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Abstract—This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited
resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble
clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for K-nearest
representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite
graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC
clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high
efficiency. Based on the ensemble generation via multiple U-SEPC’s, a new bipartite graph is constructed between objects and base
clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have
nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable
datasets on a PC with 64 GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of
our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669.

Index Terms—Data clustering, large-scale clustering, spectral clustering, ensemble clustering, large-scale datasets, nonlinearly

separable datasets
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1 INTRODUCTION

ATA clustering is a fundamental problem in the field of
data mining and machine learning [1], whose purpose
is to partition a set of objects into a certain number of homo-
geneous groups, each referred to as a cluster. Out of the large
number of clustering algorithms that have been developed,
spectral clustering in recent years has been gaining increas-
ing attention due to its promising ability in dealing with non-
linearly separable datasets [2], [3], [4], [5]. However, a critical
limitation to conventional spectral clustering lies in its huge
time and space complexity, which significantly restricts its
application to large-scale problems.
Conventional spectral clustering typically consists
of two time- and memory-consuming phases, namely,
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affinity matrix construction and eigen-decomposition. It
generally takes O(N?d) time and O(N?) memory to con-
struct the affinity matrix, and takes O(N?) time and O(N?)
memory to solve the eigen-decomposition problem [2],
where N is the data size and d is the dimension. As the
data size N increases, the computational burden of spec-
tral clustering grows dramatically. For example, given a
dataset with one million objects, the N x N affinity matrix
alone will consume 7450.58 GB of memory (with each
entry in the matrix stored as a double-precision value),
which prohibitively exceeds the memory capacity of a
general-purpose machine, not to mention the next phase
of eigen-decomposition.

To alleviate the huge computational burden of spectral
clustering, a commonly used strategy is to sparsify the affinity
matrix and solve the eigen-decomposition problem by some
sparse eigen-solvers [2]. The matrix sparsification strategy
can reduce the memory cost of storing the affinity matrix and
facilitate the eigen-decomposition, but it still requires the
computation of all entries in the original affinity matrix.
Besides matrix sparsification, another widely-studied strat-
egy is based on sub-matrix construction [3], [4]. The Nystrom
method [3] randomly selects p representatives from the origi-
nal dataset and builds an IV x p affinity sub-matrix. Cai et al.
[4] extended the Nystrom method and proposed the land-
mark based spectral clustering (LSC) method, which per-
forms k-means on the dataset to get p cluster centers as the p
representatives. However, these sub-matrix based spectral
clustering methods [3], [4] are typically restricted by an
O(Np) complexity bottleneck, which has been a critical hurdle
for them to deal with extremely large-scale dataset where a
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larger p is often desired for achieving better approximation
[4]. Moreover, the clustering results of these methods heavily
rely on their one-shot approximation via the sub-matrix,
which places an unstable factor on their clustering robustness.
Despite the considerable efforts that have been made in recent
years [2], [3], [4], [5], it remains a highly challenging problem
how to enable spectral clustering to efficiently and robustly clus-
ter extremely large-scale datasets (which may even be nonli-
nearly separable) with rather limited computing resources.

In light of this, this paper focuses on scalability and robust-
ness of spectral clustering for extremely larger-scale datasets.
Specifically, this paper proposes two novel large-scale algo-
rithms, namely, wultra-scalable spectral clustering (U-SPEC)
and wultra-scalable ensemble clustering (U-SENC). In U-SPEC,
a new hybrid representative selection strategy is presented to
efficiently find a set of p representatives, which reduces the
time complexity of k-means based selection from O(Npdt) to
O(p?dt). Then, a fast approximation method for K-nearest
representatives are designed to efficiently build a sparse sub-
matrix with O(Np?d) time and O(NpZ) memory. With the
sparse sub-matrix serving as the cross-affinity matrix, a bipar-
tite graph is constructed between the dataset and the represen-
tative set. By taking advantage of the bipartite graph structure,
the transfer cut [6] is utilized to solve the eigen-decomposition
problem with O(NK (K + k) + p®) time, where k is the num-
ber of clusters and K is the number of nearest representatives.
Finally, the k-means discretization is adopted to construct the
clustering result from a set of k eigenvectors, which takes
O(NK?*t) time. As it generally holds that k, K < p < N, the
time and space complexity of our U- SPEC algonthm are
respectively dominated by O(Np?d) and O(NpZ) Further, to
go beyond the one-shot approximation of U-SPEC and pro-
vide better clustering robustness, the U-SENC algorithm is
proposed by integrating multiple U-SPEC clusterers into a
unified ensemble clustering framework, whose time and
space complex1ty are respectively dominated by O(Nmpld)
and O(NpZ) Extensive experiments have been conducted on
ten large-scale datasets (including five synthetic datasets and
five real datasets), which have shown the superiority of our
U-SPEC and U-SENC algorithms over the state-of-the-art in
terms of both clustering robustness and scalability.

To summarize, the main contributions of this paper are
listed as follows:

1) A hybrid representative selection strategy is pro-
posed to strike a balance between the efficiency of
random selection and the effectiveness of k-means
based selection.

2) A fast approximation method for K-nearest repre-
sentatives is designed, which is time- and memory-
efficient for constructing the sparse affinity sub-
matrix between objects and representatives.

3)  Alarge-scale spectral clustering algorithm termed U-
SPEC is developed based on efficient affinity sub-
matrix construction and bipartite graph formulation.
Its time and space complexity are dominated by
O(NpZd) and O(Np?) respectively.

4) By integrating multiple U-SPEC clusterers, a new
large-scale ensemble clustering algorithm termed U-
SENC is developed, which significantly enhances the
robustness of U-SPEC while maintaining high scal-
ability. Its time and space complexity are dominated
by O(Nmp?d) and O(NpZ) respectively.
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The notations that are used throughout the paper are
summarized in Table 1. The rest of the paper is organized as
follows. The related work on large-scale spectral clustering
and ensemble clustering is reviewed in Section 2. The pro-
posed U-SPEC and U-SENC algorithms are described in
Section 3. The experimental results are reported in Section 4.
Finally, the paper is concluded in Section 5.

2 RELATED WORK

In this section, we review the literature related to spectral
clustering and ensemble clustering, with special emphasis
on their recent large-scale extensions.

2.1 Spectral Clustering

Given a dataset of N objects, conventional spectral clustering
[2] first computes an N x N affinity matrix, in which each
entry corresponds to the similarity of two objects according
to some similarity metrics. Then, the eigen-decomposition is
performed on the graph Laplacian of the affinity matrix to
obtain the k eigenvectors associated with the first & eigenval-
ues. By embedding the datasets into the low-dimensional
space via the obtained k eigenvectors, the final clustering
can be achieved via k-means or some other discretization
techniques [2].

Although spectral clustering has shown promising advan-
tages in finding clusters of arbitrary shapes from complex
data, its O(N?) time complexity and O(N?) space complexity
significantly restrict its application in large-scale tasks. To
alleviate the huge computational cost, some researchers spar-
sified the affinity matrix by considering K -nearest neighbors
or e-neighbors, and then solved the eigen-decomposition
problem by some sparse eigen-solvers [2], which, however,
still requires the computation of all the entries in the original
affinity matrix.

To avoid the computation of the full affinity matrix, the
sub-matrix based approximation has emerged as a powerful
and efficient tool for spectral clustering [3], [4], [5]. The
Nystrom approximation [3] randomly selects p representa-
tives from the dataset and builds an N x p affinity sub-
matrix between the N objects and the p representatives. The
sub-matrix construction takes O(Npd) time and O(Np) mem-
ory, which are much lower than the full affinity matrix con-
struction. Although the random representative selection is
very efficient, it is often unstable with regard to the quality of
the selected representatives (see Fig. 1). Moreover, while it
has been shown that a larger p is often favorable for better
approximation [3], the O(Np) memory cost of the sub-matrix
construction can still be a critical bottleneck when dealing
with very large datasets. To address the potential instability
of random selection, Cai and Chen [4] proposed the LSC
algorithm, which first partitions the dataset into p clusters
via k-means and then uses the p cluster centers as the repre-
sentatives. With the N x p sub-matrix constructed, they fur-
ther sparsified it by preserving the K-nearest representatives
for each row and zeroing out the others [4]. Despite its prog-
ress over the previous methods, there are still three computa-
tional bottlenecks in the LSC algorithm [4]. First, although
the k-means based selection often provides a better set of rep-
resentatives, it comes with the time complexity of O(Npdt).
Second, the calculation of all possible entries in the N x p sub-
matrix is still required before the sparsification, which comes
with the time complexity of O(Npd). Third, the computation
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TABLE 1

Summary of Notations
X A dataset of N objects
T The i-th object in X
N Number of objects in X
d Dimension
t Number of iterations in the k-means method
k Number of clusters in the clustering result
14 Number of candidate representatives
D Number of representatives
R The set of representatives
T The i-th representatives in R
RC The set of rep-clusters
re; The i-th rep-cluster in RC
Yi Center of r¢;
21 Number of rep-clusters in RC
) Average number of objects in each rep-cluster
K Number of nearest representatives
K’ Candidate neighborhood size around a representative

Dist(x;,rc;)  Distance between object z; and rep-cluster rc;

G A bipartite graph between X’ and R

B Cross-affinity matrix of graph G.

by The (i, j)-th entry of B

E Full affinity matrix of graph ¢

L Graph Laplacian of graph G

D Degree matrix of graph ¢

u; The i-th eigenvector of graph G

Vi The i-th eigenvalue of graph G

Gr A small graph with R as the node set

Er Affinity matrix of graph Gz

Lr Graph Laplacian of graph Gz

Dr Degree matrix of graph Gz

v; The i-th eigenvector of graph G

Ai The i-th eigenvalue of graph Gr

Dy Diagonal matrix with its (¢, ¢)-th entry being the
sum of the i-th row of B

T Transition probability matrix

II The ensemble of m base clusterings

b The i-th base clustering in I1

m Number of base clusterings in I1

U-SPEC; The clusterer to generate the i-th base clustering

R The set of representatives in U-SPEC;

7 The j-th representatives in R’

k' Number of clusters in 7'

Kmin Minimum number of clusters in a base clustering

Kmaz Maximum number of clusters in a base clustering

T Random variable in [0, 1]

C Set of all clusters in IT

C; The i-th cluster in C

ke Number of clusters in C

G A bipartite graph between X and C

B Cross-affinity matrix of graph G.

5,:] The (i, j)-th entry of B .

U The i-th eigenvector of graph G

Dy Diagonal matrix with its (i, 7)-th entry being the
sum of the i-th row of B

Ge A small graph with C as the node set

Ec Affinity matrix of graph G¢

Le Graph Laplacian of graph G¢

De¢ Degree matrix of graph G¢

U The i-th eigenvector of graph G¢

i The i-th eigenvalue of graph G¢

of the K-nearest representatives for all objects comes with the
time complexity of O(NpK). More recently, instead of using p
representatives, He et al. [5] used Fourier features to represent
data objects in kernel space, and built an N x p sub-matrix
between the N objects and the p selected Fourier features,
upon which the efficient eigen-decomposition can be
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Fig. 1. Comparison of the representatives produced by (a) random
selection, (b) k-means based selection, and (c) hybrid selection.

performed. The time and space complexity of the fast explicit
spectral clustering (FastESC) algorithm in [5] are respectively
O(Npd + p*) and O(Np), which are still restricted by the
O(Np) complexity bottleneck. By incorporating a newly-
designed positive Euler kernel, Wu et al. [7] proposed the
Euler spectral clustering (EulerSC) method and proved that
the EulerSC is equivalent to the weighted positive Euler k-
means, which can be iteratively optimized with O(Ndkt)
time. However, EulerSC can only use the positive Euler kernel
to define the pair-wise similarity, and is not feasible for the
general spectral clustering formulation with other similarity
metrics. Moreover, its clustering robustness heavily relies on
the proper selection of the Euler kernel parameter, which is
difficult to find without prior knowledge.

2.2 Ensemble Clustering

Ensemble clustering has been a popular technique in recent
years, which aims to combine multiple base clusterings into
a better and more robust consensus clustering [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. The exist-
ing ensemble clustering algorithms can be mainly classified
into three categories.

The first category is the pair-wise co-occurrence based
methods [8], [9], [21]. Fred and Jain [8] proposed the evidence
accumulation clustering (EAC) method, which makes use of
the co-association matrix by considering the frequency of
pair-wise co-occurrence among multiple base clusterings.
With the co-association matrix treated as the similarity
matrix, the agglomerative clustering algorithms [1] were then
performed to obtain the consensus clustering. lam-On et al.
[9] presented the weighted connected triple (WCT) method,
which extends the EAC method by refining the co-association
matrix via the common neighborhood information between
clusters.

The second category is the graph partitioning based
methods [11], [12], [18], [22]. Strehl and Ghosh [18] trans-
formed the multiple base clusterings into a hypergraph
representation, based on which three graph partitioning
based ensemble clustering methods were presented. Fern
and Brodley [22] built a bipartite graph structure by treating
both base clusters and data objects as graph nodes, and then
partitioned the graph via the METIS algorithm [23].

The third category is the median partition based methods
[17], [24], which cast the ensemble clustering problem into an
optimization problem that aims to find a median clustering
(or partition) by maximizing the similarity between this clus-
tering and the multiple base clusterings. Franek and Jiang
[24] formulated the median partition problem into a Euclid-
ian median problem and solved it by the Weiszfeld algorithm
[25]. Huang et al. [17] cast the median partition problem into
a binary linear programming problem and solved it by the
factor graph model.
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These ensemble clustering algorithms have shown
their advantages in improving clustering accuracy and
robustness. However, due to the efficiency bottleneck,
most of them are not suitable for very large-scale applica-
tions. Recently some efforts have been made to (partially)
address the scalability problem for ensemble clustering.
To reduce the problem size, Huang et al. [11] exploited
the microcluster representation, which maps the N data
objects onto N’ microclusters (N’ <« N). Then, the set of
microclusters are treated as the primitive objects, based
on which two novel algorithms, i.e., the probability trajec-
tory accumulation (PTA) and the probability trajectory
based graph partitioning (PTGP), are proposed. Wu et al.
[10] transformed the ensemble clustering problem into a
k-means based consensus clustering (KCC) framework,
which significantly facilitated the computation of the con-
sensus function. Liu et al. [15] proved that the spectral
clustering of the co-association matrix is equivalent to an
instance of weighted k-means clustering, and presented
the spectral ensemble clustering (SEC) algorithm. While
there are two phases in ensemble clustering (i.e., ensem-
ble generation and consensus function), these algorithms
[10], [11], [15] generally focus on the efficiency of the con-
sensus function. In ensemble generation, they mostly
exploited k-means to produce m base clusterings [10],
[11], [15]. Note that the time complexity of ensemble gen-
eration by k-means is O(Nmdkt), which can still be com-
putationally expensive when dealing with very large-
scale datasets. Moreover, the performance of k-means
may significantly deteriorate when handling nonlinearly
separable datasets, which has a critical influence on the
robustness of the ensemble clustering algorithms. Unlike
the common practice that typically exploits multiple
k-means clusterers as base clusterers, the proposed U-
SENC algorithm integrates a diverse set of large-scale U-
SPEC clusterers into a highly efficient ensemble clustering
framework, which for the first time, to our knowledge,
simultaneously tackles the scalability and nonlinear sepa-
rability issues in both the ensemble generation and con-
sensus function phases in ensemble clustering.

3 PROPOSED FRAMEWORK

In this section, we describe the proposed U-SPEC and U-
SENC algorithms in Sections 3.1 and 3.2, respectively.

3.1 Ultra-Scalable Spectral Clustering (U-SPEC)

To deal with extremely large-scale datasets, the proposed U-
SPEC algorithm complies with the sub-matrix based formu-
lation [3], [4] and aims to break through the efficiency
bottleneck of previous algorithms via three phases. Specifi-
cally, in the first phase, we present a hybrid representative
selection strategy to strike a balance between the efficiency
of the random selection and the effectiveness of the k-means
based selection. In the second phase, we develop a coarse-
to-fine method to efficiently approximate the K -nearest rep-
resentatives for each data object, and construct a sparse
affinity sub-matrix between the IV objects and the p represen-
tatives. In the third phase, the N x p sub-matrix is inter-
preted as a bipartite graph, which can be efficiently
partitioned to obtain the final clustering result. These three
phases of U-SPEC will be described in Sections 3.1.1, 3.1.2,
and 3.1.3, respectively.
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(a) (b) ©

Fig. 2. lllustration of hybrid representative selection. (a) The dataset. (b)
Randomly select p' candidates (p' > p). (c) Obtain p representatives
from p’ candidates via k-means.

3.1.1 Hybrid Representative Selection

Let X = {z1,29,---,zy} denote a dataset with N objects,
where z; € R is the ith object and d is the dimension. To cap-
ture the relationship between all objects in X, an N x N affin-
ity matrix can be constructed in conventional spectral
clustering [2], which consumes O(N?d) time and O(N?)
memory and is not feasible for large-scale datasets. To avoid
the computation of the full affinity matrix, the sub-matrix
representation is often adopted in the literature of large-scale
spectral clustering [3], [4]. The sub-matrix representation
generally exploits a set of representatives to encode the over-
all structure of the dataset. These representatives play a cru-
cial role in the sub-matrix representation, and can be selected
by random selection [3] or k-means based selection [4].
Though the random selection strategy [3] is highly efficient,
it suffers from the inherent randomness and may lead to a
set of low-quality representatives (see Fig. 1a). To deal with
the instability of random selection, the k-means based selec-
tion [4] first groups the entire dataset into p clusters via
k-means and then uses the p cluster centers as the representa-
tives. However, the k-means based selection brings in an
extra time cost of O(Npdt), which restricts its feasibility for
very large-scale datasets.

In this paper, we propose a hybrid representative selec-
tion strategy, which is designed to find a balance between
the efficiency of random selection and the effectiveness of
k-means based selection. The process of the hybrid represen-
tative selection strategy is illustrated in Fig. 2. Different from
the k-means based selection which attempts to cluster the
entire dataset even when the data size N is extremely large,
the proposed hybrid selection strategy first randomly sam-
ples a set of p' candidate representatives such that p <
p' < N. Then, upon the p’ candidates, we perform the
k-means method to obtain p clusters and exploit the p cluster
centers as the set of representatives. Empirically, the number
of candidates p' is suggested to be several times larger than p,
e.g., p' = 10p, so as to provide enough candidates while still
keeping p’ much smaller than N in large-scale datasets. For-
mally, we denote the set of selected representatives as

R:{Tth:'”arp}? (1)

where r; is the ith representative in R.

By introducing an intermediate stage of random pre-sam-
pling, the computational complexity of the k-means based
selection is reduced from O(Npdt) to O(p*dt). As illustrated
in Fig. 1, the set of representatives produced by the hybrid
selection can better reflect the data distribution than the ran-
dom selection while requiring much less computational cost
than the k-means based selection. To discuss this in more
detail, quantitative evaluation of the performance of the
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proposed hybrid selection strategy against random selection
and k-means based selection will be provided in Section 4.6.

3.1.2 Approximation of K -Nearest Representatives

With the p representatives obtained, the next objective is to
encode the pair-wise relationship of the entire dataset via
the small set of representatives.

In the sub-matrix formulation of the Nystrom algorithm
[3], the construction of the N x p affinity sub-matrix between
objects and representatives takes O(Npd) time and O(Np)
memory, which is the main efficiency bottleneck of the over-
all algorithm [3]. Given a dataset with ten million objects
and a set of one thousand representatives, the storage of
the N x p sub-matrix alone takes 74.51 GB of memory, while
the later manipulations of the sub-matrix even require more
memory consumption. Cai and Chen [4] proposed to spar-
sify the N x p affinity matrix by K-nearest representatives
(with K < p), which, however, still requires the computa-
tion of all the distances between the IV objects and the p rep-
resentatives. Moreover, besides the calculation of the total of
Np entries, the sparsification step also consumes O(NpK)
time [4].

Before introducing our facilitation strategy, we first inves-
tigate the characteristics of the sparse sub-matrix between N
objects and p representatives, where each object is only con-
nected to its K -nearest representatives. It is obvious that
there are K non-zero entries in each row of the matrix, and
NK non-zero entries in the entire matrix. Assume we have
p = 1,000 and K = 5, the proportion of the non-zero entries
in the matrix will be 0.5 percent. However, to exactly identify
such a small proportion of useful entries via K-nearest repre-
sentatives, the entire matrix should first be calculated, which
unfortunately consists of 99.5 percent of intermediate entries.
To break the efficiency bottleneck, the key problem here is
how to significantly reduce the calculation of these interme-
diate entries when building the sub-matrix with K-nearest
representatives.

In this section, our aim is to alleviate the computational
cost of the exact K-nearest representative calculation [4]
by designing a time- and memory-efficient approximation
method. Though the K-nearest representative approxima-
tion problem and the classical K-nearest neighbor (/{-NN)
approximation problem [26], [27], [28] have some character-
istics in common, they are faced with very different compu-
tational issues in actual applications. Different from the
conventional K-NN approximation scenarios, which mostly
deal with a general graph with an N x N affinity matrix, our
aim here is to find the K -nearest representatives in a heavily
imbalanced bipartite graph with an N x p affinity sub-matrix,
where p is generally far smaller than N. This imbalanced
nature is crucial to our K-nearest representative approxima-
tion problem. On the one hand, it makes the conventional
K-NN approximation methods [26], [27], [28] (which are typi-
cally designed for general graphs with IV x N affinity matri-
ces) inappropriate here. On the other hand, it may as well
contribute to the design of our K-nearest representative
approximation strategy. To take advantage of the imbalanced
structure, it is intuitive to pre-process the graph on the side of
the p representatives and minimize the computation on the
other side of the IV objects.

In particular, we present a new K-nearest representative
appr0x1mat10n method based on the coarse-to-fine mecha-
nism, and build the sparse affinity sub-matrix with O(Np?d)
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Fig. 3. Approximate K-nearest representatives. (a) The representative
set R and an object z; € X. (b) Partition the representatives into several
rep-clusters. (c) Compute the distances between z; and all the rep-
cluster centers. (d) Find the nearest rep-cluster rc;. () Compute the dis-
tances between z; and all the representatives in rc;. (f) Find the nearest
r; € rej. (9) Compute the distances between z; and the representatives
in the K’'-nearest neighborhood of r; (K’ > K). (h) Obtain the approxi-
mate K-nearest representatives (K = 3).

complexity. The main idea of our K-nearest representative
approximation is to first find the nearest region, then find the
nearest representative (denoted as ;) in the nearest region,
and finally find the K-nearest representatives in the neigh-
borhood of 7;. To efficiently implement the approximation,
two preprocessing steps are required, that is

e Pre-step 1. The set of representatives are grouped into
z rep-clusters via k-means (with z; < p). The time
complexity is O(pzdt).

e  Pre-step 2. For each representative in R, its K'-nearest

neighbors are computed and stored (with K’ > K).
The time complexity is O(p?*(d + K')).

In pre-step 1, each rep-cluster consists of a certain num-
ber of representatives, and can be regarded as a local region
of the representative set (see Fig. 3b). Formally, the obtained
z1 rep-clusters are denoted as

RC = {T017T627"'7T621}7 (2)

where r¢; is the ith rep-cluster in RC. Given an object z; € X
and a rep-cluster rc; € RC, their distance is defined as the
distance between z; and the center of r¢;. That is

Dist(wmcj) = llzi —y;ll, 3
Y; @
vi= |7’ 1| r;

where |rc¢;| denotes the number of representatives in the
rep-cluster r¢; and |z; — y;|| computes the euclidean dis-
tance between two vectors z; and y;.

With the distance between objects and rep-clusters
defined, for each object z; € X, we approximately find its
K-nearest representatives according to three main steps:

Step 1 Find the nearest rep-cluster of x;, denoted as rc;.
Step 2 Find the nearest representative of z; inside the rep-
cluster rc;, denoted as ;.
Step3 Out of r; and its K'-nearest neighbors, find the
K-nearest representatives of z;.
More details are illustrated in Fig. 3. For a dataset with NV
objects, the time cost of step 1 is O(Nz;d). The time cost of step
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Fig. 4. lllustration of the bipartite graph G.

2 is O(Nzd) = (p/z1)d), where z = p/z denotes the
average size of the rep-clusters. The time cost of step 3 is
O(NK 'd + NK'K).Itis obvious that z; + p/z reaches its min-
imum when z; = 25 = pz Thus, to minimize the cost, z; =

| pZ] is used in this work, where || denotes the floor of a value.
The candidate neighborhood size K is suggested to be several
times larger than K, which can be set to K’ = 10K in practice.
Then, the total time complexity of the K-nearest representa-
tive approximation is O(N.,d + N(p/z1)d + NK'd + NK'K),
which can be re-written as O(N(p%d+ Kd+ K?)). As K <
p < N, the dominant term in the complexity is O( Npzd).

With the K-nearest representatives of each object obta-
ined, a sparse N x p affinity sub-matrix can thereby be con-
structed. In this paper, the Gaussian kernel is used as the
similarity kernel. Thus the sparse affinity sub-matrix can be
represented as

B = {bij} nrp: ©)
r;—Trj 2 .
by = exp (— %), if r; € Ng(zy), ©)
0, otherwise,

where Ni(x;) denotes the set of K-nearest representatives of
z; and the kernel parameter o is set to the average euclidean
distance between the objects and their K-nearest representa-
tives. Note that B is a sparse matrix which only contains NK
non-zero entries.

3.1.3 Bipartite Graph Partitioning

The affinity sub-matrix B reflects the relationship between
the objects in X and the representatives in R, which can be
naturally interpreted as a bipartite graph G = {X, R, B},
where X' U R is the node set and B is the cross-affinity matrix
(as shown in Fig. 4). By taking advantage of the bipartite
graph structure, the transfer cut [6] can thereby be used to
efficiently partition the graph and achieve the final clustering
result.

To start, if we view the graph G as a general graph with
N + pnodes, then its full affinity matrix can be denoted as

.
E:{g %}. 7

Spectral clustering seeks to partition the graph by solving
the following generalized eigen-problem [29]:

Lu = yDu, ®)

where L = D — E is the graph Laplacian and D € R *P)~
(N + p)isthe degree matrix. By treating G as a general graph,
it takes O((N + p)*) time to solve the eigen-problem Eq. (8)
[30], which is not computationally feasible for very large-
scale datasets.
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By exploiting the bipartite structure, we resort to the
transfer cut [6] to reduce the eigen-problem Eq. (8) on the
graph G (with N + p nodes) to an eigen-problem on a much
smaller graph G (with p nodes). Specifically, the graph Gz
is constructed as Gr = {R, Ex}, where R is the node set,
Er = B'Dy 7' B is the affinity matrix (whose computation
takes O(NK?) time), and Dy € RV*V is a diagonal matrix
with its (4,4)th entry being the sum of the ith row of B. Let
Lr = Dr — Ex be the graph Laplacian, where Dp € RP*P
is the degree matrix of G'z. Then, the generalized eigen-
problem on the graph Gz can be represented as

LRU = )\DR’U (9)

It has been proved by Li et al. [6] that solving the eigen-
problem (8) on the graph G is equivalent to solving the eigen-
problem (9) on the graph G'z. Let the first & elgen-palrs for the
elgen—problem (9) be denoted as {()\l,w)}l , with 0=
A< A <<\, < 1, and the first k eigen-pairs for the
eigen—problem (8) denoted as {(y;,u)}l_, with 0=y, <
Yy < -+ <y, < l.Ithas been shown that [6]

Yi(2=vi) =N\ (10)
u; = [hz} (1D
Ui
1
hi = —T’Ui, (12)
1—vy,

where T' = D! Bis the transition probability matrix. It takes
O(p?) time to compute the first k eigen-pairs for the eigen-
problem (9). As B is a sparse matrix with NK non-zero
entries, it takes O(NK) time to compute u; from v; according
to Egs. (10), (11), and (12). Therefore, the total cost of com-
puting the first & eigenvectors for the eigen-problem (8) will
be O(NK?) + O(NKk) + O(p®) = O(NK (K + k) + p*).

With the eigen-problem solved, the obtained k eigenvec-
tors are stacked to form an (N + p) x k matrix. By treating
each row of this matrix as a new feature vector, the N rows
corresponding to the IV original objects are used, upon which
the k-means discretization can be performed to obtain the
final clustering result with O(Nk?t) time complexity.

3.1.4 Computational Complexity

In this section, we summarize the time and memory cost of
our U-SPEC algorithm.

The hybrid representative selectlon takes O(p*dt) time.
The affinity construction takes O(N (pZd + Kd + K?)) time.
The eigen-decomposition takes O(NK (K + k) + p*) time. The
k-means discretization takes O( Nk*t) time. With consideration
to k, K < p <N, the overall time complexity of U-SPEC is
O(N(p2d + K? + Kk + Kd + k*t)), where O(Npid) is the dom-
inant term. Table 2 provides a comparison of time complexity
of our U-SPEC algorithm against several other large-scale
spectral clustering algorithms.

Besides the time cost, the memory cost of U-SPEC can be
either O(NK) or O(Np?) which depends on the actual imple-
mentation of the K-nearest representative approximation.
As the K-nearest representative approximation for the N
objects are independent of each other, one strategy is to per-
form approximation for the IV objects one after the other (i.e.,
in a serial processing manner), where the time cost is domi-
nated by the storage of the cross-affinity matrix with NK
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TABLE 2
Comparison of the Time Complexity of

Several Large-Scale Spectral Clustering Methods

Method Representative  Affinity Eigen-
selection  construction  decomposition

Nystrom [3] / O(Npd) O(Np + p? )
LSC-R [4] / O(Npd) O(Np? +p°)
LSC-K [4] O(Npdt) O(Npd) O(Np* + p?)
U-SPEC O(p*dt) O(Nptd)  O(NK(K + k) + p*)

* The final k-means discretization is O(Nkt) for each method.

non-zero entries. Another strategy is to first construct an
affinity matrix between the N objects and the z; = LpZJ rep-
cluster centers and then approximate the K-nearest repre-
sentatives for the N objects in a batch processing manner.
For some matrix-oriented software, such as MATLAB, it will
be much faster to perform the approximation in a batch proc-
essing manner (with optimized matrix computation) than in
a serial processing manner. To facilitate the matrix computa-
tion, our implementation of U-SPEC actually takes O(Np?)
memory. S1m1larly, the LSC algorithm [4] also has a theoreti-
cally minimum memory cost of O(NK), but the implementa-
tion' provided by the authors actually takes O(Np) memory,
which is also due to the matrix-computation consideration.

3.2 Ultra-Scalable Ensemble Clustering (U-SENC)

Starting from U-SPEC, this section proposes the U-SENC
algorithm to integrate multiple U-SPEC’s into a unified
ensemble clustering framework, aiming to further enhance
the clustering robustness while maintaining high efficiency.

3.2.1 Ensemble Generation via Multiple U-SPEC’s

Ensemble clustering has been a popular research topic in
recent years, due to its promising ability in enhancing clus-
tering robustness by incorporating multiple base clusterers
[10], [11], [12], [14], [15]. The general ensemble clustering
process consists of two phases. The first phase is the ensem-
ble generation, which involves producing a set of diverse
and high-quality base clusterings. The second phase is
the consensus function, which involves combining multiple
base clusterings into a better and more robust consensus
clustering.

In ensemble generation, the previous ensemble cluster-
ing algorithms mostly use the k-means method to generate
an ensemble of multiple base clusterings [10], [11], [12], [14],
[15]. Though k-means has the advantage of high efficiency,
it typically favors spherical distribution and lacks the ability
to properly partition nonlinearly separable datasets. Some
researchers have exploited the spectral clustering technique
in ensemble generation [31], [32], but the large computa-
tional cost of conventional spectral clustering significantly
restricts its feasibility for scalable applications.

To address this, we utilize multiple instances of U-SPEC
as the multiple base clusterers in our ensemble clustering
framework. To generate an ensemble of m base clusterings, a
set of m U-SPEC clusterers are required, which are denoted
as U-SPEC;, U-SPEC,, - - -, U-SPEC,,,. The diversity which is
highly desired in ensemble generation is incorporated from
two aspects. First, the set of representatives for each base

1. www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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clusterer is independently obtained by the hybrid selection
strategy. There are two components in hybrid selection, i.e.,
random pre-selection and k-means based post-selection,
both of which are non-deterministic and can bring in diver-
sity for the multiple base clusterers. Second, the number of
clusters for each base clustering is randomly selected to fur-
ther enhance the diversity. Formally, given the dataset &, the
set of p’ candidate representatives for the ith base clusterer
(i.e., U-SPEC;) are randomly selected from X. Then the
k-means is used to partition the p’ candidates into p clusters.
After that, the p cluster centers will be used as the set of p rep-
resentatives for U-SPEC;, denoted as

R ={r{,ry, -} (13)
With the representatives obtained, the sparse affinity sub-
matrix B’ for U-SPEC; can be built between the dataset X’
and the representative set R' via fast approximation of
K-nearest representatives.

By treating X' |J R’ as the node set and B’ as the cross-
affinity matrix, the bipartite graph G" is built and its first &'
eigenvectors are then computed via transfer cut [6]. Note
that the number of clusters k' is randomly selected as

ki - I_T(kmul' - kmin)J + kmim (14)
where t € [0, 1] is a random variable and k., and k,,;, are
respectively the upper bound and lower bound of the clus-
ter number. Then, the obtained &' eigenvectors are stacked
to form a new matrix, upon which the k-means is applied to
construct the base clustering result for U-SPEC;. With the m
U-SPEC clusterers, the ensemble of m base clusterings can
be generated, which are represented as

= {z" 7% - 72"}, (15)

where 7' denotes the ith base clustering.

3.2.2 Consensus Function with Bipartite Graph

Having obtained the set of multiple base clusterings, this
section presents the consensus function with bipartite graph
for obtaining the consensus clustering.

Each base clustering consists of a certain number of clus-
ters. For clarity, we denote the set of clusters in the ensem-
ble of m base clusterings as

C: {01;027'”701%}7

where C; is the ith cluster and k. is the total number of clus-
ters in IL. It is obvious that k. = >, k'

By treating both objects and clusters as graph nodes, the
bipartite graph for the ensemble II is defined as

(16)

G ={Xx,C, B}, (17

where X |JC is the node set and B is the cross-affinity
matrix. In this bipartite graph, a (non-zero) edge exists
between two nodes if and only if one node is an object and
the other one is the cluster that contains it. Formally, the
cross-affinity matrix is constructed as follows:

B= {Bij}ka,n (18)
s 1, ifx; € Cj,
bij = {0, otherwise. (19
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TABLE 3
Description of the Real and Synthetic Datasets
Dataset #Object Dimension  #Class
PenDigits 10,992 16 10
USPS 11,000 256 10
Real Letters 20,000 16 26
MNIST 70,000 784 10
Covertype 581,012 54 7
TB-1M 1,000,000 2 2
) SF-2M 2,000,000 2 4
Synthetic CC-5M 5,000,000 2 3
CG-10M 10,000,000 2 11
Flower-20M 20,000,000 2 13

Inside the same base clustering, there is no intersection
between two different clusters, ie., Vi’ # j, if Cy € 7 and
C; e ', then Cy (Cy = (. Obviously, each object belongs
to one and only one cluster in each base clustering, and thus
each object belongs exactly to m clusters in the ensemble of
m base clusterings. Therefore, there are exactly m non-zero
entries in each row of B. Although the cross-affinity matrix
Bis an N x k. matrix, it can be stored as a sparse matrix
with O(Nm) memory, which corresponds to the exactly Nm
non-zero entries in B. Besides the memory cost, the time
cost of constructmg the sparse matrix Bis O(Nm).

As shown in Section 3.1.3, solving the eigen-problem for
the bipartite graph G can be equivalent to solving the eigen-
problem for a much smaller graph G¢ = {C, E¢}, that is

Let = ADed, (20)
where E; = BTDy ' Bis the affinity matrix, Dy € R¥*V isa
diagonal matrix with its (4, ¢)th entry being the sum of the ith
row of B, L¢ = D¢ — E¢ is the graph Laplacian, and D¢ €
R*e*ke js the degree matrix of Ge.

Let 01,09, -+, denote the first k eigenvectors for the
eigen-problem Eq. (20), which can be computed with a time
cost of O(k.*). Based on the k eigenvectors for G, the first k
eigenvectors (denoted as y,us,---,u,) for the bipartite
graph G can be computed with O(Nm(m + k)) time (see
Egs. (10), (11), and (12)). Finally, by stacking the k eigenvec-
tors to form a new matrix, the consensus clustering result in
U-SENC can be obtained by k-means discretization with
O(NK’t) time.

3.2.3 Computational Complexity

This section summarizes the time and memory cost of the
proposed U-SENC algorithm.

The ensemble generation of the U-SENC algorithm takes
O(Nm(pid + K? + Kk + Kd + k*t )) time. The consensus
function of U-SENC takes O(N(m? + mk + k*t) + k.*) time.
With consideration to m, k, K < p < N, the dommant term
of the overall time CompleX1ty of U-SENC is O(NmpZd)

Meanwhile, the memory costs of the ensemble generation
and the consensus function of our U-SENC algorithm are
respectively O(NpZ) and O(Nm).

4 EXPERIMENTS

In this section, we conduct experiments on a variety of real
and synthetic datasets to compare the proposed U-SPEC and
U-SENC algorithms against several state-of-the-art spectral
clustering and ensemble clustering algorithms.
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(@) TB-IM (0.1%)  (b) SF-2M (0.1%)  (c) CC-5M (0.1%)

(d) CG-10M (0.1%) () Flower-20M (0.1%)

Fig. 5. lllustration of the five synthetic datasets. Note that only a 0.1 percent
subset of each dataset is plotted.

All experiments are conducted in Matlab 2016b on a PC
with an Intel i5-6600 CPU and 64 GB of RAM.

4.1 Datasets and Evaluation Measures
Our experiments are conducted on ten large-scale datasets
(including five real datasets and five synthetic datasets),
whose data sizes range from ten thousand to as large as
twenty million. Specifically, the five real datasets are PenDi-
gits [33], USPS [34], Letters [33], MNIST [34], and Covertype
[33]. The five synthetic datasets are Two Bananas-1M (TB-
1M), Smiling Face-2M (SF-2M), Concentric Circles-5M (CC-
5M), Circles and Gaussians-10M (CG-10M), and Flower-20M.
The details of the datasets are provided in Table 3 and Fig. 5.
To evaluate the clustering results by different algorithms,
two widely used evaluation measures are adopted, namely,
normalized mutual information (NMI) [18] and clustering
accuracy (CA) [35]. To rule out the factor of getting lucky occa-
sionally, in each experiment, every test method will be con-
ducted 20 times and their average NMI, CA, and time costs
will be reported. Note that larger values of NMI and CA indi-
cate better clustering results.

4.2 Baseline Methods and Experimental Settings

In the experiments, we first compare our algorithms against
the classical k-means algorithm [36] as well as seven spectral
clustering algorithms (including the original algorithm and
six large-scale algorithms). The baseline spectral clustering
algorithms are listed as follows:

1)  SC[2]: original spectral clustering.
2)  ESCG [37]: efficient spectral clustering on graphs.
3)  Nystrom [3]: Nystrom spectral clustering.
4) LSC-K [4]: landmark based spectral clustering using
k-means based landmark selection.
5)  LSC-R [4]: landmark based spectral clustering using
random landmark selection.
6)  FastESC [5]: fast explicit spectral clustering.
7)  EulerSC [7]: Euler spectral clustering.
Besides these large-scale spectral clustering algorithms,
we also compare our algorithms against seven ensemble
clustering algorithms, which are listed as follows:

1)  EAC[8]: evidence accumulation clustering.
2)  WCT [9]: weighted connected triple method.
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TABLE 4
Average NMI (%) Scores (over 20 Runs) by Our Methods and the Baseline Spectral Clustering Methods
(The Best Score in Each Row is in Bold)
Dataset k-means SC ESCG Nystrom LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC
PenDigits 66.66i1_76 59.36i0_0“ 76~41i2v26 65.67i1_1ﬁ 79.73i2_gg 78.1312_20 65.31i0_71 58.59i0_73 803012_18 85.34i0_91
USPS 44~11i1,24 63.44i0_01 48.4113,53 44~91i1,28 66.86i1.58 58.64i1,31 41.36i1_8g 40~31i1.91 63.47i0,g7 73.89.1 50
Letters 34.86060 10431050  35.80+172  39.021083  43.41:i9s1 4098093 35921141 31.76.092 42531130 45.90.058
MNIST 48.913:2_00 74.0710_00 55~75i4AG2 47783:1 17 73-97j:1.46 62.16i222 43443:] 85 8.931] 22 67.43i]_55 75.021 51
Covertype 6.17 10,00 N/A N/A 6.93.9.07 6.75.0.10 6.6910.12 9.15.1 09 0.01+0.00 6.97 1016 9.134101
TB-1M 25.7140.00 N/A N/A 24.0640.01 0.1040.11 0.2010.24 24.015970  25.94.001  95.864048  97.48.005
SF-2M 47-34i0.23 N/A N/A 46.66i0_02 66.45i6_15 58.34i5_92 52-03i0.95 47-35i2.19 75-59i2.12 77'02i2.32
CC-5M 0.00-+0.00 N/A N/A N/A N/A N/A N/A 0.0040.00 99.87.001  99.9110.00
CG-10M 63.20+ 50 N/A N/A N/A N/A N/A N/A 16.1940.91 78821161  89.5713.96
Flower-20M 6419i25(; N/A N/A N/A N/A N/A N/A 26~61i0.86 86861205 92-47i2.45
Avg. score - N/A N/A N/A N/A N/A N/A 25.57 69.77 74.57
N-Avg. score - N/A N/A N/A N/A N/A N/A 33.94 91.71 99.98
Avg. rank - 5.90 6.00 5.20 3.70 4.60 5.20 6.00 2.50 1.10
* Note that N/A indicates the out-of-memory error.
** The k-means method is listed for reference only; it doesn’t participate in the comparison of the spectral methods.
TABLE 5
Average CA (%) Scores (over 20 Runs) by Our Methods and the Baseline Spectral Clustering Methods
(The Best Score in Each Row is in Bold)

Dataset k-means SC ESCG Nystrom LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC
PenDigits 71-57i3.12 56.44i0_0[] 77-21i3.81 71-13i2.07 83.07i3_21 81.82i3_17 69.97i1_15 65.85i1_g7 84-17i3.26 88.56i0_61
USPS 47.25.957 62741002 53474394  51.094193 68421539  60.78:915  48.80i17  47.794041 63.76+135  78.171305
Letters 28.15i0_97 12.42i0_4ﬁ 30-37i1.75 32-05i0.91 35-45i1.34 33.86i1_13 29-32i1.51 28.08i1_,1;1 35.71i1_.17 37.74i1_06
MNIST 58481067 74464000  63.321461 59724175 79454100 69241975 5593194  24.064153  74.31i905  80.58.1 75
CO?JEI’typE 49.05i0_00 N/A N/A 49.21 +0.11 49-45i0.16 49.3210_25 48.88i0_18 48.76i0_00 49.7610_35 50-73i0.62
TB-1M 78.9310.00 N/A N/A 78.04.001 51541113  52.09:i158  77.97+15  79.041900 99551006 @ 99.7510.01
SF-2M 74.331914 N/A N/A 69.58.005 85341570 78261743 74134030 76931917 93.601100 93461097
CC-5M 52.96.10.00 N/A N/A N/A N/A N/A N/A 52.96.000 99991000  99-99-0.00
CG-10M 63.14 15 40 N/A N/A N/A N/A N/A N/A 32814067  81.32:900  93.99.395
Flower-20M 60.85.3 33 N/A N/A N/A N/A N/A N/A 33.75.1056  88.891i985  93.79.391
Avg. score - N/A N/A N/A N/A N/A N/A 49.00 77.11 81.68
N-Avg. score - N/A N/A N/A N/A N/A N/A 62.12 94.26 99.99
Avg. rank - 6.10 5.90 5.30 3.50 4.40 5.90 5.80 2.10 1.10

3) KCC[10]: k-means based consensus clustering. For the seven ensemble clustering methods, the

4) PTGP [11]: probability trajectory based graph base clusterings are generated by k-means as sug-

partitioning. gested by their papers [8], [9], [10], [11], [12], [14],

5)  ECC [14]: entropy based consensus clustering. [15]. The number of clusters in each base clustering

6)  SEC [15]: spectral ensemble clustering. is randomly selected in [20,60]. The number of

7)  LWGP [12]: locally weighted graph partitioning. base clusterings, i.e., m, is set to 20. Their perform-

There are several common parameters among the above-
mentioned algorithms. In our experiments, we comply with
the following experimental settings:

The SC and ESCG methods need to take the NV x N
affinity matrix as input. The affinity matrix is con-
structed using the same Gaussian kernel as Eq. (6)
with K-nearest neighbors.

The U-SPEC, U-SENC, Nystrom, LSC-K, and LSC-R
methods have a common parameter p. In the experi-
ments, p = 1000 is used for these methods. Their per-
formances with varying p will be further evaluated
in Section 4.5.1.

The U-SPEC, U-SENC, LSC-K, and LSC-R methods
have a common parameter K. In the experiments,
K =5 is used. Their performances with varying K
will be further evaluated in Section 4.5.2.

ances with varying m will be further evaluated in
Section 4.5.3.

The true number of classes on each dataset is used as
the number of clusters for all the test methods.
Besides these common parameters, the other param-
eters in the baseline methods will be set as suggested
by the corresponding papers.

4.3 Comparison with Spectral Clustering Methods
In this section, we compare our U-SPEC and U-SENC
algorithms with several state-of-the-art large-scale spectral
clustering algorithms.

As the data sizes range from ten thousand to twenty mil-

lion, most of the baseline algorithms are not computationally
feasible for ten-million-level datasets. Specifically, we use
N/A to indicate the out-of-memory error in the results. As
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TABLE 6
Time Costs(s) of Our Methods and the Baseline Spectral Clustering Methods
Dataset k-means SC ESCG Nystrom LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC
PenDigits 0.06 7.37 1.63 1.98 1.25 0.49 0.73 147 1.01 19.13
USPS 0.32 9.56 9.63 1.92 1.70 0.75 0.94 8.20 1.59 29.17
Letters 0.72 3.85 7.74 2.69 3.89 2.88 1.86 23.39 1.44 21.44
MNIST 8.79 1,231.68 1,211.54 6.40 16.51 6.38 3.82 125.35 7.48 131.60
Covertype 13.19 N/A N/A 33.11 101.12 53.46 19.55 116.96 14.08 174.49
TB-1M 3.25 N/A N/A 105.15 109.23 35.92 21.79 6.27 10.47 318.29
SF-2M 31.26 N/A N/A 226.77 254.98 102.55 51.07 80.44 27.06 658.82
CC-5M 94.76 N/A N/A N/A N/A N/A N/A 132.35 46.65 1,726.40
CG-10M 281.84 N/A N/A N/A N/A N/A N/A 963.29 318.93 3,603.08
Flower-20M 579.06 N/A N/A N/A N/A N/A N/A 3,397.57 764.09 7,225.83
TABLE 7
Average NMI (%) Scores (over 20 Runs) by Our Methods and the Baseline Ensemble Clustering Methods
(The Best Score in Each Row is in Bold)
Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC
PenDigitS 80~30i2.18 76.31i2_70 7769i254 58.92i3_47 75~58i2.26 57.64i4_14 47~O7i7.53 77~54i1.87 85.34i0_91
UuspPs 63.4710_97 59.02i1_(;9 58.40i2_]5 49-24i2.98 5963i] 76 4889i] 80 39v00i3.83 57v55i1.78 73.89i1_32
Letters 425311.32 37~19i0.50 36.59i0_95 33.64i1_|)3 38~09il).66 34~59il)_68 31.81i2_[]1 37~09i0.75 45.90i0_5g
MNIST 6743155 66.19.1 49 65.60.0.96 54.34 1338 59.93.19.93 56.0149.95 34.191461 65.06.0.05 75.021081
Covertype 6.97 10.16 N/A N/A 5.8641.84 6.42.40.44 5.7040.77 526428 744,031 9.13.1.01
TB-IM 95.86i0_4g N/A N/A 23363:1 62 34~20j:2_51 26.913:2_]3 10.623:4_64 96803:1 .90 97.483:0_05
SF-2M 75.5949 19 N/A N/A 42.72. 711 4517 1966 41.61.601 27.05.7.73 69.88.14.45 77.02.9 32
CC-5M 99.87i0,[]1 N/A N/A 33,36i12'05 0.41 +0.86 31.62i14,99 17.05i6.90 98.18i7v75 99-91i0.00
CG-10M 78.8241 61 N/A N/A 64.78.1508 63.7510.61 62.7914.01 49.7046.08 78.08.19.43 89.57 396
Flower-20M 86.86i2,05 N/A N/A 61.18i~2_43 67.923:1_99 60.613:2_37 50~37i6.32 78.553:2_31 92.473:2_45
Avg. score - N/A N/A 42.74 45.11 42.64 31.21 66.62 74.57
N-Avg. score - N/A N/A 59.69 64.12 59.51 45.35 87.82 100.00
Avg. rank - 5.40 5.60 4.90 3.60 5.40 6.70 2.80 1.00

* The U-SPEC is listed for reference only; it doesn’t participate in the comparison of the ensemble methods.

shown in Tables 4 and 5, the SC and ESCG methods are not
able to handle the datasets large than MNIST (which consists
of 70,000 objects), due to the memory consumption of con-
structing and manipulating the NV x N affinity matrix. The
Nystrom, LSC-K, LSC-R, and FastESC methods can at most
partition a dataset with two million objects, and cannot deal
with datasets larger than that. Out of the total of nine spectral
clustering methods, only three methods (i.e., U-SPEC, U-
SENC, and EulerSC) can deal with all of the benchmark data-
sets. As shown in Tables 4 and 5, our U-SENC and U-SPEC
methods achieve the best and the second best scores, respec-
tively, on most of the ten benchmark datasets.

In Tables 4 and 5, we also provide the average score, nor-
malized average score (N-Avg. score), and average rank of
each method across the ten datasets. To obtain the normalized
average score, the scores in each row will first be divided by
the maximum score in this row, where it is obvious that the
maximum score will become 100 percent. Then we take the
average of these normalized rows as the normalized average
score. Note that if a baseline method cannot process all the
datasets, it will not have the average score and normalized
average score information, but it will still have the average
rank information. For example, if only three methods are effi-
cient enough to process the CC-5M dataset, then all the other
infeasible methods will be treated as equally ranked in the
fourth position on this dataset. As shown in Tables 4 and 5,
our U-SENC method ranks in the first position on nine out of
the ten datasets, and achieves an average rank of 1.10 w.r.t.
both NMI and CA. Our U-SPEC method achieves an average

rank of 2.40 w.r.t. NMI and 2.00 w.r.t. CA. In terms of average
score and normalized average score, our U-SENC and U-SPEC
methods also significantly outperform the other methods.

Table 6 reports the time costs of different methods on
the benchmark datasets. The U-SPEC shows superior effi-
ciency on most of the datasets, especially on the datasets
larger than one million. The U-SENC requires a larger time
cost than U-SPEC, but it still provides better scalability
than most of the baseline methods and scales well for ten-
million-level datasets due to its memory efficiency. As U-
SENC is a spectral clustering algorithm and also an ensem-
ble clustering algorithm, in the following, we will further
compare it with other state-of-the-art ensemble clustering
algorithms.

4.4 Comparison with Ensemble Clustering Methods
In this section, we compare our algorithms with several
state-of-the-art ensemble clustering algorithms.

Note that U-SPEC is not an ensemble clustering algo-
rithm; its clustering results are provided in Tables 7, 8, and
9 for reference only. As shown in Tables 7 and 8, our U-
SENC algorithm obtains the highest NMI and CA scores on
all of the ten datasets. In terms of average score across the
ten datasets, U-SENC achieves the best average NMI(%)
and CA(%) scores of 74.57 and 81.68, respectively while the
second best ensemble clustering method (i.e., LWGP) only
achieves average NMI(%) and CA(%) scores of 66.62 and
74.49, respectively. Similar advantages of U-SENC can also
be observed in the normalized average scores. In terms of
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TABLE 8
Average CA (%) Scores (over 20 Runs) by Our Methods and the Baseline Ensemble Clustering Methods
(The Best Score in Each Row is in Bold)
Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC
PenDigits 84.17i;;_2(; 81.O4i4_|)2 82.97i;;17 63.33i4_(|()‘ 78.33i2_91 62.36i4_12 51.60i5_93 81.96i2_77 88.56i0_()‘1
USPS 63,76i1_35 63~39i2.76 62.72i3,14 53.4613_51 62.68i1_92 53.67i2_21 45.38i3,20 59,7313_30 78.17i3_05
Letters 35.714147 30.28-0.58 30.17+1.01 26.90-+1 .23 31.50-0.89 27.53.0.72 26.1241 93 30.76-+0.84 37.74+1.06
MNIST 74~31j:2.28 73.123;2_73 70.733:176 59-8615_11 65.0612_75 61.183:3_58 43-13i4.88 71~98i1.67 80.583:1_75
Covertype 49.76.0.35 N/A N/A 49.54.0 58 49.1140.30 49.68-0.40 49.86-0.94 49.50+0.28 50.730.62
TB-1M 99.55.0.06 N/A N/A 70.0541 91 82.94.1 o8 72.5041 48 60.12:364 99.65..31 99.75.0.01
SF-2M 93.60i1_00 N/A N/A 67.12i5_41 73.46i1_7ﬁ 66.90i6_15 55-91i5.71 88.71i3_28 93.46i2_27
CC-5M 99.99.0.00 N/A N/A 66.76.6.94 52.96.0.00 62.71.4 538 61.91.45.49 99.30.4307 99.99.0.00
CG-10M 81.3249.00 N/A N/A 66.965 60 63.36-+1.26 64.74 1650 58.19-4.69 81.95.3.93 93.99.3.25
Flower-20M 88.89i2‘g5 N/A N/A 57.78i3,37 63.83i2.34 56.69i2v35 50.7015,02 81-37i2‘69 93-79i3.21
Avg. score - N/A N/A 58.18 62.32 57.80 50.29 74.49 81.68
N-Avg. score - N/A N/A 72.48 77.98 72.22 63.53 90.54 100.00
Avg. rank - 5.40 5.60 5.00 4.20 5.00 6.30 2.90 1.00
TABLE 9
Time Costs(s) of Our Methods and the Baseline Ensemble Clustering Methods
Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC
PenDigits 1.01 8.89 47.01 8.97 11.94 13.56 5.27 5.46 19.13
USPS 1.59 13.11 48.45 15.87 59.71 23.53 10.15 10.25 29.17
Letters 1.44 29.60 177.11 33.91 137.46 53.04 16.06 15.58 21.44
MNIST 7.48 576.71 3,435.19 315.58 2,205.18 417.10 260.96 259.91 131.60
Covertype 14.08 N/A N/A 954.89 7,919.02 1,482.43 712.84 685.89 174.49
TB-1M 10.47 N/A N/A 1,308.54 1,276.82 2,100.02 1,000.30 989.10 318.29
SF-2M 27.06 N/A N/A 2,908.34 2,493.99 4,714.16 2,160.46 2,105.82 658.82
CC-5M 46.65 N/A N/A 6,833.38 5,027.91 11,202.43 5,130.84 5,070.21 1,726.40
CG-10M 318.93 N/A N/A 17,344.29 11,578.11 27,492.40 10,938.88 10,700.38 3,603.08
Flower-20M 764.09 N/A N/A 34,869.83 21,198.87 54,913.10 21,696.29 21,378.63 7,225.83

average rank, U-SENC obtains an average rank of 1.00 w.r.t.
both NMI and CA, while the second best method obtains an
average rank of 2.80 w.r.t. NMI and 2.90 w.r.t. CA.

In Table 9, the time costs of different ensemble clustering
methods are provided. As can be seen in Table 9, the proposed
U-SENC method has shown its advantage in efficiency over
the other ensemble clustering methods, especially on the
large-scale datasets whose data sizes go beyond millions.

4.5 Parameters Analysis

In this section, we evaluate the performances of our algo-
rithms and several baseline algorithms with varying param-
eters. Because some important baseline methods (such
as Nystrom, LSC-K, and LSC-R) can not go beyond two-
million-level datasets, in order to fairly test the influence of
some common parameters among them, we perform the
parameter analysis on four benchmark datasets, namely,
MNIST, Covertype, TB-1M, and SF-2M, which are the largest
four datasets whose sizes are no larger than two million.

4.5.1 Number of Representatives p

The parameter p denotes the number of representatives (or
landmarks), which is a common parameter in the sub-
matrix based spectral clustering methods, such as Nystrom,
LSC-K, LSC-R, and our U-SPEC and U-SENC methods. As
can be seen in Table 10, a larger p generally leads to better
performance, but also brings in an increasing time cost. In
terms of NMI and CA, our U-SENC method consistently
outperforms the other methods with varying parameter p

on all of the four datasets. The LSC-K outperforms U-SPEC
on the MNIST dataset. But on all the other three datasets, U-
SPEC achieves better or significantly better NMI and CA
scores than LSC-K. In terms of computational cost, the LSC-

TABLE 10
Average NMI (%), CA (%), and Time Costs(s) over 20 Runs by
Different Methods with Varying Number of Representatives p

Dataset| ~ MNIST Covertype TB-1IM SF-2M
!}/.,gs—‘A . o e
I 70
z /M s g =
NMI ;w /,M : 7 N ;60 W
% e I
A 6 Al
i
W wn o W0 @ ew wm w0 m w0 w0 o Zo w0 o0 wm
#of # of representatives. of representatives
80 y = o 20 ” % ? 4
_T5le~ — _ 8 o |aal aa,
3es 3 3 3
CA 60 = B0FAY (] P——
w D

200 600 1000 1400 200 600 1000 1400 200 600 1000 1400
#of #of
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200 600 1000 1400
#of representatives

FBM AB yan iy — 8e—s—e—s—e—o0 = g oo o—eoo
7 7 i 7 = % Py
. o el Dl
o ey 5 5 M—H g 4
cost g, £, g, £
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20 60 1000 1400 200 60 1000 1400 20 60 1000 1400 20 60 1000 1400
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‘+ U-SENC —4— U-SPEC —<+—LSC-R —4— LSC-K —%— Nystrom \

* On the SF-2M dataset, LSC-K cannot handle > 1400 representatives (or
landmarks), while Nystrom cannot handle > 1200 representatives (or land-
marks), due to the memory bottleneck.
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TABLE 11
Average NMI (%), CA (%), and Time Costs(s) over
20 Runs by Different Methods with Varying
Number of Nearest Representatives K

1223

TABLE 13
The NMI (%), CA (%), and Time Zcosts(s) by U-SPEC Using
Different Representative Selection Strategies (H: Hybrid
Selection; R: Random Selection; K: K-means Based Selection)

Dataset| ~ MNIST Covertype TB-1M SF-2M Dataset| ~ MNIST Covertype TB-IM SF-2M
Cl 10 ° S=2 == S ol 70 ™=
o N—a—mjh H\M‘ 80 0 7 sl 95 =3 75 {»
gl e g )| e £y Tos g g
= s |ttt = s s s s s
NMI | 27 z, e e NMI | £ :, e
" 2 = 30 65
0 L1l ] 55 L1 L] L1
: 4 6 8 0 - 95
ot nearstroposentat @ — 50 — — T
\aaaaas 24 S S S
s CA | 5 5"
w
CA ©
7., L LI LI L
20 60 — — —
4 6 8 10 s — _ AGO ﬂ|50
#of rest representati . o2 I 260 I
.
~ |eeeeeees| _tlgosese00e _ | ,ee0eee0 _ 0 o000 g g g g
cost | £, to £, £
- g P e = HpoeaBees]
Time | fuloeooeoas| f K wosseou i I , L L el [ Ll |
E E oottt £, S P A
S |eetta—tte| o E S aalir
cost £, £, g, g, (N U-SPEC-H [ U-SPEC-R [_JU-SPECK|
o
Wolnerostropresenaives ol neretepesemalvos ol neretopeseiaives  #of ot epresetaves
‘+ U-SENC —4— U-SPEC —<4—LSC-R —4— LSC-K —*— Nystrom

TABLE 12
Average NMI (%), CA (%), and Time Costs(s) over 20 Runs by
Different Methods with Varying Ensemble size m

Dataset|  MNIST Covertype TB-1M SF-2M
D1 D2 D3
10 100
o oo oo —r e o o
LS S il _60
NMI Zo
CA 3
Time £
cost 8
o o 0 0
0 2w 0 2 0 0 2w 0 2w
Ensemble size Ensemblo size Ensemble size Ensemble size
—®—U-SENC —4—U-SPEC < LWGP —A—SEC —«—ECC —¥— PTGP KCC —*-WCT —&—EAC]|

K and Nystrom methods cannot deal with p > 1,400 repre-
sentatives on the SF-2M dataset with two million objects.
On the benchmark datasets, U-SPEC is overall the fastest
method with varying parameter p (as shown in Table 10).

4.5.2 Number of Nearest Representatives K

The parameter K denotes the number of nearest representa-
tives (or landmarks), which is a common parameter in LSC-
K, LSC-R, and our U-SPEC and U-SENC methods. Note that
the Nystrom method doesn’t have such a parameter K, but
we still illustrate the performance of Nystrom in Table 11
just to use Nystrom as a benchmark here. As illustrated in
Table 11, on the MNIST dataset, U-SENC and LSC-K are
respectively the best and the second best methods w.r.t. NMI
and CA, while U-SPEC is the third best method. On all of the
other three benchmark datasets, U-SENC and U-SPEC are
overall the best two methods w.r.t. both NMI and CA with
varying parameter K (as shown in Table 11).

TABLE 14
The NMI (%), CA (%), and Time Costs(s) by U-SENC Using
Different Representative Selection Strategies (H: Hybrid
Selection; R: Random Selection; K: K-means Based Selection)

Dataset| ~ MNIST Covertype TB-1M SF-2M
EY T 10 {» — 80 T
ge g g g
NMI s s 5% s
E B H H
60
20 S 0 S 80 S E—
— 2 100 -
-
” %0 4} % B
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CA g e T o
40 ¥ o
75
S a4 S % S S
_ 300 1 _ oo [ 1500 [ 3000 [
Time Eom % % 100 320
@ o 500 o o
cost Ew ll £ £ £ ow
0 L el | [ EE ]
[ I u-sENC-H [ U-SENC-R [_JU-SENCK]

4.5.3 Ensemble Size m

The parameter m denotes the number of base clusterings,
which is a common parameter in all of the ensemble
clustering methods, including U-SENC as well as the
baseline ensemble clustering methods. Note that U-SPEC
is not an ensemble clustering method and doesn’t have
the parameter m, but we still illustrate the performance
of U-SPEC in Table 12 for reference only. As shown in
Table 12, U-SENC outperforms, or even significantly out-
performs, the other ensemble clustering methods w.r.t.
both NMI and CA on the benchmark datasets with vary-
ing ensemble size m. Meanwhile, U-SENC consistently
requires a lower computational cost than the other
ensemble clustering methods.

4.6 Influence of Representative Selection Strategies
In this section, we compare the performances of our
algorithms using different representative selection strate-
gies. Specifically, Table 13 illustrates the performances of
U-SPEC using hybrid selection (U-SPEC-H), U-SPEC using
random selection (U-SPEC-R), and U-SPEC using k-means
based selection (U-SPEC-K), whereas Table 14 illustrates the
performances of U-SENC using hybrid selection (U-SENC-
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TABLE 15
The NMI (%), CA (%), and Time Costs(s) by U-SPEC Using
Approximate K-Nearest Representatives against Exact
K-Nearest Representatives
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TABLE 16
The NMI (%), CA (%), and Time Costs(s) by U-SENC Using
Approximate K-Nearest Representatives against Exact
K-Nearest Representatives

Dataset| ~ MNIST Covertype TB-IM SF-2M Dataset| ~ MNIST Covertype TB-IM SF-2M
7 = . I . . s 417 80 — 10 ‘P + 80 =
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(N U-sPEC(A) C_U-SPEC(E) | [ I U-sENC(A) C_JU-SENC(E) |

H), U-SENC using random selection (U-SENC-R), and U-
SENC using k-means based selection (U-SENC-K). As shown
in Tables 13 and 14, the random representative selection is
very efficient compared to k-means based selection, but
may degrade the clustering quality due to its inherent
instability. The k-means based selection generally leads to
better clustering quality than random selection, but brings
in a much larger computational cost. Compared to ran-
dom selection and k-means based selection, our hybrid
selection strategy strikes a balance between efficiency and
clustering robustness. It achieves comparable efficiency to
the random selection and significantly better efficiency
than the k-means based selection, and also yields compet-
itive clustering quality as compared to the k-means based
selection.

4.7 Influence of Approximate /K -Nearest Neighbors
In this section, we compare our algorithms using Approxi-
mate K-nearest representatives against using Exact K-near-
est representatives, where four variants are evaluated, i.e.,
U-SPEC(A), U-SPEC(E), U-SENC(A), and U-SENC(E). The
purpose of using approximate K-nearest representatives
(see Section 3.1.2) is to alleviate the time and memory
cost of the affinity sub-matrix construction while main-
taining the overall clustering quality. As shown in
Tables 15 and 16, using approximate K-nearest represen-
tatives can achieve comparable clustering quality (w.r.t.
NMI and CA) with using exact K-nearest representatives
while alleviating the computational cost. As our approxi-
mation of K-nearest representatives reduces the time
complexity from O(Npd) to O(Npzd), the improvement in
efficiency is more significant for high-dimensional data-
sets, such as the MNIST dataset, whose dimension is 784.
Even for the low-dimensional datasets, such as TB-1M
and SF-2M, the use of approximate K-nearest representa-
tives can still consistently reduce the time cost. Besides
the time efficiency, the approximate K-nearest representa-
tives also alleviate the memory burden. Specifically, on a
machine with 64 GB memory, the computation of conven-
tional K-nearest representatives can hardly go beyond
five million objects, whereas the proposed approximation
method for K-nearest representatives can scale well for
even ten-million-level datasets.

5 CONCLUSION

This paper proposes two large-scale clustering algorithms,
termed ultra-scalable spectral clustering and ultra-scalable
ensemble clustering, respectively. In U-SPEC, a new hybrid
representative selection strategy is designed to strike a bal-
ance between the efficiency of random selection and the
effectiveness of k-means based selection. Then a new approx-
imation method for K-nearest representatives is presented to
efficiently construct a bipartite graph between the original
data objects and the set of representatives, upon which the
transfer cut can be utilized to obtain the clustering result.
Starting from the U-SPEC algorithm, we further integrate
multiple U-SPEC clusterers into a unified ensemble cluster-
ing framework and propose the U-SENC algorithm. Specifi-
cally, multiple U-SPEC’s are exploited in the ensemble
generation phase to produce an ensemble of diverse and
high-quality base clusterings. The multiple base clusterings
are incorporated into a new bipartite graph, which treats
both objects and base clusters as graph nodes and is then effi-
ciently partitioned to achieve the final consensus clustering.
Extensive experiments have been conducted on ten large-
scale datasets, which demonstrate the scalability and robust-
ness of our algorithms.
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