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Abstract—Descriptive clustering consists of automatically organizing data instances into clusters and generating a descriptive

summary for each cluster. The description should inform a user about the contents of each cluster without further examination of

the specific instances, enabling a user to rapidly scan for relevant clusters. Selection of descriptions often relies on heuristic criteria.

We model descriptive clustering as an auto-encoder network that predicts features from cluster assignments and predicts cluster

assignments from a subset of features. The subset of features used for predicting a cluster serves as its description. For text

documents, the occurrence or count of words, phrases, or other attributes provides a sparse feature representation with interpretable

feature labels. In the proposed network, cluster predictions are made using logistic regression models, and feature predictions rely on

logistic or multinomial regression models. Optimizing these models leads to a completely self-tuned descriptive clustering approach

that automatically selects the number of clusters and the number of features for each cluster. We applied the methodology to a variety

of short text documents and showed that the selected clustering, as evidenced by the selected feature subsets, are associated with

a meaningful topical organization.

Index Terms—Descriptive clustering, feature selection, logistic regression, model selection, sparse models
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1 INTRODUCTION

EXPLORATORY data analysis techniques such as clustering
can be used to identify subsets of data instances with

common characteristics. Users can then explore the data by
examining some instances in each cluster, rather than exam-
ining instances from the full dataset. This enables users to
efficiently focus on relevant subsets of large datasets, espe-
cially for collections of documents [1]. In particular, des-
criptive clustering consists of automatically grouping sets of
similar instances into clusters and automatically generating
a human-interpretable description or summary for each
cluster. Each cluster’s description allows a user to ascertain
the cluster’s relevance without having to examine its con-
tents. For text documents, a suitable description for each
cluster may be a multi-word label, extracted title, or a list of
characteristic words [2]. The quality of the clustering is
important, such that it aligns with a user’s idea of similarity,
but it is equally important to provide a user with an infor-
mative and concise summary that accurately reflects the
contents of the cluster. However, objective criteria for evalu-
ating the descriptions as a whole, which do not resort to
human evaluation, have been largely unexplored.

With the aim of defining an objective criterion, we con-
sider a direct correspondence between description and
prediction. We assume each instance is represented with
sparse features (such as a bag of words), and each cluster
will be described by a subset of features. A cluster’s des-
cription should summarize its contents, such that the des-
cription alone should enable a user to predict whether an
arbitrary instance belongs to a particular cluster. Likewise,
a machine classifier trained using the features subset should
also be predictive of the cluster membership. The classifica-
tion accuracy provides an objective and quantitative crite-
rion to compare among different feature subsets.

To serve as a concise description, the number of features
used by the classifier must be limited (e.g., a linear classifier
that uses all features is not easily interpretable). A relatively
small set of predictive features can be identified using
various feature selection methods [3], [4]. In particular, we
identify features subsets by various statistical and informa-
tion-theoretic criteria [5] and by training linear classifiers
with additional sparsity-inducing regularizations [6], [7],
[8], e.g., the ‘1-norm for the Lasso [9] or a combination of ‘1
and ‘2-norms for the Elastic Net [10], such that only a small
set of features have non-zero coefficients. In a similar spirit,
Lasso has been used for selecting predictive features for
explaining classification models [11].

In addition to the cardinality constraint on the number of
features, we only permit features that are positively corre-
lated with a given cluster, i.e., features whose presence are
indicative of the cluster. This constraint ensures that no clus-
ter is described by the absence of features, which are present
in other clusters. For instance, given a corpus of book and
movie reviews, the positivity constraint avoids a cluster
consisting of mainly of book reviews from being described
as :movie, i.e., the absence of the word feature movie.
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In general, this constraint can be enforced by admitting only
features that are positively correlated with a particular clus-
ter; for linear classifiers, this can be done by enforcing the
constraint that the coefficients are non-negative [12].

Constraining the number of features and constraining the
positivity will inevitably limit the performance of the classi-
fier. The natural question is exactly how many features are
needed to ensure a ‘reasonable’ classification performance.
We use a model order selection criterion as a principled
approach to answer this question. We model the probability
of class membership given the different subsets of features
using logistic regression and use the Bayesian information
criterion (BIC) [13] to select the model corresponding to a
feature subset that is both predictive and parsimonious.

Given a clustering of the instances, we apply the afore-
mentioned approach to automatically generate an interpret-
able classifier for each cluster. The features of the classifier
form the description of the cluster, and the network of clas-
sifiers is a compact approximation of the original cluster
assignments. The two benefits of this paradigm versus pre-
vious descriptive clustering approaches [2], [14], [15], [16]
are the ability to quantify the description accuracy as well
as a principled and automatic way to select the size of fea-
ture subsets that serve as the descriptors for each cluster.

Similarly, predictive performance can be used to select
the clustering itself and in particular, the number of clusters.
Although a variety of criteria for selecting the number of
clusters exist [17], they are often specific to the underlying
objective of the clustering algorithm. Independent from
the clustering algorithm, we propose to select the number
of clusters that is most predictive of the original feature
occurrences. For each clustering, we assume the sparse

features are conditionally independent given the cluster
assignment and model them by either a multinomial distri-
bution, if the feature values are non-negative counts, or a
multivariate Bernoulli, if the feature values are binary. The
optimal clustering is then chosen by model selection.

Our approach is a self-tuned method for descriptive clus-
tering, which we refer to as predictive-descriptive clustering
(PDC), and is based on two predictive networks, as shown
in Fig. 1. By choosing from among different network archi-
tectures, both the number of clusters and the feature subsets
for describing each cluster are automatically optimized.
Although we assume sparse count or binary occurrence-
based features to use for the description and model selec-
tion, the clusterings themselves can be derived from arbi-
trary representations. We explore the approach in the
context of short text documents with words and phrases as
features, but the approach is applicable to any data with
sparse count-valued features.

Our main contributions are (1) a new quantitative evalua-
tion for descriptive clustering; (2) PDC as a unified frame-
work to automatically select both the clustering itself (across
different numbers of clusters) and also select a set of features
(including its size) to describe each cluster; (3) a comparison
of feature selection algorithms including regularized and
constrained logistic regression; (4) a direct comparison to an
existing topic modeling approach [18], which shows that
PDC both performs better and is more efficient; and (5) moti-
vating examples of PDC on a variety of text datasets.

We begin by discussing related work in exploratory data
analysis for text datasets in Section 2. We then present the
proposed methodology in Section 3, detailing the selection
of clustering, selection of candidate feature subsets, and
selection of model size. In Section 4, we apply the proposed
approach to publicly available text datasets (movie, book,
and product reviews along with Usenet newsgroup posts,
news summaries, academic grant abstracts, and recipe
ingredient lists) and show that meaningful and descriptive
features subsets are selected for the clusters. Furthermore,
we show that the interpretable classifiers that use the fea-
ture subsets are accurate.

2 RELATION TO EXISTING APPROACHES

There has been extensive research on clustering and other
unsupervised methods, namely topic modeling but also
low-dimensional embeddings [19], [20], [21], [22], for
exploring text datasets. Some particularly relevant work
has focused on website search results [15]. We highlight
approaches that have considered user interpretation of
the results in the form of descriptive keywords, phrases, or

Fig. 1. Proposed approach and network architecture for descriptive clustering (the notation for the decoupled auto-encoder is described in Table 1).

TABLE 1
Notation for the Descriptive Clustering Auto-Encoder Network

Notation Description

� Data instance
x An instance’s sparse feature vector
xðiÞ Value of the i-th feature
N Number of features
y An instance’s cluster assignment vector
yðcÞ Binary membership variable for c-th cluster
C Number of clusters
fð�Þ Clustering function, returns an assignment vector
F Set of candidate clusterings
Decodeðy;UÞ Cluster-to-feature decoder with parameters U
x̂ Decoder’s predicted feature vector
Encodeðx;WÞ Cluster encoder with parametersW
ŷ Encoder’s predicted cluster assignment
SðcÞ Set of selected feature indices for c-th cluster
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titles that summarize the semantic content of clusters and
topics for a user. For datasets with known ground-truth topic
categories, document clustering can be evaluated using cor-
respondence measures, but comparisons of descriptive
labels have often relied on human evaluation. Comparisons
among description mechanisms is especially challenging,
since the datasets, clustering or modeling paradigms, and
form of the description varies widely. Although some user
evaluations have concentrated on which labels users pre-
fer [23], evaluation should concentrate on whether the
descriptions aid a user in predicting themost relevant cluster
or topic [24], [25]. To our knowledge, no previous approach
has posed descriptive clustering as a prediction problem
with objective quantification in terms of classification perfor-
mance. The other unique contributions of our approach
include a principled approach to select the number of fea-
tures in the description, and an automatic approach for
selecting the number of clusters that is independent of the
clustering algorithm but dependent on the cluster assign-
ments and the binary feature representation.

2.1 Descriptive Clustering for Text Datasets
The motivation for applying descriptive clustering to text
datasets is that it can be used as an information retrieval
mechanism. A user can efficiently scan the descriptions for
relevancy versus having to determine which clusters are
relevant by manually checking the document instances.
Scatter-gather [2], [24], [26], [27] is an iterative procedure that
uses multiple stages of descriptive clustering to help a user
find relevant documents. An initial clustering is given along
with some description or preview of each cluster to the users,
who are then asked to select clusters of interest. Instances
within the selected clusters are combined and clustered
again. This continues until a user hones in on a relevant set of
documents. The quality of the automatic description is crucial
to enable a user to recognizewhich clusters are relevant.

This exploratory approach should be contrasted to classic
query-based information retrieval systems. While query-
based systems predominate web searches, exploratory anal-
ysis is useful when the user does not know what topics are
within a corpus (which could vary between a set of full-text
documents to a set of short summaries of each result
returned by a search engine) or is unable to formulate a
query to retrieve relevant instances. In particular, the
exploratory approach is useful for a user that believes, “I
will know it when I see it.”

Descriptive clustering can be performed by first clustering
and then finding the set of features associatedwith each clus-
ter. This enables any applicable clustering algorithms to be
used. Selecting features that best inform a user on the con-
tents of a cluster (the purpose of this study) is the subsequent
challenge. The most basic approach is to describe each clus-
ter by the most likely words in the cluster [2], titles (if avail-
able) near the center of each cluster [2], or phrases with
similar context as the most likely words [14]. However, these
features may not be optimal for discriminating between dif-
ferent clusters. Other scoring criteria such as mutual infor-
mation [28] (i.e., information gain [29] rather than pointwise
mutual information [30])may be used to selectmore discrim-
inating features (e.g., keywords or phrases) for the clusters.

Another approach is to first, or simultaneously, group
features such that the grouping of features affects the clus-
tering. Grouping features [31] can mitigate issues with

feature sparsity and noise [32], and the use of grouped fea-
tures has been shown to improve clustering performance
[33], [34]. A novel approach is to directly learn a joint vector
space representing both features (descriptive phrases) and
instances [16]. The vectors representing the features and
instances are optimized such that nearby vectors are seman-
tically similar. Given this joint vector space, each cluster of
instances can be labeled by some of the features residing
within its boundaries.

With the aforementioned approaches it is not clear how to
objectively measure the selected feature lists or labels that
serve as descriptors. Our hypothesis is that any description is
only useful if it would enable a user to accurately predict the
contents of the cluster. In this case, finding sets of features to
describe each cluster can be seen as a feature selection prob-
lem. For instance, one can train a decision tree[35] for each
cluster to classify instances directly by the presence or absence
of certain features. The boolean expression corresponding to
the decision tree serves as a description of the set [36].

A decision tree and clustering can be formed simulta-
neously using hierarchical clustering based on the presence
or absence of individual features [37] or phrases as in suffix-
tree clustering [38], [39]. These approaches explicitly link
the description with the organization of the documents and
by consequence cannot be applied to arbitrary clusterings.

2.2 Topic Models and Automatic Topic Labeling
Besides clustering, other models can be used for exploratory
analysis of large text datasets. Latent semantic indexing [40] is
amatrix decomposition technique related to principal compo-
nent analysis that can be applied to a bag-of-words represen-
tation of documents to group together words used in similar
contexts and also group together documents which contain
these contexts. A user could browse the list of highlyweighted
words associated with each latent dimension, which serves as
a sort of description, to choose relevant dimensions. Alterna-
tively, instead of a list, a single phrase that best describes each
dimension can be used and then documents can be assigned
based on the presence of this phrase [41].

Topic models offer a probabilistic interpretation of the
themes present in bag-of-words representation of document
collections [42], [43]. Each document is modeled as a mix-
ture of topics/themes, with each topic or theme associated
with a distribution of words. Specifically, latent topic mod-
els [44], [45] assume the words in each document are drawn
from a mixture of word distributions, where each word
distribution is associated with a topic. Each document has
its own mixture of topics, and each topic defines a distribu-
tion over all the words. Given a document, the topics are
unknown (latent) and are inferred from the distribution of
words appearing in the document or in each sentence [46].

Browsing lists of the most probable words for each topic
is not an efficient method to interpret topic models. Instead,
various approaches to automatically label the individual
topics with descriptive phrases, or a subset of distinguish-
ing features, are useful for annotating models with a large
number of topics [18], [23], [47]. Thus, the problem of auto-
matically labeling topic models is closely related to descrip-
tive clustering. Clustering bag-of-word representations can
be seen as an extreme form of topic modeling, where each
document is associated with a single topic. Since a cluster-
ing can be treated as a topic model, automatic topic labeling
techniques can be applied to descriptive clustering.
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In particular, we compare our feature selection approach
to the topic labeling method proposed by Mei et al. [18].
Their method most closely resembles ours in that it is based
solely on the statistics of the corpus (this is in contrast to
other topic labeling methods that rely on external resources,
for instance on the alignment of topics to the titles of Wiki-
pedia articles [23], [47] or finding a hypernym via WordNet
[48] for a topic’s common words [49]). In Mei et al.’s
approach, features are scored based on how predictive they
are of topic-related words. The score is adjusted to discrimi-
nate between topics, and further adjusted when multiple
features are selected in order to ensure they are not redun-
dant [50]. This ensures the selected features are truly
comprehensive. The drawbacks of their approach are its
computational complexity, since a multinomial model over
the features is formed for each candidate descriptor, and
the score adjustments are based on trade-off parameters
that must be selected by a user. Furthermore, automatically
selecting the number of terms per topic is not considered.

Our proposed PDC framework can also be applied to
topic models, but topic models are only useful for document
retrieval when each topic can be clearly associated with a
subset of documents, and each topic can be succinctly
described. Topics that appear uniformly throughout the
dataset may be useful for a global summary but are not inter-
esting for searching for a subset of relevant documents. One
approach to achieve localized topics is to combine clustering
and topic modeling [51]. Another approach is to aim for a
parsimonious model [52] that uses the minimal number of
topics each associated with topic specific words, where the
number of topics and words are directly optimized via a
model order selection criterion. Soleimani andMiller’s parsi-
monious model approach [52] yields models where each
document is associated with only a few topics. Together this
means the parsimonious modeling more closely resembles
descriptive clustering. A key difference with our approach is
that manymore features are associated with each topic in the
parsimonious model. This is because their model seeks to
predict the features with the topics, while ours seeks to pre-
dict the topics from a subset of features.

2.3 Feature Selection
Given a particular cluster, predicting whether instances
belong to the cluster is a standard classification problem,
and selecting the best subset of features for this task is a fea-
ture selection problem [3], [4], [29]. Choosing a small subset
of maximally predictive features is a difficult task. One trac-
table approach is to use a greedy algorithm that adds (or
removes) features until a desired cardinality is reached. For
small feature sets, one can consider a stepwise approach,
where at each step the feature that either improves (or con-
tributes the least) to the classification performance is added
(or removed). However, the stepwise approach, which must
fit a model for each candidate feature, cannot scale to cases
with tens of thousands of features as encountered with text
data. Tractable greedy algorithms that can scale to large
number of features can be divided into three groups:

� Filter approaches [3] that do not assume specific form to
the classifier but use a specific criterion to judge the
relevance of individual features or feature subsets.
The simplest approach is to rank features by a selec-
tion criterion (for instance, mutual information,
which has been shown to perform well for document

classification [28], weighted likelihood ratio [53], or
other heuristics [20]) and select the top-ranked subset.

� Joint filter approaches that consider the dependency and
(possible redundancy) among features [54]. In particu-
lar, the information theoretic criteria [5] that consider
the pairwise dependence include CMIM [55], MRMR
[56], and JMI [57], [58].

� Heuristic approaches that are specific to the classifiers.
For instance, decision trees [35] can be trained by
choosing the feature that reduces a metric such as
the Gini impurity value. For logistic regression, the
magnitude of gradient can be used as a criterion
for feature inclusion. Methods using this approach
include grafting [59], logistic regression based orthog-
onal matching pursuit [60], and greedy cardinality-
constrained optimization [61].

Another tractable approach for features selection is based
on fitting a linear classifier with additional sparsity-inducing
regularizations on the coefficients of features in the objective
function. With certain choices of regularization parameters,
many of the optimal coefficients are exactly zero and only a
small set of features are associated with non-zero coeffi-
cients [6], [7], [8]. Convex regularizations of this sort are the
‘1-norm (Lasso) [9] and the ‘1 þ ‘2–norm (Elastic Net) [10].

Any of these approaches can be adjusted to ensure that the
features are positively correlated with a target class, i.e., a
feature’s occurrence rate given the class should be higher than
its average rate. For the regularization-based approaches, the
positivity constraints on the coefficients can be enforced dur-
ing logistic regressionmodel optimization.

3 PREDICTIVE-DESCRIPTIVE CLUSTERING (PDC)

The PDC framework consists of two prediction tasks: pre-
dicting the original feature occurrences based on the cluster
assignments and predicting whether an instance belongs to
a specific cluster using only a small set of feature dimen-
sions that serve as the description for the cluster. The first
task provides a quantitative objective to automatically select
from clusterings with different numbers of clusters. Each
cluster is associated with a certain distribution of the fea-
tures, with some features occurring more (or less) fre-
quently for instances within that cluster. If all the instances
assigned to the same cluster have similar feature distribu-
tions, then the knowledge of the cluster assignment will be
predictive of the feature occurrences. The second task of
predicting the cluster membership is clearly dependent on
the chosen clustering. The amount of information carried by
the clustering increases with more clusters, but the difficulty
of predicting cluster membership also increases with more,
finer-grained clusters. Additionally, for a fixed number of
clusters there is an inherent trade-off between prediction
performance and the number of features.

As a tractable approach to choose the number of clusters
and features, we use a multistage modeling process. At
each stage, we estimate a set of candidate models and select
the best model from the candidate set.

� Create candidate clusterings. A set of possible cluster-
ings are formed. These clusterings may vary in the
number of clusters, arise from different clustering
algorithms, or use different data representations.

� Select the most predictive clustering. For each cluster-
ing, a model is trained to predict feature occurrences
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from the cluster assignments. The clustering associ-
ated with the most predictive model is selected.

� Create descriptive feature subsets. For each cluster, dif-
ferent subsets of features are chosen by a feature
selection mechanism. In particular, candidate feature
subsets are identified using logistic regression with
positivity constraints and sparsity-inducing regulari-
zation by varying the amount of regularization.

� Select the most informative feature subset. A logistic
regression model is trained for each candidate fea-
ture subset. The best model is selected by a model
order selection criterion that balances cardinality
with predictive performance.

Each stage is associated with a standard modeling pro-
cess: clustering, regression, feature selection, and model
selection. Before detailing each stage, we introduce an inter-
pretation of the PDC framework as an approach for estimat-
ing an auto-encoder neural network with a binary hidden
layer [62], [63], [64].

3.1 PDC as a Binary Auto-Encoder Network
The predictive architecture in the PDC framework can be
interpreted as an auto-encoder network [64]. The network
consists of an encoder that maps each instance to its cluster
assignment vector, which serves as the hidden layer of the
network, and a decoder that tries to reconstruct the original
features based on the cluster assignment. With a standard
auto-encoder, the output of the encoder is directly fed to the
input, and both the encoder and decoder are adapted in
order to minimize the reconstruction error of the decoder,
subject to any additional constraints on the hidden layer.

Alternatively, in our stage-wise approach, we decouple
the auto-encoder by using a clustering algorithm to provide
the cluster assignments that serve both as the template for
training the encoder and as the input to the decoder, as
shown in Fig. 1. We proceed to formulate both the coupled
and decoupled forms of the auto-encoder. Table 1 contains
the main notation.

We assume each data instance, denoted �, is associated

with a sparse feature vector x ¼ ½xð1Þ; . . . ; xðNÞ� 2 ZN
þ , where

N is the number of features and xðiÞ is the number of times
the ith feature occurs in this instance or a binary value indi-
cating if the ith feature was present in the instance. The
encoder assigns each instance to one or more clusters based
on the presence of features. A cluster assignment with C
clusters is represented by the vector y ¼ ½yð1Þ; . . . ; yðCÞ� 2
f0; 1gC , where yðcÞ ¼ 1 if the instance is assigned to cluster c.
The decoder predicts the feature occurrences from the clus-
ter assignments; the prediction is denoted x̂ ¼ Decodeðy;UÞ,
where U denotes the parameters of the decoder. The cluster
assignment vector y correspond to the hidden layer activa-
tions. The objective for training the auto-encoder is to mini-
mize both the expected loss of the feature predictions and
also the number of features used in the encoder, and can be
written as

min
C;W;U

E½Lossðx; x̂Þ� þ aVðWÞ
x̂ ¼ Decodeðy;UÞ; y ¼ Encodeðx;WÞ
subject to y 2 f0; 1gC;

(1)

where W is the set of parameters of the encoding model,
VðWÞ is a penalty function based on the number of features
used in the encoding model, and a is a trade-off parameter.

Even without the additional penalty on the number of
features, finding the optimal auto-encoder is a difficult
problem to solve [64]. Rather than attempt to jointly learn
all of the parameters, we decouple the decoder from the
encoder, using a separate clustering function f : � 7!y to
define the cluster assignments (f maps each instance � to a
cluster assignment vector y). The clustering assignments
defined by f are used as the input to the decoder and also
as the target for the descriptive encoder. The decoupled
auto-encoder optimization can be written as

min
f;U;W

E½Lossðx; x̂Þ þ bLossðy; ŷÞ� þ aVðWÞ;
x̂ ¼Decodeðy;UÞ; y ¼ fð�Þ; ŷ ¼ Encodeðx;WÞ;

(2)

where ŷ is the predicted cluster assignments from the
descriptive encoder and b is a trade-off parameter between
the loss functions.

This joint optimization is still difficult; however, for a
fixed clustering, the encoder and decoder can be indepen-
dently optimized, and the resulting objective value can be
used to select from a set of different clusterings F ¼
ff1; . . . ;fKg. Moreover, as in the coupled auto-encoder,
each candidate clustering can be evaluated solely on the
decoder performance (this avoids training an encoder for
each possible clustering). The optimization corresponding
to selecting the most predictive clustering can be written as

f
? ¼ argmin

f2F
min
U

E½Lossðx; x̂Þ�;

x̂ ¼ Decodeðy;UÞ; y ¼ fð�Þ:
(3)

Given the vector of cluster assignments for the best cluster-
ing y ¼ f

? ð�Þ, the feature selection problem is then

min
W

E½Lossðy; ŷÞ� þ aVðWÞ;
ŷ ¼ Encodeðx;WÞ;

(4)

and can be performed independently for each cluster:

min
SðcÞ;WðcÞ

E½LossðyðcÞ; ŷðcÞÞ� þ aVðWðcÞÞ;

ŷðcÞ ¼ EncodeðxðcÞ;WðcÞÞ; xðcÞ ¼ ½xðdÞ�
d2SðcÞ ;

(5)

where SðcÞ is the set of selected feature indices. A complete
solution to the descriptive clustering problem is the cluster
assignment and the feature subsets ðf; fSð1Þ; . . . ;SðCÞgÞ.
With this mathematical formulation we proceed to detail
the optimizations involved in each step of the approach.

3.2 Predictive Clustering Selection
The PDC framework can be used with the cluster assign-
ments of any clustering algorithm that produces flat cluster-
ings. As a baseline algorithm we use spectral clustering [65],
which can be efficiently implemented for sparse data when
cosine similarity is used, and vary the number of clusters to
create a set of candidate clusterings F ¼ ff1; . . . ;fKg. (An
alternative is to use a coarser set of cluster sizes for less com-
putation.) We automatically select from among different
clusterings based on howwell the feature vectors can be pre-
dicted from the cluster assignments.

3.2.1 Predicting Features from Cluster Assignments

For the expected loss, we explore two approaches: in the
first approach, we model binary features using logistic
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regression and use the cross-validated average of the nega-
tive log-likelihood; as a more scalable alternative, we model
count-values features using multinomial regression.

Binary Features (Bernoulli Model).Wemodel binary feature
vectors based on the assumption that they are independent
Bernoulli random variables given the cluster assignment.
The probability1 of a particular featureX being present given
the cluster assignment y ¼ ½yð1Þ; . . . ; yðCÞ� is modeled as

PrðX ¼ 1jyÞ ¼ 1

1þ e�u0�u�y ¼ 1

1þ e�u0 �y0 ; (6)

where for compactness the bias u0 is included with the coef-
ficients in the parameter vector u0 ¼ ½u0;u� and a constant
feature is added to the cluster assignments y0 ¼ ½1; y�. For a
sample fðyi; xiÞgni¼1 of n instances the log-likelihood is

lnL u0; jfyi; xigi
� � ¼

Xn

i¼1

xiðu0 � y0iÞ � lnð1þ eu
0�y0iÞ: (7)

In practice, if a feature only occurs in a subset of clusters,
the coefficient for the feature can become arbitrarily large
while maximizing the log-likelihood. This behavior can
be avoided by constraining the norm of the coefficients to
be less than some value. For any constraint value, an optimi-
zation with an equivalent solution is obtained by minimiz-
ing the negative log-likelihood function combined with a
scaled penalty on the squared ‘2-norm of the coefficients:

argmin
u0

� lnL u0jfyi; xigi
� �þ t

2
kuk22: (8)

To select the best clustering among multiple clustering
candidates, each clustering is evaluated in terms of the
cross-validated log-likelihood for the optimized coefficients.
For a particular clustering defined by the mapping f : � 7!y,
the parameters for each feature are optimized and fixed,
and the negative log-likelihood on a separate test sample
fðfð~�iÞ; ~xiÞgi is combined across all N features:

E½Lossðx; Decodeðy;UÞÞ� ¼
XN

j¼1

� lnLðu0
j; f~yi; ~xðjÞ

i giÞ; (9)

where ~yi ¼ fð~�iÞ and U ¼ fu0
jgNj¼1 is the set of coefficients.

In practice, some of the features may be extremely sparse
(only a few non-zeros). Rather than attempt to predict these
sparse features, we use only the subset of features that occur
in at least 1 percent of the instances in the cross-validation sets.

Count-Valued Features (Multinomial Model). For sparse fea-
ture vectors corresponding to occurrence counts, such as
bag-of-words, we assume the counts follow a multinomial
distribution for each cluster. For a multinomial random
vector X ¼ ½Xð1Þ; . . . ; XðNÞ� described by the probability
distribution p ¼ ½pð1Þ; . . . ; pðNÞ�, pðjÞ � 0,

P
j pðjÞ ¼ 1, the

probability mass function for observing the count vector
x ¼ ½xð1Þ; . . . ; xðNÞ� 2 ZN

þ with a total count ofm ¼ P
j x

ðjÞ is

PrðX¼xÞ ¼ m!

xð1Þ! � � �xðNÞ!
px

ð1Þ
ð1Þ p

xð2Þ
ð2Þ � � � pxðNÞ

ðNÞ : (10)

Given a sample fðxi;miÞgni¼1 from this distribution, the log-
likelihood function is

lnLðp̂jfxigÞ ¼
X

i

X

j

lnmi!� ln x
ðjÞ
i !

� �
þ x

ðjÞ
i ln p̂ðjÞ: (11)

Rather than use the maximum likelihood estimate of p̂, we
adopt additive smoothing to estimate the multinomial

parameters for each cluster as p̂
ðcÞ
ðjÞ ¼

1þr
ðcÞ
ðjÞ

Nþ
PN

k¼1
r
ðcÞ
ðkÞ
; where

r
ðcÞ
ðjÞ ¼

P
i:y

ðcÞ
i

¼1
x
ðjÞ
i (the number of times the j-th word occurs

in the cth cluster) and U ¼ p̂. The empirical log-likelihood

of the sample itself is used to estimate the quality of the

clustering, and to compare clusterings of different size we

use the Akaike information criterion (AIC) [66]:

E½Lossðx; Decodeðy;UÞÞ� � �2 lnLðp̂jfxigÞ þ 2C: (12)

Using AIC is more efficient than cross-validation and has
the same asymptotic performance for model selection [67].

3.3 Descriptive Feature Selection
Given the clustering, training an interpretable encoder for
each cluster is a supervised learning problem consisting of
both feature selection and classifier training. Each cluster is
treated as a class, and the corresponding dimension of the
cluster membership vector yðcÞ is treated as the indicator for
class membership. For each cluster c 2 f1; . . . ; Cg the prob-
lem is to predict yðcÞ using a subset of features:

argmin
WðcÞ

E½LossðyðcÞ; ŷðcÞÞ� þ aVðWðcÞÞ

subject to w � 0 8w 2 WðcÞ;

y ¼ ½yð1Þ; . . . ; yðCÞ� ¼ fð�Þ; ŷðcÞ ¼ Encodeðx;WðcÞÞ;
VðWðcÞÞ ¼ jfw 2 WðcÞ : w > 0gj;

(13)

where WðcÞ denotes the coefficients of the encoder model
associated with the features, y represents the original cluster
assignment vector and ŷðcÞ is encoder’s assignment for clus-
ter c. The constraint ensures the features are positively asso-
ciated with a cluster.

Optimizing Eq. (13) is not tractable due to the integral
nature of the feature count VðWðcÞÞ. Instead, for each cluster
a candidate set of encoders using features subsets of varying
cardinality are optimized to predict the cluster assignment,
and the feature subset for the encoder that minimizes the
cost is selected. Feature subsets can be generated by various
algorithms or by optimizing a linear classifier with sparsity-
inducing regularization. We select a by equating Eq. (13) to
BIC by using the negative log-likelihood for the expected
loss and setting a ¼ ln

ffiffiffi
n

p
, where n is the number of instan-

ces in the sample.

3.3.1 Regularized and Constrained Logistic Regression

for Feature Subset Generation

Candidate feature subsets can be obtained by combining
logistic regression with sparsity-inducing regularizations.
For a given cluster, the probability that an instance is
assigned to the cluster is modeled as a conditionally
Bernoulli random variable:

PrðY ¼ 1jxÞ ¼ fw0 ðxÞ ¼ 1

1þ e�w0�w�x ; (14)

where for compactness the bias w0 is combined with
the coefficients w0 ¼ ½w0;w� and a constant is added to the
feature vector x0i ¼ ½1; x�. Given a sample fðxi; yiÞgni¼1, the

1. For a Bernoulli random variableX with a mean frequency of p, the

probability mass function can be written as PrðX ¼ xÞ ¼ pxð1� pÞð1�xÞ;
x 2 f0; 1g. Given a sample fxigi from this distribution, the log-likeli-
hood function is lnLðp̂jfxigÞ ¼

P
i xi ln p̂þ ð1� xiÞ lnð1� p̂Þ.
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log-likelihood function is

lnLðw0Þ ¼
Xn

i¼1

yi ln fw0 ðxiÞ þ ð1� yiÞ lnð1� fw0 ðxiÞÞ

¼
Xn

i¼1

yiðw0 � x0iÞ � lnð1þ ew
0 �x0

iÞ:
(15)

When instances from each class are linearly separable
(which is likely to occur with clustering), coefficients may
grow without bound to maximize the log-likelihood func-
tion. This can be remedied by adding the squared ‘2-norm
of the coefficients to the negative log-likelihood function to
ensure a minimization problem with a finite solution. The
regularized optimization is

argmin
w0

� lnLðw0Þ þ t

2
kwk22: (16)

This regularization reduces the magnitude of the coeffi-
cients, but in general, all of the features are associated with
non-zero coefficients. Due to the geometry of the equivalent
constraints, replacing the ‘2-norm with an ‘1-norm, i.e.,
Lasso [9], can yield solutions where many coefficients are
exactly zero. The Lasso-regularized optimization is

argmin
w0

� lnLðw0Þ þ gkwk1: (17)

The choice of g affects the number of features with non-zero
coefficients, as a relatively large value of g will yield a solu-
tion with few non-zero coefficients. The features with non-
zero coefficients can be considered selected features. An
entire suite of candidate feature subsets can be found by
sweeping the value of g (known as the regularization path).
This regularization path can be computed as efficiently as
solving for the optimization for a single choice of g [68]. The
candidate feature subsets S1; . . . ;SJ are formed at the
sequence of change-points g1; . . . ; gJ (parameter values
where a new feature assumes a non-zero coefficient or a
coefficient becomes zero) along the regularization path.
A particular subset can be selected by using a model order
selection criterion, which we discuss in Section 3.3.2.

It is straightforward to combine the positive con-
straints with regularized logistic regression. The posi-
tively-constrained version of logistic regression with
Lasso regularization is

argmin
w0:w1�0;...;wN�0

� lnLðw0Þ þ g
XN

i¼1

wi: (18)

Instead of Lasso, an alternative is to use Elastic-Net regulari-
zation [10], which uses a combination of both the ‘1-norm
and ‘2-norm, and is more stable for a large number of corre-
lated features [10]. The optimization for Elastic-Net regular-
ization is

argmin
w0:w1�0;...;wN�0

� lnLðw0Þ þ g
XN

i¼1

mwi þ 1�m
2 wi

2
� �

: (19)

Again, candidate feature subsets S1; . . . ;SJ correspond to
features with non-zero coefficients for the sequence of
parameter values g1; . . . ; gJ at which a new feature assumes
a non-zero coefficient or an existing coefficient becomes
zero along the regularization path.

Both optimizations (Eqs. (18) and (19)) are convex and
smooth—the positivity constraints avoid the challenges of

optimization with the non-smooth ‘1-norm regularization.
Although a generic optimization can be used to solve this
problem, in order to scale to a large number of features, a
solver specialized for Lasso and Elastic Net should be used
to compute the regularization path. To further increase the
scalability, implementations2 that apply rules to filter out
many of the irrelevant features [71] are necessary.

3.3.2 Feature Subset Selection via BIC

To select a particular feature subset from among a candidate
set, we form a logistic regression model for each feature
subset and rank them using the Bayesian information crite-
rion [13]. Given the candidate feature subsets S1; . . . ;SJ for
a particular cluster and their corresponding cardinalities
S1j j; . . . ; SJj j, the optimal feature subset is Sj? , where j

?
is

chosen as

j
? ¼ argmin

j2f1;...;Jg
� lnLð ~w0

jÞ þ Sj

�� �� ln
ffiffiffi
n

p
;

~w0
j ¼ argmin

w0:wi¼0; i2Sj
� lnLðw0Þ þ t

2
kwk22;

(20)

and Sj denotes the set of features not included in the jth fea-
tures subset.

It is noteworthy that new coefficients are estimated for
the feature subsets generated by Lasso or Elastic Net (a pro-
cess known as debiasing [72], [73]), which is important since
sparsity-inducing regularizations cause the non-zero coeffi-
cients to be biased towards zero. This bias would otherwise
affect comparisons between feature subsets chosen with dif-
ferent amounts of regularization. We also note that the
choice of BIC instead of the AIC is motivated by the theoret-
ical consistency of BIC [67], since we desire an interpretable
number of features that should be stable across changes in
sample size. Yet, in practical situations, the candidate fea-
ture sets may need to be limited in size: a user may want at
most a dozen features to describe a cluster. While a limit
may decrease the predictive performance, it will also
decrease the computation in terms of the number of candi-
date feature sets that need to be evaluation.

4 EXPERIMENTAL RESULTS

In this section, we empirically evaluate the PDC framework
on publicly available datasets. First, we evaluate the perfor-
mance of various feature selection approaches for selecting
predictive and descriptive feature labels. We use ground-
truth class labels and evaluate how well the selected
descriptive features can predict class membership while
comparing against baseline linear classifiers, which use all
features. Second, we evaluate descriptive clustering in
terms of the information content of the descriptive features
and the clustering itself.

4.1 Datasets
We use the 20-Newsgroup dataset [74], a compilation of
online reviews [75], [76], the Reuters-21578 Distribution 1.0
newswire articles,3 ingredient lists from Yummly’s recipe

2. We use LIBLINEAR [69] for logistic regression with ‘2-norm regulari-
zation, and GLMNET [70] for logistic regression with Lasso and Elastic-
Net regularization.

3. The corpus is on the UCI Machine Learning Repository [77].
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dataset,4 the NSF research award abstracts 1990-2003 data
set [77], and news articles provided5 by Antonio Gulli. The
20-Newsgroup dataset6 consists of Usenet posts divided
among 20 topics, with some of the topics categorized
together (baseball and hockey are both under rec). The reviews
cover 5 topics7: movies, books, dvds, electronics, and kitchen; for
each topic there are 2000 reviews with 1000 positive senti-
ment and 1000 negative sentiment reviews. Like previous
usage of this datatset [53], we explore both topic and senti-
ment classification within a given topic to compare the fea-
ture selection algorithms, but for clustering we ignore the
sentiment and only consider mixtures of different topics.
For the Reuters dataset, we use the 8 largest categories of
single-category articles.8 We use the training portion of the
recipe dataset that is categorized by cuisine.9 The NSF
abstracts are classified by organization, we keep only
abstracts from the 35 most common organizations.10 For
AG’s news dataset, we use a subset of the 4 largest catego-
ries [79].11 The list of subsets and datasets are given in
Table 2. Stop words12 are removed (excepting the 20-News
subsets and recipes). For each subset/dataset, features that
appear in only one instance are removed.

4.2 Implementation Details
For representing text documents, we use a bag-of-words
representation. Each feature dimension is weighted by
the logarithm of the inverse occurrence rate, the standard
term-frequency inverse-document frequency (TF-IDF),
and instances are normalized to have unit-norm. For clus-
tering text documents, we use spectral clustering applied
to the similarity matrix implicitly formed from the cosine
similarity between the TF-IDF vectors [80], and the spec-
tral clustering algorithm of Ng et al. [81] is applied to the
similarity matrix. All instances are used by the clustering

algorithm, but a subset of instances are used as training
instances for selecting feature subsets and evaluating
the predictive features. The number of clusters is varied
between 2 and 26.

A logistic regression model is trained for each feature
subset, with regularization of t ¼ 1

10 to ensure bounded coef-
ficients, and the feature subset with minimal BIC is selected
as in Eq. (20). To transform the selected logistic regression
model to a binary classifier, the probability estimates are
thresholded, with the threshold that maximizes the F1-score
(the harmonic mean of precision and recall) in the training
data [82].

4.3 Evaluation
For evaluating the classifier and cluster predictions, we use
the F1-score per cluster/class and summarize the results by
using the macro-average of the F1 score. For computing the
correspondence between ground-truth topics and known
classes, we must take into consideration that an instance
may be assigned to multiple clusters, or not assigned to any
cluster. Each instance is given equal weight, and when an
instance is assigned to multiple clusters, its weight is
divided equally among its cluster assignments. Unassigned
instances are considered to be grouped together into an
additional outlier cluster. This ensures a valid contingency
table for computing cluster correspondence metrics—in
particular, normalized mutual information (the mutual
information between two discrete variables divided by the
maximum entropy of either variable [83])—in order to com-
pare the correspondence between ground-truth categories
and the classifier-based clusters assignments. We also use
the normalized mutual information to compare the original
cluster assignments to the ground-truth topic categories.

4.4 Comparison of Feature Selection Performance

The PDC framework is based on selecting an interpretable
set of predictive features. For the purpose of interpretability
we limit the number of features and constrain them to be
positively correlated with the class/cluster of interest. We
examine how much the positivity constraints limit the clas-
sification performance and how well the different feature
selection approaches perform.

We compare a range of feature selection algorithms with
and without positivity constraints. These include ranking
methods that simply select top-ranked features for different
criteria: weighted log-likelihood ratio (WLLR) [53] (which is
only defined for selecting positively correlated features),
mutual information (MI), and the chi-squared statistic (CHI2);
and forward-selection algorithms using information theoretic
criteria [5]: JMI [57], [58], MRMR [56], and CMIM [55]. To esti-
mate these quantities, co-occurrence statistics are computed
after the input feature vectors are transformed to binary vec-
tors (removing any information about counts, weightings, and
instance normalization). We limit the forward-selection algo-
rithms to 250 features with the highest mutual information for
each class/cluster. For regularization-based feature selection
we compare Lasso and Elastic Net with positivity constraints.
For the latter, the ‘1-‘2-norm trade-off is fixed at m ¼ 0:2 in
Eq. (19). For each feature selection algorithm, training consists
of selecting feature subsets of varying size (up to a maximum
of 50 features per class/cluster), then the selection process dis-
cussed in Section 4.2 is applied to select the number of features
for each algorithm.

4. The dataset is at https://www.kaggle.com/c/whats-cooking.
5. The dataset is available at http://www.di.unipi.it/�gulli/

AG_corpus_of_news_articles.html.
6. For the 20Newsgroup corpus,we use two versions: a preprocessed

MATLAB/OCTAVE version of the bag-of-words representation provided
by Jason Rennie, http://qwone.com/�jason/20Newsgroups/that we
divide into various subsets, and a tokenized “bydate” training-testing
split of the full dataset http://ana.cachopo.org/datasets-for-single-
label-text-categorization [78].

7. Movie reviews are taken from the polarity dataset v2.0 available at
http://www.cs.cornell.edu/people/pabo/movie-review-data/. Book
and product reviews crawled from the online retailer Amazon are avail-
able in XML format at http://www.cs.jhu.edu/�mdredze/datasets/
sentiment/index2.html. For the reviews, apostrophes and numbers are
removed, and the text is tokenized bywhitespace and punctuation.

8. A tokenized version of this subset with a training-testing split [78]
is available at http://ana.cachopo.org/datasets-for-single-label-text-
categorization.

9. The Yummly recipes are provided as lists of ingredients. Each
ingredient is a character string that is processed by splitting the string
into tokens by whitespace, numerals, hyphens, periods, commas, and
parentheses. Features are formed from all subsequences of consecutive
tokens, and additional features are appended by mapping together pos-
sessive forms with missing apostrophes and by combining features
with both singular and plural forms.

10. We retain the NSF abstracts that have an award number listed in
the abstract file, are referenced in the list files (idnsfid.txt), and are
longer than one line and have at least 17 tokens (after removing stop
words), where tokenization is based on whitespace and punctuation
(apostrophes and internal hyphens are retained).

11. https://github.com/mhjabreel/CharCNN/tree/master/data/
ag_news_csv.

12. We use a list of 571 English stop words, http://members.unine.
ch/jacques.savoy/clef/.
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To give an upper bound on classification performance
using unconstrained classifiers, we use the LIBLINEAR pack-
age to train linear classifiers using different loss functions
(‘1-loss or logistic loss) with ‘2-norm regularization. The
regularization trade-off parameter is chosen by LIBLINEAR’s
built-in cross-validation. We note that these classifiers do
not yield readily interpretable feature subsets.

On datasets without predefined training and testing
splits, 10 Monte Carlo runs of training and testing splits are
used to assess feature selection performance. The results are
included in Table 3.

We note the classifiers that used feature selection are all
outperformed by the baseline linear classifiers. In this classifi-
cation task, feature selection does not improve prediction
performance. Second, we note that the gap between the
performance of the baseline classifiers and cardinality-
constrained methods is smaller than the gap between the
performance of the positively-constrainedmethods.Nonethe-
less, we maintain these constraints for interpretability such
that the features are positively correlatedwith each class.

We compare the scaling performance of the top three
performing feature selection algorithms with the linear clas-
sifiers across different training set sizes for the AG’s news
dataset (the largest dataset). Fig. 2 shows that the vocabu-
lary size of the training set grows sub-linearly with the size
of the corpus. The figure also shows the classification per-
formance, which stabilizes at around 10000 training instan-
ces, and the computation time.13 The methods all scale
linearly with the number of training instances with the
‘1-loss support vector machines having the longest running
times for training set sizes above 10000, whereas logistic
regression and the CMIM-based feature selection algorithm
are the fastest. Based on the marginal difference in perfor-
mance among these three feature selection algorithms, and
the efficiency of the CMIM-based algorithm, we choose
CMIM+ for further comparisons.

4.5 Predictive and Descriptive Clustering
We apply the PDC framework to identify and label clusters
of documents within each of the mixture-of-topics datasets
listed in Table 2. First, we compare the cluster prediction
performance using the CMIM algorithm with positivity
constraints versus an existing topic labeling approach [18],
and qualitatively examine the selected features. Second, we
evaluate the automatic selection of the number of clusters,
testing whether the number of clusters correlates with the
ground-truth number of topics or whether the number of
clusters maximizes the information content.

4.5.1 Comparison with Existing Topic Labeling

Approach

We compare against the method proposed by Mei, Shen,
and Zhai [18] to select features for describing multinomial
topic models (we refer to this method as MSZ). For each
topic, the MSZ method selects features that—when used as
conditioning variables—approximate the multinomial dis-
tribution of features within the topic and also discriminate
the topic from other topics. The score is further adjusted
to remove redundancy between selected features [50].
The method requires parameter choices for controlling the
trade-off between approximation and discrimination (m)
and for lowering the score of redundant features (�). The
number of features to select for each topic is left to the user.

We use the MSZ scoring to generate candidate feature
subsets with up to 50 features per cluster and follow the
same procedure used in the previous section to select the
best performing subset using BIC. The main drawback of
the MSZ method is that it estimates a multinomial distribu-
tion for each candidate feature, which has a computational
complexity of OðN2Þ. This is further exacerbated with
redundancy elimination, as each candidate feature must be
compared to features already included in the set by the
divergence between their multinomial distributions. For
scalability, we first find features (from those with at least 5
occurrences) with the highest score for each target cluster
and keep only the top 250 when performing the redundancy
elimination (the same approach used for the forward selec-
tion models). We use the parameter choices of m ¼ 1 and

TABLE 2
Dataset/Subset Profiles: Classes, Instances (n),

and Features (N)

Classes n N

Reviews (+/-):
movie 2 2000 24093
kitchen 2 2000 4665
dvd 2 2000 10423
electronics 2 2000 5167
books 2 2000 10551

Reviews (topic):
movie, kitchen (m k) 2 4000 25543
movie, books (m b) 2 4000 27436
movie, electronics (m e) 2 4000 25778
kitchen, electronics (k e) 2 4000 7786
dvd, electronics (d e) 2 4000 13048
movie, books, electronics, kitchen
(m b e k)

4 8000 30079

dvd, movie, electronics, kitchen
(d m e k)

4 8000 29552

dvd, books, movie, kitchen (d b m k) 4 8000 31101
dvd, books, electronics, movie (d b e m) 4 8000 31299
dvd, books, electronics, movie, kitchen
(d b e m k)

5 10000 32375

20-News (subsets):
med guns 2 1896 15204
autos space hardware 3 2951 16071
rec: autos, motorcycles, baseball, hockey 4 3968 18728
sci: crypto, electronics, med, space 4 3945 22198
mix: ms-windows, forsale, baseball, 5 4677 23059
space, politics.misc

comp: graphics, ms-windows,
pc.hardware

5 4852 20382

mac.hardware, x-windows
mix2: ms-windows, autos, baseball,
med, space

5 4913 24457

sci comp: sci.* comp.* 9 8797 33501
sci comp rec: sci.* comp.* rec.* 13 12765 42049

20-News (all) 20 18820 41747

Reuters 8 7674 10250

Recipe 20 39774 10506

NSF 35 125730 119773

AG’s news 4 127600 39763

13. Time for both feature subset generation and selection is logged in
MATLAB on Mac OS X with a 2.8 GHz Intel Core i7 and 16 GB RAM.
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� ¼ 0:5. We also test without redundancy elimination
(� ¼ 1) and with a higher level (� ¼ 0:2), but the perfor-
mance is worse for both cases.

We assess how well the selected features subsets can
predict cluster membership in terms of the F1 score, and
normalized mutual information is used to assess the corre-
spondence between the classifier predictions and the cluster
assignments. The results for CMIM+ and MSZ are detailed
in Table 4.

Fig. 2. Performance (macro-averaged F1-score and running time) across
different training set sizes for the AG’s News dataset.

TABLE 3
Comparison of Classification Performance of Feature Selection Algorithms versus Baseline Linear Classifiers

Reviews 20-News 20-News Reuters Recipe NSF AG’s

+/- topic (subsets) (all) news Ave. rank

Sj j 1000 1000 1000 *11293 *5485 10000 10000 *120000 group overall

Positive constraints:
WLLR+ 26.7 0.670 0.791 0.725 0.661 0.836 0.513 0.518 0.749 6.4 15.1
MI+ 26.9 0.671 0.791 0.723 0.665 0.833 0.519 0.521 0.751 5.9 14.5
JMI+ 26.6 0.671 0.791 0.727 0.668 0.831 0.520 0.525 0.753 5.4 13.1
CHI2+ 26.4 0.671 0.793 0.725 0.669 0.834 0.526 0.524 0.750 5.3 13.3
MRMR+ 26.2 0.668 0.792 0.731 0.674 0.824 0.544 0.530 0.758 4.3 11.0
CMIM+ 27.0 0.669 0.795 0.736 0.682 0.827 0.564 0.523 0.764 3.5 9.2
Elastic Net+ 28.1 0.673 0.802 0.733 0.683 0.841 0.536 0.536 0.754 2.7 8.7
Lasso+ 27.7 0.671 0.803 0.740 0.689 0.840 0.547 0.515 0.758 2.6 8.5

Unconstrained:
MI 28.3 0.728 0.799 0.734 0.667 0.853 0.516 0.523 0.751 5.7 11.0
JMI 28.1 0.729 0.801 0.737 0.667 0.838 0.519 0.527 0.752 5.4 10.4
CHI2 27.6 0.730 0.803 0.733 0.668 0.838 0.527 0.525 0.753 5.3 10.1
MRMR 27.9 0.729 0.808 0.741 0.676 0.843 0.548 0.532 0.756 3.6 6.7
Lasso 29.0 0.734 0.825 0.748 0.692 0.844 0.532 0.499 0.763 2.9 6.4
CMIM 28.4 0.729 0.810 0.746 0.678 0.845 0.562 0.525 0.764 2.7 5.7
Elastic Net 29.3 0.732 0.818 0.741 0.681 0.857 0.538 0.537 0.761 2.4 5.4

Baseline linear classifiers:
L-logit R-‘2 — 0.782 0.902 0.789 0.734 0.858 0.598 0.550 0.911 1.8 2.7
L-‘1 R-‘2 — 0.776 0.907 0.828 0.777 0.888 0.607 0.596 0.915 1.2 1.2

Columns correspond to the average number of features ( Sj j), macro-averaged F1-score for different datasets (training set size is listed and * indicates a pre-defined
training-testing split), and average rank based on the F1-score within each algorithm group and overall.

TABLE 4
Cluster Classification Performance: F1ðY; Ŷ Þ—Macro-Averaged
F1 and NMIðY; Ŷ Þ—Normalized Mutual Information between

Classifier Output and Clusters

F1ðY; Ŷ Þ NMIðY; Ŷ Þ
Number of clusters C CMIM+ MSZ CMIM+ MSZ

Reviews (topic):
m k 2 0.92 0.90 0.64 0.64
m b 6 0.54 0.52 0.26 0.27
m e 2 0.94 0.94 0.66 0.67
k e 9 0.64 0.61 0.35 0.33
d e 8 0.64 0.62 0.37 0.37
m b e k 4 0.80 0.79 0.52 0.49
d m e k 4 0.74 0.70 0.43 0.40
d b m k 4 0.73 0.73 0.40 0.40
d b e m 5 0.63 0.65 0.33 0.36
d b e m k 5 0.72 0.70 0.43 0.42

20-News (subsets):
med guns 8 0.66 0.58 0.37 0.35
autos space hardware 8 0.62 0.54 0.37 0.16
rec 8 0.59 0.50 0.36 0.16
sci 10 0.63 0.56 0.35 0.16
mix 8 0.67 0.56 0.41 0.37
comp 11 0.50 0.42 0.25 0.07
mix2 8 0.72 0.67 0.45 0.21
sci comp 8 0.67 0.56 0.35 0.09
sci comp rec 9 0.65 0.54 0.39 0.16

20-News (all) 15 0.74 0.72 0.56 0.54

Reuters 13 0.74 0.76 0.60 0.66

Recipe 21 0.68 0.67 0.49 0.48

NSF 14 0.75 0.73 0.54 0.52

AG’s news 26 0.74 0.74 0.55 0.55

Proposed approach (CMIM+) compared to (MSZ) [18].
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Across the datasets, CMIM+ consistently outperforms
MSZ in terms of both F1-score and normalized mutual infor-
mation (one-tailed sign-test with significance threshold
of 0.1 and Bonferroni’s correction for multiple testing).
As mentioned, the MSZ approach is more computationally
demanding: per cluster, the average computation time for

feature selection for the MSZ approach is 7.09 s, which is
significantly slower than the 0.34 s for CMIM+.

An example of the descriptive clustering in terms of the
selected features, classifier-topic contingency table, and
cluster-topic contingency table is shown in Table 5.

From the contingency table, there is a clear matching
between the topics and the clusters, and the features chosen
by CMIM+ corroborate this. Assuming a user is interested
in one of the original topics, the selected features appear to
be sufficient to guide the user to a specific cluster.

4.5.2 Selecting the Number of Clusters

We turn our attention to evaluating the automatic selec-
tion of the number of clusters in the PDC framework. Ide-
ally, the selected number of clusters would maximize the
information carried by the clustering and classifiers about
the topics. To test this, we run an experiment wherein we
train a classifier for every possible number of clusters
and evaluate the information between the classifier pre-
dictions and the ground-truth topics. We find that the
selected number of clusters often maximizes the amount
of information carried about the original clusters and that
the selected number varies proportionally to the ideal
number.

Three examples with varying number of ground-truth
topics are show in Fig. 3. On these examples, the automati-
cally selected number (based on Eq. (9)) of clusters adapts
to the data, matching the ground-truth number of clusters
on the first two examples and choosing a reasonable but
smaller number of clusters on the full 20 Newsgroup
dataset. The optimal number of clusters may be different
from the number of ground-truth categories, since the
categories themselves may be too coarse or too fine.

As a surrogate baseline, we use an oracle to select C that
maximizes the normalized mutual information between
the topics and the clusters and another oracle that maxi-
mizes the normalized mutual information between the clus-
ter and the classifier output. The performance of the selection
process (based on Eq. (9)) compared to the two oracles is in
Table 6.

We test the hypotheses that the selected number of clus-
ters using either Eq. (9) or Eq. (12) are positively correlated
with the number selected by the oracles, and whether
the optimized numbers for the two measures are correlated.
We use a significance threshold of 0.05 with Bonferroni’s
correction, and find that the rank correlation is significant
for both oracles and measures:

TABLE 5
Selected Features, Classifier-Topic Contingency Table, and
Cluster-Topic Contingency Table for Descriptive Clustering
on the DVD, Movie, Electronics, Kitchen Reviews Dataset

The number of clusters was chosen automatically to maximize the prediction of
the original feature occurrences in the training set. ðAÞ Contingency table
between topics and original clusters. (CMIM+) Features selected using
CMIM with positivity constraints, and classifier-topic contingency table.
(MSZ) Features selected using the MSZ approach [18]. (Features common
between multiple clusters are underlined. The number of unassigned instances
per topic are listed in the last column.)

Fig. 3. Automatic selection of the number of clusters assessed in terms of the normalized mutual information between the topic categories and clus-
ters; topics and classifier output; and clusters and classifier output. The selected number of clusters (2, 5, and 15) are chosen to minimize the feature
prediction error Eq. (9), which correlates with Eq. (12)—the AIC for a multinomial model of features occurring in at least 5 instances.
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Rank
correlation

Corrected
p-value

Eq. (9) | Oracle: NMI(Topic, Cluster) 0.5943 0.0055
Eq. (9) | Oracle: NMI(Cluster, Classifier) 0.6123 0.0037
Eq. (12) | Oracle: NMI(Topic, Cluster) 0.8092 4.21	10-6

Eq. (12) | Oracle: NMI(Cluster, Classifier) 0.5932 0.0056
Eq. (9) | Eq. (12) 0.8469 4.52	10-6

Computing AIC (Eq. (12)) across the clusterings of different
size is much more efficient than the binary loss used Eq. (9).
We report some example running time in Table 7. Running
times and feature sets for all datasets are included in the sup-
plementarymaterial (available at http://ieeeexplore.ieee.org).

5 DISCUSSION

The self-tuned nature of the proposed descriptive document
clustering enables it to select both the number of clusters
and the number of features used to describe each cluster;
nonetheless, a user must choose a suitable range that is both
computationally feasible and appropriate for the datasets.
In our tests, the upper limit was only met once on the largest
dataset (AG’s news). In such a case, a user may wish to
increase the range to find a more optimal clustering.

In addition to text, the proposed descriptive clustering
can be applied to any data with sparse count-valued

features. Example experiments are included in the supple-
mentary material (available at http://ieeeexplore.ieee.org).

6 CONCLUSION

We posed descriptive clustering as two coupled prediction
tasks: 1) choosing a clustering that is predictive of the fea-
tures and 2) predicting the cluster assignment from a subset
of features. Using predictive performance as the objective
criterion, the parameters of descriptive clustering—the
number of clusters and the number of features per cluster—
are chosen by model selection. With the resulting solution,
each cluster is described by a minimal subset of features
necessary to predict whether an instance belongs to the clus-
ter. Our hypothesis is that a user will also be able to predict
the cluster membership of documents using the descriptive
features selected by the algorithm. Given some relevancy
requirements, a user can then quickly locate clusters likely
to contain relevant documents.

We evaluated this self-tuned approach on datasets
with count-valued features. For feature selection we used
both information theoretic feature selection and linear
classifiers trained by logistic regression with sparsity-
inducing regularizations and positivity constraints. The
results showed that these feature selection approaches
perform accurately and yield feature subsets that are
indicative of the cluster content. Furthermore, the predic-
tive approach selected a meaningful terms of number of
clusters and number of features per cluster. This objective
self-tuning distinguishes the proposed framework from
previous descriptive clustering approaches that have not
addressed parameter selection and have relied on subjec-
tive criterion for assessing descriptors.

Currently, we have begun using the PDC framework to
generate descriptive clustering to help users screen large
collections of abstracts to support the development of
systematic reviews, especially in domains such as public
health.14 For future work, we plan to investigate PDC using
more complex features including multi-word expressions,
named entities, and clusters of features themselves.
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