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Abstract—Stego-images are often contaminated by interchannel noise or active noise attack when communicating on theWeb. And it is

challenging to restore embedded image from corrupted stego-image. This paper studies a kNN-bit approximation algorithm to remove

noises in embedded image. The proposed algorithm distinguishes reliable bits from extracted bits, and estimates pixel values by keeping

reliable bits unchanged and correcting unreliable bits. Specifically, the 8th (highest) unreliable bit of a pixel can be approximatedwith its

nearest neighbor pixels. And then, if an unreliable bit locates at any one of the 5th � 7th bits of a pixel, it is adjusted with two nearest

neighbors of the pixel, where the pixel is in-between these two nearest neighbors. Finally, for other unreliable bits, each one is approximated

by themaximumandminimumpossible values of nearest neighbors of its pixel.We conduct experiments for illustrating the efficiency, and

demonstrate that the proposed algorithm can recover the embedded imageswith good visual quality from corrupted stego-images.

Index Terms—Embedded image, data hiding, noise removal, bit approximation, k nearest neighbors (kNN)

Ç

1 INTRODUCTION

IN the digital era, people must pay much attention to pri-
vacy protection when communicating on the Web. Conse-

quently, information security has become an important
issue. Data hiding [1],[2],[3] is one of information security
techniques, which has widely been used in, such as copy-
right protection [4], covert communication, image forensics,
content authentication, and data binding. Image-based data
hiding is an important kind of data hiding algorithms, where
secret message and cover signal are both digital images. This
kind of techniques findsmany useful applications. For exam-
ple, a sender can achieve secure transmission of a military
map from one place to another place by embedding it into a
landscape photograph. After data embedding, stego-image
can be transmitted through the Internet. At the receiver’s
side, the military map can be restored from stego-image. As
digital images are easily corrupted by interchannel noise [5],
[6] or active noise attack, visual quality of the secret image
extracted/decrypted from corrupted stego-image is inevita-
bly hurt. To overcome this problem, a possible strategy is to
use filtering algorithms [7].

The existing filtering algorithms have shown good per-
formance in noise removal for those images directly con-
taminated, but they are ineffective in recovering/restoring

embedded image from corrupted stego-image due to the fol-
lowing fact. When stego-image is contaminated by impulse
noise, some bits per pixel in the decrypted (extracted embed-
ded) image are altered, whereas the other bits can be kept
unchanged. In other words, for embedded image extracted
from corrupted stego-image, a dirty/noisy pixel can contain
both reliable and unreliable bits together. This indicates that
noise removal in embedded image should be done by bit
approximation instead of pixel replacement. In general, con-
ventional filtering algorithms improve visual quality of the
contaminated images by identifying noisy pixels and replac-
ing their values regardless of the actual bit values. As pixel
replacement strategy does not utilize those reliable bits of a
pixel, it is difficult to guarantee visual quality of embedded
image.

To address this actual yet challenging issue, we propose
a kNN-bit approximation algorithm to remove noises in
embedded image, referred to bit-approximation algorithm.
Different from the existing filtering algorithms, our algo-
rithm distinguishes reliable bits from the extracted bits, and
estimates pixel values by keeping reliable bits unchanged
and correcting unreliable bits. Our contributions are sum-
marized as follows.

(1) Reliable bits of a pixel are kept unchanged during
pixel restoration. We exploit an efficient noise detection
method to find noisy pixels in stego-image, and classify
the extracted bits into reliable bits and unreliable bits. Dur-
ing bit approximation, reliable bits are kept unchanged.
This is helpful to make the restored pixel close to its origi-
nal value.

(2) Unreliable bits of a pixel are approximated by the corre-
sponding bits of its kNN pixels. As high bits are important
than low bits in pixel value, the highest unreliable bit (i.e., the
8th bit) is first corrected, the 5th � 7th unreliable bits are then
verified, and other unreliable bits are finally approximated.
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The corrected unreliable bits and reliable bits jointly contrib-
ute efficient pixel restoration.

We conduct performance comparisons with some well-
known filtering algorithms for illustrating the efficiency.
Our experiments demonstrate that our algorithm can
restore embedded images with good visual quality, and out-
performs the compared algorithms.

The rest of this paper is organized as follows. Section 2
review the related work. Section 3 presents our algorithm.
Section 4 describes experimental results. Conclusions are
finally given in Section 5.

2 RELATED WORK

Many researchers have devoted to developing high perfor-
mance filtering methods. For example, Sun and Neuvo [8]
proposed a median and weighted median based impulse
detector to remove impulse noises in digital images. Alajlan
et al.[9] exploited a recursive minimum-maximum method to
build a variation of peak-and-valley filter. This filter can
recover dirty images with high impulsive noise contamina-
tion. Luo[10] introduced a two-phase method. It first detects
impulse noise and then removes impulse noise. This method
does not require a training step. Ibrahim et al. [11] exploited
two median filters (adaptive filter and switching filter) to
remove impulsive noise. In this scheme, threshold parameter
is not needed. Chen and Lien[12] presented amethodwithout
previous training. In thismethod, noisy pixels are determined
by a detector and restored by an edge-preserving filter.

In another study, Kang and Wang [13] removed image
noises by a modified switching median filter. Wang and Wu
[14] proposed a fast algorithm preserving image details.
This algorithm is based on convolution results of Laplacian
operators. Wan et al.[15] developed a robust method for
noise density estimation and applied it to iterative denois-
ing process. Zhang[16] proposed an iterative algorithm for
recovering noisy images. In this algorithm, noisy pixels are
found by an adaptive center-weighted median filter and
restored by iteratively using a median filter. This algorithm
cannot reach fast speed due to iterative computation. In
another work, Fabija�nska and Sankowski[17] exploited local
intensity extreme to identify noisy pixels and corrected
them by median filter. This method has good performance
in image recovery under a high noise density. However, for
the cases of low and medium noise densities, its restoration
results are worse than standard median filter.

Recently, Zhang and Li[18] presented an adaptive
weighted mean filter. This filter finds noisy pixel with adap-
tive window size and replaces its value with the weighted
mean of the window. Ahmed and Das[19] proposed two-
stage method for removing salt-and-pepper noise. This
method uses an adaptive fuzzy filter to detect noisy pixel
and restores pixel value by a weighted mean filtering opera-
tion on nearby uncorrupt pixels. In another work, Bai et al.
[20] replaced median filter with continued fractions interpo-
lation filter for salt and pepper noise removal. Pyatykh and
Hesser[21] designed a method for removing salt and pepper
noise in binary images. This method requires computation of
block prior probabilities from training noise-free images.
Sun et al.[22] achieved salt and pepper noise removal by
introducing shearlet transform to the filtering stage. Zhang

et al.[23] took noisy pixels as missing data for inpainting, and
adaptively selected convolution mask for iterative filtering
in terms of local image texture. Gupta et al.[24] introduced a
novel de-noising scheme based on adaptive dual thresholds
and simple median filter. Varatharajan et al.[25] proposed a
high density salt and pepper noise removal method based
on kriging interpolation. The noise pixel is replaced by a
value which is interpolated with the weights calculated
using semi-variance between the noise pixel and the non-
noisy pixels. Veerakumar et al.[26] adopted an edge preserv-
ing contextual model to restore the noisy pixels, in which
Gaussian kernel is used for edge preserving of the processing
pixel. Li et al.[27] presented a novel filter based on local and
global image information. The local image information is
used to estimate noise density and the global information is
exploited to guide noise detection rectification.

In recent years, learning based methods including sparse
representation and deep learning draw much attention for
their outstanding image restoration performance[28], [29].
For example, Chen et al.[30] proposed a weighted couple
sparse representation model for removing impulse noise. A
weighted rank-one minimization problem is addressed to
train a dictionary on the noisy raw data, which enables to
acquire more original data features. Huang et al.[31] utilized
Laplacian scale mixture (LSM) modeling and nonlocal low-
rank regularization to remove mixture noise efficiently. In
[32], a deep convolutional neural network (CNN) architec-
ture and particle swarm optimization are adopted to detect
impulse noise pixels accurately, and the median filter is used
to clean noise pixels. Wang et al.[33] introduced a low-rank
prior in small oriented noise-free image patches, then inte-
grated low-rank and sparse matrix recovery to detect and
remove nonpointwise random-valued impulse noise simul-
taneously. Wang et al.[34] proposed a variational method to
automatically classify noise according to different statistical
parameters and integrated the CNN regularizer to improve
quality of the restored images significantly. Xing et al.[35]
employed CNNwith themulti-layer structure to remove salt
and pepper noise. In [36], a deep CNN (DCNN) is used to
remove Gaussian noises, where residual learning is
employed to separate noise from noisy observation. The
batch normalization and residual learning are integrated to
accelerate the training process as well as boost the denoising
performance. To improve the flexibility for dealing with spa-
tially variant noise, Zhang et al. [37] proposed a fast and flexi-
ble denoising CNN, namely FFDNet. The FFDNet is able to
handle noise with different levels and drive outstanding res-
toration performance on both synthetic noisy images cor-
rupted by additive white Gaussian noise and real-world
noisy images. In another work, Dong et al. [38] presented a
new deep-learning framework for removing noises in three-
dimensional hyperspectral images and achieved excellent
denoising performance.

3 KNN-BIT APPROXIMATION

Our algorithm first finds those unreliable bits of every pixel
extracted from the stego-image and then conducts bit
approximation with those bits of its k nearest neighbor
(kNN) [39],[40],[41] pixels. The kNN imputation method is
an efficient technique for recovering missing numerical data
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and has been successfully applied to many real applications
[39]. Here, the kNN method is used to approximate unreli-
able bits of noisy pixel. Let p be a noisy pixel. Take p as the
center of a window sized ð2Dþ 1Þ � ð2Dþ 1Þ. Thus, the
pixels in the window (except p itself) are the kNN pixels of
p. Suppose that p1; p2; . . . ; pk represent the kNN pixels of p,
where k ¼ ð2Dþ 1Þð2Dþ 1Þ � 1. In this study, the unreli-
able bits of p are approximated by the corresponding bits of
its kNN pixels. The detailed procedures of unreliable bit
identification and bit correction are described as follows.

3.1 Identifying Unreliable Bits

Image-based data hiding algorithm includes two parts: data
embedding and data extraction. In data embedding, the
algorithm converts a secret image into a binary stream and
embeds these bits into one or several lowest bit-planes of
the cover image. Data extraction is an inverse procedure of
data embedding. Embedded bits are first extracted from the
used bit-planes and the extracted binary stream is then
exploited to reconstruct the secret image. It is clear that if
the stego-image is corrupted by noises, the used bit-planes
of the stego-image are changed and therefore the decrypted
image is also corrupted. Fig. 1a is a gray image of size
512� 512 and Fig. 2a is a gray image of size 256� 256. We

embedded Fig. 2a into Fig. 1a by least-significant-bit (LSB)
substitution using two lowest bit-planes and the methods
[42], [43], and added different salt and pepper noises into
the stego-images. Figs. 1b, 1c, and 1d are the corrupted
stego-images generated by LSB substitution and the meth-
ods [42], [43] under the salt and pepper noise with 0.1 densi-
ties, respectively. Figs. 2b, 2c, and 2d are the extracted
results of the Figs. 1b, 1c, and 1d, respectively. As each pixel
of the secret image is concealed in several pixels of the
stego-image, noise density in the decrypted image will be
bigger than that in the corrupted stego-image. We calcu-
lated noise densities in the decrypted images when the
stego-images are corrupted by different densities. The
results are listed in Table 1. From the results, we observe
that, as the noise density in the stego-image reaches 0.5,
the density in the decrypted images is about 0.86, leading to
badly degraded images. Therefore, in the following experi-
ments, we only consider the cases that noise densities in the
stego-image are not bigger than 0.5.

To identify corrupted bits of the decrypted image, we
exploit the noise detection method [44] to find noisy pixels
in the stego-image. Thus, we mark all bits during data
extraction. Let bðp; nÞ be the nth bit of the pixel p, and cðp; nÞ
be the sign of the nth bit of p, where n ¼ 1; 2; 3; 4; 5; 6; 7; 8.
Thus, we have

cðp; nÞ ¼ 1 if bðp; nÞ is extracted from a noisy pixel:
0 if bðp; nÞ is not extracted from a noisy pixel:

�
:

(1)

Clearly, the nth bit of p is unreliable when cðp; nÞ ¼ 1. If
cðp; nÞ ¼ 0, the nth bit of p is reliable.

As the pixel value of p is calculated by
P8

n¼1 2
n�1 � bðp;nÞ ,

restoration is achieved when all unreliable bits of p are cor-
rected. Clearly, those high bits are important than those low
bits in pixel value. Therefore, we first correct the highest bit
(i.e., the 8th bit), verify those the 5th � 7th bits, and finally
approximate other unreliable bits using kNNbits.

3.2 Correcting the 8th Bit

Let ap be the original pixel value of p. Thus, we can correct
the 8th bit of p by using the 8th bits of its kNN pixels. Let cv1
and cv2 be two signs for approximate estimation, whose ini-
tial values are both 0. We perform the 8th bit approximation
in terms of the following conditions.

(1) Case 1:cðp; 7Þ ¼ 0.
We correct the 8th bit of p by using its kNN pixels whose

7th and 8th bits are both reliable. This is achieved by two
schemes as follows.

Scheme 1: Correct the 8th bit of p by exploiting those
kNN pixels whose 7th bits are equal to the 7th bit of p.

Fig. 1. Cover image and corrupted stego-images generated by different
methods. (a)Cover image; (b)Corrupted stego-image generated by LSB
substitution; (c)Corrupted stego-image generated by [42]; (d)Corrupted
stego-image generated by [43].

Fig. 2. Secret image and extracted results from different corrupted
stego-images. (a) Secret image; (b) Result of Fig. 1b; (c) Result of
Fig. 1c; (d) Result of Fig. 1d.

TABLE 1
Noise Density Comparisons Between the
Stego-Images and the Decrypted Images

Stego-images 0.1 0.2 0.3 0.4 0.5

Extracted results of LSB substitution 0.3337 0.5684 0.7245 0.8335 0.9002
Extracted results of [42] 0.2787 0.4922 0.6546 0.7758 0.8623
Extracted results of [43] 0.2763 0.4898 0.6518 0.7781 0.8608
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To do so, we find the pixels satisfying
cðpi; 8Þ ¼ 0
cðpi; 7Þ ¼ 0
bðpi; 7Þ ¼ bðp; 7Þ

ði ¼ 1; 2; . . . ; kÞ
8<
: from p1, p2,...,pk and

label them as pi1 ; pi2 ,...,pir , where r ¼ Pk
i¼1½1� cðpi; 8Þ�½1�

cðpi; 7Þ�½1� jbðpi; 7Þ � bðpi; 7Þj�. Let api1 ; api2 ; . . . ; apir be the
original values of pi1 ; pi2 ; . . . ; pir , respectively. Thus, the 8th
bit of p can be determined as follows.

If bðpij ; 8Þ 6¼ bðpi1 ; 8Þð2 � j � rÞ , we have
bðpij ; 8Þ ¼ 1
bðpi1 ; 8Þ ¼ 0

�

or
bðpij ; 8Þ ¼ 0
bðpi1 ; 8Þ ¼ 1

�
. If

bðpij ; 8Þ ¼ 1
bðpi1 ; 8Þ ¼ 0

�
, let the 1st � 6th bits of

pij and pi1 be 0 and 1, respectively. Then, suppose that the
values of pij and pi1 are að0Þpij

and að1Þpi1
. As the 7th bits of

pi1 ; pi2 ; . . . ; pir are equal and reliable, their values will not
affect the minimum difference between að0Þpij

and að1Þpi1
. Table 2

is an example of the detailed bit values with minimum dif-
ference, where ‘*’ represents 0 or 1. In this case, we have

japij � api1 j � jað0Þpij
� að1Þpi1

j > 26 . Similarly, if
bðpij ; 8Þ ¼ 0
bðpi1 ; 8Þ ¼ 1

�
,

let the 1st � 6th bits of pij and pi1 be 1 and 0, respectively.
Suppose that the values of pij and pi1 are a

ð1Þ
pij

and að0Þpi1
. Thus,

we also have japij � api1 j � jað1Þpij
� að0Þpi1

j > 26. From the above

analysis, we find that pixel difference in neighbor is large
when bðpij ; 8Þ 6¼ bðpi1 ; 8Þ . So we don’t correct the 8th bit of p.

If bðpi1 ; 8Þ ¼ bðpi2 ; 8Þ ¼ ::: ¼ bðpir ; 8Þ, let v1 ¼ bðpi1 ; 8Þ,
where v1 2 f0; 1g. Suppose that bðp; 8Þ 6¼ v1. Thus, we have
bðpij ; 8Þ ¼ 1
bðp; 8Þ ¼ 0

�
or

bðpij ; 8Þ ¼ 0
bðp; 8Þ ¼ 1

�
. Therefore, we can conclude

japij � apj > 26 with similar analysis presented in the last
paragraph. Then, v1 is the probable value of bðp; 8Þ. So let
cv1 ¼ 1.

Scheme 2: Correct the 8th bit of p by using those kNN pix-
els whose 7th bits are not equal to the 7th bit of p.

For those kNN pixels whose 7th and 8th bits are both reli-
able, if their 7th bits are not equal to the 7th bit of p, these
bits will have the same value. If their 8th bit values are dif-
ferent, bðp; 8Þ cannot be corrected in terms of Scheme 1. If
their 8th bits and the 7th bits are not equal, bðp; 8Þ cannot be
determined. Therefore, we exploit those neighbor pixels,
whose 7th � 8th bits are reliable and equal, to estimate
bðp; 8Þ. Detailed steps are as follows.

Calculate the pixels p1; p2,...,pk satisfying
cðpi; 8Þ ¼ 0
cðpi; 7Þ ¼ 0
bðpi; 7Þ 6¼ bðp; 7Þ
bðpi; 7Þ ¼ bðp; 8Þ

8>><
>>: ði ¼ 1; 2; . . . ; kÞ and label them as

pi1 ; pi2 ,...,pis , where s ¼ Pk
i¼1 1�½ cðpi; 8Þ� 1� cðpi; 7Þ½ � bðpi;j½

7Þ � bðp; 7Þj� 1� bðpi; 7Þ � bðpi; 8Þj j½ �. Let api1 ; api2 ; . . . ; apis be

their original pixel values, i.e., the values without noise con-
tamination. Thus, we use their high bits to estimate bðp; 8Þ.

Clearly, we have bðpi1 ; 7Þ ¼ bðpi2 ; 7Þ ¼ ::: ¼ bðpis ; 7Þ,
bðpi1 ; 8Þ ¼ bðpi2 ; 8Þ ¼ ::: ¼ bðpis ; 8Þ, and bðpi; 8Þ ¼ bðpi; 7Þ,
where i ¼ 1; 2; . . . ; s. Let v2 ¼ bðpi1 ; 8Þ, where v2 2 f0; 1g.

Assume that bðp; 8Þ 6¼ v2. Then, we have

bðpij ; 8Þ ¼ 1
bðpij ; 7Þ ¼ 1
bðp; 8Þ ¼ 0
bðp; 7Þ ¼ 0

8>><
>>: or

bðpij ; 8Þ ¼ 0
bðpij ; 7Þ ¼ 0
bðp; 8Þ ¼ 1
bðp; 7Þ ¼ 1

8>><
>>: . If

bðpij ; 8Þ ¼ 1
bðpij ; 7Þ ¼ 1
bðp; 8Þ ¼ 0
bðp; 7Þ ¼ 0

8>><
>>: , let the 1st � 6th bits of

pij and p be 0 and 1, and the results of pij and p be labeled as

að0Þpij
and að1Þp , respectively. Thus, japij � apj � jað0Þpij

� að1Þp j >

27. Similarly, if

bðpij ; 8Þ ¼ 0
bðpij ; 7Þ ¼ 0
bðp; 8Þ ¼ 1
bðp; 7Þ ¼ 1

8>><
>>: , let the 1st � 6th bits of pij

and p be 1 and 0, and the results of pij and p be labeled as
að1Þpij

and að0Þp , respectively. Thus,japij � apj � jað1Þpij
� að0Þp j >

27 is also available. Therefore, let cv2 ¼ 1, and v2 is the prob-
able value of bðp; 8Þ.

In summary, when cðp; 7Þ ¼ 0, the 8th bit of p can be
approximated as follows.

If cv1 ¼ 0 and cv2 ¼ 0, pixel difference in neighbor is
large, indicating that p is probably in a textural or edge
region. So the 8th bit estimation is not needed.

If cv1 ¼ 1 and cv2 ¼ 1, the 8th bit approximation is also not
needed when v1 6¼ v2. This is because no matter which value
the 8th bit is, large pixel difference in neighbor still exists,
meaning that this region is a textural or edge region. When
v1 ¼ v2, let bðp; 8Þ ¼ v1 and cðp; 8Þ ¼ 0. This operation can
make a small difference between p and its neighbor pixels.

If cv1 ¼ 1, cv2 ¼ 0 and r � 2, let bðp; 8Þ ¼ v1 and cðp; 8Þ ¼ 0.
If cv1 ¼ 0, cv2 ¼ 1 and s � 2, let bðp; 8Þ ¼ v2 and cðp; 8Þ ¼ 0.
During the approximation, calculation is performed in

the 3� 3 window. If the approximation is not achieved, we
repeat the calculation in 5� 5 window. If the conditions are
still not satisfied, the 8th bit estimation is discarded.

(2) Case 2: cðp; 7Þ ¼ 1.
If the 7th and 8th bits of neighbor pixels are all reliable

but different and the 7th and 8th bits of p are both unreli-
able, the actual value of bðp; 8Þ cannot be determined. So the
8th bit of p is not corrected. If the 7th and 8th bits of some
neighbor pixels are reliable and equal, we use them to
approximate the 8th bit of p as follows.

Calculate the pixels p1; p2,...,pk satisfying

cðpi; 8Þ ¼ 0
cðpi; 7Þ ¼ 0
bðpi; 7Þ ¼ bðpi; 8Þ

ði ¼ 1; 2; . . . ; kÞ
(

and label them as pi1 ;

pi2 ,..., pii , where t ¼ Pk
i¼1 1� c ðpi; 8Þ½ � 1� cðpi; 7Þ½ � 1 �½

bðpi; 7Þ�j bðpi; 8Þj�. Approximation is done in terms of the
8th bit values of these pixels.

If bðpij ; 8Þ 6¼ bðpi1 ; 8Þð2 � j � tÞ,we have

bðpij ; 8Þ ¼ 1
bðpij ; 7Þ ¼ 1
bðpi1 ; 8Þ ¼ 0
bðpi1 ; 7Þ ¼ 0

8><
>: or

bðpij ; 8Þ ¼ 0
bðpij ; 7Þ ¼ 0
bðpi1 ; 8Þ ¼ 1
bðpi1 ; 7Þ ¼ 1

8><
>: . In both cases, we have japij � api1 j > 27.

TABLE 2
Bit Values With Minimum Difference

Bit no. að0Þpij
að1Þpi1

8 1 0
7 * *
6 0 1
5 0 1
4 0 1
3 0 1
2 0 1
1 0 1
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Thus, if bðpij ; 8Þ 6¼ bðpi1 ; 8Þ, the difference of neighbor pixels

is large. This means that the pixel is probably in a textural
or edge region. So the 8th bit estimation is not needed.

If bðpi1 ; 8Þ¼ bðpi2 ; 8Þ¼ ::: ¼ bðpit ; 8Þ, we have
bðpij ; 8Þ ¼ 1
bðpij ; 7Þ ¼ 1
bðp; 7Þ ¼ 0

8<
:

or
bðpij ; 8Þ ¼ 0
bðpij ; 7Þ ¼ 0
bðp; 7Þ ¼ 1

8<
: under the assumption that bðp; 8Þ 6¼

bðpi1 ; 8Þ. If
bðpij ; 8Þ ¼ 1
bðpij ; 7Þ ¼ 1
bðp; 8Þ ¼ 0

8<
: , let the 1st � 6th bits of pij and p

be 0 and 1, respectively. Suppose that the values of pij and p
are að0Þpij

and að1Þp . Thus,japij � apj > 26. Similarly, if

bðpij ; 8Þ ¼ 0
bðpij ; 7Þ ¼ 0
bðp; 8Þ ¼ 1

8<
: , let the 1st � 6th bits of pij and p be 1 and 0,

respectively. Suppose that the values of pij and p are að1Þpij
and

að0Þp . Thus,japij � apj > 26. Therefore, when cðp; 7Þ 6¼ 0, we let
bðp; 8Þ ¼ bðpi1 ; 8Þ and cðp; 8Þ ¼ 0 if bðpi1 ; 8Þ ¼ bðpi2 ; 8Þ ¼
::: ¼ bðpit ; 8Þ, where t � 2.

During the bit approximation, computation is only per-
formed in 3� 3 window. Similarly, if the restoration is not
achieved, we repeat the computation in the 5� 5 window.
If restoration conditions are still not satisfied, bit approxi-
mation is discarded.

To validate the performance of the 8th bit approximation,
we took different cover images and secret images as test
images, exploited LSB substitution to perform data embed-
ding, and obtained a series of stego-images. To produce cor-
rupted stego-images, we added salt and pepper noises with
different densities to the stego-images. During the opera-
tion, we recorded the positions of noisy pixels. Next, we
exploited our approach to perform bit restoration and
counted the right bit number. To measure the estimation
performance, a restoration ratio is defined as

R ¼ Nright

Ntotal
� 100%; (2)

where Nright is the number of those corrupted bits correctly
restored and Ntotal is the total number of corrupted bits. For
each noise density, we calculated the R values of different
corrupted stego-images to find the average value. The
results are listed in Table 3. We observe that all values are
bigger than 99 percent, indicating a good restoration perfor-
mance. In the experiments, we have used other data hiding
methods [42], [43] to embed secret images and found that
different methods have similar results.

3.3 Correcting the 5th � 7th Bits

A pixel value is mainly determined by its high bits. As the
weights of low bits are small, the low bit values have small
effect on the pixel value. Therefore, in this paper, we correct
those unreliable values in the 5th � 8th bits and discard
direct approximation on the 1st � 4th bits.

Let n1; n2; . . . ; neð5 � n1 < n2 < ::: < ne � 8Þ be the
reliable bit indices of p. If jnj � njþ1j > 1ðj ¼ 1; 2; . . . ; e� 1Þ,
there is unreliable bit between the nj-th bit and the njþ1-th
bit, i.e., cðp; nÞ ¼ 1 ðnj < n < njþ1Þ. Thus, we can correct
the nth bit as follows.

We select the pixels from p1; p2; . . . ; pk, which satisfy two
conditions: (1) Their nj-th, nth and njþ1-th bits are all reli-
able. (2) Their nj-th and njþ1-th bits are equal to those of p.
These pixels are then labeled as pi1 ; pi2 ,...,piw , where w ¼Pk

i¼1 1� cðpi; njÞ
� �

1� jbðpi; njÞ � bðp; njÞj
� �

1� c ðpi; njþ1Þ
� �

1� bðpi; njþ1Þ � bðp; njþ1Þ
�� ��� �

1� cðpi; nÞ½ �. We use the nth
bits to correct the corresponding bit of p.

If w � 3 and bðpi1 ; nÞ ¼ bðpi2 ; nÞ ¼; . . . ;¼ bðpin ; nÞ, there
are some neighbor pixels whose high bits are the same with
that of p. In this case, neighbor pixels have small difference.
So let bðp; nÞ ¼ bðpi1 ; nÞ and cðp; nÞ ¼ 0. Table 4 is an exam-
ple of unreliable bit approximation between two reliable
bits, where ‘*’ represents those bits with the same values.

If w < 3 or there exists pijðj ¼ 2; 3; . . . ; wÞ whose nth bit
is not equal to that of pi1 , this means that p is not in a smooth
region. So the approximation is not needed.

During the above restoration, calculation is performed in
the 3� 3 window. If the restoration is not achieved, we
repeat the computation in the 5� 5 window. If the condi-
tions are still not satisfied, the estimation is discarded.

To test the performance of our strategy, we used differ-
ent images to produce stego-images, added different salt
and pepper noises to the stego-images, and then calculated
restoration ratios of different corrupted stego-images to
find the average ratio under different noise densities. The
results are illustrated in Table 5. We observe that all R val-
ues are bigger than 98 percent, indicating good restoration
performance.

3.4 Approximating Other Unreliable Bits

Generally, pixels in a local region are similar. Therefore, we
calculate the maximum and the minimum possible values of

TABLE 3
Restoration Ratios Under Different Noise Densities

Noise density 0.1 0.2 0.3 0.4 0.5

Nright 5870 10921 14909 17753 19178
Ntotal 5878 10938 14930 17803 19234
R 99.86% 99.84% 99.86% 99.72% 99.71%

TABLE 5
Restoration Ratios of Bit Estimation Between Two Reliable Bits

Noise density 0.1 0.2 0.3 0.4 0.5

Nright 10028 17297 21463 21528 17865
Ntotal 10111 17443 21690 21783 18062
R 99.18% 99.16% 98.95% 98.83% 98.91%

TABLE 4
Correct Unreliable Bits Between

Two Reliable Bits

Bit no. p pi1

...
njþ1 * *
...
n bðp; nÞ bðpi1 ; nÞ
...
nj * *
...
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kNN pixels of p, and use them to approximate the probable
value of p. To do so, for the kNN pixels of p in the 3� 3win-
dow, we set their unreliable bits to 1 and use m11;m21,...,m81

to represent their values. Similarly, we set their unreliable
bits to 0 and use m10;m20,...,m80 to represent their values.
Next, we use M1 ¼ minfm11;m21; . . . ;m81g and M2 ¼ max
fm10;m20; . . . ;m80g to represent the minimum and the maxi-
mum values of {m11;m21,...,m81} and { m10;m20,...,m80 },
respectively. If M1 � M2, let h ¼ M1 and l ¼ M2. Otherwise,
we sort {m11;m21,...,m81 } and { m10;m20,...,m80 }. Let
{m

ð1Þ
11 ;m

ð1Þ
21 ,...,m

ð1Þ
81 } and {m

ð1Þ
10 ;m

ð1Þ
20 ,...,m

ð1Þ
80 } be the sorted ver-

sions of {m11;m21,...,m81} and {m10;m20,...,m80} in ascending
order, respectively. Also, let i ¼ 1 and j ¼ 8. If m

ð1Þ
i1 � m

ð1Þ
j0 ,

let h ¼ m
ð1Þ
i1 and l ¼ m

ð1Þ
j0 . Otherwise, we increase the i value,

i.e., i ¼ iþ 1, and judge the condition again. If m
ð1Þ
i1 � m

ð1Þ
j0 is

not satisfied, we decrease the j value, i.e., j ¼ j� 1, and ver-
ify the condition again. We repeat the above operations until
the condition is satisfied or i ¼ 8 and j ¼ 1.

Suppose that there are d bits of p for approximation. As
each bit has two possible values (i.e., 1 or 0), the p value has
u ¼ 2d possible values. Let m1, m2,...,mu be these u values in
ascending order. We determine the p value in terms of the
following conditions.

(1) If there are two values mg and mgþ1 satisfying mg < l
and mgþ1 > h, we choose the p value as follows. If
jmg � lj < jmgþ1 � hj, let p ¼ mg. Otherwise, let p ¼ mgþ1.

(2) Ifm1 > h, let p ¼ m1.
(3) Ifmu > h, let p ¼ mu.
(4) If there are two values mg and mv satisfying mg � l

andmv � h, we select the p value from {mg,mgþ1,...,mv }. Let
the total number of possible values of pi (i ¼ 1; 2; . . . ; 8) be qi,
and these values be fi1, fi2,..., fiqi .Thus, we calculate
xz ¼

P8
i¼1 min1�j�qið mz � fij

�� ��2Þðz ¼ g; gþ 1; . . . ; vÞ. If there
is only one minimum value xmin in {xg,..., xv}, its corre-
sponding value mi is the target value of p. Otherwise,
we sort the corresponding values mi and choose the
middle one as the target value. Finally, we adjust those
unreliable bits of p to approximate the target value by
exhaustive search. The adjusted result with minimum
difference between itself and the target value is viewed
as the p value.

3.5 Detailed Steps

Detailed steps of our algorithm are as follows.

Bit-approximation algorithm

Input: A corrupted stego-image
Output: The recovered image extracted from the stego-image.

1. Identify the noisy pixels in the corrupted stego-image by the
detection method [44], mark all extracted bits, and then
reconstruct the embedded image.

2. For each pixel of the embedded image, we exploit our
approach presented in Section 3.2 to correct its unreliable 8th
bit.

3. For each pixel, we use our scheme given in Section 3.3 to
recover its unreliable 5th � 7th bits between two reliable bits.

4. We apply our strategy introduced in Section 3.4 to
estimating the values of noisy pixels in the embedded
image.

4 EXPERIMENTAL RESULTS

To view our performance, we validate efficiency of each
step of the proposed algorithm in Section 4.1 and compare
the proposed algorithm with some notable algorithms in
Section 4.2. In these experiments, we take peak signal-to-
noise ratio (PSNR) as the metric for objective evaluation,
which is defined as

PSNR ¼ 10 log10
L2

MSE
; (3)

where L is the maximum possible pixel value of the image,
equaling 255 for gray images, and MSE is the mean squared
error (MSE) calculated by

MSE ¼ 1

MN

XM
i¼1

XN
j¼1

Iði; jÞ � Jði; jÞ½ �2; (4)

where Iði; jÞ and Jði; jÞ are the pixel values in the ith row and
the jth column of the original and the restored images sized
M �N , respectively. Since the aim of our algorithm is to
recover the embedded image from corrupted stego-image,
we select the well-known LSB substitution from diverse data
hiding algorithms to conduct data embedding. In the experi-
ments, the secret image is converted into a secure bit
sequence for data embedding. More specifically, the pixels
of secret image are scanned from left to right and top to bot-
tom. For each pixel, it is decomposed into 8 bits, i.e., the 1st
bit, 2nd bit, ..., 8th bit. Then, a bit sequence is obtained by
concatenating the bits of all pixels. Finally, a pseudorandom
generator controlled by a secret key is exploited to generate a
secure bit sequence by scrambling the bit sequence. During
data embedding, the secure bit sequence is concealed in the
cover image by the LSB substitution. Therefore, direct extrac-
tion can reconstruct the embedded image by directly retriev-
ing the used LSBs and re-scrambling them.

4.1 Step validation

To validate efficiency of each step of the proposed algorithm,
we embed Fig. 3a sized 256� 256 into Fig. 1a by using the
two lowest bit-planes, and obtain the stego-image as shown
in Fig. 3b.We add salt and pepper noise with different densi-
ties to Fig. 3b, and use the direction extraction and our
schemes with different steps to restore the embedded
images. Figs. 4, 5, 6, 7, and 8 are the recovery result compari-
sons among direction extraction and our schemes when
noise densities are 0:1 � 0:5, respectively. Table 6 presents

Fig. 3. Secret image and stego-image. (a)Secret image; (b)Stego-image.
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PSNR comparisons under different noise densities. From
these results, we find that our schemes can produce better
visual qualities of the restored images than the direct extrac-
tion, and further, more steps used will produce better visual
quality. The benefits of our steps are more obvious when the
noise density becomes high, such as 0.3, 0.4 and 0.5. These
results illustrate the efficiency of our steps.

4.2 Performance Comparisons

To show advantage, we compare the proposed algorithm
with some notable algorithms, i.e., direction extraction
method, 3� 3 median filter, and the methods [8], [9], [10],
[11], [13], [14], [16], [17], [18], [24], [25], [26]. In the experi-
ments, we embed different secret images into various cover
images, add salt and pepper noise with different densities to
the stego-images, and recover the embedded images from
the corrupted stego-images. We find that visual qualities of
the restored results produced by our algorithm are all better
than those generated by compared algorithms. For space
limitation, typical examples are given here. Fig. 1a is the
cover image and Fig. 9 presents the used secret images,

where Lena is the standard benchmark image, and other
four images are downloaded from an open database [45].
Figs. 10, 11, and 12 illustrate recovery result comparisons
when the noise densities are 0.1, 0.3 and 0.5, respectively. It is
observed that, as noise density increases, visual qualities of
the recovery results produced by the assessed methods sig-
nificantly decrease. However, degradation of our algorithm
is much slower than those of the compared algorithms. For
example, our algorithm can make the decrypted image good
visual quality even if the noise density is 0.5. Clearly, our
algorithm is better than the comparedmethods in recovering
embedded images from the corrupted stego-images.

Tomake quantitative comparisons, we calculate the PSNR
and the normalized correlation (NC) between the original
secret images and the recovered results by different meth-
ods, and obtain the average PSNR and NC under different
noise densities. Tables 7 and 8 are the average PSNR compar-
isons and the average NC comparisons in recovering the five
secret images, respectively. From Table 7, we find that the
average PSNR values of our algorithm are all bigger than
those of other methods. For example, as the noise density is
0.5, our PSNR value can reach 27.1229 dB, indicating accept-
able visual quality. However, the biggest value of the com-
pared methods is 19.9164 dB, which is much smaller than
our value. Fig. 13 illustrates our incremental values of aver-
age PSNRs (i.e., our average PSNR subtracts the average
PSNR of compared algorithm) under different noise densi-
ties. Similarly, it is observed from Table 8 that our average
NC values are also bigger than those of the compared meth-
ods. Fig. 14 presents our incremental values of average NCs
under different noise densities. Clearly, our algorithm has

Fig. 4. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.1. (a)Direct
extraction; (b)Steps 1 � 2; (c)Steps 1 � 3; (d)Steps 1 � 4.

Fig. 5. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.2. (a) Direct
extraction; (b) Steps 1 � 2; (c) Steps 1 � 3; (d)Steps 1 � 4.

Fig. 6. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.3. (a)Direct
extraction; (b)Steps 1 � 2; (c)Steps 1 � 3; (d)Steps 1 � 4.

Fig. 7. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.4. (a)Direct
extraction; (b)Steps 1 � 2; (c)Steps 1 � 3; (d)Steps 1 � 4.

Fig. 8. Recovery result comparisons among direction extraction and our
schemes with different steps when the noise density is 0.5. (a)Direct
extraction; (b)Steps 1 � 2; (c)Steps 1 � 3; (d)Steps 1 � 4.

TABLE 6
PSNR Comparisons Among Direct Extraction and

Our Schemes With Different Steps (Unit: dB)

Noise density 0.1 0.2 0.3 0.4 0.5

Direct extraction 17.8378 14.9415 13.2904 12.0760 11.2575
Steps 1 � 2 23.1534 20.2246 18.4869 16.8903 15.6055
Steps 1 � 3 27.7484 23.9190 21.3374 18.8154 16.7645
Steps 1 � 4 34.8604 31.4969 29.4026 27.5101 26.3836

Fig. 9. Our used secret images sized 256� 256. (a)Lena; (b)Aerial; (c)
Moon surface; (d)Clock; (e)Airplane.
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significant improvement on visual quality with respect to
PSNR and NC. Our algorithm outperforms the compared
algorithms. This can be understood as follows. When the

stego-image is contaminated, some bits per pixel in the
embedded image are altered and other bits are still pre-
served. In our algorithm, these preserved bits are exploited
to estimate the values of the dirty pixels. They give us more
details to recover the actual values and thus make good
visual quality of the restored image. For the compared algo-
rithms, the dirty pixels are simply replaced without the use
of these preserved bits and consequently the visual quality
of the recovered image is not good enough.

Computational time of the assessed algorithms is also
evaluated. All the algorithms are implemented with MAT-
LAB R2011a, and run on a desktop computer with 3.40 GHz
Intel Core i5-3570 CPU and 16 GB RAM. The operating

Fig. 10. Recovery result comparisons when the noise density is 0.1. (a)
Direct extraction; (b)Wang and Wu [14]; (c)Zhang [16]; (d)Fabija�nska
et al. [17]; (e)Zhang and Li [18];(f)Gupta et al. [24]; (g)Varatharajan et al.
[25];(h) Thangaraj et al. [26]; (i)Our algorithm.

Fig. 11. Recovery result comparisons when the noise density is 0.3. (a)
Direct extraction; (b)Wang and Wu [14]; (c)Zhang [16]; (d)Fabija�nska
et al. [17]; (e)Zhang and Li [18];(f)Gupta et al. [24]; (g)Varatharajan et al.
[25];(h) Thangaraj et al. [26]; (i)Our algorithm.

Fig. 12. Recovery result comparisons when the noise density is 0.5. (a)
Direct extraction; (b)Wang and Wu [14]; (c)Zhang [16]; (d)Fabija�nska
et al. [17]; (e)Zhang and Li [18];(f)Gupta et al. [24]; (g)Varatharajan et al.
[25];(h) Thangaraj et al. [26]; (i)Our algorithm.

TABLE 7
Average PSNR Comparisons in Recovering the

Five Secret Images (unit: dB)

Noise density 0.1 0.2 0.3 0.4 0.5

Direct extraction 17.8811 14.9016 13.2278 12.1046 11.1921
3� 3median filter 28.8918 25.8369 22.6722 19.9648 17.6830
Sun and Neuvo [8] 27.3141 24.5912 22.6075 20.6667 18.6987
Alajlan et al. [9] 27.0077 22.6817 19.6944 17.4294 15.7217
Luo [10] 29.8004 26.6993 23.5272 20.7604 18.4147
Ibrahim et al. [11] 17.8929 14.9460 13.2860 12.1687 11.2519
Kang andWang [13] 28.7329 26.8516 24.7315 22.2952 19.9164
Wang andWu [14] 17.9263 14.9546 13.2896 12.1692 11.2515
Zhang [16] 30.1085 27.1530 24.4977 21.7742 19.1087
Fabija�nska et al. [17] 21.4403 17.0836 14.8687 13.4471 12.3101
Zhang and Li [18] 19.9298 16.1917 14.2178 12.9200 11.8884
Gupta et al. [24] 27.1776 23.8251 21.0332 18.7895 16.8660
Varatharajan et al. [25] 31.4062 26.7968 24.4724 22.6173 19.0042
Thangaraj et al. [26] 26.8764 24.0064 22.2065 18.9441 14.3557
Our algorithm 36.1034 32.6837 30.5443 28.8304 27.1229
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system installed on the desktop computer is Windows 10.
We record the processing time of the assessed algorithms for
recovering Airplane from the corrupted stego-images, and
obtain the results as shown in Table 9. It is observed that our
speed is a little slower than those of the compared algorithms
(such as [16], [17], and [18]) when the noise density is 0.1. As
the noise density increases, our algorithm becomes very
slow. The low speed of our algorithm can be understood as
follows. (1) When bit approximation is not achieved, iterative
computation in a large window is needed. (2) There are sev-
eral loops in our implementation code, which is time-con-
suming sinceMATLAB is inefficient in processing loop. Note
that visual quality of the recovered image is the first perfor-
mance of the assessed algorithms and computational time is
the second one. In practice, the time-consumed problem can
be overcome by high performance computing (HPC).

5 CONCLUSION

In this paper, we have proposed an efficient algorithm, called
bit-approximation algorithm, for noise removal in embedded
image. The extracted bits of each pixel are first marked by the
detection method. The unreliable bits are corrected with three
different strategies according to their locations in pixel. Differ-
ent from existing pixel estimation methods, the proposed bit-

approximation efficiently utilizes reliable bits of pixels, so as to
improve the visual quality of decrypted images. Sets of experi-
ments have been conducted to validate the performance of our
algorithm, and showed that the proposed approach has better
performance than some well-known filtering methods in
embedded image recovery from corrupted stego-images.
Research on embedded image recovery is still under way. In
the future, we will focus on embedded image recovery when
secret images are embedded by different data hiding methods
(such as pixel-value differencing based method and EMD
(exploiting modification direction) based method), embedded
image recovery under other attacks (such as filtering and
smoothing), and so on.
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TABLE 8
Average NC Comparisons Among Different Methods

Noise density 0.1 0.2 0.3 0.4 0.5

Direct extraction 0.7461 0.5934 0.4795 0.3897 0.3082
3� 3median filter 0.9719 0.9463 0.8910 0.8059 0.6939
Sun and Neuvo [8] 0.9604 0.9295 0.8916 0.8346 0.7514
Alajlan et al. [9] 0.9578 0.8903 0.7943 0.6788 0.5615
Luo [10] 0.9810 0.9550 0.9078 0.8334 0.7284
Ibrahim et al. [11] 0.7420 0.5910 0.4795 0.3904 0.3092
Kang andWang [13] 0.9706 0.9555 0.9287 0.8783 0.7990
Wang andWu [14] 0.7474 0.5937 0.4812 0.3913 0.3096
Zhang [16] 0.9792 0.9591 0.9259 0.8679 0.7698
Fabija�nska et al. [17] 0.8646 0.6993 0.5694 0.4628 0.3685
Zhang and Li [18] 0.8162 0.6517 0.5279 0.4287 0.3396
Gupta et al. [24] 0.9442 0.8826 0.7947 0.6912 0.5662
Varatharajan et al. [25] 0.9846 0.9551 0.9233 0.8796 0.7502
Thangaraj et al. [26] 0.9638 0.9476 0.9236 0.8122 0.8475
Our algorithm 0.9950 0.9878 0.9826 0.9744 0.9625 Fig. 14. Our incremental values of average NCs under different noise

densities.

Fig. 13. Our incremental values of average PSNRs under different noise
densities.

TABLE 9
Time Comparisons Among Different Methods (unit: second)

Noise density 0.1 0.2 0.3 0.4 0.5

Direct extraction 2.991 2.915 2.883 2.897 2.914
3� 3median filter 2.952 2.923 2.868 2.934 2.917
Sun and Neuvo [8] 4.132 4.114 4.139 4.144 4.167
Alajlan et al. [9] 3.669 3.693 3.688 3.670 3.675
Luo [10] 6.316 6.320 6.432 6.365 6.405
Ibrahim et al. [11] 3.136 3.149 3.181 3.134 3.173
Kang andWang [13] 4.859 4.738 4.755 4.736 4.706
Wang andWu [14] 3.068 3.071 3.091 3.101 3.122
Zhang [16] 12.996 13.310 14.145 21.836 16.198
Fabija�nska et al. [17] 10.359 10.127 10.106 10.204 10.240
Zhang and Li [18] 12.459 13.567 13.789 14.522 14.632
Gupta et al. [24] 4.786 4.799 4.804 4.754 4.758
Varatharajan et al. [25] 4.4625 6.7773 10.6944 14.5010 16.7766
Thangaraj et al. [26] 6.7620 10.0925 12.6117 14.4545 14.9750
Our algorithm 14.117 29.016 63.806 159.534 427.367
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