
sponding value m; is the target value of p. Otherwise,
we sort the corresponding values m; and choose the
middle one as the target value. Finally, we adjust those
unreliable bits of p to approximate the target value by
exhaustive search. The adjusted result with minimum
difference between itself and the target value is viewed
as the p value.

3.5 Detailed Steps
Detailed steps of our algorithm are as follows.

Bit-approximation algorithm

Input: A corrupted stego-image
Output: The recovered image extracted from the stego-image.

1. Identify the noisy pixels in the corrupted stego-image by the
detection method [44], mark all extracted bits, and then
reconstruct the embedded image.

2. For each pixel of the embedded image, we exploit our
approach presented in Section 3.2 to correct its unreliable 8th
bit.

3. For each pixel, we use our scheme given in Section 3.3 to
recover its unreliable 5" ~ 7% bits between two reliable bits.

4. We apply our strategy introduced in Section 3.4 to
estimating the values of noisy pixels in the embedded
image.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

(b)

Fig. 3. Secret image and stego-image. (a)Secret image; (b)Stego-image.

4 EXPERIMENTAL RESULTS

To view our performance, we validate efficiency of each
step of the proposed algorithm in Section 4.1 and compare
the proposed algorithm with some notable algorithms in
Section 4.2. In these experiments, we take peak signal-to-
noise ratio (PSNR) as the metric for objective evaluation,
which is defined as

L2
PSNR =10 lOglom, (3)

where L is the maximum possible pixel value of the image,
equaling 255 for gray images, and MSE is the mean squared
error (MSE) calculated by

MSE = — 33 (16, j) -
MN = j=1

where I(z, j) and J(z, j) are the pixel values in the ith row and
the jth column of the original and the restored images sized
M x N, respectively. Since the aim of our algorithm is to
recover the embedded image from corrupted stego-image,
we select the well-known LSB substitution from diverse data
hiding algorithms to conduct data embedding. In the experi-
ments, the secret image is converted into a secure bit
sequence for data embedding. More specifically, the pixels
of secret image are scanned from left to right and top to bot-
tom. For each pixel, it is decomposed into 8 bits, i.e., the 1st
bit, 2nd bit, ..., 8th bit. Then, a bit sequence is obtained by
concatenating the bits of all pixels. Finally, a pseudorandom
generator controlled by a secret key is exploited to generate a
secure bit sequence by scrambling the bit sequence. During
data embedding, the secure bit sequence is concealed in the
cover image by the LSB substitution. Therefore, direct extrac-
tion can reconstruct the embedded image by directly retriev-
ing the used LSBs and re-scrambling them.

(i,), @

4.1 Step validation

To validate efficiency of each step of the proposed algorithm,
we embed Fig. 3a sized 256 x 256 into Fig. 1a by using the
two lowest bit-planes, and obtain the stego-image as shown
in Fig. 3b. We add salt and pepper noise with different densi-
ties to Fig. 3b, and use the direction extraction and our
schemes with different steps to restore the embedded
images. Figs. 4, 5, 6,7, and 8 are the recovery result compari-
sons among direction extraction and our schemes when
noise densities are 0.1 ~ 0.5, respectively. Table 6 presents

ZHANG ETAL.: NOISE REMOVAL IN EMBEDDED IMAGE WITH BIT APPROXIMATION

() (@

Fig. 4. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.1. (a)Direct
extraction; (b)Steps 1 ~ 2; (c)Steps 1 ~ 3; (d)Steps 1 ~ 4.

) @

Fig. 5. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.2. (a) Direct
extraction; (b) Steps 1 ~ 2; (c) Steps 1 ~ 3; (d)Steps 1 ~ 4.

(b) (d)

Fig. 6. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.3. (a)Direct
extraction; (b)Steps 1 ~ 2; (c)Steps 1 ~ 3; (d)Steps 1 ~ 4.

(b) @

Fig. 7. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.4. (a)Direct
extraction; (b)Steps 1 ~ 2; (c)Steps 1 ~ 3; (d)Steps 1 ~ 4.

PSNR comparisons under different noise densities. From
these results, we find that our schemes can produce better
visual qualities of the restored images than the direct extrac-
tion, and further, more steps used will produce better visual
quality. The benefits of our steps are more obvious when the
noise density becomes high, such as 0.3, 0.4 and 0.5. These
results illustrate the efficiency of our steps.

4.2 Performance Comparisons

To show advantage, we compare the proposed algorithm
with some notable algorithms, i.e., direction extraction
method, 3 x 3 median filter, and the methods [8], [9], [10],
[11], [13], [14], [16], [17], [18], [24], [25], [26]. In the experi-
ments, we embed different secret images into various cover
images, add salt and pepper noise with different densities to
the stego-images, and recover the embedded images from
the corrupted stego-images. We find that visual qualities of
the restored results produced by our algorithm are all better
than those generated by compared algorithms. For space
limitation, typical examples are given here. Fig. 1a is the
cover image and Fig. 9 presents the used secret images,

1365

() (@)

Fig. 8. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.5. (a)Direct
extraction; (b)Steps 1 ~ 2; (c)Steps 1 ~ 3; (d)Steps 1 ~ 4.

TABLE 6
PSNR Comparisons Among Direct Extraction and
Our Schemes With Different Steps (Unit: dB)

Noise density 0.1 0.2 0.3 04 0.5
Direct extraction 17.8378 14.9415 13.2904 12.0760 11.2575
Steps 1 ~ 2 23.1534 20.2246 18.4869 16.8903 15.6055
Steps 1 ~ 3 27.7484 239190 21.3374 18.8154 16.7645
Steps 1 ~ 4 34.8604 31.4969 29.4026 27.5101 26.3836

e
W @

Fig. 9. Our used secret images sized 256 x 256. (a)Lena; (b)Aerial; (c)
Moon surface; (d)Clock; (e)Airplane.

where Lena is the standard benchmark image, and other
four images are downloaded from an open database [45].
Figs. 10, 11, and 12 illustrate recovery result comparisons
when the noise densities are 0.1, 0.3 and 0.5, respectively. It is
observed that, as noise density increases, visual qualities of
the recovery results produced by the assessed methods sig-
nificantly decrease. However, degradation of our algorithm
is much slower than those of the compared algorithms. For
example, our algorithm can make the decrypted image good
visual quality even if the noise density is 0.5. Clearly, our
algorithm is better than the compared methods in recovering
embedded images from the corrupted stego-images.

To make quantitative comparisons, we calculate the PSNR
and the normalized correlation (NC) between the original
secret images and the recovered results by different meth-
ods, and obtain the average PSNR and NC under different
noise densities. Tables 7 and 8 are the average PSNR compar-
isons and the average NC comparisons in recovering the five
secret images, respectively. From Table 7, we find that the
average PSNR values of our algorithm are all bigger than
those of other methods. For example, as the noise density is
0.5, our PSNR value can reach 27.1229 dB, indicating accept-
able visual quality. However, the biggest value of the com-
pared methods is 19.9164 dB, which is much smaller than
our value. Fig. 13 illustrates our incremental values of aver-
age PSNRs (i.e., our average PSNR subtracts the average
PSNR of compared algorithm) under different noise densi-
ties. Similarly, it is observed from Table 8 that our average
NC values are also bigger than those of the compared meth-
ods. Fig. 14 presents our incremental values of average NCs
under different noise densities. Clearly, our algorithm has

1366

Fig. 10. Recovery result comparisons when the noise density is 0.1. (a)
Direct extraction; (b)Wang and Wu [14]; (c)Zhang [16]; (d)Fabijarska
et al. [17]; (e)Zhang and Li [18];(f)Gupta et al. [24]; (g)Varatharajan et al.
[25];(h) Thangaraj et al. [26]; (i)Our algorithm.

© M

Fig. 11. Recovery result comparisons when the noise density is 0.3. (a)
Direct extraction; (b)Wang and Wu [14]; (c)Zhang [16]; (d)Fabijanska
etal. [17]; (e)Zhang and Li [18];(f)Gupta et al. [24]; (g)Varatharajan et al.
[25];(h) Thangaraj et al. [26]; (i)Our algorithm.

significant improvement on visual quality with respect to
PSNR and NC. Our algorithm outperforms the compared
algorithms. This can be understood as follows. When the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

@ (b)

(h)

Fig. 12. Recovery result comparisons when the noise density is 0.5. (a)
Direct extraction; (b)Wang and Wu [14]; (c)Zhang [16]; (d)Fabijanska
et al. [17]; (e)Zhang and Li [18];()\Gupta et al. [24]; (g)Varatharajan et al.
[25];(h) Thangaraj et al. [26]; (i))Our algorithm.

TABLE 7
Average PSNR Comparisons in Recovering the
Five Secret Images (unit: dB)

Noise density 0.1 0.2 0.3 0.4 0.5

Direct extraction 17.8811 14.9016 13.2278 12.1046 11.1921
3 x 3 median filter 28.8918 25.8369 22.6722 19.9648 17.6830
Sun and Neuvo [8] 27.3141 24.5912 22.6075 20.6667 18.6987
Alajlan et al. [9] 27.0077 22.6817 19.6944 17.4294 15.7217
Luo [10] 29.8004 26.6993 23.5272 20.7604 18.4147
Ibrahim et al. [11] 17.8929 14.9460 13.2860 12.1687 11.2519
Kang and Wang [13] 28.7329 26.8516 24.7315 22.2952 19.9164
Wang and Wu [14] 17.9263 149546 13.2896 12.1692 11.2515
Zhang [16] 30.1085 27.1530 24.4977 21.7742 19.1087
Fabijanskaetal. [17] ~ 21.4403 17.0836 14.8687 13.4471 12.3101
Zhang and Li [18] 19.9298 16.1917 14.2178 12.9200 11.8884
Gupta et al. [24] 27.1776 23.8251 21.0332 18.7895 16.8660
Varatharajan et al. [25] 31.4062 26.7968 24.4724 22.6173 19.0042
Thangaraj et al. [26] 26.8764 24.0064 22.2065 18.9441 14.3557
Our algorithm 36.1034 32.6837 30.5443 28.8304 27.1229

stego-image is contaminated, some bits per pixel in the
embedded image are altered and other bits are still pre-
served. In our algorithm, these preserved bits are exploited
to estimate the values of the dirty pixels. They give us more
details to recover the actual values and thus make good
visual quality of the restored image. For the compared algo-
rithms, the dirty pixels are simply replaced without the use
of these preserved bits and consequently the visual quality
of the recovered image is not good enough.

Computational time of the assessed algorithms is also
evaluated. All the algorithms are implemented with MAT-
LAB R2011a, and run on a desktop computer with 3.40 GHz
Intel Core i5-3570 CPU and 16 GB RAM. The operating

ZHANG ETAL.: NOISE REMOVAL IN EMBEDDED IMAGE WITH BIT APPROXIMATION

TABLE 8
Average NC Comparisons Among Different Methods

Noise density 0.1 0.2 0.3 0.4 0.5

Direct extraction 0.7461 0.5934 0.4795 0.3897 0.3082
3 x 3 median filter 0.9719 09463 0.8910 0.8059 0.6939
Sun and Neuvo [8] 0.9604 0.9295 0.8916 0.8346 0.7514
Alajlan et al. [9] 0.9578 0.8903 0.7943 0.6788 0.5615
Luo [10] 0.9810 0.9550 0.9078 0.8334 0.7284
Ibrahim et al. [11] 0.7420 0.5910 0.4795 0.3904 0.3092
Kang and Wang [13] 0.9706 0.9555 0.9287 0.8783 0.7990
Wang and Wu [14] 0.7474 0.5937 04812 03913 0.3096
Zhang [16] 0.9792 09591 0.9259 0.8679 0.7698
Fabijanska et al. [17] 0.8646 0.6993 0.5694 0.4628 0.3685
Zhang and Li [18] 0.8162 0.6517 0.5279 0.4287 0.3396
Gupta et al. [24] 0.9442 0.8826 0.7947 0.6912 0.5662
Varatharajanet al. [25] 0.9846 0.9551 09233 0.8796 0.7502
Thangaraj et al. [26] 0.9638 0.9476 0.9236 0.8122 0.8475
Our algorithm 0.9950 09878 0.9826 09744 0.9625

—+— Our algorithm vs.[26]
—<i— Our algorithm vs.[25]

Our algorithm vs.[24]
s —¥— Our algorithm vs.[18]
—— Our algorithm vs.[17]

Incremental PSNR(dB)

Our algorithm vs.[16]
—&— Our algorithm vs.[14]
-0 —4A— Qur algorithm vs.[13]
~%— Our algorithm vs.[11]

Our algorithm vs.[10]
—&— Our algorithm vs.[9]

& Our algorithm vs.[8]

Our algorithm vs.3*3 median filter
—-—- Our algorithm vs.Direct extraction
’ ’ ’

20 L L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Noise density

Fig. 13. Our incremental values of average PSNRs under different noise
densities.

system installed on the desktop computer is Windows 10.
We record the processing time of the assessed algorithms for
recovering Airplane from the corrupted stego-images, and
obtain the results as shown in Table 9. It is observed that our
speed is a little slower than those of the compared algorithms
(such as [16], [17], and [18]) when the noise density is 0.1. As
the noise density increases, our algorithm becomes very
slow. The low speed of our algorithm can be understood as
follows. (1) When bit approximation is not achieved, iterative
computation in a large window is needed. (2) There are sev-
eral loops in our implementation code, which is time-con-
suming since MATLAB is inefficient in processing loop. Note
that visual quality of the recovered image is the first perfor-
mance of the assessed algorithms and computational time is
the second one. In practice, the time-consumed problem can
be overcome by high performance computing (HPC).

5 CONCLUSION

In this paper, we have proposed an efficient algorithm, called
bit-approximation algorithm, for noise removal in embedded
image. The extracted bits of each pixel are first marked by the
detection method. The unreliable bits are corrected with three
different strategies according to their locations in pixel. Differ-
ent from existing pixel estimation methods, the proposed bit-

1367

—+— Our algorithm vs.[26]
—<— Our algorithm vs.[25]
Our algorithm vs.[24]

Incremental NC
9

—%— Our algorithm vs.[18]
—— Our algorithm vs.[17]
Our algorithm vs.[16]
—6— Our algorithm vs.[14]
—4A— Our algorithm vs.[13]
—%— Our algorithm vs.[11]
Our algorithm vs.[10]
—&— Our algorithm vs.[9]
©— Our algorithm vs.[8] i
Our algorithm vs.3*3 median filter
— -~ Our algorithm vs Direct extraction

.
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Noise density

Fig. 14. Our incremental values of average NCs under different noise
densities.

TABLE 9

Time Comparisons Among Different Methods (unit: second)
Noise density 0.1 0.2 0.3 0.4 0.5
Direct extraction 2.991 2915 2.883 2.897 2914
3 x 3 median filter 2.952 2.923 2.868 2.934 2917
Sun and Neuvo [8] 4132 4114 4.139 4.144 4.167
Alajlan et al. [9] 3.669 3.693 3.688 3.670 3.675
Luo [10] 6.316 6.320 6.432 6.365 6.405
Ibrahim et al. [11] 3.136 3.149 3.181 3.134 3.173
Kang and Wang [13] 4.859 4.738 4.755 4.736 4.706
Wang and Wu [14] 3.068 3.071 3.091 3.101 3.122
Zhang [16] 12996 13310 14.145 21.836 16.198
Fabijanska et al. [17] 10.359 10.127 10.106 10.204 10.240
Zhang and Li [18] 12.459 13.567 13.789 14.522 14.632
Gupta et al. [24] 4.786 4.799 4.804 4.754 4.758
Varatharajan ef al. [25] 4.4625 6.7773 10.6944 14.5010 16.7766
Thangaraj et al. [26] 6.7620 10.0925 12.6117 14.4545 14.9750
Our algorithm 14117 29.016 63.806 159.534 427.367

approximation efficiently utilizes reliable bits of pixels, so as to
improve the visual quality of decrypted images. Sets of experi-
ments have been conducted to validate the performance of our
algorithm, and showed that the proposed approach has better
performance than some well-known filtering methods in
embedded image recovery from corrupted stego-images.
Research on embedded image recovery is still under way. In
the future, we will focus on embedded image recovery when
secret images are embedded by different data hiding methods
(such as pixel-value differencing based method and EMD
(exploiting modification direction) based method), embedded
image recovery under other attacks (such as filtering and
smoothing), and so on.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers and the editor
for their helpful comments and suggestions. This work was
partially supported by the National Natural Science Founda-
tion of China (61836016, 61762017, 61962008, 61871470,
U1801262), Guangxi “Bagui Scholar” Team for Innovation
and Research, Guangxi Collaborative Innovation Center of
Multi-source Information Integration and Intelligent Proc-
essing, and the Guangxi Talent Highland Project of Big Data
Intelligence and Application.

1368

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

REFERENCES

[1]

[2]

[3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Wang, J. Ni, X. Zhang, and Y. Shi, “Rate and distortion optimi-
zation for reversible data hiding using multiple histogram
shifting,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 315-326, Feb. 2017.
D. Hu, D. Zhao, and S. Zheng, “A new robust approach for revers-
ible database watermarking with distortion control,” IEEE Trans.
Knowl. Data Eng., vol. 31, no. 6, pp. 1024-1037, Jun. 2019.

Z.Tang, Q. Lu, H. Lao, C. Yu, and X. Zhang, “Error-free reversible
data hiding with high capacity in encrypted image,” Optik - Int. |.
Light Electron Optics, vol. 157, pp. 750-760, 2018.

L. An, X. Gao, X. Li, D. Tao, C. Deng, and]. Li, “Robust reversible
watermarking via clustering and enhanced pixel-wise masking,”
IEEE Trans. Image Process., vol. 21, no. 8, pp. 3598-3611, Aug. 2012.
H. Duan and X. Wang, “Echo state networks with orthogonal
pigeon-inspired optimization for image restoration,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2413-2425, Nov. 2016.
J. Jiang, L. Zhang, and J. Yang, “Mixed noise removal by weighted
encoding with sparse nonlocal regularization,” IEEE Trans. Image
Process., vol. 23, no. 6, pp. 2651-2662, Jun. 2014.

D. H. Dini and D. P. Mandic, “Class of widely linear complex Kal-
man filters,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5,
pp- 775-786, May 2012.

T. Sun and Y. Neuvo, “Detail-preserving median based filters in
image processing,” Pattern Recognit. Lett., vol. 15, no. 4, pp. 341-347,
1994.

N. Alajlan, M. Kamel, and Ed Jernigan, “Detail preserving impulsive
noise removal,” Signal Process.: Image Commun., vol. 19, no. 10,
pp- 993-1003, 2004.

W. Luo, “An efficient algorithm for the removal of impulse noise
from corrupted images,” AEU-Int.]. Electron. Commun., vol. 61,
no. 8, pp. 551-555, 2007.

H. Ibrahim, N.S. P. Kong, and T. F. Ng, “Simple adaptive median fil-
ter for the removal of impulse noise from highly corrupted Images, ”
IEEE Trans. Consum. Electron., vol. 54, no. 4, pp. 1920-1927,
Nov. 2008.

P. Chen and C. Lien, “An efficient edge-preserving algorithm for
removal of salt-and-pepper noise,” IEEE Signal Process. Lett.,
vol. 15, no. 12, pp. 833-836, Dec. 2008.

C. Kang and W. Wang, “Modified switching median filter with
one more noise detector for impulse noise removal,” AEU-Int. |.
Electron. Commun., vol. 63, no. 11, pp. 998-1004, 2009.

S. Wang and C. Wu. “A new impulse detection and filtering
method for removal of wide range impulse noises,” Pattern Recog-
nit., vol. 42, no. 9, pp. 2194-2202, 2009.

Y. Wan, Q. Chen, and Y. Yang, “Robust impulse noise variance
estimation based on image histogram,” IEEE Signal Process. Lett.,
vol. 17, no. 5, pp. 485-488, May 2010.

J. Zhang, “An efficient median filter based method for removing
random-valued impulse noise,” Digital Signal Process., vol. 20,
no. 4, pp. 1010-1018, 2010.

A. Fabijanska and D. Sankowski, “Noise adaptive switching
median-based filter for impulse noise removal from extremely cor-
rupted images,” IET Image Process., vol. 5, no. 5, pp. 472-480, 2011.

P. Zhang and F. Li, “A new adaptive weighted mean filter for
removing salt-and-pepper noise,” IEEE Signal Process. Lett., vol. 21,
no. 10, pp. 1280-1283, Oct. 2014.

F. Ahmed and S. Das, “Removal of high-density salt-and-pepper
noise in images with an iterative adaptive fuzzy filter using
Alpha-trimmed mean,” IEEE Trans. Fuzzy Syst., vol. 22, no. 5,
pp- 1352-1358, Oct. 2014.

T. Bai, J. Tan, M. Hu, and Y. Wang, “A novel algorithm for
removal of salt and pepper noise using continued fractions inter-
polation,” Signal Process., vol. 10, no. 2, pp. 247-255, 2014.

S. Pyatykh and]. Hesser, “Salt and pepper noise removal in
binary images using image block prior probabilities,”]. Vis. Com-
mun. Image Representation, vol. 25, no. 5, pp. 748-754, 2014.

C. Sun, C. Tang, X. Zhu, X. Li, and L. Wang, “An efficient method
for salt-and-pepper noise removal based on shearlet transform
and noise detection,” AEU-Int. |. Electron. Commun., vol. 69, no. 12,
pp- 1823-1832, 2015.

X. Zhang, F. Ding, Z. Tang, and C. Yu, “Salt and pepper noise
removal with image inpainting,” AEU-Int.]. Electron. Commun.,
vol. 69, no. 1, pp. 307-313, 2015.

V. Gupta, V. Chaurasia, and M. Shandilya, “Random-valued
impulse noise removal using adaptive dual threshold median filter,”
J. Vis. Commun. Image Representation, vol. 2, no. 6, pp. 296-304, 2015.

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

R. Varatharajan, K. Vasanth, M. Gunasekaran, M. Priyan, and
X. Gao, “An adaptive decision based kriging interpolation algorithm
for the removal of high density salt and pepper noise in images,”
Comput. Elect. Eng., vol. 70, no. 1, pp. 447-461, 2018.

V. Thangaraj, N. Badri, E. Sankaralingam, and K. Prasanta,
“Context model based edge preservation filter for impulse noise
removal,” Expert Syst. Appl., vol. 88, no. 2, pp. 29-44, 2017.

Z.Li, Y. Cheng, K. Tang, Y. Xu, and D. Zhang, “A salt & pepper
noise filter based on local and global image information,” Neuro-
computing, vol. 15, no. 9, pp. 172-185, 2015.

J. Pan et al., “Learning dual convolutional neural networks for
low-level vision,” in Proc. IEEE & CVF Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 3070-3079.

J. Pan et al., “Physics-based generative adversarial models for
image restoration and beyond,” IEEE Trans. Pattern Anal. Mach.
Intell., [Online]. Available: https://ieeexplore.ieee.org/document
/8968618

C. Chen, L. Liu, L. Chen, Y. Tang, and Y. Zhou, “Weighted couple
sparse representation with classified regularization for impulse noise
removal,” IEEE Trans. Image Process., vol. 24, no. 11, pp. 40144026,
Nov. 2015.

T. Huang, W. Dong, X. Xie, G. Shi, and X. Bai, “Mixed noise
removal via Laplacian scale mixture modeling and nonlocal low-
rank approximation,” IEEE Trans. Image Process., vol. 26, no. 7,
pp. 3171-3186, Jul. 2017.

H. Khaw, F. Soon, J. Chuah, and C. Chow, “High-density impulse
noise detection and removal using deep convolutional neural net-
work with particle swarm optimisation,” IET Image Process., vol. 13,
no. 2, pp. 365-374,2018.

R. Wang, M. Pakleppa, and E. Trucco, “Low-rank prior in single
patches for nonpointwise impulse noise removal,” IEEE Trans.
Image Process., vol. 24, no. 5, pp. 1485-1496, May 2015.

F. Wang, H. Huang, and J. Liu, “Variational-based mixed noise
removal with CNN deep learning regularization,” IEEE Trans.
Image Process., vol. 29, pp. 1246-1258, 2020.

Y. Xing, J. Xu, J. Tan, D. Li, and W. Zha, “Deep CNN for removal
of salt and pepper noise,” IET Image Process., vol. 13, no. 5,
pp- 1550-1560, 2019.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gauss-
ian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142-3155, Jul. 2017.

K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and
flexible solution for CNN-based image denoising,” IEEE Trans.
Image Process., vol. 27, no. 9, pp. 4608-4622, Sep. 2018.

W. Dong, H. Wang, F. Wu, G. Shi, and X. Li, “Deep spatial-pectral
representation learning for hyperspectral image denoising,” IEEE
Trans. Comput. Imaging, vol. 5, no. 4, pp. 635648, Dec. 2019.

S. Zhang, “Nearest neighbor selection for iteratively kNN
imputation,”]. Syst. Softw., vol. 85, no. 11, pp. 25412552, 2012.

Q. Liu, and C. Liu, “A novel locally linear KNN method with
applications to visual recognition,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 28, no. 9, pp. 2010-2021, Sep. 2017.

S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, “Efficient kNN clas-
sification with different numbers of nearest neighbors,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1774-1785, May 2018.

C. K. Chan and L. M. Cheng, “Hiding data in images by simple LSB
substitution,” Pattern Recognit., vol. 37, no. 3, pp. 469-474,2004.

C. F. Lee and H. L. Chen, “A novel data hiding scheme based on
modulus function,” J. Syst. Softw., vol. 83, no. 5, pp. 832-843, 2010.
X. Wang, X. Zhao, F. Guo, and J. Ma, “Impulsive noise detection
by double noise detector and removal using adaptive neural-
fuzzy inference system,” AEU-Int. J. Electron. Commun., vol. 65,
no. 5, pp. 429434, 2011.

USC-SIPI Image Database. 2017. [Online]. Available: Available:
http:/ /sipi.usc.edu/database/

Xianquan Zhang received the MEng degree from
Chongging University, Chongging, P R. China. He
is currently a professor with the Department of
Computer Science, Guangxi Normal University. His
research interests include image processing and
data hiding. He has contributed more than 100
papers.

https://ieeexplore.ieee.org/document/8968618
https://ieeexplore.ieee.org/document/8968618
http://sipi.usc.edu/database/

ZHANG ETAL.: NOISE REMOVAL IN EMBEDDED IMAGE WITH BIT APPROXIMATION

Xuelong Li (Fellow, IEEE) is a full professor with the School of Com-
puter Science and Center for Optical Imagery Analysis and Learning
(OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, PR.
China.

Zhenjun Tang (Member, IEEE) received the BS
and MEng degrees from Guangxi Normal Univer-

security. He has contributed more than 60 interna-
tional journal papers. He is a reviewer of more than
30 SCl journals, such as IEEE/IET journals, Elsev-
ier journals and Springer journals.

1369

Shichao Zhang (Senior Member, IEEE) received
the PhD degree in computer science from Deakin
University, Geelong, VIC, Australia. He is currently
a distinguished professor with the Department of
Computer Science, Guangxi Normal University,
Guilin, PR. China. He has authored more than 60
international journal papers and 70 international
conference papers. His current research interests
include data quality and pattern discovery. He is a
member of the association for Computing Machin-
ery. As a chief investigator, he has won four Austra-

sity, Guilin, P R. China, in 2003 and 2006, respec- |ian Large ARC Grants, three China 863 Programs, two China 973
tively, and the PhD degree from Shanghai programs, and five NSFs of China Grants. He served/serves as an associ-
University, Shanghai, P R. China, in 2010. He is ate editor of the /EEE Transactions on Knowledge and Data Engineering,
now a professor with the Department of Computer Knowledge and Information Systems, and the IEEE Intelligent Informatics

Science, Guangxi Normal University. His research Byjjetin. He served as a PC chair or Conference chair for six international
interests include image processing and multimedia conferences.

Shaomin Xie received the MEng degree from
Guangxi Normal University, Guilin, PR. China, in
2012. Her research interests include image proc-
essing and data hiding.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

