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Abstract—This paper proposes a new unsupervised spectral feature selection method to preserve both the local and global structure

of the features as well as the samples. Specifically, our method uses the self-expressiveness of the features to represent each feature

by other features for preserving the local structure of features, and a low-rank constraint on the weight matrix to preserve the global

structure among samples as well as features. Our method also proposes to learn the graph matrix measuring the similarity of samples

for preserving the local structure among samples. Furthermore, we propose a new optimization algorithm to the resulting objective

function, which iteratively updates the graph matrix and the intrinsic space so that collaboratively improving each of them. Experimental

analysis on 12 benchmark datasets showed that the proposed method outperformed the state-of-the-art feature selection methods in

terms of classification performance.

Index Terms—Feature selection, graph matrix, dimensionality reduction, subspace learning

Ç

1 INTRODUCTION

THE goal of feature selection is designed to reduce the
dimensionality of the data and keep useful information

as much as possible [1], [2], [3], [4], [5]. The most popular
solution for feature selection is to select the features with
high-scores based on predefined metric. This makes feature
selection certainly remove irrelevant (or uninformative) fea-
tures, reduce the dimensionality, speed up the execution
time, decrease the storage cost, improve the performance of
learning models, and so on [6], [7], [8], [9], [10], [11]. How-
ever, it is still a challenging issue to improve the effective-
ness of feature selection. To address this, this paper designs
a robust unsupervised spectral feature selection method to
preserve the local and global structure among training sam-
ples and their corresponding features.

It is difficult to obtain enough labelled information in
many real applications [12], [13], [14], [15], so unsupervised
dimensionality reduction is a very practical technique.
Therefore, unsupervised spectral feature selection (USFS)
method has been developed to incorporate the feature selec-
tion and subspace learning into a framework, so as to gener-
ate interpretable and robust feature selection models. The
USFS has thus attracted extensive research interests [16],

[17], [18] and has been successfully applied in the domains
of data mining and machine learning. For example, Cai
et al. [16] and Zhao et al. [1] advocated a two-phase USFS
method to measure the importance of features in a dataset.
They first conduct an eigenvalue decomposition on original
data to obtain a graph representation, and then a least
square regression between the derived graph representation
and the original data is performed with an ‘1-norm regular-
izer [16] and an ‘2;1-norm regularizer [1], respectively.
Recently, Du et al. [12] proposed to learn both the adaptive
global structure and local structure among samples in a fea-
ture selection model, in which an ‘2;1-norm regularizer was
employed to select important features.

A common characteristic among previous USFS methods
is the construction of the graphmatrix on original data. While
these feature selection methods have displayed pretty prom-
ising in unsupervised spectral feature selection, there are still
some limitations that should be addressed for real applica-
tions. First, because there are usually noise and redundancy
in original data, the constructed graph matrix may be of low-
quality to degrade the effectiveness of feature selection mod-
els. Second, in some USFS methods, the construction of the
graph matrix gives a consideration of preserving either the
local structure or the global structure among the samples.
This paper advocates to preserve both the local and global
structure among training samples because these two kinds of
geometry structure have been demonstrated to strengthen the
performance of USFS methods due to providing complimen-
tary information to each other [19], [20]. Third, although the
correlation among features has been shown its importance in
constructing robust feature selection models [8], [21], existing
USFS methods did not consider that. Lastly, the learning of
the graph matrix and the feature selection are carried out in
two separated processes. This can easily lead to a suboptimal
result, even though each of these two processes could achieve
their individual optimization.
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To deal with the above four limitations, in this paper we
propose a robust USFS method. We list its main contribu-
tions as follows.

First, different from previous USFS methods, the pro-
posed method efficiently utilizes the feature-level represen-
tation property and the low-rank constraint on the weight
matrix, respectively, to consider both the local correlation
and the global correlation of features for feature selection.
As a result, these two kinds of correlations can provide com-
plementary information to each other.

Second, the proposed method uses the low-rank con-
straint to preserve the global structure of training samples,
and to learn the graph matrix for preserving the local struc-
ture of training samples. Accordingly, these two kinds of
structure preservations can provide complementary infor-
mation to each other so that the effectiveness of feature
selection is well improved. It is noteworthy that previous
USFS methods (e.g., [22], [23]) only preserve one of them.

Third, in the proposed robust USFS method, the correla-
tion among features and the correlation among training sam-
ples are both identified from the intrinsic low-dimensional
space of original data. This delivers the profit of avoiding
the adversely impact of noise and redundancy in original
data. To the best of our knowledge, there is no literature
focused on simultaneously learning the feature correlations
and the sample correlations. And there is only a few litera-
ture such as [22], [24], [25] focused on learning the graph
matrix to preserve the local structure of training samples
from the intrinsic space, while a number of USFS methods
were designed to learn the graph matrix from original data
such as [16], [18], [26].

Lastly, the proposed method jointly and iteratively per-
forms the graphmatrix construction and the feature selection
in the intrinsic low-dimensional space. Moreover, our
method uses the low-rank constraint to avoid the influence
of noise and redundancy, which is not well solved in previ-
ous methods. For example, [1], [16] separately carried out
them and often resulted in suboptimal results. [10], [18], [27]
jointly optimized the graph matrix construction and the fea-
ture selection, and learned the graph matrix from original
data. [12], [22] jointly and iteratively optimized them and
learned the graph matrix from the intrinsic low-dimensional
space, but ignoring the influence of noise and redundancy.

2 RELATED WORK

In this section, we first review previous feature selection
methods, and then analyze previous USFSmethods in detail.

2.1 Feature Selection

In the domain of dimensionality reduction, feature selection
methods try to find a subset of the original features, while
subspace learning methods transform the high-dimensional
data to their low-dimensional space, including linear trans-
formation (such as Principal Component Analysis (PCA)
[28], Fisher’s Linear Discriminant Analysis [29], Canonical
Correlation Analysis (CCA) [30], and Locality Preserving
Projection (LPP)) and nonlinear transformation (such as ker-
nel PCA [31], kernel LDA [32], and kernel CCA [30]).
Usually, feature selection outputs interpretable result and
subspace learning leads to robust models [10], [33].

Since many real applications prefer the interpretable abil-
ity of dimensionality reduction, this paper focuses on the
study of feature selection. Existing feature selection meth-
ods can be partitioned into different categories according to
various perspectives. For example, existing feature selection
methods can be partitioned into three subgroups via the
learning models, such as filter methods (i.e., which selects
the important features independent on the learning model
[34]), wrapper methods (which searches the important fea-
tures guided by accuracy [35]), and embedded methods
(where features are selected to be removed based on the
prediction errors during the process of the construction of
the models [12], [18], [22]). Feature selection methods can
also be parted into unsupervised feature selection methods
[12], [22], [23], [36], [37], supervised feature selection meth-
ods [38], [39] and semi-supervised feature selection meth-
ods [40], [41], [42], [43], according to the label information.

In this paper, we focus on the study of USFS since 1) it is
an embedded method which has been shown to outperform
either filter methods or wrapper methods [18], [22], [43]; 2)
the label information is difficult to be obtained due to all
kinds of reasons, such as limited sources and costs [23], [36],
[39]; 3) spectral feature selection has been demonstrated to
output robust and interpretable result [38], [39].

2.2 Unsupervised Spectral Feature Selection

USFS methods usually belong to embedded methods and
include two key components, i.e., the graph matrix learning
to conduct subspace learning and a sparsity-inducing regu-
larizer (such as an ‘1-norm regularizer and an ‘2;1-norm reg-
ularizer) to conduct feature selection. According to the
modes of conducting these two key components, previous
USFS methods can be classified into three categorizes, i.e.,
Sequential USFS methods, joint USFS methods, iteratively
joint USFS methods.

Sequential USFS methods first conduct subspace learning
to obtain the graph representation of the data, and then con-
duct a sparse feature selection between the resulting graph
representation and the original data by sparsity-inducing
regularizers. For example, the Multi-Cluster Feature Selec-
tion (MCFS) method [16] uses an ‘1-norm regularizer, while
both the Minimize the feature Redundancy for spectral Fea-
ture Selection (MRFS) method [45] and the joint Feature
Selection and Subspace Learning (FSFL) method [44] use
the ‘2;1-norm regularizer. Both MRFS and FSFL outper-
formed MCFS due to considering the global correlation
among the features via the group sparsity, i.e., the ‘2;1-norm
regularizer. The difference between MRFS and FSFL is that
MRFS preserves the pairwise sample similarity, i.e., the
global correlation among the samples, via a kernel matrix of
the feature matrix, while FSFL constructs a sparse kNN
graph to preserve the local structure among the samples,
i.e., the local correlation among the samples.

Joint USFS methods jointly conduct subspace learning
and sparse feature selection in a framework. Their differ-
ence is the method of conducting subspace learning, i.e., the
method of the construction of the graph matrix. For exam-
ple, the Joint Embedding Learning and Sparse Regression
(JELSR) method [18] uses the kNN-based graph Laplacian
regularizer to preserve the local structure of the samples,
the Robust Spectral learning framework for unsupervised
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Feature Selection (RSFS) method [17] utilizes the local ker-
nel regression to capture the nonlinear geometrical informa-
tion of the samples, and the Nonnegative Discriminative
Feature Selection (NDFS) method [36] learns a pseudo clus-
ter labels and then uses it to learn the graph matrix.

Iteratively joint USFS methods claim that the selected fea-
tures highly depend on the learned graphmatrix, so they iter-
atively update the graphmatrix and the selected features until
the algorithm converges. For example, the unsupervised Fea-
ture Selection with Adaptive Structure Learning (FSASL)
method [12] iteratively obtains the adaptive graph matrix and
the adaptive features until both of them stop changing. Differ-
ent from FSASL, the Structured Optimal Graph Feature Selec-
tion (SOGFS) method [22] adds one more constraints (i.e., the
consistency of the graph matrix) to iteratively and jointly per-
form feature selection and the graphmatrix learning.

Finally, the difference between previous USFS methods
and our proposed method is listed in Table 1.

3 APPROACH

3.1 Notations

In this paper, we denote matrices, vectors, and scalars,
respectively, as boldface uppercase letters, boldface lower-
case letters, and normal italic letters. We summarize other
notations used in this paper in Table 2.

3.2 Local Feature Correlation

Let the feature matrix X ¼ ½x1; . . . ; xn� ¼ ½x1; . . . ; xd� 2 Rn�d

represent n d-dimensional samples. Motivated by the widely

used sample-level self-expressiveness property sparsely
representing each sample by other samples [46], we utilize
the feature-level self-expressiveness property to represent
each feature by all features with the following formulation:

xi �
Xd

j¼1
xjzj;i; i ¼ 1; . . . ; d; (1)

where the element zj;i of the weight matrix Z 2 Rd�d is the
weight between the ith feature xi and the jth feature xj. The
assumption of Eq. (1) is that 1) the important features
should be used to represent other features and should not
be represented by the uninformative features, and the unin-
formative features should be represented by the important
features and should be removed out the representation of
all the features. With this assumption, Eq. (1) outputs small
(or even zero) weight and large weight, respectively, to
uninformative features and important features in the right
side of Eq. (1). Obviously, Eq. (1) meets the assumption of
feature selection, i.e., features are related or redundant on
high-dimensional data [8].

By regarding the prediction of each feature as a task and
constraining the sparsity across tasks with an ‘2;1-norm reg-
ularizer, we change Eq. (1) to its matrix form and thus have
the following least square objective function

min
Z

kX� XZk2F þ gkZk2;1; (2)

where g is a tuning parameter. The ‘2;1-norm regularizer on
Z (i.e., kZk2;1) penalizes Z by encouraging the row sparsity,
i.e., elements of some rows of Z are all zeros, to un-select
the corresponding features in X.

Eqs. (1) and (2) indicate that each feature (e.g., xi in left-
hand side of Eq. (1)) is represented by a linear combination
of a subset of all features in right-hand side of Eq. (1), and
the corresponding weight vector is the ith column zi of Z
in Eq. (2). Obviously, the larger the values in the zi, the
more the corresponding features involve in the representa-
tion of the feature xi. In particular, if there is a zero-row in
zj (where zj ¼ ½zj;1; . . . ; zj;d�), then the corresponding fea-
ture (i.e., xj in right-hand side of Eq. (1)) will not partici-
pate in the representation of features. That is, the features
participating in the representation of all features should be
important, while those not participating in the representa-
tion process should be discarded by means of feature selec-
tion, i.e., kZk2;1.

TABLE 1
The Summarization Between Previous USFS Methods and Our Proposed Method

Methods Feature
correlation

Sample
correlation

Noise &
redundancy

Dynamic
graph matrix

Joint
learning

Learning
space

MCFS [16] � Local � � � Original space
FSFL [44] Global Local � � � Original space
MRFS [45] Global Global � � � Original space
JELSR [18] Global Local � � p

Original space
RSFS [17] Global Global � � p

Original space
NDFS [36] Global Local � � p

Original space
FSASL [12] Global Local � p p

Intrinsic space
SOGFS [22] Global Local � p p

Intrinsic space
Proposed Local & Global Local & Global

p p p
Intrinsic space

This table has five blocks and the last four blocks describe the characteristic of sequential USFS methods, joint USFS methods, iteratively joint USFS methods, and
our proposed method, respectively.

TABLE 2
The Used Notations in This Paper

X the feature matrix of the training data
x a vector of X
xi the ith row of X
xj the jth column of X
xi;j the element in the ith row and the jth column of X

jjXjjF the Frobenius norm of X, i.e., jjXjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j x
2
i;j

q

jjXjj2;1 the ‘2;1-norm of X , i.e., jjXjj2;1 ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j x

2
i;j

q

rankðXÞ the rank of X

XT the transpose of X
trðXÞ the trace of X
X�1 the inverse of X
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3.3 Global Feature Correlation & Global
Structure Preservation

Eq. (2) finds the sparse representation of each feature indi-
vidually (namely, local feature correlation) but no global con-
straint on its solution, and thus may be inaccurate at
capturing the global structure of the features to largely
depress the performance of feature selection on the grossly
corrupted features. Since the corrupted data (including
noisy/redundant features and outliers) have been indi-
cated to largely increase its rank in real applications, the
low-rank constraint has been used to help correct corrup-
tion via a low-rank constraint to output robust feature
selection models [47], [48]. Specifically, given a low-rank
assumption on Z, i.e., Z ¼ AB, where A 2 Rd�r, B 2 Rr�d,
and r � minðn; dÞ, Eq. (2) is changed to

min
A;B

kX� XABk2F þ gkABk2;1; (3)

In Eq. (3), the reduced matrix XA 2 Rn�r, which is then
multiplied byB to represent the featurematrixX (i.e., the first
X inX� XAB), has less than r latent factors. Geometrically,A
(or B) has the effect of transforming X (or XA) to a new space,
i.e., conducting subspace learning by considering the corre-
lation among d (or r) features (i.e., all features as a group),
namely, global feature correlation. Therefore, the low-rank con-
straint onA (or B) has the effect of subspace learning by con-
sidering the global feature correlation. In particular, Eq. (13)
further indicates that such subspace learning actually con-
ducts LDA via considering the global feature correlation to
preserve the global structure of the samples.

Unlike Eq. (2) using the feature-level self-expressiveness
property to only consider the local feature correlation, Eq. (3)
simultaneously uses the feature-level self-expressiveness
property and a low-rank constraint (i.e., replacing Z by A
and B) to consider the local feature correlation and the global
feature correlation, respectively, and thus resulting in local
self-expressiveness and global self-expressiveness.

3.4 Local Structure Preservation

Previous literatures have shown that both the global struc-
ture and the local structure of the samples may provide
complementary information to strengthen the performance
of dimensionality reduction [49], [50], [51], so this paper
proposes to preserve the global structure of the samples via
a low-rank constraint in Eq. (3) and also to preserve the local
structure of the samples via learning a graph matrix
S 2 Rn�n on a low-dimensional space. Intuitively, given the
feature matrix X and its weight matrix W, we follow the lit-
erature [7] to have the following objective function:

min
W

Xn

i;j
kxiW� xjWk22si;j; (4)

where W 2 Rd�d is also a transformation matrix transferring
the high-dimensional data X to a new space spanned by
XW, and the element si;j of the graph matrix S denotes the
similarity between the ith sample xi and the jth sample xj.
Moreover, if the ith sample xi is one of the k-nearest neigh-
bors of the jth sample xj, then the value of the heat kernel

(i.e., fðxi; xjÞ ¼ expð� kxi�xjk22
2s2

Þ where s is a tuning parame-

ter) is regarded as the value of si;j; otherwise si;j ¼ 0.

Although Eq. (4) has been widely used in previous USFS
methods [16], [18], [45], it learns a fixed graph matrix S
from original high-dimensional data X before learning W.
That is, the graph matrix learning is independent on the
low-dimensional space learning. In this way, if original data
are corrupted by noise and redundancy (it always true in
real applications), then an incorrect graph matrix may be
outputted. Moreover, Eq. (4) needs tune two parameters
(i.e., k and s), which is time-consuming. In particular, the
quality of S has been reported very sensitive to the tuning
of s [50]. This motivates us to learn the graph matrix from
the ‘clean’ data (i.e., a low-dimensional space with noise
and redundancy as less as possible) and to reduce the num-
ber of the tuning parameters. However, the truth is that nei-
ther the graph matrix nor the low-dimensional space are
known in advance. To address this, we couple the graph
matrix learning with the low-dimensional space learning
together to iteratively optimize them so that achieving their
individually optimal result. As a result, we may learn the
graph matrix by following the distribution of the samples,
rather than using the heat kernel function to learn a fixed
graph matrix, which also needs tune the parameter s. We
thus devise the following objective function:

min
S;W

Xn

i;j
ðkxiW� xjWk22si;j þ bksik22Þ;

s:t:; 8i; sTi 1 ¼ 1; si;i ¼ 0;

si;j � 0 if j 2 N ðiÞ; otherwise 0;

(5)

where b is a tuning parameter, k 	 k2 is the ‘2-norm of a vec-
tor, ksik22 is used to avoid the trivial solution, 1 and NðiÞ
represent an all-one-element vector and the set of the near-
est neighbors of the ith sample, respectively, and the con-
straint sTi 1 ¼ 1 is used to obtain shift invariant similarity. As
a consequence, Eq. (5) outputs small value (i.e., similarity)
of si;j for distant samples and large value of si;j for close
samples.

Unlike that the USFS methods [16], [18], [45] use Eq. (4) to
learn a fixed graph matrix by tuning two parameters, Eq. (5)
learns a dynamic graph matrix by only tuning a parameter
k since the similarity among the samples is learnt according
to the distribution of the samples, i.e., the learnt low-
dimensional space spanned by XW. Moreover, the dynamic
graph matrix is iteratively learnt according to the optimized
low-dimensional space so that learning a graph matrix from
‘clean’ data. Different from the dynamic graph matrix in
[22] representing each sample by all samples, Eq. (5) repre-
sents each sample by only k nearest neighbor samples. Obvi-
ously, our proposed method easily avoids the influence of
outliers which are usually far away its k nearest neighbors.

3.5 Objective Function

Although the graph matrix S is learnt from the low-
dimensional space spanned by XW in Eq. (5), neither the
graph matrix S nor the low-dimensional space are known.
As a result, Eq. (5) may output unreliable models. This
paper combines the constraints in Eq. (3) with Eq. (5) to
address this issue. Specifically, by regarding the weight
matrixW in Eq. (5) as the low-rank weight matrices AB, i.e.,
W ¼ AB, we combine Eq. (3) with Eq. (5) to yield our final
objective function as follows:
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min
A;B;S

Xn

i;j
kxiAB� xjABk22si;j þ akX� XABk2F

þ b
Xn

i
ksik22 þ gkABk2;1

s:t:; 8i; sTi 1 ¼ 1; si;i ¼ 0;

si;j � 0 if j 2 NðiÞ; otherwise 0;

(6)

where a;b and g are tuning parameters. Eq. (6) iteratively
updates the graph matrix S and the low-rank transforma-
tion matrix AB until all of variables achieve their individu-
ally optimal result. In this way, Eq. (6) uses the second term
(i.e., the local self-expressiveness of features) and the low-
rank constraint on both A and B (i.e., the global self-
expressiveness of features) to consider the local feature
correlation and the global feature correlation, respectively,
and uses the iteratively updated graph matrix and the low-
rank constraint to preserve the local structure of the samples
and the global structure of the samples, respectively.

As a consequence, given the optimal A and B, we calcu-
late the ‘2-norm values of ðABÞi; i ¼ 1; . . . ; d, and then sort
them in descending order. We finally select top r features
corresponding to the top r ranked ‘2-norm values as the
final result of our proposed feature selection method.

3.6 Optimization

Eq. (6) is not jointly convex to all the variables (i.e.,A, B, and
S), but is convex for each variable while fixing the others. In
this paper, we employ the alternative optimization strategy
to optimize Eq. (6), i.e., iteratively optimizing each variable
while fixing the others until the algorithm converges. We
list the resulting pseudo in Algorithm 1.

3.6.1 Update B and A by Fixing S

The optimizations of Eq. (6) on the variables A and B are
convex but non-smooth due to the ‘2;1-norm regularizer on
AB. In this paper, we employ the framework of Iteratively
Reweighted Least Square (IRLS) [52] to optimize Eq. (6) via
iteratively optimizing A and B until the predefined stop-
ping criteria is satisfied.

With the fixed S, Eq. (6) is changed to

min
A;B

X
i;j
kxiAB� xjABk22si;j

þ akX� XABk2F þ gkABk2;1:
(7)

By following the IRLS framework, we rewrite Eq. (7) as

min
A;B

trðBTATXTLXABÞ þ akX� XABk2F
þ gtrðBTATPABÞ;

(8)

where L ¼ Q� S 2 Rn�n is a Laplacian matrix and Q is a
diagonal matrix with its ith element qi;i ¼

Pn
j¼1 si;j, and the

ith element of the diagonal matrix P 2 Rd�d is defined as

pii ¼ 1

2kðABÞik22
; i ¼ 1; . . . ; d (9)

where ðABÞi is the ith row of AB. By fixing A, we set the
derivative of Eq. (8) with respect to B to zero and solve the
resulting equation to obtain

B
 ¼ ðATStAÞ�1ATXTX; (10)

where St ¼ XTLXþ aXTXþ gP.

Then, we rewrite the Eq. (8) to the following expression,

min
A;B

trðBTATXTLXABÞ
þ atrðXTX� XTXAB� BTATXTX

þ BTATXTXABÞ þ gtrðBTATPABÞ:
(11)

By substituting Eq. (10) back into Eq. (11), and Eq. (11) is
changed to

max
A

trðXTXAðATStAÞ�1ATXTX

þ XTXAðATStAÞ�1ATXTXÞ
,
max
A

trðATStAÞ�1ATXTXXTXA:

(12)

Further, we obtain

max
A

trðATStAÞ�1ATSbA; (13)

where Sb ¼ XTXXTX. St and Sb, respectively, are similar to
the total-class scatter matrix and the between-class scatter
matrix defined in the LDA method [53]. Therefore, the solu-
tion of Eq. (13) can be solved via eigenvalue decomposition,
i.e., the global optimal solution of Eq. (13) is the top r eigen-
vectors of S�1

t Sb corresponding to r nonzero eigenvalues.
Moreover, similar to the between-class scatter matrix, Sb in
this work can be regarded as the between-sample correla-
tion matrix, which preserves the global structure of the
samples.

In this way, we can yield A by solving Eq. (13) and then
yield B by Eq. (10). Moreover, we iteratively update A and
B until the resulting objective function value is stable. The
detail of optimizing A and B is listed in Algorithm 2.

3.6.2 Update S by Fixing B and A

Given the fixed A and B, Eq. (6) becomes

min
S

Xn

i;j
jjxiAB� xjABjj22si;j þ b

Xn

i;j
s2i;j

s:t:; 8i; sTi 1 ¼ 1; si;i ¼ 0;

si;j � 0 if j 2 N ðiÞ; otherwise 0;

(14)

We first yield k nearest neighbors of all samples via cal-
culating their euclidean distance, and then set the value of
si;j as 0 if the jth sample does not belong to one of k nearest
neighbors of the ith sample, otherwise, the values si;j is
obtained by Eq. (15).

Since the optimization of S is equal to independently
optimize each vector si; i ¼ 1; . . . ; n, we further change
Eq. (14) to individually optimize si; i ¼ 1; . . . ; n, as follows:

min
sT
i
1¼1;si;i¼0;si;j�0

Xn

j
ðkxiAB� xjABk22si;j þ bs2i;jÞ: (15)

By denoting F 2 Rn�n where fi;j ¼ jjxiAB� xjABjj22, we
rewrite Eq. (15) as follows:

min
sT
i
1¼1;si;i¼0;si;j�0

���si þ 1

2b
fi

���2
2
; (16)
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We further obtain the Lagrangian function of Eq. (16) as,

min
si;t;h

���si þ 1

2b
fi

���2
2
� tðsTi 1� 1Þ � hT si; (17)

where t and h are the Lagrangian multipliers. According to
the Karush–Kuhn–Tucker (KKT) conditions [54], we yield
the closed-form solution of si;j; j ¼ 1; . . . ; n as

si;j ¼ ð� 1

2b
fi;j þ tÞþ: (18)

Algorithm 1. The Pseudo Code of Solving Eq. (6)

Input: X 2 Rn�d;a, g, and r;
Output: A 2 Rd�r, B 2 Rr�d, and S 2 Rn�n;
1. Calculate k nearest neighbors of all samples;
2. Initialize S by Eq. (5) whereW is an identity matrix;
3. repeat:

3.1. Update A and B via Algorithm (2);

3.2. Update S by Eq. (16);

3.3. Calculate L ¼ Q� STþS
2 ;

until converge

Algorithm 2. The Pseudo Code of Solving A and B

Input: X 2 Rn�d, L 2 Rn�n, a, k, and r;
Output: A 2 Rd�r and B 2 Rr�d;
1. Initialize P ¼ I 2 Rd�d;
2. repeat:

2.1. Calculate A by Eq. (13);

2.2. Calculate B by Eq. (10);

2.3. Calculate P by Eq. (9);
until converge

3.7 Convergence Analysis, Complexity, and
Parameters’ Determination

In this section, we first prove the convergence of both
Algorithms 2 and 1, and then analyze the complexity of
Algorithm 1. Finally, we discuss parameters’ determination
of Algorithm 1.

3.7.1 Convergence Analysis of Algorithm 2

We first list the following Lemma:

Lemma 1. The inequality

ffiffiffi
u

p � u

2
ffiffiffi
v

p � ffiffiffi
v

p � v

2
ffiffiffi
v

p ; (19)

is always hold for all positive real numbers of u and v [6].

We then prove the convergence of Algorithm 2 by the fol-
lowing Theorem 1:

Theorem 1. The objective function value of Eq. (7) monotoni-
cally decreases until Algorithm 2 converges.

Proof. While fixing S, we denote the tth iteration of a matrix
A asAðtÞ andAðtþ1Þ, respectively. According toAlgorithm2,
we have

< Aðtþ1Þ;Bðtþ1Þ >

¼ arg minA;B trðBðtÞTAðtÞTXTLXAðtÞBðtÞÞ
þ a X� XAðtÞBðtÞ�� ��2

F
þgtrðBðtÞTAðtÞTPðtÞAðtÞBðtÞÞ;

(20)

which indicates that

trðBðtþ1ÞTAðtþ1ÞTXTLXAðtþ1ÞBðtþ1ÞÞ
þ a X� XAðtþ1ÞBðtþ1Þ�� ��2

F

þ gtrðBðtþ1ÞTAðtþ1ÞTPðtÞAðtþ1ÞBðtþ1ÞÞ
� trðBðtÞTAðtÞTXTLXAðtÞBðtÞÞ
þ a X� XAðtÞBðtÞ�� ��2

F
þgtrðBðtÞTAðtÞTPðtÞAðtÞBðtÞÞ:

(21)

tu
By denoting W ¼ AB, we obtain WðtÞ¼AðtÞBðtÞ,

Wðtþ1Þ¼Aðtþ1ÞBðtþ1Þ. According to Eq. (9), Eq (21) can further
be rewritten as follows:

trðWðtþ1ÞTXTLXWðtþ1ÞÞ

þ a X� XWðtþ1Þ�� ��2
F
þg

Xd

i¼1

wiðtþ1Þ�� ��2
2

wiðtÞk k2
� trðWðtÞTXTLXWðtÞÞ

þ a X� XWðtÞ�� ��2
F
þgtr

Xd

i¼1

wiðtÞ�� ��2
2

wiðtÞk k2
;

(22)

where wiðtÞ and wiðtþ1Þ denote ith row of WðtÞ and Wðtþ1Þ,
respectively. According to Lemma 1, we have

wiðtþ1Þ�� ��
2
� wiðtþ1Þ�� ��2

2

wiðtÞk k2
� wiðtÞ�� ��

2
� wiðtÞ�� ��2

2

wiðtÞk k2
: (23)

By plugging Eq. (23) into Eq. (22), we have

trðWðtþ1ÞTXTLXWðtþ1ÞÞ

þ a X� XWðtþ1Þ�� ��2
F
þg

Xd
i¼1

wiðtþ1Þ�� ��
2

� trðWðtÞTXTLXWðtÞÞ

þ a X� XWðtÞ�� ��2
F
þg

Xd
i¼1

wiðtÞ�� ��
2
:

(24)

We finally have

trðWðtþ1ÞTXTLXWðtþ1ÞÞ
þ a X� XWðtþ1Þ�� ��2

F
þg Wðtþ1Þ�� ��

2

� trðWðtÞTXTLXWðtÞÞ
þ a X� XWðtÞ�� ��2

F
þg WðtÞ�� ��

2
:

(25)

According to Eq. (25), we can know that Algorithm 2 is
going to be convergent.

3.7.2 Convergence Analysis of Algorithm 1

We prove the convergence of Algorithm 1 by the following
Theorem 2:
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Theorem 2. The objective function value of Eq. (6) monotoni-
cally decreases until Algorithm 1 converges.

Proof. After the tth iteration, we have obtained the optimal
AðtÞ, BðtÞ and SðtÞ. In the (t + 1)th iteration, we need to opti-
mize Sðtþ1Þ by fixing AðtÞ and BðtÞ. tu
According to Eq. (18), we know that s

ðtþ1Þ
i;j has a closed-

form solution, i.e., global solution, for all i; j ¼ 1; . . . ; n.
Thus we have the following inequality:

Xn

i;j
jjxiAðtÞBðtÞ � xjAðtÞBðtÞjj22sðtþ1Þ

i;j

þ ajjX� XAðtÞBðtÞjj2F
þ b

Xn

i
jjsðtþ1Þ

i jj22 þ gjjAðtÞBðtÞjj2;1
�

Xn

i;j
jjxiAðtÞBðtÞ � xjAðtÞBðtÞjj22sðtÞi;j

þ ajjX� XAðtÞBðtÞjj2F
þ b

Xn

i
jjsðtÞi jj22 þ gjjAðtÞBðtÞjj2;1:

(26)

When fixing Sðtþ1Þ to update Aðtþ1Þ and Bðtþ1Þ, we have
the following inequality according to Theorem 1

Xn

i;j
jjxiAðtþ1ÞBðtþ1Þ � xjAðtþ1ÞBðtþ1Þjj22sðtþ1Þ

i;j

þ ajjX� XAðtþ1ÞBðtþ1Þjj2F
þ b

Xn

i
jjsðtþ1Þ

i jj22 þ gjjAðtþ1ÞBðtþ1Þjj2;1
�

Xn

i;j
jjxiAðtÞBðtÞ � xjAðtÞBðtÞjj22sðtþ1Þ

i;j

þ ajjX� XAðtÞBðtÞjj2F
þ b

Xn

i
jjsðtþ1Þ

i jj22 þ gjjAðtÞBðtÞjj2;1:

(27)

By integrating Eq. (26) with Eq. (27), we obtain

Xn

i;j
jjxiAðtþ1ÞBðtþ1Þ � xjAðtþ1ÞBðtþ1Þjj22sðtþ1Þ

i;j

þ ajjX� XAðtþ1ÞBðtþ1Þjj2F
þ b

Xn

i
jjsðtþ1Þ

i jj22 þ gjjAðtþ1ÞBðtþ1Þjj2;1
�

Xn

i;j
jjxiAðtÞBðtÞ � xjAðtÞBðtÞjj22sðtÞi;j

þ ajjX� XAðtÞBðtÞjj2F
þ b

Xn

i
jjsðtÞi jj22 þ gjjAðtÞBðtÞjj2;1:

(28)

From Eq. (28), we know that the objective function value
of Eq. (6) decreases after each iteration of Algorithm 1.
Hence, Theorem 2 has been proved.

3.7.3 Complexity Analysis

In each iteration, the time cost of Algorithm 1 focuses on the
computation cost of XTLXþ aXTXþ gP, ðATStAÞ�1ATXTX
in Eq. (10), and fi;j in Eq. (18), and their corresponding
complexity are maxfOðnd2Þ; Oðn2dÞg, Oðr3Þ, and Oðnd2Þ,
where n, d, and r, respectively, are the number of the sam-
ples, the features, and the rank of the feature matrix X.
In our experiments, our method usually converges within
30 iterations, so the time complexity of Algorithm 1 is
maxfOðnd2Þ; Oðn2dÞg (n; d � r).

3.7.4 Parameters’ Determination

The parameter b determines the number of nearest neigh-
bors of samples in the graph representation. Specifically,
b ¼ 0 means that only one element in si does not equal to
zero, i.e., the number of nearest neighbors k is 1. b ! 1
means that all elements in si are non-zero, i.e., the number
of nearest neighbors k is n (the number of samples).

In this paper, we assume that there are k nearest neigh-
bors for each sample. By denoting f̂i ¼ ff̂i;1; . . . ; f̂i;ng as a
descend order of fi, i ¼ 1; . . . ; n, we know that Eq. (18)
indicates the following constraint, i.e., si;kþ1 ¼ 0 and
si;k > 0. That is

� 1
2b f̂ i;kþ1 þ t � 0

� 1
2b f̂ i;k þ t > 0

8<
: : (29)

Based on the constraint sTi 1 ¼ 1, then we have

Xk

j¼1

�
� 1

2b
f̂i;k þ t

�
¼ 1

) t ¼ 1

k
þ 1

2kb

Xk

j¼1
f̂i;k:

(30)

By combining Eq. (29) with Eq. (30), we can obtain with
the following inequality with respect to b,

k

2
f̂i;k � 1

2

Xk

j¼1
f̂i;j < b � k

2
f̂i;kþ1 � 1

2

Xk

j¼1
f̂i;j: (31)

Finally, we yield a closed-form solution si which has k non-
zero elements, so we ultimately make b set as

b ¼ k

2
f̂i;kþ1 � 1

2

Xk

v¼1
f̂i;v; (32)

where k is the number of nearest neighbors of ith samples
and can be tuned by cross-validation methods.

For each i; i ¼ 1; . . . ; n, we totally have Eq. (32) so that we
have n different values on b. Hence, in our implementation,
we follow the literature [20] to set the final value of b as the
average of n different values on b, i.e.,

b ¼ 1

n

Xn

i¼1

� k

2
f̂i;kþ1 � 1

2

Xk

v¼1
f̂i;v

�
: (33)

After fixing b, Eq. (6) needs to tune the parameters k, a,
and g. In this paper, we empirically determine the value of
k since Eq. (6) can automatically adjust the value of si;j (via
assign small value to the neighbors far from the sample) if
we set large value to k. a is used to balance the magnitude
between

Pn
i;j kxiAB� xjABk22si;j and kX� XABk2F , and b is

used for controlling the sparsity of AB. In this paper, we
employ a cross-validation method to estimate them.

4 EXPERIMENTS

In this section, we evaluate our proposed method by com-
paring with eight comparison methods on twelve data sets
in terms of classification performance.

4.1 Datasets

We downloaded the data sets (such as HillValley, Ecoli,
Cane, and Isolet) and the data sets (such as Yale-32, Colon,
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WarpAR, Pixraw, Coil, DBWorld and Orl), respectively,
from UCI Machine Learning Repository1 and the website of

Feature Selection Data sets.2 We also downloaded the data
set Lung from [55].

These data sets come from all kinds of applications, such
as text data (such as Cane, DBWorld, and Isolet), biological
data (such as Colon, Ecoli, and Lung), and image data (such
as HillValley, Yale-32, WarpAR, Coil, Orl, and Pixraw).
Moreover, three of them (such as Colon, DBWorld, and Hill-
Valley) are binary data sets and the others are multi-class
data sets. The number of features is from 100 to 10,000, and
the number of samples varies from 62 to 1,559. In particular,
the number of features of seven data sets is larger than the
number of samples, such as Colon, DBWorld, Lung, Pixraw,
WarpAR, Yale-32, and Orl. This makes the construction of
feature selection very challengeable.

4.2 Comparison Methods

Multi-Cluster Feature Selection [16] first solves an eigen-
value problem to construct the graph representation, and
then utilizes the least square regression to connect the
derived graph representation and the original data to rank
the features.

Minimize the feature Redundancy for spectral Feature
Selection [1] uses the ‘2;1-norm regularizer to replace the
‘1-norm regularizer in MCFS to rank the features via consid-
ering the correlations among the features.

Nonnegative Discriminative Feature Selection [36] jointly
learns the local geometric structure of the data and the
sparse linear regression with an ‘2;1-norm regularizer.

Joint Embedding Learning and Sparse Regression [37]
simultaneously takes into account a Laplacian regularizer
and the weight matrix to rank the scores of the features.

Trace Ratio formulation unsupervised Feature Selection
(TRFS) [23] extends the criterion of trace ratio to unsuper-
vised feature selection framework, via combining the
k-means method with an ‘2;1-norm regularizer into the pro-
posed feature selection model.

Unsupervised Feature Selection with Adaptive Structure
Learning [12] first utilizes the adaptive structure of the data
to construct both the global learning and the local learning,
and then integrates them with an ‘2;1-norm regularizer to
select the significant features.

Structured Optimal Graph Feature Selection [22] learns
the global structure among the samples from the low-
dimensional feature space to select important features.

Regularized Self-Representation (RSR) [8] uses the feature-
level self-representation property to represent each feature by
the important features, and then employs the ‘2;1-norm regu-
larizer to conduct group sparsity on the coefficient matrix,
such that filtering the redundant and irrelative features.

The comparison methods include two sequential USFS
methods (such MCFS and MRFS), three joint USFS methods
(such as NDFS, JELSR, TRFS), two iteratively joint USFS
methods (such as FSASL and SOGFS), and a newly unsuper-
vised feature selection method (i.e., RSR). We also regarded
the method using all features to conduct classification tasks
as Baseline.

In the comparison methods, first, RSR only utilizes the
feature-level self-representation property to consider the
local feature correlation for feature selection. Second, two
sequential USFS methods only consider the local structure
of the samples. Moreover, they learn the local structure
from the original feature space, which may contain noise
and redundancy. Furthermore, the sequential steps may
result in suboptimal feature selection result. Last, these five
joint USFS methods (i.e., NDFS, JELSR, TRFS, FSASL and
SOGFS) jointly learn the geometry (either local or global)
structure and conduct the selection of the features to avoid
the suboptimal issue of sequential USFS methods. By con-
trast, our proposed method preserves both the global struc-
ture and the local structure among the samples, by
considering both the global feature correlation and the local
feature correlation among the features. Moreover, both the
feature correlation and the sample correlation are learnt
from the ‘clean’ data, i.e., the intrinsic low-dimensional
space of the original high-dimensional data.

4.3 Experimental Setting

In our experiments, we first used all feature selection meth-
ods to selection features, and then ran the SVM classifier on
the selected features to conduct classification tasks. For the
method Baseline, we directly ran SVM to obtain the classifi-
cation result.

We used 10-fold cross-validation to compare all methods.
Specifically, we first randomly partitioned the whole data
set into 10 subsets. We then selected one subset for testing
and used the remaining 9 subsets for training. We repeated
the whole process 10 times to avoid the possible bias during
data set partitioning for cross-validation. The final result
was computed by averaging results from all experiments.
We conduct 5-fold cross-validation on the training data to
conduct model selection. That is, we separated the training
data into five parts, where one of parts is used to validate
the model built by the left four parts. In the validation step,
we used the grid search method to search the best parame-
ters’ combination by the given ranges of the parameters. We
selected the parameters’ combination with the best classifi-
cation performance in the validation step to test the testing
data. In particular, we empirically set the value of k as 15
and other parameters’ range as f10�3; . . . ; 103g for all meth-
ods to make fair comparison, where all the methods
obtained their best performance.

We evaluated our method with all the comparison meth-
ods via the evaluation metric Average Classification Accu-
racy (ACA). We also investigated the robustness of our
proposed method in terms of three aspects, such as the
effect of low-rank constraint, the influence of parameters’
setting, and the convergence of our proposed Algorithm 1.

4.4 Experimental Result on Classification Accuracy

Fig. 1 reported the ACA result of all methods, where the
horizontal axis represented the number of the left dimen-
sions after conducting feature selection.

Obviously, our proposed method achieved the best per-
formance, followed by SOGFS, FSASL, RSR, NDFS, JELSR,
TRFS, MRFS, MCFS, and Baseline. For example, our
proposed method improved by 10.1 and 24.7 percent,

1. http://archive.ics.uci.edu/ml/.
2. http://featureselection.asu.edu/data sets.php.
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respectively, compared to SOGFS (the best comparison
method) in data set Ecoli and MCFS in data set Coil (the
worst feature selection method). Besides, we had the follow-
ing observation.

First, the classification performance of all feature selection
methods first increased and then began to decrease with the
increase of the selected features. For example, the ACA
results were about 65 and 82 percent, respectively, while
keeping the left features as 50 and 200, and then went down
to 65 percent while keeping the left features as 300, at the
data set Yale-32. This indicated that it is necessary to conduct
feature selection for dealing with high-dimensional data
since high-dimensional data contain noise or redundancy.

Second, most of feature selection methods outperformed
Baseline, which used all features to conduct classification.
For example, our proposed method and MCFS (the worst
feature selection method), respectively, improved on aver-
age by 17.9 and 7.4 percent, compared to Baseline. This veri-
fied the necessary of conducting feature selection for
dealing with high-dimensional data again.

Last but not least, sequential USFS methods (i.e., MCFS
andMRFS) were worse than joint USFS methods (i.e., NDFS,
TRFS, FSASL, SOGFS and JELSR). For example, the average
classification accuracy of our proposed method on average
increased by 23.21, 18.83, 4.41, 6.40, 4.33, 15.39, 9.28, 6.53 and
2.36 percent, respectively, than the performance of NDFS,
TRFS, RSR, FSASL, SOGFS, JELSR, MCFS and the Baseline,

on the data set Ecoli. The reasonmay be that sequential USFS
methods sequentially conduct subspace learning and feature
selection to possible result in suboptimal result.

4.5 Effect of Low-Rank Constraint

We investigated the influence of the effect of different num-
ber of ranks (i.e., r 2 f1; 3; 5; 7; 9g) in Eq. (6) at different data
sets, and reported the ACA result in Fig. 2, where the hori-
zonal axis indicates the number of kept ranks. It is worth
noting that the number of real classes in both the binary
data sets (such as Colon, HillValley, and DBWorld) and the
multi-class data sets (such as Lung and Ecoli) is less than 9,
but we still set the rank of their feature matrices as 9 since
the real rank of these corresponding data sets is large than 9.

From Fig. 2, we observed that the performance with a
low-rank constraint in most of cases outperformed the per-
formance of the cases with full-rank. For example, the aver-
age classification accuracy of the proposed method with
low-rank constraints increased by 1.12, 4.67, 0.27, 1.17 and
1.9 percent, respectively, compared to the results of our pro-
posed method with the full-rank constraint on the data sets
Lung, Yale-32, Isolet, Coil, and Orl. This manifested that it
is reasonable to analyze high-dimensional data with a low-
rank constraint in feature selection. The reason is that the
low-rank constraint conducting subspace learning helped
find the low-dimensional space of high-dimensional data
via considering the global feature correlation.

Fig. 1. ACA result of all methods on all data sets at different number of selected features.
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Fig. 2. ACA result of our proposed method at different number of ranks.

Fig. 3. ACA result of our proposed method at different parameters’ setting on the variables a and g.
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4.6 Parameters’ Sensitivity

We tuned the parameters a and g within the range of
f10ð�3Þ; 10ð�2Þ; . . . ; 103g and listed the results in Fig. 3.

As shown in Fig. 3, the proposed method is sensitive to
the parameters’ setting. That is, different parameter com-
binations output different classification results. Hence, it
is necessary to tune the parameters in our methods. More
specifically, a is used to control the magnitude between

the local representation term
Pn

i;j kxiAB� xjABk22si;j and

the global representation term kX� XABk2F , while g in

Eq. (6) is used to adjust the sparsity of AB. In Fig. 3, we
can find that our method achieves the best performance
on the data sets Ecoli and Isolet while setting a ¼ 1, and
g ¼ 100. However, our method produces the best ACA
96.03 percent with a ¼ 0:01, and g ¼ 1 for the data set
Yale-32.

4.7 Convergence

Fig. 4 shows the behavior of the objective values of our pro-
posed optimization algorithm (i.e., Algorithm 1) with
respect to the increase of the iterations. In our experiments,
we set the stop criteria of both Algorithms 1 and 2 as 10�3,

i.e.,
kobjðtþ1Þ�objðtÞk22

objðtÞ � 10�3, where objðtÞ represents the tth

iteration objective function value of Eq. (6).

From Fig. 4 we can find 1) the proposed Algorithm 1
to optimize the proposed objective function in Eq. (6)
monotonically decreases the objective function values until
Algorithm 1 achieves converges; 2) the proposedAlgorithm 1
needs a few iterations (i.e., less than 20) to reach the conver-
gence, which is very efficient.

It is noteworthy that our proposed Algorithm 2 also
achieves convergence within 30 iterations at all data sets.
We did not list them due to the limited space.

5 CONCLUSION

This paper has proposed a novel unsupervised spectral fea-
tures selection method by iteratively learning the graph
matrix and selecting the features. Specifically, we embedded
the feature-level self-expressiveness property, a low-rank
constraint, the graph matrix learning, and an ‘2;1-norm regu-
larizer in a framework, to yield an interpretable and robust
low-dimensional space and the graph matrix measuring the
similarity in the learnt low-dimensional space. Experimental
results on real data sets verified that our proposed method
achieved the best classification performance, compared to
the state-of-the-art feature selectionmethods.

In the future work, we will extend our proposed frame-
work to conduct feature selection on the high-dimensional
data with incomplete data since incomplete data sets are
often found in industrial applications.

Fig. 4. ACA result of our proposed Algorithm 1 at different iterations on different datasets.

ZHU ET AL.: LOCAL AND GLOBAL STRUCTURE PRESERVATION FOR ROBUST UNSUPERVISED SPECTRAL FEATURE SELECTION 527



ACKNOWLEDGMENTS

This work was supported in part by the China Key Research
Program (Grant No: 3722016YFB1000905), the Nation Natu-
ral Science Foundation of China (Grants No: 61573270 and
61672177), the China 1000-Plan National Distinguished Pro-
fessorship, the Guangxi Natural Science Foundation (Grant
No: 2015GXNSFCB139011), the Guangxi High Institutions
Program of Introducing 100 High-Level Overseas Talents,
the Guangxi Collaborative Innovation Center of Multi-
Source Information Integration and Intelligent Processing,
the Research Fund of Guangxi Key Lab of MIMS
(16-A-01-01 and 16-A-01-02), the Innovation Project of
Guangxi Graduate Education (YCSW2017039), and the
Guangxi Bagui Teams for Innovation and Research. Ron-
gyao Hu and Yonghua Zhu have equivalent contributions
to this work.

REFERENCES

[1] Z. Zhao, L. Wang, H. Liu, and J. Ye, “On similarity preserving
feature selection,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 3,
pp. 619–632, Mar. 2013.

[2] R. Hu, et al., “Graph self-representation method for unsupervised
feature selection,” Neurocomput., vol. 220, pp. 130–137, 2017.

[3] X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, “Missing value esti-
mation for mixed-attribute data sets,” IEEE Trans. Knowl. Data
Eng., vol. 23, no. 1, pp. 110–121, Jan. 2011.

[4] Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang, and A. Cichocki,
“Sparse Bayesian classification of EEG for brain–computer inter-
face,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 11,
pp. 2256–2267, Nov. 2016.

[5] S. Zhang, X. Li,M. Zong, X. Zhu, and R.Wang, “Efficient kNN clas-
sification with different numbers of nearest neighbors,”
IEEE Trans. Neural Netw. Learn. Syst., to be published, doi: 10.1109/
TNNLS.2017.2673241.

[6] X. Zhu, X. Li, and S. Zhang, “Block-row sparse multiview multila-
bel learning for image classification,” IEEE Trans. Cybern., vol. 46,
no. 2, pp. 450–461, Feb. 2016.

[7] X. He and P. Niyogi, “Locality preserving projections,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2003, pp. 153–160.

[8] P. Zhu,W. Zuo, L. Zhang, Q. Hu, and S. C. K. Shiu, “Unsupervised
feature selection by regularized self-representation,” Pattern Recog-
nit., vol. 48, no. 2, pp. 438–446, 2015.

[9] Y. Zhang, Y. Wang, J. Jin, and X. Wang, “Sparse Bayesian learning
for obtaining sparsity of eeg frequency bands based feature vec-
tors in motor imagery classification,” Int. J. Neural Syst., vol. 27,
no. 02, 2017, Art. no. 1650032.

[10] X. Zhu, Z. Huang, Y. Yang, H. T. Shen, C. Xu, and J. Luo, “Self-
taught dimensionality reduction on the high-dimensional small-
sized data,” Pattern Recognit., vol. 46, no. 1, pp. 215–229, 2013.

[11] S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, “Learning k for
kNN classification,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 3,
2017, Art. no. 43.

[12] L. Du and Y.-D. Shen, “Unsupervised feature selection with adap-
tive structure learning,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2015, pp. 209–218.

[13] X. Zhu, L. Zhang, and Z. Huang, “A sparse embedding and least
variance encoding approach to hashing,” IEEE Trans. Image
Process., vol. 23, no. 9, pp. 3737–3750, Sep. 2014.

[14] Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Frequency
recognition in SSVEP-based BCI using multiset canonical
correlation analysis,” Int. J. Neural Syst., vol. 24, no. 04, 2014,
Art. no. 1450013.

[15] Z. Zhang, L. Bai, Y. Liang, and E. Hancock, “Joint hypergraph
learning and sparse regression for feature selection,” Pattern
Recognit., vol. 63, pp. 291–309, 2017.

[16] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection
for multi-cluster data,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2010, pp. 333–342.

[17] L. Shi, L. Du, and Y.-D. Shen, “Robust spectral learning for unsu-
pervised feature selection,” in Proc. IEEE Int. Conf. Data Mining,
2014, pp. 977–982.

[18] C. Hou, F. Nie, X. Li, and D. Yi, “Joint embedding learning
and sparse regression: A framework for unsupervised feature
selection,” IEEE Trans. Cybern., vol. 44, no. 6, pp. 793–804,
Jun. 2014.

[19] L. K. Saul and S. T. Roweis, “Think globally, fit locally: Unsuper-
vised learning of low dimensional manifolds,” J. Mach. Learn. Res.,
vol. 4, pp. 119–155, 2003.

[20] X. Zhu, X. Li, S. Zhang, Z. Xu, L. Yu, and C. Wang, “Graph PCA
hashing for similarity search,” IEEE Trans. Multimedia, vol. 19,
no. 9, pp. 2033–2044, Sep. 2017.

[21] X. Zhu, H. Suk, L. Wang, S. Lee, and D. Shen, “A novel relational
regularization feature selection method for joint regression and
classification in AD diagnosis,” Med. Image Anal., vol. 38, pp. 205–
214, 2017.

[22] F. Nie, W. Zhu, and X. Li, “Unsupervised feature selection with
structured graph optimization,” in Proc. AAAI Conf. Artif. Intell.,
2016, pp. 1302–1308.

[23] D. Wang, F. Nie, and H. Huang, “Unsupervised feature selection
via unified trace ratio formulation and K-means clustering
(TRACK),” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases, 2014, pp. 306–321.

[24] X. Zhu, H.-I. Suk, S.-W. Lee, and D. Shen, “Subspace regularized
sparse multitask learning for multiclass neurodegenerative
disease identification,” IEEE Trans. Biomed. Eng., vol. 63, no. 3,
pp. 607–618, Mar. 2016.

[25] J. Song, L. Gao, L. Liu, X. Zhu, and N. Sebe, “Quantization-based
hashing: A general framework for scalable image and video
retrieval,” Pattern Recognit., 2017. [Online]. Available: https://doi.
org/10.1016/j.patcog.2017.03.021

[26] X. Zhu, H.-I. Suk, H. Huang, and D. Shen, “Low-rank graph-
regularized structured sparse regression for identifying genetic
biomarkers,” IEEE Trans. Big Data, vol. 3, no. 4, pp. 405–414,
Oct.-Dec. 2017.

[27] X. Zhu, X. Li, S. Zhang, C. Ju, and X. Wu, “Robust joint graph
sparse coding for unsupervised spectral feature selection,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 6, pp. 1263–1275,
Jun. 2017.

[28] I. Jolliffe, Principal Component Analysis. Hoboken, NJ, USA: Wiley,
2002.

[29] B. Scholkopft and K.-R. Mullert, “Fisher discriminant analysis
with kernels,” Neural Netw. Signal Process. IX, vol. 1, no. 1, 1999,
Art. no. 1.

[30] X. Zhu, Z. Huang, H. T. Shen, J. Cheng, and C. Xu,
“Dimensionality reduction by mixed kernel canonical correlation
analysis,” Pattern Recognit., vol. 45, no. 8, pp. 3003–3016, 2012.

[31] B. Sch€olkopf, A. Smola, and K.-R. M€uller, “Kernel principal
component analysis,” in Proc. Int. Conf. Artif. Neural Netw., 1997,
pp. 583–588.

[32] J. Yang, A. F. Frangi, J.-Y. Yang, D. Zhang, and Z. Jin, “KPCA plus
LDA: A complete kernel fisher discriminant framework for fea-
ture extraction and recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 2, pp. 230–244, Feb. 2005.

[33] L. Gao, Z. Guo, H. Zhang, X. Xu, and H. T. Shen, “Video caption-
ing with attention-based LSTM and semantic consistency,” IEEE
Trans. Multimedia, vol. 19, no. 9, pp. 2045–2055, Sep. 2017.

[34] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[35] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artif. Intell., vol. 97, no. 1, pp. 273–324, 1997.

[36] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, “Unsupervised feature
selection using nonnegative spectral analysis,” in Proc. AAAI Conf.
Artif. Intell., 2012, pp. 1026–1032.

[37] C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu, “Joint embedding learning
and sparse regression: A framework for unsupervised feature
selection,” IEEE Trans. Cybern., vol. 44, no. 6, pp. 793–804,
Jun. 2014.

[38] H. Liu and L. Yu, “Toward integrating feature selection algo-
rithms for classification and clustering,” IEEE Trans. Knowl. Data
Eng., vol. 17, no. 4, pp. 491–502, Apr. 2005.

[39] P. Smialowski, D. Frishman, and S. Kramer, “Pitfalls of supervised
feature selection,” Bioinf., vol. 26, no. 3, pp. 440–443, 2010.

[40] K. Benabdeslem and M. Hindawi, “Efficient semi-supervised
feature selection: Constraint, relevance, and redundancy,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 5, pp. 1131–1143,
May 2014.

[41] X. Kong and P. S. Yu, “Semi-supervised feature selection for
graph classification,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2010, pp. 793–802.

528 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 3, MARCH 2018

http://dx.doi.org/10.1109/TNNLS.2017.2673241
http://dx.doi.org/10.1109/TNNLS.2017.2673241
https://doi.org/10.1016/j.patcog.2017.03.021
https://doi.org/10.1016/j.patcog.2017.03.021


[42] Z. Xu, I. King, M. R.-T. Lyu, and R. Jin, “Discriminative semi-
supervised feature selection via manifold regularization,” IEEE
Trans. Neural Netw., vol. 21, no. 7, pp. 1033–1047, Jul. 2010.

[43] R. Sheikhpour,M.A. Sarram, S.Gharaghani, andM.A. Z.Chahooki,
“A survey on semi-supervised feature selection methods,” Pattern
Recognit., vol. 64, pp. 141–158, 2017.

[44] Q. Gu, Z. Li, and J. Han, “Joint feature selection and subspace
learning,” in Proc. Int. Joint Conf. Artif. Intell., vol. 22, no. 1, 2011,
Art. no. 1294.

[45] Z. Zhao, L. Wang, H. Liu, and J. Ye, “On similarity preserving
feature selection,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 3,
pp. 619–632, Mar. 2013.

[46] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[47] L. Chen and J. Z. Huang, “Sparse reduced-rank regression
for simultaneous dimension reduction and variable selection,”
J. Amer. Statistical Assoc., vol. 107, no. 500, pp. 1533–1545, 2012.

[48] R. H. Keshavan, A.Montanari, and S. Oh, “Matrix completion from
noisy entries,” J. Mach. Learn. Res., vol. 11, pp. 2057–2078, 2010.

[49] V. D. Silva and J. B. Tenenbaum, “Global versus local methods in
nonlinear dimensionality reduction,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2002, pp. 705–712.

[50] H. Wang, F. Nie, and H. Huang, “Globally and locally consistent
unsupervised projection,” in Proc. AAAI Conf. Artif. Intell., 2014,
pp. 1328–1333.

[51] J. Yang, D. Zhang, J.-Y. Yang, and B. Niu, “Globally maximizing,
locally minimizing: Unsupervised discriminant projection with
applications to face and palm biometrics,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 4, pp. 650–664, Apr. 2007.

[52] I. Daubechies, R. DeVore, M. Fornasier, and C. S. G€unt€urk,
“Iteratively reweighted least squares minimization for sparse
recovery,” Commun. Pure Appl. Math., vol. 63, no. 1, pp. 1–38, 2010.

[53] R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Ann. Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[54] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[55] D. Singh, et al., “Gene expression correlates of clinical prostate
cancer behavior,” Cancer Cell, vol. 1, no. 2, pp. 203–209, 2002.

Xiaofeng Zhu is a faculty member with Guangxi Normal University,
China. His current research interests include large-scale multimedia
retrieval, feature selection, sparse learning, data preprocess, and medi-
cal image analysis.

Shichao Zhang is a China 1000-Plan distinguished professor with the
Guangxi Normal University, China. His research interests include
data mining and partitioning. He is a senior member of the IEEE and
a member of the ACM.

Rongyao Hu is working toward the master’s degree at Guangxi Normal
University, China. His current research interests include data mining
and pattern recognition.

Yonghua Zhu is working toward the master’s degree at Guangxi Univer-
sity, China. His current research interests include data mining and
machine learning.

Jingkuan Song is a full professor with the University of Electronic
Science and Technology of China, Chengdu, China. His current
research interests include multimedia data analysis and image retrieval.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHU ET AL.: LOCAL AND GLOBAL STRUCTURE PRESERVATION FOR ROBUST UNSUPERVISED SPECTRAL FEATURE SELECTION 529



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


