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Abstract—Intelligent transportation systems are a key component in smart cities, and the estimation and prediction of the

spatiotemporal traffic state is critical to capture the dynamics of traffic congestion, i.e., its generation, propagation and mitigation, in

order to increase operational efficiency and improve livability within smart cities. And while spatiotemporal data related to traffic is

becoming common place due to the wide availability of cheap sensors and the rapid deployment of IoT platforms, the data still suffer

some challenges related to sparsity, incompleteness, and noise which makes the traffic analytics difficult. In this article, we investigate

the problem of missing data or noisy information in the context of real-time monitoring and forecasting of traffic congestion for road

networks in a city. The road network is represented as a directed graph in which nodes are junctions (intersections) and edges are road

segments. We assume that the city has deployed high-fidelity sensors for speed reading in a subset of edges; and the objective is to

infer the speed readings for the remaining edges in the network; and to estimate the missing values in the segments for which sensors

have stopped generating data due to technical problems (e.g., battery, network, etc.). We propose a tensor representation for the

series of road network snapshots, and develop a regularized factorization method to estimate the missing values, while learning the

latent factors of the network. The regularizer, which incorporates spatial properties of the road network, improves the quality of the

results. The learned factors, with a graph-based temporal dependency, are then used in an autoregressive algorithm to predict the

future state of the road network with a large horizon. Extensive numerical experiments with real traffic data from the cities of Doha

(Qatar) and Aarhus (Denmark) demonstrate that the proposed approach is appropriate for imputing the missing data and predicting the

traffic state. It is accurate and efficient and can easily be applied to other traffic datasets.

Index Terms—Tensor decomposition, regularization, traffic monitoring, traffic forecasting
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1 INTRODUCTION

RAPID urbanization, GDPgrowth, decline in fuel prices, and
increase in car ownership are all factors that contribute

directly or indirectly in creating and/or worsening road con-
gestion. Most of the cities in the world are regularly monitor-
ing yearly traffic congestion-related KPIs that help them
evaluate the road infrastructure. According to [16], the eco-
nomic cost of congestion in 2016 in Qatar is estimated to be
between US 1.53$B andUS 1.80$Bwhich translates to a loss of
about 0.9-1.0 percent of the GDP. Thus, it is extremely impor-
tant for cities to deploy required systems and applications
that provide access to real-time congestion information. For
city planners and operators, knowingwhat is going to happen
in their road networks is as important as knowing the real-
time situation. For example, predicted traffic congestion

information is essential for anticipating the implementation
of automated actions to avoid heavy congestion in strategic
locations, this can help urban planners to fine-tune signal
timings or strategically allocate police patrol units to regulate
the traffic.

From the user perspective, it is essential to provide the fast-
est path from a source to a destination with an accurate esti-
mation of the Estimated Time ofArrival (ETA). These features
can only be offered if the system has the capability to forecast
efficiently and effectively the traffic congestion in addition to
the real-timemonitoring.

With the rise of IoT technologies, smart cities became a
testbed for technologies that capture spatio-temporal real-
time data on citizens’ mobility. This later has been enabled
mainly by the wide availability of cheap sensors (e.g., closed-
loop detectors, Bluetooth sensors). However, the data still suf-
fer somemajor challenges related to sparsity, incompleteness,
and noise which makes the traffic analytics difficult. It is for
instance reported inmany studies that the percentage ofmiss-
ing values in real traffic monitoring scenarios can be as high
as 90 percent [21], [23], [24]. The obvious reason for inherent
sparsity problem we observe in traffic data is that not all road
segments are equipped with sensors. And even when a road
segment has a sensor, it is often the case that it temporarily
stops emitting due to a variety of failures (e.g., networks,
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batteries, and low recall.) This problem makes traditional
approaches based on time-series for traffic forecasting obso-
lete [3], [24], [27]; and evenmore robust decomposition-based
methods such as matrix factorization–which aim to project
objects into a lower-dimensional latent space–have been
shown to be NP-hard in the presence of missing values,
see e.g., [7]. In fact, handling missing values in decomposi-
tions is often via Imputation or Marginalization. In the former
approach, missing values are estimated iteratively using the
Expectation Maximization algorithm. This results in an easy
implementation with very little changes into the model [15].
In the later approach, i.e., Marginalization or Weighted Regres-
sion, themissing values are simply ignored during the optimi-
zation process [22].

However, given the specific nature of traffic data such as
the high temporal and spatial correlation that can be lever-
aged to pacify the data sparsity problem, and the periodicity
in data that can be exploited for the problem of multi-step
ahead forecasting, it is important to design new analytical
frameworks that naturally account for the above-mentioned
properties.

Motivated by these challenges, we propose a temporal
regularized tensor factorization framework (TRTF) suitable
for high dimensional time-series analysis. TRTFmodels traf-
fic data as follows. First, the road network of a city is mod-
eled as a directed graph in which nodes are junctions (e.g.,
intersections, Y-merging, round-abouts, etc.) and edges are
road segments linking junctions. The adjacency matrix Aadj

of size N �N , where N is the number of nodes of the road
network, is assumed to remain unchanged over time. Sec-
ond, speed readings associated with edges in the graph are
modeled into a three-way tensor GG of size (N �N � T ),
where T is the number of time points. In other words, the
tensor GG is a time-dependent sequence of T successive Gt

matrices such that G
ði;jÞ
t ¼ 0 if A

ði;jÞ
adj ¼ 0 i.e., there no road

segment between junctions i and j, or if A
ði;jÞ
adj ¼ 1 but there

is no speed reading for road-segment ½i; j� at time t;
G
ði;jÞ
t > 0 otherwise. The objective then is to decompose the

tensor GG into three factor matrices A;B and C minimizing
the following error:

min
A;B;C

EEðGG k A;B;CÞ þ RRsðA;BÞ þ �tRRtðCÞ; (1)

where the first two factors A and B capture the spatial con-
straints of the road network, whereas C captures the struc-
ture of the temporal dependencies among the temporal
embeddings. The decomposition problem could be solved
by an alternating minimization process over A, B, and C. It
is a regularized minimization problem to avoid overfitting
and to incorporate the spatial dependency through RRs and
the temporal dependency throughRRt.

One of our main contributions in this paper is the adapta-
tion of a novel autoregressive temporal regularizer RRtðCÞ
for tensor decompositions. This modeling is adapted from
the regularized matrix representation introduced in [25]. In
that work, traffic data is represented as a matrix in which
rows are road segments and columns are time points. That
is, each row is a time-series of speed readings of a particular
road segment. The proposed Temporal Regularized Tensor
Factorization (TRTF) framework allows the learning of

temporal dependencies from the data and enables multi-
step ahead forecasting using tensor decomposition. This is
done by learning the temporal dependencies between the
latent dimensions by incorporating an autoregressive tem-
poral regularizer into the factorization process.

Latent space modeling has attracted a lot of attention
lately. Deng et al. [4] proposed to use matrix factorization
with spatial and temporal regularizers to deal with the two
problems of missing values and forecasting. Although the
authors highlight the difference between latent models for
social network and that for traffic prediction, they eventu-
ally propose a model similar to latent social network mod-
els. Moreover, they bring in the temporal aspect by
learning a fixed transition matrix between consecutive
snapshots.

One solution to cope with this problem is to further
exploit the summary/stacked transition model technique of
Rossi et al. [17] and possibly make the model learn longer
temporal patterns spanning multiple snapshots. However,
in our case, we decided to rather take a tensor based
approach which elegantly and naturally captures the tem-
poral dependencies in the latent space. Another interesting
approach to capture time dependencies is that of Wang et al.
in which they propose a tensor based model for segment as
well as path cost estimation using GPS data [23]. However,
their approach has few short-comings. First, they aggregate
the historical data per time-slot for the entire history and
therefore, possibly losing valuable information. Second, in
order to build real-time scalable solution they only consider
the very recent time-slots. But this along with the aggrega-
tion make this model not suitable for forecasting where we
would like the periodic patterns in data be preserved. Third,
their approach uses a lot of auxiliary information which
may not be available for all data-sets. Moreover, unlike the
holistic manifold smoothing used in [4], Wang et al. manu-
ally construct the spatial features which constitutes a seri-
ous limitation for a data-driven approach. Fourth, their
approach relies on Tucker decomposition [11] which has
been advised not to be used for temporal problems as it suf-
fers from rotational freedom [5].

In this study, we use CP decomposition, which is more
appropriate when time order preserving is required, see e.g.,
[1].We run extensive experimentation on two real traffic data-
sets, from two different cities, Aarhus in Denmark and Doha
in Qatar, showing different sparsity distributions. In Aarhus,
the percentage of missing values is only about 4 percent,
whereas Doha dataset suffers from 85 percent missing values.
This, in itself, constitutes a good test-bed to evaluate against
several recent algorithms designed for the same purpose such
as LSM-RN [4],TRMF [25], and CP-WOPT [1].

The main contributions of this paper are:

1) We propose a novel temporal regularized tensor
factorization framework (TRTF) for high-dimensional
traffic data. TRTF provides a principled approach to
account for both the spatial structure and the temporal
dependencies.

2) We introduce a novel data-driven graph-based autore-
gressive model, where the weights are learned from
the data. Hence, the regularizer can account for both
positive and negative correlations.
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3) We show that incorporating temporal embeddings
into CP-WOPT [1] leads to accurate multi-step fore-
casting, compared to state of the art matrix factoriza-
tion based methods.

4) We conduct extensive experiments on real traffic con-
gestion datasets from two different cities and show the
superiority of TRTF for both tasks of missing value
completion and multi-step forecasting under different
experimental settings. For instance, TRTF outperforms
LSM-RN by 24 percent andTRMF by 29 percent.

The results show the superiority of tensor based methods
in general and our framework in particular for both tasks of
missing value completion and multi-step ahead forecasting
under different experimental settings. Through our exten-
sive experiments on real datasets, we show that our method
outperforms LSM-RN with about 24 percent and TRMF with
29 percent.

The remainder of this paper is organized as follows. We
describe our problem in Section 2 before we discuss the litera-
ture review and its limitations in Section 3. In Section 4 we
introduce our temporal regularized tensor factorization
framework and describe the auto regressive extension allow-
ing for multi-steps-ahead forecasting in Section 5.We demon-
strate the suitability and superiority of our framework
through an extensive set of experiments on two different real
traffic datasets in Section 6. We finally conclude the paper
in Section 7.

2 PROBLEM FORMULATION

We represent the road network of a city as a directed graph
consisting of N nodes and M edges. Nodes represent junc-
tions and edges represent road segments connecting two junc-
tions. We assume the existence of K �M physical sensors
located on K different road segments (edges) that continu-
ously generate speed readings at a particular rate, e.g., every 1
minute. Sensors can occasionally fail to generate readings,
yielding missing values. This traffic data is used to build a
three-way tensor GG of size (N �N � T ), where T is the num-
ber of time points at which speed data has been generated
(from time 1 to time T ). Each sliceGt in GG is a ðN �NÞmatrix
of which cells G

ði;jÞ
t report speed values observed in segment

½i; j� at time t. G
ði;jÞ
t takes 0 if the edge ½i; j� does not exist or if

its corresponding sensor fail to generate a speed reading at
time t, see Fig. 1. The distinction between zeros of non existing
edges and those of missing values is made by looking at the
adjacencymatrix of the road network.

Our problem is therefore:

1) to complete the (data) tensor GG by inferring all its
missing values due to absent or malfunctioning sen-
sors; and

2) to forecast the future tensor GGnew that extends the
initial tensor GG from time T to T þ h, where h is the
desired horizon.

3 RELATED WORK

In this section, we present the literature review of previous
works related to ours. We mainly focus on the two catego-
ries of work related to traffic prediction and the use of tensors
in the new discipline of urban computing.

3.1 Traffic Prediction

Research in traffic prediction can be classified on the basis of
the target being estimated or the data being utilized. Mainly
there are two traveling costs being estimated: (1) Segment cost
and (2) Path cost. Moreover, research is fragmented on the
type of data that is being employed as input for the various
cost estimations. Here, we have twomain categories: (1) GPS-
based data and (2) sensor-based data. Sensor only captures
data for the road segment it is tracking but the data collection
ismore fine grained and continuous. GPS-data, unlike sensor-
data, does not provide continuous data streams, but instead
gives a more global view as the entire trip of a vehicle is
recorded. Irrespective of the cost being estimated and the data
being utilized, sparsity of the datawhethermissing sensors or
un-traveled segments, is a central concern. The existence of
missing data will reduce the performance sharply [2], [3], [10].
Therefore, models that treat each segment data as indepen-
dent time-series fail . However, a promising feature of traffic
data is that it is highly correlated both temporally as well as
spatially. Therefore, several latent as well as correlated time-
series based models have been proposed that exploit this
nature of the traffic data. Recently, Deng et al. [4] proposed a
latent spatio-temporal model based on traffic snapshots of the
road crossing network. Inspired from social network models
[9], [17] where different actors have roles that evolve over
time, they similarly hypothesize that various road crossings
have certain latent traffic roles which change over time. They
treat the network partitions in every snapshot as roles and
also learn how role transitions occur between consecutive
snapshots in the form of a role transitionmatrix.

3.2 Tensors in Urban Computing

Given the spatial-temporal dynamics in cities, tensorial analy-
sis attracted more attention in the field of urban informatics.
Zheng et al. highlighted the importance of using tensors in
this area in their insightful review [28] on the recent research
and challenges at the convergence of city science and urban
computing using human mobility data. Others used tensorial
formulation to address different problems, varying fromnoise
pollution prediction [29], and gas station recommendation

Fig. 1. Tensor factorization model for multiple temporal snapshots of
speed matrices and illustration of the learning process for predictions.
First the tensor GG is decomposed into three factor matrices A;B and C,
then Cnew is obtained from C via an autoregressive model in which the
weights are learned, and finally the predicted GGnew ¼ ½½A;B;Cnew��.
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[18], to modeling urban refueling events [26] by adapting
Tucker tensor decomposition to capture contextual features.

Moreover, researchers used tensor formulation to study
and characterize human mobility in the city. Fan et al. [6]
used Non-negative Tensor Factorization (NTF) with spatial
regularization to model people’s flow in the city. The algo-
rithm decomposes people flow tensor into basic life pattern
tensors, in order to capture real-world human mobility. The
tool was used to quantify the fluctuation of urban mobility
before and after the Great East Japan Earthquake in 2011.
Moreover, Tan et al. [21] showed the efficiency of using ten-
sor-based methods, and the authors integrated Tucker
decomposition and EM algorithm to infer the missing val-
ues. Their experiments demonstrated superior performance
than the state-of-the-art imputation approaches even when
the missing ratio is up to 90 percent. Another research study
by Takeuchi et al. [20] showed the use of a Non-negative
Multiple Tensor Factorization algorithm to capture and
reveal spatio-temporal patterns of peoples’ daily routines
such as leisure, drinking, and shopping activity from online
review data sets. Similarly, Han et al. [8] proposed the use
of non-negative tensor decomposition to identify spatial-
temporal patterns of traffic. The study has shown the use-
fulness of tensorial decomposition techniques for multivari-
ate data sequences.

4 PROPOSED METHODOLOGY

Let GG be a three-way tensor of size N �N � T , and assume
its rank is R. With perfect data, i.e., data with no missing
values, the tensorial decomposition of GG is defined by factor

matrices A 2 RN�R, B 2 RN�R and C 2 RT�R and denoted
as GG ¼ ½½A;B;C��, such that

GGijt ¼
XR
‘¼1

Ai‘Bj‘Ct‘; (2)

for all 1 � i; j � N and 1 � t � T , see Fig. 1.
This special tensorial decomposition has been discovered

and named by many researchers independently, such as
CANDECOMP (canonical decomposition) and PARAFAC
(parallel factors), which preserves the uniqueness under
some mild conditions [14].

Remark 1. The rank R of the tensor GG is defined as the mini-
mal number of rank-1 tensors whose linear combination
yields GG, i.e.,

GG ¼
XR
‘¼1

a‘ � b‘ � c‘; (3)

where a;b and c are column vectors of the factor matrices
A;B and C, respectively. Here, � denotes the standard
outer product. Contrary to the case of matrices, the rank
of a tensor is presently not well understood. It is known
that the problem of computing the rank of a tensor is
NP-hard.

For traffic data obtained from stationary and mobile
sensors, missing values are unavoidable due to failures
such as detector malfunction. Therefore, the true GG is not
observable and we cannot expect equality in (2). Instead,

the CP decomposition should minimize the error function as
follows:

min
A;B;C

EEðGG k A;B;CÞ¼
XN
i;j¼1

XT
t¼1

GGijt �
XR
‘¼1

Ai‘Bj‘Ct‘

 !2

:

Unlike the singular value decomposition (SVD) for matri-
ces, PARAFAC (usually) does not impose any orthogonality
constraints. The two main competitors of PARAFAC are the
Tucker3 method [13], and simply the unfolding of the tensor
into amatrix and thenperforming standard two-waymethods
such as PCA. The alternating least-squares framework is used
to solve theCP approximationproblem. It proceeds by solving
a sequence of structured linear least squares problems.

Remark 2. Modern applications, such Intelligent Transporta-
tion Systems, generatemassive amounts of datawithmulti-
ple aspects such as sparsity and high dimensionalities; and
tensors provide a natural representation for such data. Con-
sequently, tensor decompositions have become important
tools for analysis. Given a high-order large-scale tensor,
how can we decompose it into latent factors in a scalable
manner? In a recent work [19], the authors propose Coordi-
nate Descent for Tensor Factorization, which is more mem-
ory efficient and applicable to more loss functions; and
Subset Alternating Least Square, which converges faster to
a better solution. These distributed tensor factorization
methods are scalable with all aspects of data. Moreover,
there have been attempts to improve the accuracy and effi-
ciency of the decomposition by encoding prior knowledge
of the application, and using additional contextual informa-
tion (such as time and location), as a regularization term in
the objective function.

Our approach to deal with missing values is to use a
weighted version of the error function to ignore missing
data and model only the known entries.

Definition 1. We define the nonnegative binary weight index
tensorWW, of the same size as GG, as a 0–1 tensor, which indicates
whether entries of GG are missing or not, i.e.,

WWijt ¼
1 if GGijt is known ;
0 if GGijt is missing (or unknown) :

�
(4)

Therefore the weighted version of the error is

min
A;B;C

EEWWðGG k A;B;CÞ ¼ kWW 	 GG � ½½A;B;C��ð Þk2;

where 	 represents the Hadamard product, i.e., point-wise
multiplication. By minimizing the objective function, we
can get optimized A;B and C. Now, we can recover the
missing values in GG by

GGrecovered  ĜG ¼ ½½A;B;C��: (5)

Remark 3. If we restrict the core-array of the Tucker model
to be diagonal with values one in the diagonal elements,
we arrive at the CP model which has (in general) a
unique minimizer of the cost function (up to scale and
permutation of the components), in contrast to the Tucker
model.
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We can then solve

min
A;B;C

EEWWðGG k A;B;CÞ þ RRsðA;BÞ þ RRtðCÞ; (6)

where the spatial regularizer is

RRsðA;BÞ ¼ aaTraceðATL AÞ þ ba

2
kAk2F

þ abTraceðBTL BÞ þ bb

2
kBk2F : (7)

Here L 2 RN�N is the graph Laplacian of the road network.
This will allow embedding the spatial structure of the road
network into the formulation. It is clear that the choice of the
Frobenius norm only is not appropriate, as it does not take
into account the dependencies among the columns of the fac-
tormatrices. Hence, it is important to impose prior knowledge
of the application, such as spatial dependencies of the road
network, into the learning algorithm. The Frobenius norm or
Tikhonov-type regularization makes the learning algorithm
numerically stable, since the sizes of the elements of the factor
matrices become bounded. The penalty parameters are aa;b

and ba;b. Therefore, the matrices A and B may be considered
as representing the spatial latent factors, whereas thematrixC
corresponds to the latent temporal embedding.

As for the temporal regularizer RRtðCÞ, one of the basic
and common ideas is to do a graph-based regularization for
temporal dependencies, i.e., to incorporate general depen-
dencies among temporal variables and to make the latent
representations of the two entities as close as possible if there
exists a relationship between them, i.e., an edge in the tem-
poral graph, see Fig. 2. Assume that there exists a temporal

graph GGc ¼ ðVVc; EEcÞ, whose adjacency matrix WGGc 2 RT�T

encodes the relationships between the T columns of �C ¼ CT .

Therefore, two columns of �C, e.g., �cs and �ct of size R,
which are connected by an edge in this temporal graph, are
said to be “close” to each other in terms of the euclidean dis-
tance, and hence temporally dependent, see Fig. 3.

Remark 4. We use �C ¼ CT for clarity purposes. This does
not affect the mathematical formalism. In so doing, a row
in �C, i.e., cTi for i ¼ 1; . . . ; R, represents a time-series.

In the context of graph-based embedding, temporal regu-
larization is achieved by including the following regularizer
as part of the objective function

RRcðCÞ ¼
ac

2

X
s
t

wstk�cs � �ctk2 þ
h

2
kCk2F ;

¼ acTraceðCTLapGGcCÞ þ
h

2
kCk2F ; (8)

where s 
 t denotes an edge between the sth node and the
tth node, whose weight is wst, and the second term is used
to guarantee a strong convexity. This regularizer makes the
temporal variable C to be faithful to the underlying tempo-
ral graph structure. The matrix LapGGc 2 RT�T is the graph
Laplacian associated with GGc and is defined as

LapGGc ¼ diagðWGGc11Þ �WGGc ; (9)

where 11 is the vector of all ones of size T .

Lemma 1. The objective function in (8) is convex.

To apply graph-based regularizers to temporal depen-
dencies, we need to specify the repeating dependency pat-
tern by a lag set L and a weight vector w such that all the
edges s 
 t of distance ‘, i.e., js� tj ¼ ‘, share the same
weight w‘. Therefore, given L and w, the temporal regular-
izer (8) becomes

RRcðCÞ ¼
ac

2

X
‘2L

X
t

t> l

w‘k�ct � �ct�‘k2 þ
h

2
kCk2F : (10)

While this graph-based regularization approach is intui-
tive, the explicit temporal dependency structure is usually
not readily available. Therefore, one could try to learn this
structure, i.e., the unknown weights wl. This leads to the fol-
lowing optimization problem

min
A;B;C;w�0

EEWWðGG k A;B;CÞ þ RRsðA;BÞ

þ ac

2

X
‘2L

X
t

t> ‘

w‘k�ct � �ct�‘k2 þ
h

2
kCk2F :

(11)

While this formulation is common and widely used, it
does have some issues. First, the method does not handle
cases where negative correlation dependencies exist
between two time points. Second, the method assumes that
the structure of the temporal dependency is available, which
is not the case in real-life applications. Indeed, most often,
the explicit temporal dependency needs to be inferred.
Moreover, a simple derivation of Equation (11) with respect
to w shows that the above optimization yields the trivial all-
zero solution for w. Even, by adding an additional con-
straint, such as a simplex constraint on w, there is a trivial
solution. Therefore, learning the weights for the temporal
dependencies is a challenging problem, and cannot be
obtained simply by a mere addition of a regularizer into the
error minimization.

Fig. 2. Illustration of the graph-based regularization of temporal depen-
dencies. Each node represents a column vector of �C ¼ CT , and an edge
between two nodes represents the temporal dependency. The weights
of the edges will be learned. In this example, L ¼ f1; 4g. Fig. 3. The matrix �C captures the latent temporal variables. Each row

represents a time-series. The forecasted �Cnew is obtained via an AR
algorithm using a temporal graph where the weights are learned.
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Therefore, we use well-studied time-series models to
describe temporal dependencies among the columns f�ctg
explicitly. Such models are of the form, see e.g., [25]

�ct ¼MMQQ f�ct : ‘ 2 Lgð Þ þ eet; (12)

where eet is a noise vector, assumed to be Gaussian here, and
MMQQ is the time-series model which is parameterized by the
set L containing the lag indices ‘, denoting a dependency
between time-points �ct and �ct�‘, and QQ which captures the
weight information of temporal dependencies, similar to a
transitionmatrix in autoregressivemodels.

To incorporate the temporal dependencies in (6), we use a
new (temporal) regularizer TT MMð�C j QQÞwhich encourages the
structure induced by the time-series modelMMQQ. This regular-
izer is obtained from the general problem of maximizing the
likelihood of parameters, given the data. Therefore, to esti-
mate its parameters, we run a grid search over possible values
to find the set of values for which the observed sample was
most likely. That is, we find the set of parameter values that,
given the modelMMQQ, were most likely to have given us the
observed data. In other words, we want to know the distribu-
tion of the unknown parameters conditional on the observed
data, i.e., pðModel jDataÞ, which is known as the inverse prob-
ability problem. This cannot be calculated, so we go around it
through the concept of the likelihood. And to get a convex
function,we use the negative log likelihood, i.e.,

TT MMð�C j QQÞ ¼ �logPð�c1;�c2; . . . ;�cT j QQÞ: (13)

The question is how canwe estimate the parameters when
we cannotmaximize the likelihood analytically? To do so, we
need to (1) be able to evaluate the likelihood function for a
given set of parameters; and (2) find a way to evaluate a
sequence of likelihoods conditional on difference parameter
vectors so that we can feel confident that we have found the
parameter vector that maximizes the likelihood. In this case,
Grid Search, i.e., to divide the range of parameters into a grid
and evaluate all possible combinations, is a method which
guarantees finding the global optimum. With a fine enough
grid, Grid Search always finds the global optimum, if the
parameter space is bounded. However, it may be computa-
tionally infeasible for models with large number of parame-
ters. Among the methods to solve this issue, one can cite the
steepest ascent method, which is feasible for models with a
large number of parameters; but can be hard to calibrate even
for simple models to achieve the right rate of convergence.
Another method is Newton-Raphson, which is similar to
steepest ascent, but also computes the step-size which
depends on the second derivative. It usually converges faster
than steepest ascent, but it requires concavity, and so it is less
robust when the shape of the likelihood function is unknown.

When QQ is known, we can use RRcðCÞ ¼ TT MMð�C j QQÞ to
encourage f�ctg to follow the temporal dependency induced
byMMQQ; and when QQ is unknown, we learn it by treating it
as another set of variables and introduce another regularizer
RRuðQQÞ into (6), that is

min
A;B;C;QQ

EEWWðGG k A;B;CÞ þ RRsðA;BÞ þ �cTT MMð�C j QQÞ

þ �uRRuðQQÞ;
(14)

which can be solved by an alternating minimization proce-
dure over A;B;C and QQ.

Unlike the case of using directly a graph-based regularizer
to embed the temporal dependencies, as in Equation (11),
which leads to trivial solutions for the weights, the formula-
tion (14) avoids this issue.WhenA;B andC are fixed, the opti-
mization problem is reduced to

min
QQ

�cTT MMð�C j QQÞ þ �uRRuðQQÞ; (15)

and therefore the set of parameters QQ can be learned auto-
matically from the data. This is a data-driven approach to
learn the temporal dependency, and obtain non-trivial QQ, as
shown in [25].

We show in what follows how the general temporal regu-
larizer TT MMð�C j QQÞ, which incorporates dependencies speci-
fied by the time-series modelMMQQ, could be instantiated to
the more specific case of an autoregressive (AR) model,
which is parametrized by a lag set L and the weights
WW ¼ fWð‘Þ 2 RR�R : ‘ 2 Lg. Assume that �ct 2 RR is a
noisy linear combination of some previous points, i.e.,

�ct ¼
X
‘2L

Wð‘Þ�ct�‘ þ eet; (16)

where eet is assumed to be aGaussian noise, see Equation (12).
Here, the main challenge is to learn the weight matrix
Wð‘Þ associated with each ‘ 2 L. To avoid overfitting, Wð‘Þ is
assumed to be a diagonal matrix. Algorithm 1 details the
procedure.

Algorithm 1. LearnWeight

1: �C TransposeðCÞ " �C 2 RR�T

2: procedure ½W� ¼ LearnWeightð�C;LÞ
3: T ¼ sizeð�C; 2Þ
4: m ¼ maxfLg
5: idx ¼ ðmþ 1Þ :T " interval
6: W ¼ ½ � " Initialize the matrixW to zeros
7: for r 1; R do
8: x ¼ �Cð:; rÞ " rth column of the matrix �C
9: y ¼ xðidxÞ
10: X ¼ ½ � " Initialize the matrix X to zeros
11: for i 1; sizeðLÞ do
12: ‘ ¼ LðiÞ
13: Xð:; iÞ ¼ xðidx� ‘Þ
14: end for
15: w ¼ ðXTXþ �wIÞ

�1
XTy " rth column ofW

16: W ¼ ½W;w�
17: end for
18: end procedure

This algorithm learns the weights of the temporal graph,
given the matrix C and the lag set L. We use ridge regres-
sion to avoid potential singularity of ðXTXÞ. We can also use
LASSO, or Elastic Net to learn the weights. However,
numerical experiments show that it is sufficient to use Ridge
Regression. This algorithm is very efficient and its cost is
essentially the cost of a ridge regression per iteration, i.e., R
times the cost of a ridge regression. In Matlab, the inversion
is simply done by the backslash operator.

The choice of the lag set L is flexible, and since the
weights are learned, L can be chosen to be discontinuous (if
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domain knowledge is included such as periodicity and/or
seasonality); or very large to account for long range depen-
dencies. The model is explainable, and the temporal graph
dependency gets sparsified when using LASSO.

5 PREDICTION

In this section, we present the autoregressive procedure
used to allow multi-step forecasting using time regularized
tensor decomposition (see Algorithm 2). The main idea is to
learn the weights of the lag set in the graph-based temporal
dependencies by using Algorithm 1, and then use them in
the prediction procedure. The (vector) autoregressive model
is one of the most successful, flexible, and easy to use mod-
els for the analysis of multivariate time-series.

Algorithm 2. Forecast

1: �C TransposeðCÞ
2: procedure ½�Cnew� ¼ Forecastð�C;L;W; hopeÞ
3: T  sizeð�C; 2Þ
4: �X ½�C; 0� " 0 2 RR�hope

5: for t ðT þ 1Þ; ðT þ hopeÞ do
6: �Xð:; tÞ  

X
‘2L

Wð:; ‘Þ 	 �Xð:; t� ‘Þ

7: end for
8: �Cnew  �Xð:; ðT þ 1Þ : endÞ
9: end procedure
10: Cnew  Transposeð�CnewÞ
11: GGnew ¼ ½½A; B; Cnew��

Remark 5. Therefore, the main ideas are: (1) get the factors
matrices A;B and C from the regularized tensor factoriza-
tion of GG (regularized CP-WOPT); (2) learn the weights of
the temporal graph (data-driven approach); (3) get Cnew

from C by auto-regression (using the weighted temporal
graph); and finally (4) forecast: GGnew ¼ ½½A; B; Cnew��.

Since the weight matrix Wð‘Þ is diagonal, the matrix-vec-

tor product Wð‘Þ�ct�‘ is efficiently computed by using the
Hadamard product, represented by the symbol 	.

6 EXPERIMENTS

In this section, we describe the experimentation setting and
discuss results achieved by three different algorithms against
our TRTF (Temporal Regularized Tensor Factorization). Two
of the baseline algorithms are based on matrix factorization
that use different ways to represent speed information. LSM-
RN (Latent Space Road Network) captures speed data into T
snapshots of N �N matrices where each cell stði; jÞ reports
the speed observed in the road segment linking i to j at time t
[4]. TRMF (Temporal RegularizedMatrix Factorization) uses a
matrix in which rows are road segments and columns are
timestamps, i.e, each row is the time-series of speeds of a par-
ticular road segment [25]. The third baseline is CP-WOPT

(Weighted Optimization), which is the state of the art method
for tensor decompositionwithmissing data [1].

We evaluate the four algorithms on two real datasets of
speed readings observed in road networks of two cities. The
evaluation concerns two tasks: (1) missing value completion
and (2) forecasting of future values. In addition to their

general accuracy, we are interested in how different
algorithms perform in the two scenarios of rush-hour (e.g.,
7am–8am) versus non-rush hour (e.g., 10am–11am). All
reported results are averages of several runs on four weeks
of data.

6.1 Traffic Datasets

We use real traffic data from two different cities, namely (1)
Aarhus in Denmark as a mature and developed Northern
European city, and (2) Doha in Qatar as one of the most fast
growing cities in the world that suffers a huge congestion
problem due to its extra-ordinary yearly population growth
(�10%).

6.1.1 Aarhus

This data is part of Aarhus smart city project and has been
made available for download via CityPulse Project Portal,1

see [12]. The data is used for various traffic analytics such as
day-to-day developments of roadworks, major changes, and
abnormal events. Data is collected from 126measuring points
using Bluetooth sensors on selected stretches in the munici-
pality of Aarhus. By looking at the time it takes for a car to
drive from one measuring point to the next, its speed is com-
puted based on the distance and travel time. Speed time-series
are then aggregated at five-minutes granularity. In this study,
we use the chunk of data captured between February 2014
andMarch 2014. The fraction ofAarhus roadnetwork covered
by the data is modeled as a directed graph consisting of 136
nodes (junctions) and 443 edges (road segments) in two peri-
ods, the first period spans between February 13th, 2014 to
June 09th, 2014 and the second period spans between August
1st, 2014 to September 30th, 2014 see Fig. 4a.

The number of speed readings captured in this dataset is
20,402,174. Only 2,055,404 speed readings are missing from
5 minutes-granularity time-series of all road segments. This
represents approximately 10 percent of missing values.

6.1.2 Doha

The data is provided by the QatarMobility InnovationCenter,
a local company that deployed different types of traffic sen-
sors and mobile applications to monitor the traffic and mobil-
ity in the city. The data consist of two files: one for the details
of the road network such as IDs of road segments, their start
and end points as geographic coordinates, and length of the
segments; and the second file contains timely speed readings
for a subset of segments. As one would expect, the data is far
from being complete. Many road segments lack readings, and
there is a high variability in the completeness of the speed
time-series of different road segments. That is, the percentage
of missing values varies a lot from a road segment to another,
depending on its importance in the city traffic, its proximity to
the city center, the presence of sensors, the network coverage,
and many other parameters. Given the nature of the data
sources used by the company (few Bluetooth sensors), it is
often the case that there is not enough information to calculate
speeds for all road segments. Thus, we observe a very high
rate ofmissing values reaching up to 99 percent in some cases.
The part of Doha’s road network covered by the dataset

1. http://iot.ee.surrey.ac.uk:8080/datasets.html
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consists of 979 road segments out of which only 512 have at
least one speed reading in the period spanning January 1st,
2015 00:00 to January 31st, 2015 23:59. The total number of
speed readings is 3,574,497 which represent 15.6 percent of all
possible 22,855,680 readings of the complete minute-level
time-series for all road segments. The othermajor challenge of
this dataset is the low connectedness of segments that have
speed readings, i.e., the sparsity of the dataset see Fig. 4b.

6.1.3 Some Remarks Regarding the Datasets

It is important to notice that the two datasets show a
completely different set of properties. First, the fraction of
missing values in Doha is 96 percent whereas Aarhus suffers
10 percent missing values. This could have a significant
impact on the quality of different algorithms. Second, because
of the high level of data sparsity in Doha, the segments for
which speed readings are available are weakly connected in
the road network–modeled as directed graphs–i.e., the adja-
cency matrix of the dual road network graph is very sparse.
This is another challenge that could presumably make it diffi-
cult to effectively learn the role of spatial properties in speed
inference. In sum, we believe that having access to those
two different types of real datasets is a good opportunity to
understand how different methods respond under different
circumstances.

6.2 Evaluation Metrics

Based on our literature review, we found that it is common to
use different metrics to evaluate the quality of both missing
value completion and forecasting accuracy in the context of
traffic prediction [4], [25]. Thus, we report the results of the
four algorithms based on the following metrics: Mean Abso-
lute Percentage Error (MAPE), Root Mean Square Error
(RMSE), Normalized RMSE, and Normalized Deviation
(ND), each of which captures a different aspect of the quality
and accuracy of the results. Definitions of the usedmetrics are
given below.

MAPE ¼ 1

N

XN
i¼1

kyi � ŷik
kyik

(17)

ND ¼ 1

N

XN
i¼1
kyi � ŷik=

1

N

XN
i¼1
kyik (18)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1
kyi � ŷik

2

vuut (19)

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1
kyi � ŷik

2

vuut =
1

N

XN
i¼1
kyik: (20)

6.3 Missing Value Completion

We first report the completion accuracy of different algo-
rithms under different percentages of missing values {10,
30, 50, 70, 90 percent}. Given the fact that the input tensors
are sparse and comprise lots of missing values, the percen-
tages we are testing with are relative to the known values.

The overall results with the best parameters for each data-
set and each evaluation metric are reported in Table 1. For a
close inspection, we report in Fig. 5 MAPE scores achieved by
different methods in Aarhus (Fig. 5a) and Doha (Fig. 5b.)
Among all algorithms, LSM-RN is the worst, especially in the
cases where the data is very sparse. TRTF outperforms all
methods in the case of Doha where we get a noisy and sparse
data comparing to Aarhus, this later makes it difficult to other
methods to correctly learn the latent space features. This is
especially true in the case where only 10 percent of data is

TABLE 1
Results for Missing Value Completion Obtained Across

Eighteen Hours Tensors (6 am to 12 am) Averaged Over Five
Working Days of Three Weeks for Both Aarhus and Doha

Aarhus Doha

Mis% nd nrmse rmse mape nd nrmse rmse mape

LSM-RN

10% 0.430 0.550 23.590 55.260 0.480 0.570 24.260 46.990
30% 0.550 0.680 29.360 60.720 0.530 0.630 26.730 50.970
50% 0.680 0.800 34.760 69.520 0.590 0.700 30.630 56.090
70% 0.790 0.900 39.100 78.500 0.700 0.810 35.690 65.150
90% 0.890 0.990 42.680 87.030 0.890 0.990 42.920 86.200

TRMF

10% 0.144 0.209 9.040 18.300 0.353 0.472 18.820 39.040
30% 0.155 0.215 9.270 19.440 0.388 0.515 20.548 42.220
50% 0.155 0.223 9.589 20.340 0.424 0.560 22.298 45.700
70% 0.159 0.229 9.829 21.060 0.463 0.603 24.049 49.340
90% 0.165 0.229 9.848 21.060 0.504 0.656 26.137 53.300

CP-WOPT

10% 0.143 0.210 9.423 19.838 0.190 0.254 10.091 29.217
30% 0.149 0.217 9.731 21.381 0.195 0.262 10.481 30.291
50% 0.159 0.242 10.825 23.217 0.203 0.275 10.976 30.717
70% 0.183 0.275 12.304 26.624 0.235 0.333 13.264 33.558
90% 0.242 0.359 16.062 33.875 0.724 1.063 42.391 76.682

TRTF

10% 0.141 0.200 8.966 19.756 0.185 0.244 9.677 28.618
30% 0.148 0.209 9.349 21.333 0.187 0.247 9.891 29.185
50% 0.154 0.219 9.805 22.662 0.192 0.255 10.181 29.492
70% 0.169 0.245 10.969 25.196 0.194 0.261 10.410 29.905
90% 0.212 0.296 13.248 32.562 0.243 0.335 13.364 34.082

Fig. 4. Google Maps screenshots of the cities of Aarhus (left panel) and
Doha (right panel). We highlight the main roads with their associated
congestion level at the time of the creation of the images. The scale is
provided in the bottom-right of the two images.
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available and in which TRTF clearly outperformed by far all
other methods achieving a MAPE score of 34 percent
against 53.3 percent for TRMF, 76.6 percent for CP-WOPT,
and 99.9 percent for LSM-RN. The same trends can be seen for
all othermetrics in tablesAarhus (Table 1) andDoha (Table 1).

On the contrary, in the case of dense road network
graphs and complete data, LSM-RN seems to slightly out-
perform our method. This indicates that in such scenarios,
LSM-RN is able to accurately learn the spatial and temporal
properties on the traffic phenomena.

6.3.1 Rush Hour Versus Non Rush Hour

Next, we investigate the accuracy ofmissing value completion
in two different timewindows, known to have different traffic
dynamics: rush hours (congestion) and non rush hours (free
flow). We choose the time window between 7 am to 8 am to
represent the rush hour scenario and the one from 10 am to
11 am to represent the non rush hour scenario. Fig. 6 plots the
results (MAPE scores) for the case of 10 percent missing val-
ues. The full set of results is reported in Table 2. Once again,
our method TRTF, in most cases, outperforms other methods
for both cities (Aarhus and Doha) and both cases (rush hour
and non rush hour). While the difference between TRTF and
CP-WOPT in the case of Aarhus (Fig. 6a) seems narrow in that
TRTF achieves only 3 percent improvement over CP-WOPT,
the difference is much significant in the case of Doha where
TRTF achieves over 9 percent improvement compared to the
second bestmethodCP-WOPT. Thismeans, that in the extreme

cases of missing values and disconnected networks, the use of
both temporal and spatial properties leads to lower errors
compared to cases where only temporal properties are
learned. Another interesting observation is that TRMF

completely degenerated in completing missing values for
Doha, especially in the case of non-rush hour, which could be
explained by the low effectiveness of this method in case of
large amount of missing values. Last, with an exception of
TRMF, we see from this experiment that all three methods
TRTF, CP-WOPT, and LSM-RN have had better completion
scores in the case of non-rush hours compared to rush hours.
The difference in gain is specifically noticeable for CP-WOPT
and TRTF. This leads to the fact that traffic dynamic is more
predictable in free-flow scenarios.

6.3.2 Weekly Patterns of MAPE Scores

As seen in the previous section, we demonstrated the effec-
tiveness of TRTFmethod in general and in specific scenarios
of rush and non rush hours. We plot in Fig. 7 the heatmaps
of typical MAPE scores achieved by TRTF through-out a
week. Note that we are only interested in the five working
days in each city (Monday through Friday in Aarhus and
Sunday through Thursday in Doha). For each day, we only
report for the 18 hours in which it makes sense to monitor
the traffic, i.e., from 6am to 12am. In the heat-maps, rows
represent days of the week and columns represent hours of
the day. Each cell reports the average level of MAPE error
observed on a typical hour of that day (e.g., the typical level
of error made at any Tuesday 9 am). Due to space limitation,
we only plot heat-maps for our method. Unsurprisingly, the
scores for Doha are noticeably higher than those for Aarhus
which could be explained by the quality of the different
datasets. Doha shows two distinguishable periods in which

Fig. 5. MAPE scores for different percentages of missing values.

Fig. 6. MAPE results for completion of (10 percent) missing values in
rush versus non rush hours. Note that the scales are different.
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TRTF does not perform well. These periods correspond to
the morning (7 am and 8 am) and evening (5 pm and 6 pm)
commutes. In Aarhus, the general trend suggests that the
method down-perform in the morning period (6 am to
12 pm), then things slowly improve in the afternoon and
evening. This plot is particularly important in that it shows
that completion error is never uniform through-out hours
and days, especially when dealing with complex phenome-
nas like traffic. Thus, it is important to train different set of
parameters for different relevant temporal segments.

6.4 Forecasting Evaluation

In this set of experiments, we evaluate the quality of differ-
ent methods in predicting future speed values of the road
network in Aarhus and Doha. The two main parameters for
all methods are (1) the horizon (h) which is the number of
steps-ahead to predict and (2) the size of the training win-
dow. For the three methods CP-WOPT, TRMF, and TRTF that
use auto-regression, we also vary the size of the lag set. Due
to space limitation, we only report a subset of results
obtained. The same trends are applicable to all other cases.

As an illustrative example, we assume a case in which we
know the traffic status in each city up to 7 am (t), and try to
predict the speeds beyond, i.e., at ftþ 1; tþ 2; . . . tþ 12g
each step correspond to a horizon of 5 minutes. Fig. 8
reports the MAPE scores of different methods in prediction
speeds at different horizons between 7:05am and 8am. The

training set is fixed to 30 minutes before 7am (data from
6:30am to 7am) and the size of the lag set is 6. As one would
expect, the general trend is that the error increases as the
horizon increases which could be explained by the error
accumulation problem.

We observe that tensor-based methods (CP-WOPT and
TRTF) that use autoregressive regularizer procedure outper-
form by far the matrix based methods LSM-RN& TRMF. This
demonstrates that a good incorporation of temporal proper-
ties into a simple tensor factorization algorithm, yields
remarkably good results compared to those achieved by
matrix-factorization methods (i.e., LSM-RN and TRMF). For
instance, in the case of lag 6 (Fig. 8a), we observe that the
gain in MAPE score of our method is about 23.65 percent
compared to LSM-RN and 28.96 percent compared to TRMF,
which is very significant. The reason for which TRTF is out-
performing CP-WOPT is that TRTF includes both a spatial
and a temporal regularizers that are not embedded in CP-

WOPT. These results are valid across different experimental
settings as shown in (Fig. 8b) and (Fig. 8c).

Next, we investigate the impact of the lag set size on the
accuracy of TRTF forecasting. We report in Fig. 9 the average
MAPE scores observed in horizon bins of 15 minutes. We
vary the size of the lag set that we assume is continuous, tak-
ing values in {4, 6, 12}. Interestingly, we find that the accuracy
of the predictions are much better in the case of Aarhus com-
pared to Doha. This is probably due to the quality of the data
and the connectedness of the road network. In the case of Aar-
hus (Fig. 9a), we found that a lag of 6 yields better results;
whereas inDoha, the best lag size turned to be 4.

6.5 Time Performance

We report in Table 3 the performance results of different
methods observed in the training phase of the missing value
completion task. We see that TRMF has similar running time
for both Aarhus and Doha datasets. On the other hand, CP-
WOPT and TRTF are one order of magnitude faster in the
case of sparse data (Doha), and become slower for bigger
datasets. This behavior is observed in tensor-factorization-
based methods as well. LSM-RN on the other side requires
much more time to learn the spatio-temporal properties

Fig. 7. Weekly heatmaps of MAPE scores achieved by TRTF in Aarhus
and Doha in case of 10 percent missing values.

TABLE 2
Aarhus and Doha Results in

Rush and Non Rush Hour Scenarios

Mis(%) Aarhus Doha

Rush hour Non rush Rush hour Non rush

ND MP ND MP ND MP ND MP

LSM-RN

10% 0.440 59.290 0.420 50.410 0.480 50.270 0.480 46.850
30% 0.550 60.400 0.550 62.030 0.540 56.130 0.530 51.720
50% 0.670 68.330 0.680 71.350 0.610 57.630 0.620 57.640
70% 0.780 76.850 0.790 79.810 0.740 66.940 0.740 68.090
90% 0.880 86.100 0.890 88.090 0.910 86.800 0.910 88.340

TRMF

10% 0.181 25.100 0.187 25.600 0.668 73.700 0.970 96.500
30% 0.210 28.801 0.221 31.100 0.735 83.200 0.936 99.200
50% 0.229 31.100 0.234 33.400 0.746 84.000 0.907 95.300
70% 0.269 36.800 0.268 38.500 0.704 79.700 0.862 91.600
90% 0.289 39.500 0.277 38.700 0.710 80.800 0.819 88.000

CP-WOPT

10% 0.148 23.900 0.142 20.800 0.241 38.000 0.175 24.500
30% 0.154 25.500 0.143 21.600 0.270 39.500 0.166 23.000
50% 0.167 29.000 0.150 25.600 0.269 38.800 0.181 25.100
70% 0.196 36.201 0.162 25.800 0.327 45.700 0.216 27.600
90% 0.270 46.300 0.220 35.600 0.798 86.900 0.710 72.500

TRTF

10% 0.146 23.200 0.140 20.500 0.236 34.900 0.165 23.300
30% 0.154 24.800 0.141 21.700 0.249 37.900 0.165 23.100
50% 0.165 28.400 0.147 24.500 0.259 38.500 0.170 23.700
70% 0.183 32.800 0.158 25.700 0.275 41.000 0.169 23.200
90% 0.238 43.900 0.190 33.400 0.314 43.000 0.216 28.100

MP is used as an abbreviation for MAPE.
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than any other method, which is mainly due to the costly
phase of learning different matrices representing the attrib-
utes of the vertices of the road network.

6.5.1 Fit and Convergence

We finally discuss the convergence of our algorithm TRTF

in its best case scenarios. Convergence is captured here in
terms of number of iterations required to reach the conver-
gence criteria. In practice, we compute the fit score at each
iteration and declare convergence when the fit gets equal or
greater to 0.98, i.e.,

fit ¼ 1� ðjjGG � ĜGjj=jjGGjjÞ; (21)

where jjGGjj is the Frobenius norm of the three-way tensor of
speed values. Fit curves are reported in Fig. 10. We see that
our algorithm converges after 27 iterations only in the case
of Doha compared to 61 iterations for Aarhus. Time wise,
convergence happens within 4.30 seconds in Doha versus
112.9 seconds in Aarhus. This significant difference in time
is mainly due to the fact that tensors tend to be slower when
they are full.

6.5.2 New Set of Experiments

PeMS: to get access into the Freeway Performance Measure-
ment System (PeMS) database for California State, one would
need to apply for an account in the following URL: http://
pems.dot.ca.gov/?dnode=apply. One may learn more about
the PeMS in their FAQs section, i.e., http://pems.dot.ca.gov/?
dnode=Help&content=help_faq and in the User Manual in the
shared folder https://drive.google.com/open?id=1YYPsXz
wktNQetdsd7C0BhTiWNDyzN5R.

Fetching real-time feeds data from PeMS can be done via
FTP. We wrote a script that does the following:

Step 1 script logs in into PeMSusing login() function. Users
need to provide username and password in login();

Step 2 script reads station_ids.csv, where station_ids can be
retrieved from ’EXPORT TEXT’ button, see step2.
png example for LosAngelos;

Step 3 script goes through each ID in station_ids, and gen-
erates the URL to retrieve ID’s time series. The

Fig. 8. Forecasting results for predicting traffic beyond 7 am using a con-
tinuous lag set of sizes 6 for Aarhus (panels a) and 24 (panels b, c)
trained in windows of size 30 minutes and 2 hours respectively.

Fig. 9. Prediction error achieved byTRTFwith different sizes of continuous
lag sets, all trained in a two hours window.
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manual process for step 3 can be seen in step3-1.
png, step3-2.png, step3-3.png. The column headers
can be seen in script_result.png;

Step 4 repeat Step 3 for ID for the required number of days.
Some parameters which can be changed in prepare_res-

ponse() are root, weeks_to_read and start_time. We tried
different ways to obtain the adjacency matrix from the
PeMS website, with no success. So we contacted PeMS sup-
port to provide the adjacency matrix for some cities in the
database, but it seems road connections data is not publicly
available, and hence retrieving the adjacency matrix feature
is not readily available.

Therefore, it is important to find a different real traffic
dataset that can provide the -required- adjacency matrix.

UKDepartment of Transportation. UK government provides
a system to obtain Traffic flow time-series data, as well as
Road network in a .shp file. The time-series and the network
are in two separate systems, but they share the same road
IDs. We have written a code to form the adjacency matrix
from the .shp file, as well as link the IDs between the two sys-
tems, so that the time-series tensor is linked to the adjacency
matrix. The data and the network can be downloaded from
the below URLs: (1) Traffic flow Time-series data: http://
tris.highwaysengland.co.uk/detail/trafficflowdata; (2) road
IDs: http://tris.highwaysengland.co.uk/ConversionTable;
(3) England’s road network shapefile: https://data.gov.uk/
dataset/9562c512-4a0b-45ee-b6ad-afc0f99b841f/highways-
england-network-journey-time-and-traffic-flow-data. One
may use ArcGIS to view the .shp file. The data can be

downloaded via API or manually: (1) Webtris API: http://
webtris.highwaysengland.co.uk/api/swagger/ui/index#!/
Areas/Areas_Get_0; and (2) Webtris R Interface: https://
cran.r-project.org/web/packages/webTRISr/index.html.

Remark 6. We have developed a script to extract the Adja-
cency matrix from England’s road network; and we realized
that Working on the England dataset will require a lot of
time, and can be the scope of another paper. Therefore, we
decided to form the adjacencymatrices forDenmarkAarhus,
i.e., it is the same city as the earlier experiments, but with
more recent data, see Table 4. Thedataset 1, i.e., for theperiod
January-June 2014 was already done with good results; and
we wanted to run experiments on the new datasets, in order
to assess how the proposedmethodology performs.
It is clear that the proposed methodology competes with

other state-of-the-art algorithms (LSM-RN, TRMF), as well as
the baseline (CP-WOPT) on three real datasets, see Figs. 11,
12, 13, 14, 15 and 16. The flexibility of the proposed algo-
rithm TRTF can be noted when tested under different

TABLE 3
Comparing Running Times (in seconds) of the Four

Methods in the two Cities of Aarhus and Doha

Aarhus Doha

Mis(%) LSM-RN TRMF CP-WOPT TRTF LSM-RN TRMF CP-WOPT TRTF

10% 22.68 1.81 72.85 73.31 2.07 1.96 3.23 3.45
30% 25.08 1.47 48.33 48.74 1.93 2.04 2.52 2.37
50% 25.44 1.46 30.71 29.91 1.96 1.94 1.88 2.06
70% 26.88 1.43 11.71 11.95 2.1 1.91 1.47 1.75
90% 31.44 1.26 2.30 2.36 2.2 1.69 0.77 1.11

Fig. 10. Aarhus and Doha Fit curves for convergence of TRTF. Conver-
gence happens at the 27th iteration in the case of Doha versus 61st in
the case of Aarhus.

TABLE 4
Duration of Aarhus Datasets

Dataset 1 Jan. 2014 – June 2014 (6 months)
Dataset 2 Aug. 2014 – Sept. 2014 (2 months)
Dataset 3 Oct. 2014 – Nov. 2014 (2 months)
Dataset 4 Jauly 2015 – Nov. 2016 (17 months)

TABLE 5
Comparison Results for the Different Methods for the City of

Aarhus in Summer Time (August)

Mis(%) Aarhus

MP RMSE NSRMSE ND

TRTF

10% 26.2882 10.9853 0.23405 0.17067
30% 27 11.1041 0.23768 0.17388
50% 28.7722 11.5992 0.24789 0.18134
70% 29.8331 12.1604 0.26 0.19118
90% 35.6162 13.8344 0.29589 0.21929

CP-WOPT

10% 26.7094 11.1396 0.23729 0.173
30% 27.1077 11.2495 0.24083 0.17528
50% 28.1446 11.8353 0.25287 0.18243
70% 30.1609 12.6596 0.27075 0.19654
90% 36.396 18.1712 0.38771 0.25529

CP-NMU

10% 84.2773 42.3585 0.904 0.81786
30% 87.9959 44.5859 0.95373 0.86359
50% 92.8946 47.2519 1.0096 0.91704
70% 97.3607 49.7965 1.0641 0.96599
90% 99.6529 51.4831 1.1006 0.99476

CP-ALS

10% 79.6837 40.1664 0.85941 0.77166
30% 84.9157 42.8764 0.91719 0.83114
50% 90.3406 46.1207 0.98603 0.89406
70% 95.9838 49.2003 1.0528 0.95379
90% 99.5676 51.4104 1.0995 0.99387

MP is used as an abbreviation for MAPE.

2584 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

http://tris.highwaysengland.co.uk/detail/trafficflowdata
http://tris.highwaysengland.co.uk/detail/trafficflowdata
http://tris.highwaysengland.co.uk/ConversionTable
https://data.gov.uk/dataset/9562c512-4a0b-45ee-b6ad-afc0f99b841f/highways-england-network-journey-time-and-traffic-flow-data
https://data.gov.uk/dataset/9562c512-4a0b-45ee-b6ad-afc0f99b841f/highways-england-network-journey-time-and-traffic-flow-data
https://data.gov.uk/dataset/9562c512-4a0b-45ee-b6ad-afc0f99b841f/highways-england-network-journey-time-and-traffic-flow-data
http://webtris.highwaysengland.co.uk/api/swagger/ui/index#!/Areas/Areas_Get_0
http://webtris.highwaysengland.co.uk/api/swagger/ui/index#!/Areas/Areas_Get_0
http://webtris.highwaysengland.co.uk/api/swagger/ui/index#!/Areas/Areas_Get_0
https://cran.r-project.org/web/packages/webTRISr/index.html
https://cran.r-project.org/web/packages/webTRISr/index.html


settings, as each dataset is composed of complex features
which have effects on the traffic flow data. In fact, Aarhus,
between February to June is accustomed to foggy weather
with moderate rain as well as snowfall. These environment
conditions hinders visibility and influences the chance of an
accident, which toggles slower traffic flow. The warmer
periods in Aarhus, between August to September, are argu-
ably the busiest season for tourism. Routes near museums,
beaches, and shopping are expected to have heavier traffic,
while routes neighboring closed schools, due to vacation,
may be lighter. Also, due to Doha’s setting of rapid develop-
ment, road expansion works can be seen every single day.
Transforming roundabouts to intersections to bridges and

tunnels in a fast-paced city evolution is what the citizens have
experienced during recent years. Because of this unique setting,
state-of-the-art web mapping services such as finding shortest
travel time between two locations can be deemed unreliable
and out of date. Hence, traffic flow prediction on the city of
Doha can be of utmost challenge to algorithmpredictions.

Except for rush hours in Aarhus, in all other instances,
TRTF has lower MAPE scores than all other algorithms.
During rush hours in Aarhus, MAPE scores go up for TRTF
at 90 percent of missing values and TRMF performs better
than TRTF. On the other hand, TRMF seems to perform not
as well as other algorithms but MAPE scores go down as
the percentage of missing values increase. This can lead to
believe that TRMF is the least sensitive to the underlying
geography of the location; whereas LSM-RN, CP-WOPT and
TRTF perform worse as the percentage of missing values
goes up.

Fig. 11. MAPE scores generated from LSM-RN increase significantly
past 30 percent of missing values in the tensor. LSM-RN performs the
worst irrespective of the percentage of missing values. Across all values
of percentages of missing values, TRTF performs the best with the low-
est MAPE scores. TRMF and CP-WOPT perform optimally as well with
MAPE scores very close to those of TRTF at 10, 30, 50 and 70 percent
missing values. At 90 percent missing values, TRMF has a MAPE score
lower than TRTF and CP-WOPT. This, however, is only observed in this
instance out of all four instances.

Fig. 12. TRTF performs the best our of all four algorithms. It has lowest
MAPE scores at all five values for percent of missing values. All algo-
rithms except TRMF has a big spike in MAPE scores going from 70%
missing values to 90% missing values. CP-WOPT and TRTF perform
significantly better than all other algorithms at all percentages of missing
values. However, CP-WOPT has a much bigger change in MAPE scores
at 90% compared to TRTF. LSM-RN seems to have consistent increase
in MAPE scores as percent of missing values increases.

Fig. 13. Similar to the other instances, TRTF has the lowest MAPE
scores for all percentages of missing values. CP-WOPT performs almost
as well as TRTF but has a big jump at 90% missing values when com-
pared with TRTF. TRMF performs the worst but has a lower MAPE score
than LSM-RN and CP-WOPT at 90%missing values.

Fig. 14. The scores from all four algorithms follow a very similar trend as
the instance with Rush hours in Doha. TRTF performs better than all
other algorithms and has a much lower MAPE score at 90% of missing
values compared to the other algorithms.
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7 CONCLUSION

We presented in this paper TRTF, an algorithm for temporal
regularized tensor decomposition. We show how the algo-
rithm can be used for several traffic related tasks such as
missing value completion and forecasting. Our algorithms
incorporates both spatial and temporal properties into the ten-
sor decomposition procedure, thus learning better factors. We
also, extended TRTF with an autoregressive procedure to
allow for multi step-ahead forecasting of future values. We
compare our method to recently developed algorithms that
deal with the same type of problems using regularizedmatrix
factorization, and show that under many circumstances,
TRTF does provide better results. This is particularly true in
cases where the data suffers from high proportions of missing
values, which is common in the traffic context. For instance,
TRTF achieves a 20 percent gain in MAPE score compared to
the second best algorithm (CP-WOPT) in completing missing
values in the case of extreme sparsity observed inDoha.

As future work, we will first focus on adding non-nega-
tivity constraints to TRTF, although the highest fraction of
negative values generated by our method throughout all

the experiments did not exceed 0.7 percent. Our second
focus will be to optimize TRTF training phase in order to
increase its scalability to handle large dense tensors, and to
implement it on a parallel environment.

ACKNOWLEDGMENTS

The authors would like to acknowledge and thank Dr. Fethi
Filali from theQatarMobility InnovationCenter for providing
the data for Doha. They also thank the anonymous reviewers
for their careful reading of the manuscript and their many
insightful comments and suggestions. This work was con-
ductedwhile A. Sharma, T. Zanouda and J. Srivastavawere in
residence at theQatar ComputingResearch Institute.

REFERENCES

[1] E. Acar, D. M. Dunlavy, T. G. Kolda, andM. Mørup, “Scalable ten-
sor factorizations with missing data,” in Proc. SIAM Int. Conf. Data
Mining, 2010, pp. 701–712.

[2] C. Chen, J. Kwon, J. Rice, A. Skabardonis, and P. Varaiya,
“Detecting errors and imputing missing data for single-loop
surveillance systems,” Transp. Res. Rec.: J. Transp. Res. Board,
vol. 1855, pp. 160–167, 2003.

[3] C. Chen, Y. Wang, L. Li, J. Hu, and Z. Zhang, “The retrieval of
intra-day trend and its influence on traffic prediction,” Transp.
Res. Part C: Emerg. Technol., vol. 22, pp. 103–118, 2012.

[4] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu,
“Latent space model for road networks to predict time-varying
traffic,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 1525–1534.

[5] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link predic-
tion using matrix and tensor factorizations,” ACM Trans. Knowl.
Discovery Data, vol. 5, no. 2, 2011, Art. no. 10.

[6] Z. Fan, X. Song, and R. Shibasaki, “CitySpectrum: A non-negative
tensor factorization approach,” in Proc. ACM Int. Joint Conf. Perva-
sive Ubiquitous Comput., 2014, pp. 213–223.

[7] N. Gillis and F. Glineur, “Low-rank matrix approximation with
weights or missing data is NP-hard,” SIAM J. Matrix Anal. Appl.,
vol. 32, no. 4, pp. 1149–1165, 2011.

[8] Y. Han and F. Moutarde, “Analysis of large-scale traffic dynamics
in an urban transportation network using non-negative tensor
factorization,” Int. J. Intell. Transp. Syst. Res., vol. 14, no. 1, pp. 36–
49, 2016.

[9] K. Henderson et al., “RolX: Structural role extraction & mining in
large graphs,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 2012, pp. 1231–1239.

[10] M. G. Karlaftis and E. I. Vlahogianni, “Statistical methods versus
neural networks in transportation research: Differences, similari-
ties and some insights,” Transp. Res. Part C: Emerg. Technol.,
vol. 19, no. 3, pp. 387–399, 2011.

[11] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[12] S. Kolozali, M. Bermudez-Edo, D. Puschmann, F. Ganz, and
P. Barnaghi, “A knowledge-based approach for real-time iot data
stream annotation and processing,” in Proc. IEEE Int. Conf. Internet
Things, and IEEE Green Comput. Commun., and IEEE Cyber Phys.
Social Comput., 2014, pp. 215–222,

[13] P. M. Kroonenberg, Three-Mode Principal Component Analysis:
Theory and Applications, vol. 2. Leiden, Netherlands: DSWO Press,
1983.

[14] B. Kulis, M. Sustik, and I. Dhillon, “Learning low-rank kernel
matrices,” in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 505–512.

[15] D. Ni, J. D. Leonard, A. Guin, and C. Feng, “Multiple imputa-
tion scheme for overcoming the missing values and variability
issues in its data,” J. Transp. Eng., vol. 131, no. 12, pp. 931–938,
2005.

[16] QMIC, “Qatar traffic report for 2016,” Technical report, Qatar
Mobility Innovations Center, 2016. [Online]. Available: http://
www.qmic.com/news/qmic-launches-the-qatar-traffic-report-
for-201 6

[17] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling
dynamic behavior in large evolving graphs,” in Proc. 6th ACM Int.
Conf. Web Search Data Mining, 2013, pp. 667–676.

Fig. 15. During Rush hours: TRTF has the lowest MAPE score and thus,
performs better than all other algorithms. During non-rush hours: TRTF
seems to perform the best here as well. TRMF seems to worse during
non-rush hours, which is different from the other three algorithms which
seem to perform better during non-rush hours.

Fig. 16. Results from Aarhus seem to be different as compared to Doha.
TRMF performed worse for Doha than it did for Aarhus. TRMF seems to
perform well but it performs worse during non-rush hours which seems
like a frequent pattern across all instances.

2586 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

http://www.qmic.com/news/qmic-launches-the-qatar-traffic-report-for-201 6
http://www.qmic.com/news/qmic-launches-the-qatar-traffic-report-for-201 6
http://www.qmic.com/news/qmic-launches-the-qatar-traffic-report-for-201 6


[18] J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, “Inferring gas
consumption and pollution emission of vehicles throughout a
city,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2014, pp. 1027–1036.

[19] K. Shin, L. Sael, and U. Kang, “Fully scalable methods for distrib-
uted tensor factorization,” IEEE Trans. Knowl. Data Eng., vol. 29,
no. 1, pp. 100–113, Jan. 2017.

[20] K. Takeuchi, R. Tomioka, K. Ishiguro, A. Kimura, and H. Sawada,
“Non-negative multiple tensor factorization,” in Proc. IEEE 13th
Int. Conf. Data Mining, 2013, pp. 1199–1204.

[21] H. Tan, G. Feng, J. Feng, W. Wang, Y.-J. Zhang, and F. Li, “A ten-
sor-based method for missing traffic data completion,” Transp.
Res. Part C: Emerg. Technol., vol. 28, pp. 15–27, 2013.

[22] G. Tomasi and R. Bro, “Parafac and missing values,” Chemometrics
Intell. Laboratory Syst., vol. 75, no. 2, pp. 163–180, 2005.

[23] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2014, pp. 25–34.

[24] J.-R. Xu, X.-Y. Li, and H.-J. Shi, “Short-term traffic flow forecasting
model under missing data,” J. Comput. Appl., vol. 30, no. 4,
pp. 1117–1120, 2010.

[25] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularized matrix
factorization for high-dimensional time series prediction,” in Proc.
30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 847–855.

[26] F. Zhang, N. J. Yuan, D. Wilkie, Y. Zheng, and X. Xie, “Sensing the
pulse of urban refueling behavior:A perspective from taximobility,”
ACMTrans. Intell. Syst. Technol., vol. 6, no. 3, 2015, Art. no. 37.

[27] H.-S. Zhang, Y. Zhang, Z.-H. Li, and D.-C. Hu, “Spatial-temporal
traffic data analysis based on global data management using MAS,”
IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4, pp. 267–275, Dec. 2004.

[28] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
Concepts, methodologies, and applications,” ACM Trans. Intell.
Syst. Technol., vol. 5, no. 3, 2014, Art. no. 38.

[29] Y. Zheng, T. Liu, Y. Wang, Y. Zhu, Y. Liu, and E. Chang,
“Diagnosing new york city’s noises with ubiquitous data,” in Proc.
ACM Int. Joint Conf. PervasiveUbiquitous Comput., 2014, pp. 715–725.

Abdelkader Baggag is a senior scientist with the
Qatar ComputingResearch Institute, and an associ-
ate professor of data science at Hamad Bin Khalifa
University, where he teaches advanced Machine
Learning. His research focuses on developing data-
driven models for finding patterns in complex data
(mobility and health data) and implementing these
methods in high-performance solutions, in particular
multidimensional data and sequence of states data
to support domain experts in traffic using sensors
data, and eHealth for analyzing large-scale wear-

able sensor signals. His expertise is machine learning, representation learn-
ing, temporal causal modeling, artificial intelligence for health and mobility
analytics, andmissing data imputation.

Sofiane Abbar is a researcher and senior software
engineer with the Social Computing Department,
Qatar Computing Research Institute, Hamad Bin
Khalifa University. His research interests include
social computing, machine learning, and data-
driven approaches for urban analytics.

Ankit Sharma is currently working toward the PhD
degree in theComputerScienceDepartment,Univer-
sity of Minnesota, Minneapolis. He was a research
associate with the Social Computing Department,
Qatar Computing Research Institute, Hamad Bin
KhalifaUniversity, when thisworkwas conducted.

Tahar Zanouda is a data scientist at Ericsson,
Sweden. His research interest lies at the intersec-
tion of machine learning and urban mobility. He
was a research associate in the Social Computing
department at Qatar Computing Research Insti-
tute, Hamad Bin Khalifa University, at the time of
this work.

Abdulaziz Al-Homaid is a research associate
with the Qatar Computing Research Institute in
Doha. He worked on improving access to Educa-
tion data across response organizations during a
fellowship with The United Nations Office for the
Coordination of Humanitarian Affairs (UN OCHA).
His research is on applying deep learning meth-
ods in Smart City domains such as city-wide traffic
prediction and e-Health.

Abhiraj Mohan received the BS degree in com-
puter science and engineering from the University
of Minnesota at Twin Cities. His interests include
machine learning and data science. He hasworked
on detecting behavior patterns for users fromwear-
able technology, and on imputing missing values
from traffic data. He has been a recipient of the
UROP Scholarship at Minnesota, and has been on
the Dean’s list multiple times during his studies.

Jaideep Srivastava is a professor with the Depart-
ment of Computer Science and Engineering, Uni-
versity of Minnesota, Twin Cities. He was the chief
scientist with the Qatar Computing Research Insti-
tute, Hamad Bin Khalifa University, when this work
was conducted. He does research in databases,
computing in social sciences, arts and humanities,
data mining, and works on the use of advanced
machine learning for many applications such as
traffic analytics and health analytics. He is an
IEEE fellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

BAGGAG ET AL.: LEARNING SPATIOTEMPORAL LATENT FACTORS OF TRAFFIC VIA REGULARIZED TENSOR FACTORIZATION: IMPUTING... 2587



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


