
Learning Online Trends for Interactive
Query Auto-Completion

Yingfei Wang, Hua Ouyang,Member, IEEE, Hongbo Deng, and Yi Chang, Senior Member, IEEE

Abstract—Query auto-completion (QAC) is widely used by modern search engines to assist users by predicting their intended queries.

Most QAC approaches rely on deterministic batch learning algorithms trained from past query log data. However, query popularities

keep changing all the time and QAC operates in a real-time scenario where users interact with the search engine continually. So,

ideally, QAC must be timely and adaptive enough to reflect time-sensitive changes in an online fashion. Second, due to the vertical

position bias, a query suggestion with a higher rank tends to attract more clicks regardless of user’s original intention. Hence, in the

long run, it is important to place some lower ranked yet potentially more relevant queries to higher positions to collect more valuable

user feedbacks. In order to tackle these issues, we propose to formulate QAC as a ranked Multi-Armed Bandits (MAB) problem which

enjoys theoretical soundness. To utilize prior knowledge from query logs, we propose to use Bayesian inference and Thompson

Sampling to solve this MAB problem. Extensive experiments on large scale datasets show that our QAC algorithm has the capacity to

adaptively learn temporal trends, and outperforms existing QAC algorithms in ranking qualities.

Index Terms—Query auto-completion, multi-armed bandits, exploration v.s. exploitation, Thompson sampling, Bayesian learning model
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1 INTRODUCTION

QUERY auto-completion (QAC) is one of the most impor-
tant features in modern search engines. The main

objective of a QAC system is to reduce users’ efforts
required in submitting a text query. These efforts include
typing lengthy texts, correcting spelling mistakes and even
finding the most relevant query words. These benefits are
becoming increasingly prominent due to the prevalence of
mobile devices, since typing on smaller portable devices
using virtual keyboards takes more efforts than on PCs.
Nowadays QAC is widely adopted by web search engines,
news and e-commerce portals, social networks, major web
browsers and operating systems. It has also drawn a consid-
erable amount of interests in research, and existing work
has addressed this problem from various perspectives, e.g.,
leveraging contextual information to estimate users’ inten-
tions [1], using time-series models to predict popularities
based on long-term and short-term query logs [2], [3], [4],
personalization based on learning to rank [5], click models
of user behavior [6].

During a search session, QAC processes start as soon as a
user is ready to type the first character into the search input

box. Following each new character he or she entered or
deleted in the input box, QAC provides a list of completion
suggestions matching the current input (i.e., the prefix). The
usermight choose any item from the suggestion lists as a sub-
mission candidate, or totally ignore QAC’s suggestions and
submit his or her own query by typing thewholewords.

Ideally a user’s intended query should appear at the top
of QAC’s suggestion list. Hence the suggested query should
be generated by filtering and ranking according to the likeli-
hood of each candidate, given user’s search intent and the
prefix. Without considering the personalization issue, which
is not the focus of this paper, the most popular QAC
approach is to estimate this likelihood using the wisdom of
crowds, i.e., the popularity of submitted candidates calcu-
lated from query logs. This simple idea is also known as the
MostPopularCompletion (MPC) method. It is the basis of
many existing work [1], [2], [3], [5], [6], [7], [8], [9].

Most previous MPC approaches were proposed under
the batch learning framework, where the i.i.d. assumption
is made over the data distribution, and the prediction
hypothesis is obtained during the training phase while
remaining the same during testing. However, QAC operates
in a real-time scenario where users arrive and provide feed-
back on the displayed suggestion list continually. The most
natural and interactive way to solve this problem is learning
while doing in an online fashion. One obvious advantage of
online learning over batch learning is that online learning
has the ability to continually and instantly utilize each new
user feedback and make the model better progressively.
Most prior QAC work has not considered such an online
decision-making setting.

As observed previously [3], [4], [10], [11], MPC is most
effective for consistently popular queries such as “dictionary”
and “pizza hut”, but simple aggregation of the past cannot
provide plausible prediction of short-term and unpredictable
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events or time-sensitive queries. For example, Fig. 1 (Left)
shows the suggestion list of a major search engine when a
user types w. This screenshot was taken during the World
Cup 2014matches. Althoughwalmart is generally amore pop-
ular query than world cup, interests for world cup dramatically
surpass walmart every four years, as shown in Fig. 2. Ranking
world cup higher during these seasons will apparently
improve users’ experience. Another example is given in Fig. 1
(Right). This screenshot was taken on July 18, 2014, one day
after the tragic crash of the Malaysian Airlines Flight MH17.
The suggestion list of the QAC was not able to reflect this
breaking news timely.

The second major limitation of existing work is due to the
vertical position bias. According to the recent study [6], a
query suggestion ranked higher by QAC tends to attract
more user clicks regardless of its relevance to the prefix.
Therefore there are chances where some queries ranked
lower due to the lack of users’ feedback are actually more
relevant than those ranked higher by QAC. It is important
in the long run to place some lower ranked yet potentially
highly relevant queries to higher positions, such that more
user feedback can be collected. It is possible that this kind of
exploration degrades the performance in the short run,
since we are taking the risk of abandoning the (seemingly)
most relevant queries. This phenomenon is the fundamental
exploration-exploitation tradeoff in the setting of online
decision making under uncertainty. This setting requires
balancing reward maximization given current information
(exploitation) with trying new actions to obtain more
knowledge (exploration).

Exploration versus exploitation tradeoff is everywhere. In
real life, one might always want to try new restaurants
although he or she already has some favorite ones in mind;
In online advertisements, nomatter how relevant the current
ads are, it is always important to display different ones that
are potentially more relevant. Most off-line methods such as
MPC and its variants predict users’ intended query purely
based on past popularities. This is a “pure exploitation”
strategy that suffers from the danger of getting stuck in local
maxima. We need to acknowledge that the “optimal” com-
pletion under current estimation based on historical data is
not truly optimal since it ignores that the estimate-and-
optimize cycle will be repeated in the future. The conven-
tional approach does not put any emphasis on active learn-
ing and it has no intention on query experimentation in
order to learn the actual behavior of putting each possible
query in different ranks. Making what we think is currently
the best decisionmay not be the best given the uncertainty in
our environment, forcing us to recognize that we have to
learn tomake better decisions in the future.

To address the time-sensitive challenges and balance the
exploration-exploitation tradeoff in QAC, for the first time

we propose formulating QAC as an online decision making
problem, where the Multi-Armed Bandit (MAB) concept
[12], [13] applies naturally. MAB originates from slot
machine gambling. The objective of the gambler is to maxi-
mize the cumulative rewards over time. We treat the QAC
system as such a game, each keystroke as one try and each
query as one arm. The rewards come from users’ submis-
sions matching the words in the suggestion lists. At each
time step, rather than recommending only one query, QAC
provides a list of ranked suggestions. This ranked bandit
setting has been studied in the literature, from general algo-
rithmic analysis [14], [15], [16] to domain-specific applica-
tions such as document retrieval [17], [18] and news
recommendation [19]. However, the special problem struc-
tures in QAC have not been thoroughly explored by prior
work. For example, it is not clear how to properly encode
the prior knowledge aggregated from user interactions or
editor’s labels; existing work has problems in dealing with
the huge amount of suggestion candidates associated with a
prefix; how to leverage the performance of existing QAC
approaches largely remains an open problem.

Although there are very few literatures [14], [20] borrow
ideas from bandit community to solve the web document
retrieval problem, major differences between the QAC pro-
cess and the web document retrieval [6], as well as the
intrinsic limitations of previous methods prevent them
from yielding a good performance on QAC or even applica-
ble to QAC. As studied in [6], most recent click models of
web document retrieval are not applicable to QAC without
significant modification. Thus the click model based bandit
approach [20] is not suitable for QAC. The learning diverse
ranking methods [14] uses the information gathered too
locally and it does not incorporate any prior knowledge/
past popularity about the data. It needs a huge amount of
time learning in order to get a fairly well performance even
with only a pool of 50 documents in their experiments.
Without significant modification, it is not promising for
QAC tasks with millions of queries.

In order to tackle these issues, we propose a novel ranked
bandits algorithm for QAC, and employ the Bayesian Thomp-
son sampling as an MAB policy. Extensive experiments on
large scale datasets show that with modest exploration, our
proposed approaches are able to learn the online trending
queries dynamically, and significantly outperform existing
QAC algorithms in ranking qualities in the long run.

Our main contributions of this work can be summarized
as follows:

� We are the first to propose formulating the QAC pro-
cess as an online decision making problem based on

Fig. 1. Suggestion lists of a major search engine. Left: Prefix w, screen-
shot taken on July 12, 2014. Right: Prefix m, screenshot taken on July
18, 2014.

Fig. 2. Daily frequencies for world cup and walmart from May 2006 to
June 2014 according to Google Trends.
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multi-armed bandits which interact with users in
real-time. As a consequence, our MAB model can
quickly capture the searching trend while other algo-
rithms based on batch learning suffer from delays in
the prediction. In the meantime, the MAB formula-
tion explicitly addresses query experimentation by
managing the dilemma that in order to learn the
CTR of a query, it needs to be displayed, leading to a
potential loss of short-term performance.

� Prior knowledge from past statistics is essential for
the relevance of each query. In this paper, we pro-
pose a Bayesian framework to fully utilize the prior
knowledge derived from previous query logs. We
propose to use Thompson Sampling and show that it
outperforms other non-Bayesian bandit algorithms.

� We introduce a general framework where one can
leverage the performance of any existing ranking
model with our proposed bandit models. It learns
the users’ changing interests and balances exploita-
tion versus exploration while retaining all the favor-
ite features of the existing ranking model.

While in our work, the filtering of candidates is based on
exact prefix matching via hash tables for efficient lookup, it
is easily combined with any work on predictive auto-
completion, e.g., fuzzy matching [21], [22], to expand the
list of possible candidates that are eligible for our MAB
model. Our work can be also combined with the hybrid
framework [1] to improve the ranking of candidates with or
without context.

2 RELATED WORK

The novelty of our proposed QAC algorithm is inspired by
the progresses in both QAC and the bandit community. In
this sectionwe briefly survey some of themost relatedwork.

2.1 Query Auto-Completion

The main objective of QAC is to predict users’ intention and
assist them formulate a querywhile typing. Themost popular
QAC algorithm is to suggest completions according to their
past popularity: a frequency score is assigned to each query
based on the query log from which the query database was
built. This simple QAC algorithm is calledMostPopularCom-
pletion, which can be regarded as an approximate maximum
likelihood estimator [1].

Several QAC methods [1], [3], [4], [5], [6] were proposed
to extend MPC from various aspects. Bar-Yossef and
Kraus [1] introduced the context-sensitive QAC method by
treating the user’s recent queries as context and taking into
account the similarity of QAC candidates with this context
for ranking. Shokouhi [5] employed learning-based strategy
to incorporate several global and personal features into the
QAC model. Recently, Li et al. [6] created a two-dimen-
sional click model to combine users’ behaviors with the
existing learning-based QAC model. However, these mod-
els focus on improving relevance ranking, while ignoring
the trends and recency of the query log.

To address the time-sensitive problem, Shokouhi and
Radinsky [3] proposed an improved MPC, where past fre-
quencies are replaced with frequencies predicted by recur-
sive time series models. Another extension of MPC was

proposed by Whiting and Jose [4]. The authors aggregate
previous N queries for a prefix (called LNQ), and use linear
regression to predict future LNQs based on previous ones.
Although these two methods focused on the time-sensitive
aspect, their proposed algorithms are not adaptive enough
to reflect time-sensitive changes in an online decision-
reward fashion.

Our proposed ranked MAB algorithm directly addresses
the exploration versus exploitation dilemma. Moreover, as
discussed in Section 4.4, domain knowledge explored in the
above work can be further leveraged by our proposed
method.

2.2 Multi-Armed Bandits

The bandit problem [13] was originally studied under
Bayesian assumptions [23]. The major categories include
stochastic bandits and adversarial bandits. Many policies
were proposed with provable regret bounds. For example,
upper confidence bounding policies (UCB) [12], [24], [25],
Thompson Sampling [26], [27], [28], and EXP3 [29]. The clas-
sic MAB setting was extended to contextual bandits where
in each round the learner is provided with a context and the
reward depends on both the context and the chosen arm.
Different assumptions have been made on how the context
and rewards are related [30], [31], [32], [33]. Various papers
enriched the basic MAB setting to deal with large number
of arms. [34] introduce Lipschitz MAB under the assump-
tion that the arms form a metric space and the rewards sat-
isfy the Lipschitz condition. Other work on Lipschitz MAB
includes [35], [36], [37].

Even though the above mentioned methods cover a wide
range of mathematical models, the decision of all methods
at each time step is a single arm. Without significantly mod-
ifications, these bandits formulations can not be directly
applied to QAC ranking.

Online learning-to-rank for web document retrieval has
been formulated as bandit problems. Uchiya et al. [38] and
Kale et al. [39] considered the problem of bandits with
multi-plays. Finding better ranking by exploration has been
considered in [15], [16], [17], [40], but their settings are dif-
ferent from ours. The results in [40] are obtained based on
simulated user clicks rather than real ones. The dueling ban-
dit and �-Greedy based approaches [15], [16], [17] require a
special functionality of the retrieval system to interleave
two different ranking results. While �-Greedy is a simple
exploration strategy in IR, more effective algorithms have
been developed in [13]. These work assumes that user can
pull more than one arms in each round, which is not the
case in QAC. Sloan and Wang propose a UCB-based bandit
algorithm for multi-period information retrieval using click
models [20]. Although click model has been fully studied
for information retrieval, it remains immature for QAC.

Particularly relevant to our work is the ranked bandit for-
mulation introduced in [14]. Independently, a more general
sub-modular function maximization setting is studied in
[41]. A key feature of ranked bandit is that the click through
rate of each document depends on both its relevance and
the document shown above. A user considers the results in
order and clicks on up to one document. Ranked bandits
start with no prior knowledge about the arms and might
need to explore for a long time. These policies might work
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for problems of 50 documents, but they are not practical for
QAC, where millions of queries are presented. In order to
deal with the large collection of documents, Slivkins et al.
[42] extends the ranked bandits to contextual settings, under
the assumption that the rewards satisfy the Lipschitz condi-
tion. Several other contextual bandit solutions have been
developed for IR [18], [43]. In these works, rich context is
shown to be very useful for learning to rank applications.
However, the lack of query features in QAC makes it diffi-
cult to utilize the contextual information. Hence in this arti-
cle we will focus on the context-free setting.

While it is clear that multi-armed bandit formulation has
been considered in several areas in web search, to the best
of our knowledge, this is the first time that exploration ver-
sus exploitation has been addressed in QAC ranking and a
ranked bandit formulation has been proposed for QAC.

3 PROBLEM FORMULATION

In this section we first present the standard multi-armed
bandit setting. Then we show how the problem of learning
an optimal QAC ranking can be formulated as an MAB
online learning process.

3.1 Multi-Armed Bandit Setting

Multi-armed bandit is a sequential decision making setting
defined over a set of K actions. At each time step t, the
learner chooses an action It and observes some payoff Xt;It

from the environment, where Xt;i denotes the reward
obtained on pulling arm i on trial t. In stochastic MAB, there
is an unknown probability distribution for each action i and
the reward Xt;i for each action i is assumed to be drawn
i.i.d. In adversarial bandits, no assumption is made about
the reward sequence. The chosen action It in general
depends on previous selections and observations
X1;I1 ; . . .Xt�1;It�1 . The goal is to maximize the commutative
payoff obtained in a sequence of T allocations over time, or
equivalently minimizing the regret of an algorithm in expec-
tation over the draw of the rewards

RT � max
i¼1;...;K

E

"XT
t¼1

Xt;i �
XT
t¼1

Xt;It

#
; (1)

wheremaxi¼1;...;KE
�PT

t¼1 Xt;i

�
is the best value we can get if

we know the underlying probability distribution.

MAB is an instance of sequential decision making prob-
lems with partial feedback. It addresses the fundamental
trade-off between exploration and exploitation. The learner
must balance the exploitation of actions that performed well
in the past and the exploration of less played actions that
could potentially yield higher payoffs in the future.

3.2 Ranked Bandits for QAC

We use t to index successive users. In Query Auto Comple-
tion, a user ut types in each keystroke. The time point right
after the jth keystroke of the user ut is denoted by ðt; jÞ. The
first j characters are called a prefix P. At time ðt; jÞ, relevant
candidates obtained by exact prefix matching construct the
possible action set At;j � A, where A is the pool of all the
submitted queries in the past and can be grown by adding

unseen words. In this work, the list of candidates At;j con-
sists of all previous queries that start with prefix P. Yet it
can work with any advanced string completion techniques,
for example, mid-string completions or fuzzy matching.
QAC then presents a ranked suggestion list of m queries
Qt;j ¼

�
q1ðt; jÞ; . . . ; qmðt; jÞ

�
with each query qiðt; jÞ comes

from the query candidate set, i.e., qiðt; jÞ 2 At;j. The user
will consider the suggestions in sequence and click up to
one query. We assume that there is an unknown click-
through rate mt;i;k 2 ½0; 1� of any possible query ai 2 A dis-
played on the kth rank for the tth user ut (conditional on the
user ut not clicking on a query displayed higher in the sug-
gestion list). We do not require mt;i;k remain static over time.
For each of the user’s keystroke j, QAC gets a reward if ut’s
final submission appears in the suggestion list at time ðt; jÞ.

A distinctive feature of our model is that At;j is time and
prefix varying, while most existing MAB algorithms assume
a fixed At;j ¼ A. Comparing with existing bandit work for
web search [14], [20], our proposed method can directly
model the CTR for each query-position pair, and gives us
more flexibility to adopt most advanced bandit algorithms,
to utilize prior knowledge and to incorporate existing QAC
algorithms.

4 PROPOSED APPROACHES

In this section, we propose online MAB algorithms for
QAC Ranked Bandits. To exploit prior knowledge from
query logs, we employ a Bayesian model, and address the
problem of prior distribution construction. We introduce a
general framework to combine bandit algorithms with
existing QAC ranking algorithms to further leverage their
performance. Within this framework, one can easily learn
users’ changing preferences and reduce position bias
while maintaining any favorable features of existing rank-
ing models.

4.1 Multi-Armed Bandit Algorithms

We first present two classic MAB algorithms: Upper Confi-
dence Bound policies (UCB) [12], [24], [25] and Thompson
Sampling [26], [28]. These two algorithms enjoy provable
regret bounds and good empirical performances [44]. They
will be used as plugins in our proposed ranked bandit
algorithm.

UCB1 [12]. At each time t, action It is selected according
to the following policy:

It 2 arg max
i¼1;...;K

m̂Tiðt�1Þ;i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log t

Tiðt� 1Þ

s
;

where Tiðt� 1Þ is the number of times arm i has been
played before time t, m̂Tiðt�1Þ;i is the sample mean. The quan-
tity m̂Tiðt�1Þ;i is initialized by measuring each alternative
once.

Thompson Sampling [26]. This is a Bayesian algorithm
which begins with a prior belief p1;i on the parameters of
the reward distribution of each arm. At each time t the algo-
rithm plays the arm that is the best among the samples from
the posterior distribution: It 2 argmaxiut;i with ut;i � pt;i.
After obtaining the payoff, it updates the posterior distribu-
tion pt;i by Bayes rule.
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4.2 Exploitative Ranked Bandits Algorithm (ERBA)
for QAC

Motivated by the Ranked Bandits Algorithm (RBA) devel-
oped for web document retrieval [14], we propose a general
algorithm named Exploitative Ranked Bandits Algorithm for
QAC. In contrast to RBA, our ERBA makes an intuitive
improvement on how to select a query at a lower rank if the
query recommended by the corresponding MAB has
already been displayed higher.

ERBA runs an instance of MABk for each rank k of the
ranked suggestion list. When a user ut arrives at time t, after
each keystroke j, the algorithm obtains a possible action set
At;j by StringMatching (this sub-algorithm is not the focus of
this paper). Then it uses MAB1 to select a query within At;j

and place this candidate in the suggestion list with rank 1.
Next, it uses MAB2 and suggests a query in At;j to display at
rank 2. If the recommended query has already been selected
at rank 1, the second query is selected as the next best arm
excluding the selected arms according to some criteria (e.g.,
index or distribution) of the particularMAB algorithm.

After a ranked suggestion list of lengthm is generated by
QAC, the user might click on up to one of the queries, or
type in a subsequent character, either because the current
suggestion list does not contain any relevant queries, or
because of the skipping behavior [6] regardless of the rele-
vance of the queries. If the user types in a new character,
ERBA will repeat the above steps to provide another ranked
list of m queries. This process terminates when the user
click on any query in the suggestion list or submit a query
using the search button. Then the values for each MAB
instance at each prefix length will be updated according to
the following updating rule. For each previous prefix l, if
the final submission appears in the kth position of sugges-
tion list and the query is actually recommended by the cor-
responding MABk, the reward for the MAB instance is
rkðt; lÞ ¼ 1; The reward is 0 for all other recommended
arms. Pseudo-code of ERBA is shown in Algorithm 1.

The name Exploitative in ERBA comes from the conflicting
strategy we imposed. ERBA chooses the next best arm upon
conflicts, while RBA [14] chooses an arbitrary arm which is a
pure exploration approach. The exploration approach could
work well in the experimental setting of [14], where a total
amount of 50 documents and one fixed query were used.
However in QAC, the number of queries matching a short
prefix is gigantic, with thousands of queries clicked for very
few times and not relevant in general. In practice, a pure
exploration approach will almost always degenerate QAC’s
performance, as we observe in Section 5.

The proposed ERBA is an exploitative counterpart of
RBA [14]. In the following theorem we show that ERBA
enjoys the same theoretical guarantee of RBA, that is, the
bandit algorithm satisfies a sub-linear regret bound RT ,
under the next set of assumptions similar to RBA:

(1) The bandit instances for each prefix length are inde-
pendent, meaning that there is no information shar-
ing across different prefix lengths.

(2) The query sets associated with any prefixes are fixed
over time.

(3) The bandit instance specified in ERBA satisfies a sub-
linear regret bound RT ¼ oðT Þ:

Algorithm 1. Exploitative Ranked Bandits Algorithm

input number of positionsm
for t ¼ 1 to T do

j 1
while not submit do

At;j StringMatching(prefix)
Arest At;j

for k ¼ 1 tom do
q̂kðt; jÞ  Recommand(MABk(At;j))
if q̂kðt; jÞ 2 fq1ðt; jÞ; . . . ; qi�1ðt; jÞg then

qkðt; jÞ  Recommand(MABk(Arest))
else

qkðt; jÞ  q̂kðt; jÞ
end
Arest Arest n qkðt; jÞ

end
display ranked queries fq1ðt; jÞ; . . . ; qmðt; jÞg
j jþ 1

end
for l ¼ 1 to j� 1 do

for k ¼ 1 tomdo
if submitted qkðt; lÞ & qkðt; lÞ ¼ q̂kðt; lÞ then

rkðt; lÞ ¼ 1
else

rkðt; lÞ ¼ 0
end
Update(MABk, arm = q̂kðt; lÞ,reward ¼ rkðt; lÞ)

end
end

end

Theorem 1. Suppose at each time step, a completion suggestion
list of lengthm is provided. After T rounds,

1� 1

e

� �
E
h
# clicks of the optimal static ranking

i
� E

h
# clicks of ERBA

i
þmRT ;

where the expectation is taken over the randomness of ERBA
and the randomness of the users’ behavior.

By Assumption 1 and the fact that the matching query
sets are independent across different prefixes with the same
length, we can analyze each prefix independently. From
now on, we assume that the upcoming users ut are querying
upon the same prefix. Following the derivation in [14], we
first consider deterministic users where each user ut has a
fixed relevant set Ut. The generalization to a standard user
ut ¼ ðmt;i;kÞ is achieved by analyzing on each sampled deter-
ministic user ût and taking expectations thereafter.

For any set U and an ordered list Q ¼ ðq1; q2; . . . ; qmÞ, let Gk

ðU;QÞ ¼ 1 if U intersects fq1; . . . ; qkg and 0 otherwise. Define

gkðU;QÞ ¼ GkðU;QÞ �Gk�1ðU;QÞ; k ¼ 1; 2; . . . ;m:

Let

Q	 ¼ argmax
Q

XT
t¼1

GmðUt;QÞ;

OPT ¼
XT
t¼1

GmðUt;Q
	Þ:

2446 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017



Lemma 1. For all k ¼ 1; 2; . . . ;m, let Qt be the suggestion list at
time t,

E

�XT
t¼1

gkðUt;QtÞ
�

 1

m
OPT� 1

m
E

�XT
t¼1

Gk�1ðUt;QtÞ
�
�RT :

Proof. Compared to RBA, when dealing with conflict,
rather than selecting an unchosen query uniformly at ran-
dom, ERBA selects next best arm excluding the selected
arms according to some criteria (e.g., index or distribu-
tion) of the particular MAB algorithm.

Yet this modification does not affect the sequence of
queries ðq̂1ðt; Þ . . . ; q̂mðtÞÞ recommended by the algo-
rithms MAB1,..., MABm at time t. At the same time, this
modification does not affect the reward provided for
each MABk since MABk only gets a reward of 1 if user
submits qkðtÞ and qkðtÞ ¼ q̂kðtÞ. Thus, the proof follows
the original derivation in [14].

The first step is to show gkðUt;QtÞ 
 fktðq̂kðtÞÞ, where

fktðqÞ ¼
1 if Gk�1ðUt;QtÞ ¼ 0 and q 2 Ut;

0 otherwise.

	

fktðq̂kðtÞÞ ¼ 1 implies Gk�1ðUt;QtÞ ¼ 0 and q̂kðtÞ 2 Ut. By
construction of ERBA, we have qkðtÞ ¼ q̂kðtÞ, leading to
gkðUt;QtÞ ¼ 1:

By Assumption 3 (regret bound for MAB), we have

XT
t¼1

E½fktðq̂kðtÞÞ� 
 1

m
E

X
q2Q	

XT
t¼1

fktðqÞ
" #

�RT :

The last step is to prove thatX
q2Q	

fktðqÞ 
 GmðUt;Q
	Þ �Gk�1ðUt;QtÞ:

It is trivially true when the right side takes values in
{-1,0}. For the case where GmðUt;Q

	Þ ¼ 1 and Gk�1ðUt;QtÞ ¼
0, there exists one q 2 Q	 \ Ut such that fktðqÞ ¼ 1. tu
Lemma 1 can be viewed as m constraints for the classic

linear program encountered when bounding a greedy pol-
icy. Theorem 1 is thus readily obtained by either Lemma 4.1
of [45] or the argument in [14].

4.3 Using Thompson Sampling in ERBA

4.3.1 Motivation: Prior Knowledge

Existing work on ranked bandits [14], [20], [39] are all based
on UCB and EXP3 policies. These algorithms start with no
prior knowledge about the arms and need to explore for a
long time. Lacking of prior information makes these algo-
rithms perform poorly for QAC, since they need to put
every arm in every rank for a reasonable amount of time,
such that users’ feedback can be gathered. These policies
might work for toy problems of 50 documents, but they are
not practical for QAC, where millions of queries are pre-
sented. The size of the candidate pool for a prefix is huge,
where a large amount of queries were submitted with typos.
In general these queries are less relevant to users. Including
these queries for exploration will definitely lead to bad
search experiences. In practice, no web search engine can
ignore the prior information aggregated from past query

logs. Based on these observations, we propose to adopt a
Bayesian framework for our QAC tasks. We choose Thomp-
son Sampling as our MAB algorithm, since this simple and
classic Bayesian method was shown to have very good
empirical performance [44].

4.3.2 Bayesian Learning Model

The Beta-Bernoulli distribution is good atmodeling the prob-
ability of user ut clicking a query ai displayed on the kth rank
mt;i;k. Under the Bayesian setting, each observation of
whether a user clicks a suggested query or not can be mod-
eled as a Bernoulli random variable. It is 1 (success) with
probabilitymt;i;k and 0 (failure) with probability 1� mt;i;k.

It is standard to model the mean mt;i;k using a Beta distri-
bution with parameters ai;k and bi;k which are always inte-
ger and might be changing over time [44], [46], [47], [48].
Recall that the beta density is given by

fðxja;bÞ ¼
GðaþbÞ
GðaÞGðbÞx

a�1ð1� xÞb�1 if 0 < x < 1

0 otherwise:

(

Starting from a prior estimate a0;i;k and b0;i;k, after each Ber-
noulli trial, due to the conjugacy property, the parameters
are updated according to following equations:

atþ1;i;k ¼ at;i;k þ rk (2)

btþ1;i;k ¼ bt;i;k þ


1� rk

�
: (3)

Parameter at is roughly the number of clicks in t observa-
tions, and bt is roughly the number of non-clicks upon a sug-
gestion. Consequently, at

atþbt estimates the click-through-rate
(CTR) for each query at a rank position, and at;i;k þ bt;i;k is
roughly the number of times query i is shown at rank k up to
time t. The prior is constructed as follows: given a query log
of length t, (at;i;k;bt;i;k) are set to the number of clicks and
non-clicks for each query i at each rank k. They will be set to
ð1; 1Þ if the corresponding query never appeared in that
rank, which mounts to the uniform distribution on ½0; 1�.
Since only two numbers are needed to represent the poste-
rior, it is memory efficient in practice. Section 5.2 will include
more details.

4.3.3 Thompson Sampling Based ERBA

Inserting Thompson Sampling into the general ERBA
framework proposed in Algorithm 1, we obtain a concrete
algorithm TS-ERBA, where prior is an additional input. For
each prefix, each rank k and each query ai 2 At;j, we sample
ut;i;k from the Beta(at;i;k;bt;i;k) distribution. Only one sample
is obtained, which takes O(1) time and is efficient in prac-
tice. The recommended query will be q̂iðtÞ 2 argmaxiut;i;k.
After user’s submission, the algorithm will update its
parameters according to Eqs. (2) and (3).

In the follows we explain the intuition why TS-ERBA can
adaptively adjust QAC’s suggestion list according to tempo-
ral changes and balance the exploration/exploitation trade-
off automatically.

Thompson Sampling relies on random sampling to balance
exploration and exploitation. For breaking news that has
never appeared in the history, the prior is ð1; 1Þ whose sam-
pling distribution is the uniform distribution (equivalently
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Beta(1,1)). This exploration behavior gives new queries a good
chance to be selected. For queries that have been clicked previ-
ously, a

aþb approximates the probability of being clicked. If this
ratio becomes larger, the peak of the pdf will move towards
the right, yielding a higher probability of a larger sampled
value. Thus recent clicks of a suggested query will increase
the probability of being displayed later, while recent non-
clicks (may be due to users’ decreasing interests)will decrease
this probability.

In the same time, a and b can be viewed as a measure of
our confidence in estimation. With the same ratio of a=b,
larger values of a and b mean that we are very confident in
our current estimation and thus the distribution is more
centered around its expected value. Smaller values of a and
b mean that we do not have much knowledge of this query.
A wider bandwidth offers a higher chance of sampling a
larger value and thus gives less displayed queries an oppor-
tunity to gather feedback from users. Moreover, the estima-
tion of a query with large a and b is not likely to be changed
a lot, while that with small a and b tends to be changed after
only a few observations. This implies that consistent popu-
lar queries from past query logs will still remain popular,
while those queries with potentially higher relevance will
have a chance to prove themselves.

Thompson Sampling might recommend the same query
for several rank positions, since the queries could be really
competitive. However, our TS-ERBA can make sure that the
the recommended query is displayed at the highest rank.
According to the updating rule of TS-ERBA, if a user clicked
this query, the highest rank will get reward 1, otherwise 0,
while the lower ranks will always get 0. This will decrease
the probability of recommending this arm at lower ranks, or
equivalently increasing the probability of other queries
being recommended at lower ranks.

A desirable property of any ranking strategy is to gradu-
ally boost the rank of a recent popular query according to
the MRRmetric. TS-ERBA achieves this property by punish-
ing a non-clicked higher ranked query. In order to boosting
this effect, we assume that due to position bias, if a query is
clicked at rank k, it will also be clicked if it is displayed at
higher ranks. Thus the positive feedback gathered at some
position can be propagated to other positions. Specifically,
if user submits a query on the kth rank, aside from the
update of the kth rank’s statistics, we also give a positive
reward to any higher ranks j < k by updating their atþ1;i;j
to atþ1;i;j ¼ at;i;j þ 1. We do not propagate the reward if it is
zero. The resulting algorithm is named Boosted Thompson
Sampling based ERBA (Boosted-TS-ERBA).

4.4 Leveraging Existing QAC Methods

Previous studies addressed the QAC problem from various
perspectives, e.g., ranking based on static scores [1], [21],
developing click models [6], combining personalized fea-
tures [5] and using time-series models [3], [4]. Although our
approaches are developed under a different setting (online
decision making), previous progresses are definitely not
ruled out. A better strategy is to incorporate existing rank-
ing algorithms into our framework to further increase the
performance. We propose a very simple method for this
purpose: at each time t, an existing QAC method provides
their top-n queries matching the current prefix of length j.

This set is then used as the action set At;j in our proposed
ERBA and TS-ERBA. Here n can be treated as a tunable
parameter that controls the exploration rate performed by
ERBA since larger value leads to more seemingly less rele-
vant queries to be considered.

Our method can be then regarded as a re-ranking mecha-
nism. If an existing QAC algorithm A can achieve a better
prediction than another algorithm B, the top-n queries
returned by algorithm A will be more relevant to the user’s
intent. If we combine our methods with algorithm A, our
methods are then based on a better base action set to per-
form real-time interaction with users.

5 EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to vali-
date the claims of our proposed algorithms using Yahoo
Search’s query log data.

5.1 Experiment Settings

Real-Time QAC Simulation. As QAC operates in a real-time
scenario, and our model works in a online learning fashion,
we simulate the real-time user search behavior based on the
query log. The QAC processes start when a user types a first
character into the search box and following each new char-
acter entered in the search engine, QAC provides sugges-
tions matching the current prefix. Accordingly, the query
log datasets are ordered and tested chronologically.

We use Yahoo Search’s June and July 2014 QAC log data
for evaluation. Two types of experiments are carried out.
The first one assumes that a user would have selected their
submission if it had been displayed to them. The second
one does not make such assumption and considers the skip-
ping user behavior. Specifically, for type-one experiments,
given a submitted query e.g., ‘abc’, we run each algorithm
for all prefixes ‘a’, ‘ab’, and ‘abc’. Experiments for each pre-
fix length were run independently as suggested in [3].
Type-two experiments assume that a user will submit the
query after a fixed prefix length regardless of whether the
query has been presented before or not.

Metrics.Mean Reciprocal Rank (MRR) is used as the main
measurement metric in the QAC literature [1], [5]. Recipro-
cal rank of a query response is the inverse of the displayed
rank. If there is no matching result for the query, the inverse
is set to zero. Mean reciprocal rank is the average of the
reciprocal ranks of all the queries encountered during some
time horizon. We also report Click-Through-Rate and
Clicked-MRR where only the final submitted queries are
taken into account in calculation.

Baselines. The most common approach is to use the aggre-
gated frequency of a query over past search logs as an
approximation for its future. It then uses the aggregated val-
ues for ranking QAC suggestions. It is referred to asMostPo-
pularCompletion and has been reported to be very
competitive and widely used in the industry [1], [5]. It ranks
the queries according to

arg max
q2AðPÞ

wðqÞ; wðqÞ ¼ fðqÞP
q0 fðq0Þ

;

where fðqÞ denotes the number of times the query q occurs
in the precious search log. However, the query popularity
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may change over time and thus we also consider refreshing
the query statistic to account for recent changes. But it is not
clear how often the refreshness can best approximate the
future popularity. In our comparisons, we investigate the
affect of different refreshing scheme to the MPC algorithm.
In the experimental results, we use subscripts to indicate
the refreshing frequency (in hours) of MPC. For example,
MPC24 stands for the most popular clicks in the past 24
hours. MPC without subscript is used to indicate the popu-
larity in May 2014 without refreshing.

We also compare with time-sensitive auto-completion
which replaces the aggregated query frequencies with fore-
casted values competed by time-series modeling of query
history [2], [3]. It can be viewed as the context-sensitive
QAC ranking [1] by treating time as context. Since the time
span of the data used in our experiments do not include sea-
sonality, we use double exponential smoothing in our com-
parison to cover for the trends. The initial value of �y1 is set
to y1 and F1 ¼ y2 � y1.

We also consider UCB1-based RBA [14] as a baseline.
UCB-type policies are preferable for problems with large
time horizon relative to the action space. They will actually
behave like a pure exploration strategy when the time hori-
zon is not large enough compared to the action space. How-
ever, in QAC tasks, the number of queries associated with
each prefix is huge, and the number of times that each query
could be displayed in the suggestion list is small. In order to
improve the performance of UCB1-RBA, we impose a simi-
lar strategy as we proposed in Section 4.4: the top n sugges-
tions of MPC is provided to UCB1-RBA as its action set.
Here n is a tuning parameter.

5.2 Prior Construction

To obtain reliable prior information for beta distribution
parameters a and b, we collected a high-resolution QAC
query log from May 2014. This log records every keystroke
alongwith the associated suggestion lists (top-10) returned by
Yahoo Search. Users may type multiple keystrokes before
they submit the final query. We denote the suggestion list
associated with each keystroke as a single view of a QAC ses-
sion. A QAC session may consists of multiple views starting
from the first keystroke to the final view of a submitted query.
Generally, there is a single clicked query corresponding to a
QAC session. For every view, if the suggestion i at rank k
equals to the final clicked query, we say that suggestion i is
clicked at rank k; otherwise, it is not-clicked at rank k. With
this QAC log, we count the number of clicks a0;i;k and the
number of observations a0;i;k þ b0;i;k for every suggestion i at
rank k, and our prior information is obtained.

Counting from past data is definitely not the only way to
construct priors. Other approaches could be incorporating
knowledge from domain experts or using annotations from
human editors. These information might be qualitative in
nature and are not easily utilized by frequentist approaches
(such as UCBs). Prior construction and the impact of any
inconsistencies in the prior distribution are common prob-
lems inherent in any Bayesian approaches [49]. However, a
study on this topic is beyond the scope of this paper.

Similar to the idea of refreshing frequency in MPC or the
choice of unit intervals in TimeSeries, our model can also be
combined with frequent updates of query statistics to

construct the prior distributions. In fact, without refreshing
the prior distributions, after each view, either a or b will be
increase by 1. As time goes by, high values of a and b indicate
a high confident in our estimate, hence this estimation is not
likely to be changed significantly to account for popularity
changes. As a consequence, we propose to reconstruct the
prior distribution after each time unit (e.g., day, or month) by
aggregating actual values of the data within the last time unit.
A longer time unit provides less biased estimation while it is
harder to timely follow the temporary trend.

5.3 Learning Temporal Trends

In this section, we demonstrate how our proposed algo-
rithm is able to learning the online trends adaptively. In
real-world query logs, users’ interaction behaviors are com-
plex, and it is hard to see how the algorithms react to users’
feedback instantaneously. Hence we first construct a toy
example in order to illustrate the interaction between our
proposed algorithm and users’ time-varying interests.

5.3.1 Toy Example

We use the world cup example mentioned in Section 1 to
illustrate the sharp increase of users’ interests. We mimic
users’ behavior by assuming that there are 6,000 successive
search sessions for world cup, followed by 12,000 successive
search sessions for walmart. MPC’s top 4 suggestions for
prefix w is {walmart, white pages, weather, wells fargo}, with
world cup ranked 22.

Fig. 3 illustrates the changing ranks of the four queries
walmart, weather, wells fargo and world cup. These ranks are
generated by our proposed Boosted-TS-ERBA. We can see
that world cup appears for the first time after only 785 steps.
Its rank is boosted to top 1 after 5,291 steps and stay on the
top of the list after 5,676 steps. When the temporal interests
of world cup diminish, its rank also falls gradually over time.
This validates our intuition explained in Section 4.3.3.

5.3.2 Learning Temporal Tends for w

We perform a series of experiments to test our approaches
with the log data collected on 20140613. This date is within

Fig. 3. Changing ranks of the four queries walmart, weather, wells fargo,
and world cup experimented with a prefix length of 1.
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the events of World Cup 2014. We report QAC performan-
ces for 655,132 QAC sessions that begin with the letter w.
All algorithms generate a suggestion list of length 10.

Since we adopt an exact string match when providing
possible action set for each prefix, the updating of our
Bayesian model and the suggestion list are independent
across different initial letters, and thus provide the ability of
paralleling chronologically testing records with different
initial characters on large datasets.

We use subscripts to indicate the refreshing frequency (in
hours) of MPC, TimeSeries and Boosted-TS. For a fair com-
parison, we use the same time unit (4 hour) on this dataset
for different algorithms. TimeSeries uses smoothing scheme
to account for historical data, so the choice of the time unit
does not dramatically damage its performance other than
possible delays in the prediction. As for our Boosted-TS, the
balance between exploitation and exploration achieved by
Thompson sampling can largely offset the potential bias
introduced by different choices of time units. Yet it is not
clear how often the logs need to be updated to best predict
the future popularity in MPC. So in this section, we experi-
ment with an additional instance of MPC with an 8-hour
refresh rate.

Table 1 reports the CTR and MRR of different algorithms
on w-initiated records experimented with a prefix length 1.
The reported percentages are relative to the MPC (without
refreshing frequencies) baseline. With a prefix w, world cup
does not appear in the top-10 suggestions of MPC.

Since the number of queries associated with each prefix is
huge, the number of times that each query could be pro-
vided in the suggestion list is small. Thus all bandit algo-
rithms need a quite long time to learn the landscape before
they reach a good performance, resulting in a short term
performance degeneration. Only a few queries have been
clicked for significant amount of times, and most others are
not relevant. In order to obtain a good performance in both
short and long term run, we used the methods proposed in
Section 4.4 and feed Boosted-TS-ERBA’s action set with a
list of n queries generated by MPC. We experiment with
n ¼ 15; 20; 25; 30; 35; 50 for UCB1-RBA and Boosted-TS.
Table 1 reports the best values we achieved.

Without utilizing past information, UCB1-RBA experien-
ces a huge performance decrease in this one-day period.
This is due to excessive exploration required by RBA’s con-
flicting strategy. Its performance could be better after a long
waiting of exploration. However, a bad CTR/MRR for sev-
eral weeks or even months is not acceptable in practice.

After combining with MPC’s top-15 suggestions, UCB1-
RBA’s performance gets slightly better. With a properly
constructed prior, Boosted-TS significantly outperforms
both MPC and UCB1-RBA in terms of CTR, showing the
power of a proper exploration-exploitation tradeoff. The
increment of MRR, compared to that of CTR, is relatively
smaller. One possible explanation is that when achieving
the overall goal of optimal ranking, ranked bandit algo-
rithms are exploring potential queries at different ranks to
allow training data about these queries to be collected.

MPC4 and MPC8 achieve better perform than MPC due
to their recency of the query log to reflect the trend. Time-
Series4 has a similar performance on this dataset. Even
though Boosted-TS4 with prior reconstruction yields a
higher CTR than that of MPC4, MPC8 and TimeSeries4, the
price to pay for exploration is a smaller increase in the MRR.

Compared to methods with frequent refresh that are
based on more recent estimations of the queries, more data
provides less biased estimation. For example, even though
the trending words are not ranked as the highest in
Boosted-TS without refreshing, the suggestion list contains
other popular words such as walmart. While for the meth-
ods with frequent refresh, the suggestion lists are more
biased towards the trending words. This explains the fact
that Boosted-TS achieves the highest CTR, but a relative
low MRR.

The same sets of experiments are conducted for a prefix
length of 2 and reported relative performances in Table 2.
n ¼ 15 yields the best performance for UCB1-RBA. Perfor-
mance of different choices of n for Boosted-TS-ERBA is pro-
vided to demonstrate the effects of n. We can observe that
that no matter which n we chose, the performance of
Boosted-TS-ERBA is consistently better than previous meth-
ods without refreshing frequencies. Larger n implies more
exploration and less bias since more queries are considered.
If actual relevant queries lie in between the MPC ranking of
a smaller n and a larger n, a larger n provides a chance to
discover the truth. Of course price will be paid for exploring
more queries. Same as the exploration/exploitation trade-
off, a good balance is hard to find in practice. A good strat-
egy is to use larger n at the beginning and gradually
decreasing the exploration rate as time goes by.

For prefix wo, world cup statically ranks the 6th in the sug-
gestion list of MPC. In comparison, world cup appears at
rank 1 for 34,093 times for Boosted-TS-EBRA (n ¼ 30),

TABLE 1
Relative Performances of Different Methods

Compared to MPC

CTR+ MRR+

UCB1-RBA �26:8% �62:05%
UCB1-RBA (n ¼ 15) �21:07% �43:96%
Boosted-TS (n ¼ 30) þ69.22% þ0.87%
MPC4 þ16.63% þ1.61%
MPC8 þ15.35% þ1.41%
TimeSeries4 þ15.48% þ1.47%
Boosted-TS4 þ41.44% þ1.52%
Used 655,132 w-initiated records from sampled query log
data of 20140613. Experimented with prefix 1.

TABLE 2
Relative Performances of Different Methods

Compared to MPC

CTR+ MRR+

UCB1-RBA �51.99 % �73.46 %
UCB1-RBA (n ¼ 15) �26.44 % �59.15 %
Boosted-TS (n ¼ 30) þ20.18% þ8.65%
Boosted-TS (n ¼ 20) þ19.38% þ10.67%
Boosted-TS (n ¼ 15) þ14.79% þ5.24%
MPC4 þ20.9% þ7.24%
MPC8 þ19.7% þ6.48%
TimeSeries4 þ32.5% þ10.97%
Boosted-TS4 þ37.6% þ11.86%
Used 655,132 w-initiated records from query log data of
20140613. Experimented with prefix 2.
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48,602 times for Boosted-TS-EBRA (n ¼ 20) and 48,168 times
for Boosted-TS-EBRA (n ¼ 15). The boost in ranks clearly
shows that the temporal trends of World Cup are captured
by our algorithms.

We also compare with MPC4, MPC8, TimeSeries4 and
Boosted-TS4. It can be seen that MPC8 yields a worse perfor-
mance than MPC4. TimesSeries4 and Boosted-TS4 achieve
the best performance.

We did more experiments with prefix lengths greater
than 2 and have not observed much improvement. The rea-
son is that QAC is considerably more effective with a longer
prefix due to the huge reduction of the space of possible
matching queries for each extra character [1], [4]. Since
MPC already has a good chance of completion suggestion
match and the intent of the user is more predictable, explo-
ration does not bring much benefits to it.

We then run the type-two experiments, assuming that
the user will submit the query after a fixed prefix length of 2
regardless of whether the query has been presented before
or not. To be specific, for each record in the query log, we
will fist provide a top-10 suggestion list for the first charac-
ter and assume that the user will not stop at this point due
to skipping behavior and types in a second character. After
the suggestion list is provided for the prefix of length 2, the
user will submit the intended query which provides feed-
back for both our suggestion for the prefix of length 1 and
of length 2. The skipping user behavior does not affect the
performance of QAC algorithms, e.g., MPC and TimeSeries,
that predicts though total frequencies (rather than individ-
ual statistics at each rank) of each candidate. We omit the
results here since they are the same as in the previous type-
one experiments. While in our models, since the same can-
didate can occur in different positions in the suggestion list

of different prefix lengths, the statistics at different ranks
will be updated. Relative performance improvements are
reported in Table 3. Again our Boosted-TS, either using the
4-hour refresh or not, outperforms MPC and UCB1-RBA.

5.4 Learning Breaking News

In this section, we examine the reaction speed of our pro-
posed algorithms to an unpredictable query. We use the
breaking new of the tragic crash of the Malaysian Airlines
Flight MH17 as an example. This accident took place on
July 17th, 2014. The refreshing time unit for MPC, TimeS-
eries and Boosted-TS is set to be daily. We experiment with
mh-initiated QAC sessions from 20140716 to 20140720 and
report the performance of each method for a prefix length 2.
Table 4 reports the number of times mh17 appears at each
rank position.

Since MPC predicts based on past popularity, it never
explores and displays a newly occurred event. In compari-
son, after the first occurrences of mh17, it is selected by TS-
ERBA with high probability to display at any rank, due to
high uncertainty on this query. If such exploration receives
positive feedback (which is mostly the case for breaking
news), our algorithm will gradually boost the query to a
higher position. Boosted-TS-ERBA not only updates the
belief on the displayed rank but also propagates the feed-
back to high ranks, hence the boosting effect is more signifi-
cant, as we can observe in Table 4. Since the most recent
query log is moving towards the mh17 related contents,
with a daily refresh, Boosted-TS24 is able to place more
emphasis on the query of interest by displaying it more
often in the ranked list, especially on the first two positions.
Aside from this exploitative behavior, we can observe a
decent number of exploration on lower ranks. In contrast,
with a daily refresh, MPC24 displayedmh17 for 11,220 times,
only on the first position with no demonstration on explora-
tion. TimeSeries24 exhibits a similar behavior.

The value of exploration is shown in Table 5 when we
report CTR, MRR and Clicked-MRR achieved by different
algorithms. Thanks to exploration, all the recorded TS-
ERBA methods manage to find current popular queries and
all the measures are significantly better than MPC. Since
boosted version makes more use of each user’s feedback, its
performance is even better.

Even without refreshing, Boosted-TS is comparable with
MPC24, TimeSeries24 and Boosted-TS24. MPC24 and Time-
Series24 have similar performance, which will be further
demonstrated in Fig. 4. Boosted-TS24 yields the highest CTR
at the end of time period. In fact, the peek of CTR within

TABLE 3
Relative Performances of Different Methods

Compared to MPC

CTR+ MRR+

UCB1-RBA �80.3% �89.4%
UCB1-RBA (n ¼ 20) �39.5% �67.2 %
Boosted-TS (n ¼ 30) þ11.53% þ3.76%
Boosted-TS4 þ24.29% þ4.96%
Used 655,132 w-initiated records from query log data of
20140613. Experimented with up to 2-character prefixes.

TABLE 4
Number of Timesmh17 Appears at Each Rank on the
mh-Data from 20140716 to 20140720 Experimented

with a Prefix Length of 2

Rank TS-ERBA Boosted-TS-ERBA Boosted-TS24

0 554 6,062 10,104
1 2,110 2,674 2,820
2 5,158 1,558 328
3 486 957 143
4 162 576 79
5 75 415 45
6 1,322 309 38
7 223 203 55
8 200 173 29
9 272 168 42

TABLE 5
Performances of Different Methods on the

mh-Data, Collected from 20140716 to 20140720

CTR MRR

MPC 3.59% 0.0141
TS-ERBA (n ¼ 20) 12.87% 0.0418
Boosted-TS (n ¼ 20) 15.82% 0.0986
MPC24 20.63% 0.1301
TimeSeries24 20.89 % 0.1308
Boosted-TS24 21.43% 0.1282

Experimented with a prefix length 2.
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these 5 days is achieved by Boosted-TS24 at 23.85 percent
with a MRR maximum at 0.1512.

Fig. 4 illustrates the changing MRR of each algorithm,
over a total of 14,412 sessions plotted chronologically. We
see that in early stage, especially in the first 1,000 iterations,
all ERBA algorithms suffer from a severe deterioration of
their short-term performance. This is a common phenome-
non for any multi-armed bandit algorithm, when compar-
ing with pure exploitation strategies. Yet after a modest
exploration and learning period, it gradually finds the satis-
factory rankings under continuously refined CTR estimates
as information accrues. While pure exploitation strategy has
the danger of getting stuck in local maximum, leading to
linear regret, bandit algorithms balance exploration and
exploitation carefully, and can achieve an ideal sub-linear
regret. The boost in performance shortly after the trough
illustrates the value of more user feedback collected, the bal-
ance between exploitation versus exploration, and the cap-
ture of the recent query popularity. The gap between the
Boosted-TS and the non-boosted TS-ERBA demonstrates
the effectiveness of the information propagation.

The other message we can get from this chronologically
plot is that the prediction of TimeSeries and MPC with
refreshing suffers from lags. To be more specific, the trend
predicted by TimeSeries and MPC are similarly delayed by
one time unit after the breaking news. This is easily explain-
able since MPC and TimeSeries are essentially batch learning
algorithms which cannot perform model update within each
time interval.While in contrast, ourMABmodel works in real
time and it can quickly capture the searching trend of the
breaking news. This property is best illustrated in Fig. 4 with
the sharp increase of TE-ERBA, Boosted-TS and Boosted-TS24
shortly after the first occurrences ofmh17 related queries.

5.5 Larger Scale Experiments

In this section we use a larger dataset sampled from query
logs for date 20140613. This dataset contains 9,519,634 QAC
sessions, significantly larger than previous experiments. All
experiments were carried out with a prefix length 2.

In the following results, both TS-ERBA and Boosted-TS
are combined with a top-20 (n ¼ 20) suggestion list

provided by MPC as the possible action set. Since queries
with different initial letters have no effect on each other, the
testing can be performed in parallel for efficient computa-
tion. The statistics (CTR and MRR) can be obtained for each
letter initiated records. For MPC, totally 52 character-
initiated data subsets have at least one matching result,
while the number is 65 for UCB1-RBA and Boosted-TS, and
66 for TS-ERBA.

Boosted-TS achieves a CTR of 18.5 percent and a MRR of
6.67 percent for > -initiated sessions which appears 27 times
in one-day period. In comparison, nomatching is found in the
MPC suggestion list; Boosted-TS achieves a CTR of 0.15 per-
cent and a MRR of 0.08 percent for 00-initiated sessions which
appear 26,730 times in one-day period with no matching
results found in MPC. The reason is that since the number of
searching for such queries are far smaller than others (e.g.,
compared with 796,777 c-initiated sessions), MPC is more
biased due to the shortage of past data. Exploration then plays
an important role when the current information is of high
uncertainty and tries to discover the true users’ intents.

Table 6 summarizes the proportions of initial characters
on which other methods achieve higher values of CTR and
MRR compared to MPC, respectively. Since UCB1-RBA
does not utilize past information and uses an explorative
conflicting strategy, the performance is degenerated at least
in a one-day period. The beating portion comes from the
exploration for less displayed queries. TS-ERBA and
Boosted-TS enjoy better performance aided by prior infor-
mation and a better exploration/exploitation balance.

Table 7 reports the CTR andMRR on all the 9,519,634 QAC
sessions. Table 8 extracts the results for all initial characters
(excepting w) with more than 500,000 QAC sessions. Due to a
higher certainty resulting from more past data, MPC is less
biased and thus harder to beat at least in short term without
notable temporal trends. In general both TS-ERBA and
Boosted-TS manage to achieve a higher CTR (which is actu-
ally the objective for bandit algorithms) by balancing exploita-
tion and exploration and yet pay the price of discarding
seemingly promising queries at top ranks. This explains why
MRR of ERBA is smaller than MPC while CTR is higher as
seen in m-initiated and t-initiated sessions. Meanwhile the

Fig. 4. MRR of different methods on the mh-data from 20140716 to
20140720 experimented with a prefix length 2.

TABLE 6
The Proportions of Initial Characters on

which Other Methods Beat MPC

CTR MRR

UCB1-RBA 36.92% 29.2%
TS-ERBA 89.23% 57.69%
Boosted-TS 87.69% 59.23%

TABLE 7
Performances of QAC Rankings of

Different Methods on all the
9,519,634 QAC Sessions

CTR MRR

MPC 6.68% 2.57%
UCB1-RBA 1.11% 0.25%
TS-ERBA 6.71% 2.84%
Boosted-TS 6.84% 2.85%
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amount of increase of MRR is usually smaller than that of
CTR. By propagating the feedback to higher ranks and boost-
ing the ranking effect, Boosted-TS always achieves a higher
MRR than TS-ERBA in the experiments.

6 CONCLUSION

We propose a novel online decision making formulation for
Query Auto-Completion. While most existing work focuses
on batch learning algorithms, we show that our online setting
is able to learn the trending queries dynamically from users’
feedback. We develop a general Exploitative Ranked Bandits
Algorithm for QAC. To the best of our knowledge, this is the
first time that the exploration and exploitation tradeoff is
explicitly addressed in QAC to balance immediate earnings
on the one hand and learning the actual CTR of potential
rankings on the other. To exploit important prior knowledge
derived from query history, we propose using Thompson
sampling as a Bayesian multi-armed bandit instance for
ERBA,which randomly selects a query according to its proba-
bility of being optimal in the exploration/exploitation setting.
We also leverage existing QAC algorithms by combining
them with the proposed ERBA framework. We demonstrate
that the proposed ERBA significantly outperforms existing
QAC algorithms. The Bayesian Thompson sampling algo-
rithm effectively utilizes prior knowledge and significantly
outperforms non-BayesianUCB policies.

High values of a and b indicate a high confident in our
prior estimate, hence this estimation is not likely to be
changed significantly. To this end, we propose prior recon-
struction/refresh after a unit time interval and compare
with TimeSeries and MPC with frequent updates. We come
to the conclusion that our MAB model works in real time
and it can quickly capture the searching trend while MPC
and TimeSeries suffer from delays in the prediction.

As on-going work, we are using online bucket test to val-
idate the effectiveness of our algorithms. As future work,

we plan to investigate better methods and information sour-
ces to generate prior knowledge for Thompson sampling.
We also plan to improve Thompson sampling’s rewarding
procedure for QAC: a rank-dependent reward is desired.
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