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Abstract—There have been many attempts to classify imbalanced data, since this classification is critical in a wide variety of

applications related to the detection of anomalies, failures, and risks. Many conventional methods, which can be categorized into

sampling, cost-sensitive, or ensemble, include heuristic and task dependent processes. In order to achieve a better classification

performance by formulation without heuristics and task dependence, we propose confusion-matrix-based kernel logistic regression

(CM-KLOGR). Its objective function is the harmonic mean of various evaluation criteria derived from a confusion matrix, such criteria as

sensitivity, positive predictive value, and others for negatives. This objective function and its optimization are consistently formulated on

the framework of KLOGR, based on minimum classification error and generalized probabilistic descent (MCE/GPD) learning. Due to

the merits of the harmonic mean, KLOGR, and MCE/GPD, CM-KLOGR improves the multifaceted performances in a well-balanced

way. This paper presents the formulation of CM-KLOGR and its effectiveness through experiments that comparatively evaluated

CM-KLOGR using benchmark imbalanced datasets.

Index Terms—Imbalanced data, confusionmatrix, kernel logistic regression,minimumclassification error and generalized probabilistic descent

Ç

1 INTRODUCTION

DATA that consists of two classes, in which the number
and/or proportion of instances extremely differ

between the classes, is called imbalanced data (See Fig. 1).
Typically, one class has a large amount of instances (i.e., the
majority) and is of less interest and labeled as negative. The
other class has a small amount of instances (i.e., theminority)
and is of more interest and labeled as positive.We frequently
encounter this type of data in real problems related to anom-
alies, failures, and risks, such as medical diagnosis, oil spill
detection, and banking fraudmonitoring [1], [2], [3], [4], [5].

However, classifiers which have no mechanism to handle
imbalance often lead to a useless result that rare but serious
cases are ignored, e.g., a 95% accuracy can be easily
achieved by ignoring 5% cancer patients. On the other
hand, it is also problematic to regard many healthy people
as cancer patients, since it results in costs for needless clini-
cal tests and treatments. Considering these requirements, it
is highly needed, especially in biomedical fields, to make a
well-balanced improvement in all the evaluation criteria
derived from a confusion matrix.

Because of the importance and difficulty of imbalanced
data classification, many attempts have been made to
develop imbalanced data classifiers. Conventional meth-
ods are categorized into those based on sampling, mis-
classification costs, or an ensemble of classifiers, and
they share a similar approach that is aimed at correcting
the imbalance [1], [2], [3], [4], [5]. These methods are
specifically developed to deal with imbalanced data, and
achieve a better performance than other classifiers. How-
ever, their approach has heuristic and task dependent
aspects, and hence is less general.

In order to solve the conventional problems and achieve
high performance, this paper proposes a novel imbalanced
data classifier, which we call confusion-matrix-based kernel
logistic regression (CM-KLOGR). Aiming to well-balan-
cedly raise the values of all the evaluation criteria derived
from a confusion matrix, CM-KLOGR combines the follow-
ing elements into a consistent formulation: the harmonic
mean of evaluation criteria derived from a confusion
matrix, kernel logistic regression (KLOGR) [6], [7], and min-
imum classification error and generalized probabilistic
descent (MCE/GPD) learning [8]. For efficient and effective
optimization, pretraining based on the discriminative
model approach and retraining based on the discriminant
function approach are introduced [9].

Although one may think that CM-KLOGR is just another
method based on misclassification costs [1], [2], [3], [4], [5], it
is distinct from such cost-sensitive methods. A conventional
cost-sensitive classifier indirectly increases the values of the
evaluation criteria through an objective function defined by
the costs that were set subjectively or in a trial-and-error
way by a user. In contrast, CM-KLOGR directly increases
these values by embedding the evaluation criteria into
its objective function. Thus, it has an ability to lead to a
well-balanced improvement of these criteria with no user
intervention.
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This paper is organized as follows. Section 1 presents the
relevant background and our objective for imbalanced data
classification. Section 2 reviews the conventional imbal-
anced data classifiers and discusses their abilities and limi-
tations. Section 3 provides the concepts and techniques that
are the elements of our CM-KLOGR. Section 4 is devoted to
the proposal and formulation of CM-KLOGR by integrating
these elements. Section 5 reports Experiment I, in which the
performance of CM-KLOGR was evaluated by comparison
with kernel logistic regression (KLOGR), support vector
machine (SVM), and their sampling versions. Section 6
reports Experiment II, which evaluated how CM-KLOGR
works in cases that emphasize specific evaluation criteria.
Section 7 concludes the paper.

2 CONVENTIONAL CLASSIFIERS FOR IMBALANCED

DATA

In the light of classification stages, conventional methods
are categorized into preprocessing, special-purpose learn-
ing, postprocessing, and hybrid approaches [5]. Focusing
on elementary techniques to correct the imbalance, they can
be categorized into sampling, cost-sensitive, and ensemble
approaches [1], [2], [3], [4], [5]. Sampling methods [10], [11],
[12], [13], [14], [15], [16], [17] are a kind of preprocessing
rather than classifiers themselves. They attempt to improve
a single classifier by reducing the classification bias in terms
of the bias-variance decomposition [9], [18]; undersampling,
oversampling, or strategic sampling are used to compensate
for imbalanced data.

In order to equalize the number or proportion of instan-
ces between the majority and minority classes, undersam-
pling deletes the part of the training data that belongs to the
majority class, and oversampling duplicates the part of the
training data that belongs to the minority class. Strategic
sampling is an advanced version of undersampling and
oversampling. It estimates the distance and/or distribution
of data, and then this information is used for a strategy to
remove disturbance instances and generate beneficial vir-
tual instances. It has been reported that undersampling and
oversampling based on simple random selection work but
not very well, and strategic sampling works better when its
strategy is adequate. Distance thresholding or clustering is
essential in the sampling methods, and their settings (such
as the definition of distance, the value of the threshold, and
the number of clusters) are based on heuristics depending
on the applications.

Cost-sensitive methods [12], [15], [19], [20], [21], [22]
attempt to reduce the classification bias of a single classifier,
as well as the sampling methods attempt. They try to
improve the classifier by reflecting information about the
significance of the classification results into the objective

function. Such information is represented by separate
costs for classifying an instance into the majority class
and for classifying an instance into the minority class.
Specifically, the costs are put on the numbers of true
negatives, false negatives, true positives, and false nega-
tives. Although the cost-sensitive methods have an abil-
ity to raise the classification performance, their success
depends on application-specific costs. It is required to
adjust the costs based on user’s subjectivity or trials and
errors, because the objective function is a sum of the
costs (not the evaluation criteria), and the way in which
it improves the classification is indirect.

The idea of ensemble methodology has been proposed
for classification in general [9], [18]. We explain the general
ensemble methods here, because the ensemble methods
specific to imbalanced data classification [13], [14], [16], [21],
[23], [24], [25] have the same characteristics as the general
ensemble methods. The ensemble methods are the way to
combine classifiers, primarily aiming at the reduction of
classification variance in terms of the bias-variance decom-
position. They train a set of base classifiers to complement
each other, and make decisions based on a committee of
these classifiers. They are categorized into bagging, boost-
ing, or stacking [18], [26], [27], [28], [29].

In bagging, training of classifiers is accomplished with
the replacement of bootstrap samples that are randomly
and duplicately selected from training data. The objective
function is defined by the majority vote of the classifiers. An
effective example of bagging is random forest that includes
variable sampling and consists of decision trees. Unlike bag-
ging, boosting evolves the committee process by weighting.
It assigns a weight for each classifier to each sample,
updates these weights according to the loss of misclassifica-
tion, and makes a decision by weighted majority voting.
Stacking iteratively trains the classifiers and their weights in
a manner of cross-validation, and its decision making is
based on a weighted majority vote.

The ensemble methods for imbalanced data classification
share the benefits of the original ensemble methods, in that
the classification variance is low, and the theoretical back-
ground has been established [9], [18]. These benefits make
the methods promising, but there exists a serious issue,
namely, how to define an objective function that is suitable
for imbalanced data. Conventional ensemble methods use
an objective function of sampling or cost-sensitive methods,
and inevitably suffer from the same problems from which
these methods suffer.

3 CONCEPTUAL AND TECHNICAL ELEMENTS FOR

OUR CLASSIFIER

3.1 Kernel Logistic Regression (KLOGR)
CM-KLOGR extends and combines the concepts and tech-
niques of KLOGR, MCE/GPD, and F-Measure. KLOGR
[6], [7] is the kernelized version of logistic regression
(LOGR) [9], [18] that is based on the discriminative model
approach and a common classifier in biomedical fields.
LOGR provides both the predicted class and its estimated
posterior probability, which is important as a confidence
measure in such fields [30], [31]. KLOGR inherits this
advantage and also overcomes the disadvantage that
LOGR cannot achieve high performance due to its

Fig. 1. Imbalanced data consisting of the majority, less interesting, and
negative class �, and the minority, more interesting, and positive class �.
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linearity; KLOGR does this by the kernelization which
generates nonlinear boundaries. In a previous study [32],
KLOGR was applied to an imbalanced biomedical dataset,
and superior to the one-nearest neighbor method, multi-
variate linear regression, LOGR, regularized LOGR, and
SVM. Other biomedical studies also applied KLOGR and
showed its effectiveness [33], [34], [35], [36]. Because of
those, we focus on KLOGR.

The source for estimating the posterior probabilities of
classes in KLOGR, ykðx;aak; bkÞ (for simplicity, denoted as
ykðxÞ), is shown in Eq. (1). This is defined as a weighted
sum of the kernels for the kth class, parameterized by the
parameter vector aak ¼ ½a1k;a2k; . . . ;aNk�T and the bias term
bk. x is the feature vector to be classified, and xm is the fea-
ture vector of the mth instance in the training data. Kðx; xmÞ
is the kernel function that represents the similarity between
x and xm, and kkðxÞ is a vector containing Kðx; xmÞ for m ¼ 1
toN . The most frequently used function is the Gaussian ker-
nel Kðx; xmÞ ¼ expð�jjx� xmjj2=2s2Þ, in which s is a hyper-
parameter.

ykðxÞ ¼
XN
m¼1

amkKðx; xmÞ þ bk ¼ aaT
k kkðxÞ þ bk (1)

Using ykðxÞ, the kth class posterior probability PrðCkjxÞ is
defined as Eq. (2) in the form of a softmax function, where
K is the number of classes.

PrðCkjxÞ ¼ expðykðxÞÞPK
l¼1 expðylðxÞÞ

(2)

The objective function, Jðaa1;aa2; . . . ;aaKÞ, is the cross-
entropy error function with a regularization term shown in
Eq. (3). This function indicates how well the posterior prob-
abilities of classes are estimated under the L2-norm con-
straint. There are some choices on how to set bk:
augmenting x to embed bk into the vector aak (bk is one of the
variables in the objective function), and adjusting bk outside
of training (bk is fixed to 0 when training). The second
choice, which is comparatively common for the application
of LOGR to biomedical data, is selected in the present study.
Hence, Eq. (3) is a function of aak only.

Jðaa1;aa2; . . . ;aaKÞ

¼ �
XN
n¼1

XK
k¼1

dkn;klnPrðCkjxnÞ þ �

2

XK
k¼1

aaT
kKKaak

(3)

where the Kronecker delta function dkn;k counts one when k
is identical to the correct class kn of the nth instance, namely
a correct classification. The weight � represents how much
emphasis is put on the regularization term, and it is a hyper-
parameter. KK denotes the kernel matrix in which the ele-
ments are the values of the kernel function Kðx; x0Þ, as
calculated for all combinations of instances x and x0 in the
training data.

Although the original KLOGR does not have a regulari-
zation term, it is recommended to use one, since restricting
the search range in a parameter space leads to a more stable
performance with a smaller classification variance [9], [18].
Any types of norms such as the L1, L2, or higher order ones
are acceptable for regularization. The L2-norm is a reason-
able choice, since it ensures a clear theoretical relationship
between KLOGR and both SVM and the Gaussian process
classification (GPC) [9], [18].

The objective function of SVM [37], [38] consists of two
terms: an empirical hinge loss to penalize incorrect classi-
fication and a geometric margin to ensure generalization.
Maximizing the geometric margin of SVM is identical to
minimizing the L2-norm of the parameters except the bias
term, in a two-class classification. This suggests that the
L2-norm regularization of KLOGR maximizes the geomet-
ric margin, as in SVM. In terms of GPC [9], KLOGR with
L2-norm regularization is the simplest implementation
of GPC.

With regard to the parameters amk, Jðaa1;aa2; . . . ;aaKÞ is
convex, and hence the unique optimal point in the parame-
ter space is reachable by the gradient descent method. In
contrast, the hyperparameters, which are the width of the
Gaussian kernel s and the weight on the regularization
term �, must be set before training. Depending on the for-
mulation, the bias term of the regression function bk in
Eq. (1) may also need to be set after training. It is common
for classifiers, including KLOGR, to set the hyperparameters
(and the bias term, if one is needed) by performing a grid
search using validation dataset [39]. In KLOGR, after setting
the parameters and hyperparameters, the classification deci-
sion is made by selecting the class with the highest esti-
mated probability.

KLOGR is an effective classifier that can draw nonlinear
boundaries and provides the posterior probabilities of
classes as a confidence, of which effectiveness was shown
in the literatures [32], [33], [34], [35], [36]. Hence, it is
expected that KLOGR achieves higher performance by
introducing a new objective function, which is specific to
imbalanced data.

3.2 Minimum Classification Error and Generalized
Probabilistic Descend (MCE/GPD)

MCE/GPD [8] is a learning method based on the discrimi-
nant function approach [9], which directly controls the class
boundaries, unlike the approaches based on distribution
estimation. It has been successfully applied to speech recog-
nition, and intensively extended and improved [8], [40],
[41], [42]. In MCE/GPD, the discriminant function ykðx;LLkÞ
abbreviated as ykðxÞ is defined in,

ykðxÞ ¼ fðLLk; xÞ; (4)

where LLk denotes a set of parameters for the kth class. Any
differential positive functions of LLk are acceptable as
fðLLk; xÞ. For instance, the simplest function can be
ykðxÞ ¼ wT

k xþ bk, where wk and bk denote the parameter
vector of input variables and the bias term, respectively.

The misclassification measure dkn is defined in,

dknðxnÞ ¼ �yknðxnÞ þ
1

K � 1

X
j;j 6¼kn

yjðxnÞh
" #1

h

� �yknðxnÞ þ max
j;j 6¼kn

yjðxnÞ ðif h!1Þ;
(5)

where h is a positive constant for a parametric maximum
selection operation, and kn represents the correct class of
the nth instance. yjðxnÞ estimates the degree of belonging of
the nth instance to the jth class. yknðxnÞ has a similar mean-
ing but is specific to the case in which the correct class of xn
is the kth class. The negative and positive values of dkn
mean correct and incorrect classifications, respectively; dkn
represents the signed degree of classification correctness
(less than 0) or incorrectness (more than 0). It is essential for
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Eq. (5) that ykðxnÞ be positive, and thus if necessary, ykðxnÞ
must be normalized to be positive by such as logarithmic
and/or exponential transformations [8].

The function defined in Eq. (6) is a differentiable
smoothed 0-1 loss function that penalizes misclassification
in the form of a sigmoid function. The hyperparameter
� > 0 determines the smoothness, that is, how close the
function is to a 0-1 step function. The large and small values
of � tend to cause overfitting and underfitting, respectively,
and thus its value should be properly set. The objective
function JðLL1;LL2; . . . ;LLKÞ is then formulated as the sum of
the loss over the N instances of training data, as shown in
Eq. (7). This objective function makes MCE/GPD directly
pursue a reduction in misclassifications, and makes it possi-
ble to use the gradient descent method for optimization.

lðdknðxnÞÞ ¼
1

1þ expð��dknðxnÞÞ
(6)

JðLL1;LL2; . . . ;LLKÞ ¼ 1

N

XN
n¼1

lðdknðxnÞÞ (7)

MCE/GPD takes a straightforward route to the correct
classification, and it has the capacity to express any evalua-
tion criteria that are based on the smoothed 0-1 loss func-
tion. It is expected to achieve better performance by
formulating an objective function and its learning process,
which is based on MCE/GPD and specific to imbalanced
data classification. However, if we do so for CM-KLOGR,
such an objective function is not convex, and that causes dif-
ficulties with parameter optimization. In contrast, the objec-
tive function of KLOGR is convex and leads to smooth
parameter optimization, similar to that of SVM. Taking
these aspects into account, it is worthwhile to bring out the
potentials of MCE/GPD and KLOGR in imbalanced data
classification by their combination.

Generally, classification is categorized into the generative
model, the discriminative model, and the discriminant func-
tion approaches [9]. For parameter optimization when the
objective function is nonconvex, it is common to combine
pretraining based on the generative/discriminative model
approach and retraining based on the discriminant function
approach, e.g., fine-tuning after clustering [8], fine-tuning
after distribution estimation [43], etc. This suggests a way to
unlock the potentials of MCE/GPD and KLOGR.

3.3 Evaluation Criteria for Classification
Performance

Multifaceted evaluation criteria are required for the evalua-
tion of the performance of imbalanced data classification.
Such criteria that can be derived from a confusion matrix
include sensitivity (Sens), specificity (Spec), positive predic-
tive value (PPV), negative predictive value (NPV), and
accuracy (Acc) [5], [44], [45], [46]. Sens, Spec, and PPV are
known as true positive rate (TPR) or recall, true negative
rate (TNR), and precision, respectively. Another commonly
used criterion is the area under the curve of the receiver
operating characteristic (AUC), which accumulates the
points of two criteria, such as Sens and Spec, over their dif-
ferent parameter settings. Therefore, AUC cannot be used
when evaluating the performance under an optimal param-
eter setting. Sens, Spec, PPV, NPV, and Acc are defined in
Eqs. (8), (9), (10), (11), and (12), respectively, where N is the
total number of instances, NTP is the number of true

positives, NTN is the number of true negatives, NFP is the
number of false positives, and NFN is the number of false
negatives [5], [44], [45].

Sens ¼ NTP

NTP þNFN
(8)

Spec ¼ NTN

NTN þNFP
(9)

PPV ¼ NTP

NTP þNFP
(10)

NPV ¼ NTN

NTN þNFN
(11)

Acc ¼ NTP þNTN

N
(12)

A classifier with no adjustment for imbalanced data tends
to assign all the instances to the majority (negative) class. In
that case, Spec, NPV, and Acc are all large, and that makes
the classification appear to be successful. However, it is
actually a failure as indicated by the low values of Sens
and PPV; the classifier overlooks the instances in the
minority (positive) class of more interest, as if they are
not interesting. Figuratively speaking, sick people are
ignored and not treated. Let us consider another extreme
case in which a classifier tends to assign all the instances
to the minority (positive) class, due to too much imbal-
ance correction. It achieves high Sens, but does not nec-
essarily increase PPV and results in low Spec, NPV, and
Acc; the classifier picks up the instances in the majority
(negative) class of less interest, as if they are interesting.
Healthy people are given needless treatment, and this
causes the waste of medical expense.

These cases show the necessity of a well-balanced
improvement to these criteria, leading to the combinational
use of these criteria for training. Especially, domains such
as biomedicine are supposed to evaluate the classification
performance using not only Sens and PPV, but also Spec
and NPV (and occasionally Acc). In fact, the combination of
the words, sensitivity, specificity, positive predictive value,
and negative predictive value, received more than 16,000
hits on PubMed [47], which is one of the most widely used
databases of biomedical literature.

When using multiple evaluation criteria, it is difficult to
evaluate their balance and total performance. This difficulty
is common in information retrieval as in imbalanced data
classification. For comprehensive evaluation, information
retrieval algorithms use F-measure [48], the harmonic mean
of Sens and PPV, namely recall and precision. The intent is
to balance them in a way that is more sensitive to the differ-
ence in their values than the arithmetic mean. F-measure
suggests how to synthesize and utilize evaluation criteria
for imbalanced data.

4 PROPOSAL OF CONFUSION-MATRIX-BASED

KERNEL LOGISTIC REGRESSION (CM-KLOGR)

4.1 Ideas behind CM-KLOGR

We propose a novel classifier: a confusion-matrix-based ker-
nel logistic regression [49]. Its main idea is to directly
improve various evaluation criteria, while balancing them
each other, by the formulation of a consistent learning
mechanism based on F-measure [48], KLOGR [6], [7], and
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MCE/GPD [8]. In this section, the detailed ideas are dis-
cussed in order of the model structure, objective function,
and optimization of CM-KLOGR.

As the framework on which to develop CM-KLOGR and
its pretraining, KLOGR is selected because of the reasons
below. It has the ability to draw flexible nonlinear class
boundaries by kernelization; to converge to the optimal
point in the parameter space, due to the convexity of the
objective function; and to derive the posterior probabilities
of the classes, which can be used as a confidence measure.
Compared to classifiers based on the generative model
approach [9] that also provide the probabilities, KLOGR has
fewer parameters and is expected to work well even if the
training data is small. It actually worked well for imbal-
anced biomedical datasets [32], [33], [34], [35], [36].

The key point of CM-KLOGR is to introduce a new objec-
tive function. This function can be defined based on the
idea of F-measure (Precisely speaking, based on the har-
monic mean which is a more general concept than F-mea-
sure). The harmonic mean is sensitive to the difference
between its components, and consequently balances them.
It is thus reasonable to define the objective function of CM-
KLOGR as the harmonic mean of various evaluation crite-
ria. Combining various evaluation criteria may seem redun-
dant, because of their trade-off. This is theoretically true if
the classifier is perfectly optimized. In such a case, increas-
ing some criteria causes a decrease in the others. However,
on the way to the optimal setting, there is room to simulta-
neously increase various evaluation criteria.

MCE/GPD shows the way to the formulation and opti-
mization of the new objective function. It has the ability to
formulate the evaluation criteria derived from a confusion
matrix in conjunction with a smoothed 0-1 loss function; to
straightforwardly improve these evaluation criteria; and to
make the gradient descent method applicable. For CM-
KLOGR, it is promising to formulate the evaluation criteria
and their harmonic mean, and optimize it via MCE/GPD.

There is a problem to overcome, the difficulty in optimiza-
tion because of the nonconvexity of this objective function.
Therefore, a two-stage training is adopted, which consists of
pretraining based on the generative/discriminative model
approach and retraining based on the discriminant function
approach. In CM-KLOGR, the parameters of KLOGR are ini-
tialized using the cross-entropy error function in pretraining,
and fine-tuned using the harmonicmean in retraining. Addi-
tionally, the L2-norm regularization, which works as geo-
metric margin maximization, is introduced to these two
objective functions. It is expected that CM-KLOGR will lead
to smooth optimization and generalization due to the two-
stage training and the regularization.

Note that a classifier proposed in the literature [50] has
some similarities to CM-KLOGR with respect to a discrimi-
nant function approach. However, it differs from CM-
KLOGR in that it was not intended for the classification of
imbalanced data, its framework was logistic regression with
no kernelization, it embedded only F-measure, and optimi-
zation difficulties due to nonconvexity were left unresolved.
CM-KLOGR overcomes these remaining problems.

4.2 Formulation of CM-KLOGR
This section defines and formulates the model structure,
objective function, and optimization of CM-KLOGR. Table 1
lists the symbols used for that. The formulation of

CM-KLOGR starts from that of KLOGR generally defined
for multi-class classification, and is specialized for two-class
imbalanced data classification. As in KLOGR (see Eqs. (1)
and (2)), CM-KLOGR has the model structure to estimate
the posterior probabilities of the classes by substituting the
regression function of the kernels in Eq. (13) into the soft-
max function in Eq. (14).

ykðxÞ ¼
XN
m¼1

amkKðx; xmÞ þ bk ¼ aaT
k kkðxÞ þ bk (13)

PrðCkjxÞ ¼ expðykðxÞÞPK
l¼1 expðylðxÞÞ

(14)

TABLE 1
List of Symbols Used for the Formulation of CM-KLOGR

K: number of classes.
N : number of instances in the training data.
x: feature vector.
xm: feature vector of themth instance in the training data.
C: class.
Ck: kth class, where k 2 f1; . . . ;Kg. In two-class classification,
C1 corresponds to the negative class and C2 to the positive.
Kðx; xmÞ: kernel function that represents the similarity
between x and xm.

kkðxÞ: vector consisting of the kernel functions;
½Kðx; x1Þ;Kðx; x2Þ; . . .Kðx; xNÞ�T .
KK: kernel matrix consisting of the kernel function vectors;
½kkðx1Þ; kkðx2Þ; . . . kkðxNÞ�.

aa: parameter vector of weights for the similarities of an
instance to the others in the training data; ½a1;a2; . . . ;aN �T .

aak: parameter vector for the kth class.
b: bias term which is a scalar.
bk: bias term for the kth class.
ykðxÞ: kernel regression function for the kth class, of which
parameters are aak and bk.

PrðCkjxÞ: posterior probability of the kth class when x is input.
kn: variable to indicate the correct class of the nth instance.
PrðCkn jxnÞ: posterior probability of the correct class indicated
by kn, i.e., Ckn when xn is input.

dknðxnÞ: misclassification measure when classifying the nth
instance of which correct class is Ckn .

h: positive constant to parametrically formulate maximum
selection.

lðdknðxnÞÞ: smoothed 0-1 loss function that penalizes a
misclassification.

�: positive constant to determine the smoothness of the loss
function.

NTP,NFP,NTN, andNFN: numbers of the true positive, false
positive, true negative, and false negative instances in the
training data.

dl;k: Kronecker delta function of which the value is 1 when
l ¼ k and 0 when l 6¼ k.

fi: ith evaluation criterion.
�i: numerator of the ith evaluation criterion function.
ci: denominator of the ith evaluation criterion function.
J : objective function used in retraining.
JHM: first term of the objective functionwhich is the harmonic
mean of the evaluation criteria.

JL2: second term of the objective function which is the
L2-norm regularization.

Nec: number of evaluation criteria.
gi: weight on the ith evaluation criterion.
Sg : summation of gi over all the i, Sg ¼

PNec
i¼1 gi.

�: weight that balances the harmonic mean of the evaluation
criteria and the L2-norm regularization.
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For pretraining and retraining, two objective functions
and their respective optimization processes are formulated.
In the pretraining process, the objective function is the cross-
entropy error function, and the optimization process is the
gradient descent method; these are identical to those used in
KLOGR. The parameter setting accomplished by pretraining
is passed into retraining as an initialization status, and it is
then fine-tuned by the gradient descent method, using the
new objective function, as developed in the following steps.

We begin by associating the class posterior probabilities of
KLOGR with the misclassification measure of MCE/GPD.
Here, PrðCkjxÞ in Eq. (14), which is the posterior probability
of the kth class given x, is regarded as the discriminant func-
tion of this class. By substituting it into Eq. (5), themisclassifi-
cationmeasure dkn is obtained as shown in

dknðxnÞ

¼ �PrðCkn jxnÞ þ
1

K � 1

X
j;j6¼kn

PrðCjjxnÞh
" #1

h

� �PrðCkn jxnÞ þ max
j;j 6¼kn

PrðCjjxnÞ ðif h!1Þ:

(15)

The smoothed 0-1 loss function in Eq. (16) penalizes mis-
classifications based on the sign and absolute value of the
misclassification measure dknðxnÞ.

lðdknðxnÞÞ ¼
1

1þ expð��dknðxnÞÞ
ð� > 0Þ (16)

By treating this loss as an approximate count of mis-
classifications, the numbers of true positives, false posi-
tives, true negatives, and false negatives are defined as
shown in Eqs. (17), (18), (19), and (20), respectively.
These numbers are specific to two-class classification,
and hence, we set kn ¼ 1 for the negative class C1 and
kn ¼ 2 for the positive class C2. In Eq. (17), lðdknðxnÞÞ rep-
resents the count of incorrect classifications, and accord-
ingly, 1� lðdknðxnÞÞ represents the count of correct
classifications. dkn;2, which is multiplied to 1� lðdknðxnÞÞ,
picks up a case when the correct class is C2. Eq. (17), the
summation of the multiplication of these terms, therefore
represents the number of true positives. Similar interpre-
tations apply to Eqs. (18), (19), and (20).

NTP �
XN
n¼1
ð1� lðdknðxnÞÞÞdkn;2 (17)

NFP �
XN
n¼1

lðdknðxnÞÞdkn;1 (18)

NTN �
XN
n¼1
ð1� lðdknðxnÞÞÞdkn;1 (19)

NFN �
XN
n¼1

lðdknðxnÞÞdkn;2 (20)

Substituting NTP, NFP, NTN, and NFN into Eqs. (8), (9),
(10), (11), and (12), the evaluation criteria Sens, Spec, PPV,
NPV, and Acc are defined as shown in

f1 ¼ Sens ¼ NTP

NTP þNFN
¼ �1c

�1
1 (21)

f2 ¼ Spec ¼ NTN

NTN þNFP
¼ �2c

�1
2 (22)

f3 ¼ PPV ¼ NTP

NTP þNFP
¼ �3c

�1
3 (23)

f4 ¼ NPV ¼ NTN

NTN þNFN
¼ �4c

�1
4 (24)

f5 ¼ Acc ¼ NTP þNTN

N
¼ �5c

�1
5 : (25)

where �i and ci denote the upper and lower terms of each
fraction, respectively. They are introduced to simplify the
result of objective function differentiation.

HM, the weighted harmonic mean of the evaluation crite-
ria (Sens, Spec, PPV, NPV, and Acc), is defined as in Eq. (26),
where Sg is the summation of all the weights as shown in
Table 1. This HM is able to represent any combinations of
these criteria by assigning proper weights on them.Note that
it can be used not only for training (parameter setting), but
also for validating (hyperparameter and cutoff setting) and
testing (generalized performance evaluation). The default
setting of the weight gi is to assign 1 for all i (or for all except
i ¼ 5 corresponding to Acc). However, to meet the needs of
applications, gi can be determined by the importance of the
ith evaluation criterion. Actually, gi is set differently in the
evaluation experiments.

HM ¼ 1

Sg

XNec

i¼1

gi
fi

 !" #�1
(26)

The objective function of CM-KLOGR for retraining
Jðaa1;aa2; . . . ;aaKÞ, simplified as J , is defined as in Eq. (27).
Its first term JHM is the weighted harmonic mean of the eval-
uation criteria, which is defined in Eq. (26). For indicating
that HM is used in training, we replaced the symbol HM
with JHM. The second term JL2 of the objective function is
the L2-norm regularization.

J ¼ JHM þ JL2

¼ � 1

Sg

XNec

i¼1

gi

fi

 !" #�1
þ �

2

XK
k¼1

aaT
kKKaak

(27)

Starting from a favorable initial setting obtained by pre-
training using Eq. (3), the parameters aak are fine-tuned by
retraining using Eq. (27). In retraining, the first term of
Eq. (27) will improve all the evaluation criteria in a well-bal-
anced way, and the second one will avoid overfitting.

For the optimization by the gradient descent method, the
objective function J is differentiated with regard to aak0 ,
where k0 indicates each class, C1 or C2. The differentiation
@J
@aak0

is divided into two terms in Eq. (28). The second term @JL2
@aak0

can be directly calculated. It is necessary to decompose the

first term @JHM
@aak0

by applying the chain rule. The first part of the

decomposition result @JHM
@fi

can be directly calculated. The sec-

ond part @fi
@aak0

requires a further application of the chain rule,
which traces back from fi to aak0 through �i, ci, lðdknðxnÞÞ,
dknðxnÞ,PrðCkjxÞ, and ykðxÞ.

@J

@aak0
¼ @JHM

@aak0
þ @JL2

@aak0

¼
XNec

i¼1

@JHM
@fi

@fi
@aak0
þ �KKaak0

(28)

The final result of differentiation @J
@aak0

is shown as Eq. (29)
in the next page. The values of the parameters are updated
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in each epoch of the retraining, following the rule defined in
Eq. (30), where the learning rate r is a positive constant. The
values of aa1 and aa2 are obtained for the negative and the
positive classes, respectively.

aak  aak � r
@J

@aak0

����aak0 ¼aak (30)

As is common in classifiers, including SVM, KLOGR, and
CM-KLOGR, the bias term bk has a considerable effect on
the performance; this is especially true in the classification
of imbalanced data. For SVM, it is not possible to set bk in a
dual space defined by kernelization. Instead, there is a way
to do so in an original space using the values of amkKðx; xmÞ
[38]. In the methods based on LOGR including KLOGR, bk
is frequently called cutoff and treated as a separate parame-
ter to set after training. bk in CM-KLOGR is handled in the
same manner.

4.3 Setting of Hyperparameters and Cutoff
In general, classifiers have two kinds of variables to set,
hyperparameters and parameters, and if shifting is needed,
a bias term (it can be a part of parameters, depending how
to handle it). In contrast to that parameter setting is often
discussed in details, hyperparameter and bias term settings
are not so. It is difficult in nature to set hyperparameters in
a fully systematic way; Hyperparameter setting inevitably
includes trial-and-error procedures. However, considering
its effect on performance, which may be strong when data is
imbalanced, it is worth discussing how to design the setting
of hyperparameters. Bias term setting affects classification
performance, has widely different two approaches, and
should be discussed, too.

It is common for classifiers to set the hyperparameters by
performing a grid search using validation data that differs
from the training data. In CM-KLOGR, the hyperparameters
are the width of the Gaussian kernel s, the weight on the reg-
ularization term �, and the smoothness of the loss function �,
and they are set outside of training by this commonway.

Regarding the setting of the bias term bk, as mentioned
briefly in Section 3.1, there are two alternatives according to
whether bk is included or not in the objective function. The

first method embeds bk as a0 into the objective function by
augmenting the kernel matrix KK using a dummy kernel,
and it optimizes bk during training [51], [52], [53]. The sec-
ond method fixes bk ¼ 0 during training, and it optimizes bk
after training [6], [7], [51], [54]. In the biomedical field, the
bias term is often called cutoff, and it is set using the second
method. To be precise, the bias term and the cutoff have dif-
ferences in their roles and optimization. For this reason, in
the present study they are differentiated as follows: The
bias term is the intercept of an objective function, and it is
set in training; the cutoff is the threshold of the discriminant
functions, and it is set after training.

The second method is selected for CM-KLOGR, and it
makes the objective function of CM-KLOGR similar to that
of SVM. Besides being used for setting the hyperparameters,
a grid search with validation data is used to set the cutoff.
The classification decision is made by the rule that includes
the cutoff in,

CðxÞ ¼ C1; iff g2ðxÞ � g1ðxÞ � cutoff
C2; iff g2ðxÞ � g1ðxÞ > cutoff

�
(31)

where Ck; k 2 f1; 2g is a class (1 and 2 mean negative and
positive, respectively), gkðxÞ ¼ PrðCkjxÞ is the estimated
posterior probability, and cutoff denotes the cutoff.

In order to accurately estimate classification perfor-
mance, it is as important as the processes of hyperpara-
meter, parameter, and cutoff setting, how to divide and
feed a dataset into these processes, especially when data is
imbalanced. The dividing and feeding should be designed
not to change the nature of the imbalanced data. It is the
part of designing experiments and discussed in Section 5.2.

5 EXPERIMENT I: EVALUATION UNDER SAME

WEIGHTS ON EVALUATION CRITERIA

5.1 Purpose and Conditions
CM-KLOGR was empirically evaluated by comparing its
performance with those of competitive classifiers on several
datasets. Experiment I assumed the strictest case in which
both positives and negatives must be exhaustively and cor-
rectly classified, such as medical diagnosis with minimal

@J

@aak0
¼ �2Sg

g1

ðf1Þ2
XNec

h¼1

gh

fh

" #�2XN
n¼1

c�11 ð�dkn;2Þ � �1c
�2
1 � ð0Þ

� �
� �lðdknðxnÞÞð1� lðdknðxnÞÞÞð�1Þdk0 ;knPrðCkn jxnÞð1� PrðCkn jxnÞÞkkðxnÞ

� 2Sg
g2

ðf2Þ2
XNec

h¼1

gh

fh

" #�2XN
n¼1

c�12 ð�dkn;1Þ � �2c
�2
2 � ð0Þ

� �
� �lðdknðxnÞÞð1� lðdknðxnÞÞÞð�1Þdk0 ;knPrðCkn jxnÞð1� PrðCkn jxnÞÞkkðxnÞ

� 2Sg
g3

ðf3Þ2
XNec

h¼1

gh

fh

" #�2XN
n¼1

c�13 ð�dkn;2Þ � �3c
�2
3 ð�dkn;2 þ dkn;1Þ

� �
� �lðdknðxnÞÞð1� lðdknðxnÞÞÞð�1Þdk0 ;knPrðCkn jxnÞð1� PrðCkn jxnÞÞkkðxnÞ

� 2Sg
g4

ðf4Þ2
XNec

h¼1

gh

fh

" #�2XN
n¼1

c�14 ð�dkn;1Þ � �4c
�2
4 ð�dkn;1 þ dkn;2Þ

� �
� �lðdknðxnÞÞð1� lðdknðxnÞÞÞð�1Þdk0 ;knPrðCkn jxnÞð1� PrðCkn jxnÞÞkkðxnÞ

� 2Sg
g5

ðf5Þ2
XNec

h¼1

gh

fh

" #�2XN
n¼1

c�15 ð�dkn;2 � dkn;1Þ � �5c
�2
5 � ð0Þ

� �
� �lðdknðxnÞÞð1� lðdknðxnÞÞÞð�1Þdk0 ;knPrðCkn jxnÞð1� PrðCkn jxnÞÞkkðxnÞ
þ �KKaak0

(29)
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errors. Therefore the HM of Sens, Spec, PPV, and NPV was
used for training CM-KLOGR, validating all the classifiers,
and testing them. Note that Acc was excluded due to its
redundancy; the weights gi were set to 1 for Sens, Spec,
PPV, and NPV, and to 0 for Acc.

KLOGR, SVM, and these methods combined with under-
sampling and oversampling were selected as competitors, in
consideration of the following. What distinguishes CM-
KLOGR is its comprehensive objective function, the har-
monic mean of evaluation criteria, and its consistent learning
process with no user intervention. Examining the effect of
these aspects is the focal point, and we should avoid mixing
the effect of difference in model structure into this examina-
tion. KLOGR is the basis of CM-KLOGR. It shares the same
model structure with CM-KLOGR, and its objective function
is that in the pretraining of CM-KLOGR. Therefore, it can be
the baseline of performance. SVM is themost common kernel
method, and it has a similar model structure to that of CM-
KLOGR, except its hinge-loss-based objective function.
Thus, KLOGR and SVMwere selected.

Sampling methods, which are preprocessing techniques
rather than classifiers, were also used. We selected and
combined the simple sampling methods (undersampling
and oversampling) with KLOGR and SVM to compare to
CM-KLOGR. Strategic sampling was not adopted, because,
from the standpoint to clarify the effect of the objective func-
tion of CM-KLOGR, it will be out of focus to compare this
effect and the effect of specific strategies in preprocessing.
By the comparison of CM-KLOGR to the simple sampling
methods, not only its effectiveness but also a perspective on
the use of sampling for CM-KLOGR were examined.

The reasons why cost-sensitive and ensemble methods
were not used is as below: As far as we know,many cost-sen-
sitive methods require heuristic and task dependent
processes, while CM-KLOGR does not. The present experi-
ments did not aim to examine the effect of such processes,
but to clarify the fundamental effectiveness of CM-KLOGR
brought by its objective function. Ensemble methods are the
way to combine classifiers, and hence they are not competi-
tive to CM-KLOGR which is a single classifier. Note that we
understand the importance of cost-sensitive and ensemble
methods and also the necessity to compare and/or combine
them with CM-KLOGR. After confirming the fundamental
effectiveness of CM-KLOGR, such comparisons and/or com-
binations should be considered in the next stage of our study.

Regarding the other experimental conditions, the Gauss-
ian kernelwas used in common for the classifiers. For KLOGR
and SVM combined with the sampling methods, to make the
numbers of negatives and positives equal, the number of neg-
atives was reduced by undersampling and that of positives
was increased by oversampling. The imbalanced datasets

summarized in Table 2were used, that have different propor-
tions of majority and minority (or negative and positive)
instances [55], [56]. Prior to kernelization, features were nor-
malized to be dimensionless with mean of 0 and standard
deviation of 1 and thenwere augmented, in the original input
variable space. This normalization is effective for hyperpara-
meter and parameter settings, since it makes the search
ranges close to each other among different datasets.

5.2 Evaluation Process Design
It is difficult to precisely evaluate the classification perfor-
mance for imbalanced data, especially when the data is
small. Because of the imbalance and the small number of
instances, the distribution of instances often differs between
the training, validation, and test sets. The difference in dis-
tribution makes performance evaluation imprecise, and
consequently, it sometimes leads to improper setting. For
this solution and the fair comparison of the classifiers, the
following processes were designed to divide and feed data-
sets, to set the hyperparameters, parameters, and cutoff,
and to estimate the performance.

T% of the instances in a dataset are set aside for testing,
and the remaining (100� T )% of them are split into S sub-
sets for training and validating by the S-fold cross-valida-
tion [9], [18]. In our experiments, T ¼ 10 and S ¼ 10. The
S-fold cross-validation is applied for each of the hyperpara-
meter and cutoff settings, through Steps 1, 2, and 3.

In Step 1 to set the hyperparameters and the parameters,
a grid search is performed under a fixed cutoff at 0. The
S-fold cross-validation is applied on each cross point on the
grid, that corresponds to each hyperparameter setting. In
each fold, after setting the parameters with a training set
composed of the S � 1 subsets, the performance is estimated
with a validation set, that is, the remaining subset. As a
result, the hyperparameters and the parameters are set to
the values that achieved the maximum average perfor-
mance over the S folds (this is called “validation perform-
ance”). In Step 2 to set the cutoff, a grid search is performed
similarly to Step 1, under the best hyperparameter and
parameter settings obtained in Step 1. In Step 3, for making
the parameter setting robust, the classifier is retrained with
the final training set composed of the merged S subsets,
under the best hyperparameter and cutoff settings given by
Steps 1 and 2. Finally, under the best hyperparameter,
parameter, and cutoff settings, the generalized performance
is estimated with the test set, the T% of the data (this is
called “test performance”).

In the experiments, the range and step size shown in
Table 3 were used for the grid search in the setting steps.
Note that the values of � were determined by changing the

TABLE 2
Specifications of Benchmark Datasets

Name of
Datasets

Number of
Features

Size
Maj., Min. (Total)

Ratio
Maj./Min.

Breast 10 458, 241 (699) 1.90
Haberman 3 225, 81 (306) 2.78
Ecoli-pp 7 284, 52 (336) 5.46
Ecoli-imu 7 301, 35 (336) 8.60
Pop_failures 18 494, 46 (540) 10.74
Yeast-1_vs_7 7 429, 30 (459) 14.30

Maj. and Min. denote the majority and minority classes, respectively.

TABLE 3
Search Conditions for Hyperparameter and Cutoff Setting

Classifiers Hyperparameters and Cutoff

CM-KLOGR s: 0.1 to 5.0 with a step of 0.1
�: 0.1 to 5.0 with a step of 0.1
�: 1, 5, 10, 20, 40, and 80
cutoff: �1.0 to 1.0 with a step of 0.01

KLOGR s: 0.1 to 5.0 with a step of 0.1
�: 0.1 to 5.0 with a step of 0.1
cutoff: �1.0 to 1.0 with a step of 0.01

SVM s: 0.1 to 5.0 with a step of 0.1
c: 0.1 to 5.0 with a step of 0.1
cutoff: �1.0 to 1.0 with a step of 0.01

In SVM, c is a box constraint which has a similar role to �.
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smoothness of the loss function in Eq. (16) with a fixed step
of angle. Classification is sensitive to the cutoff, and thus a
finer search step was used. For setting the parameters (i.e.,
training), as is obvious, the objective function of a classifier
was employed. For setting the hyperparameters and the cut-
off (i.e., validation), HM, the harmonic mean of Sens, Spec,
PPV, and NPV was used, to lead a classifier to the increase
in all these evaluation criteria.

Even though the evaluation processes are designed
carefully, the difference in distribution between the vali-
dation and test sets may still remain and make evaluation
imprecise. To address this, two kinds of evaluation results
were discussed. Performance 1: test performance obtained
under the hyperparameter and cutoff settings which
achieved the best validation performance. This is a rea-
sonable estimate of generalization ability, but is possibly
influenced by a nuisance factor, i.e., the distribution dif-
ference. Performance 2: ideal test performance under the
hyperparameter and cutoff settings which achieved the
best test performance. This is another reasonable estimate
of generalization ability, representing an ideal situation
when the distribution of instances is the same between
the validation and test sets, and the hyperparameters and
the cutoff are truly optimal.

5.3 Results and Discussion

5.3.1 Performance of CM-KLOGR Compared to Those

of KLOGR and SVM

Table 4 shows Performance 1 (the test performance under
the best settings of the hyperparameters and the cutoff
based on validation performance). Table 5 shows Perfor-
mance 2 (the ideal test performance under those based on
test performance). These tables include the results of CM-
KLOGR, KLOGR, and SVM only, for simplicity. The results
of the sampling methods will be provided later. The best
performances are indicated by bold font.

In Table 4, for HM which is the harmonic mean of Sens,
Spec, PPV, and NPV, out of six datasets, CM-KLOGR
achieved the best for five, KLOGR did so for three, and
SVM for zero datasets, respectively. CM-KLOGR ranked
best most frequently. A trend can be seen that CM-KLOGR
worked better according to the increase in imbalance (refer
the ratio of majority to minority given in Table 2). Con-
cretely speaking, CM-KLOGR did not perform best under
low imbalance, tied for first place with KLOGR under mod-
erate imbalance, and performed best under high imbalance.

In Table 5, out of six datasets, CM-KLOGR achieved the
best for five, KLOGR did so for zero, and SVM for three
datasets, respectively. CM-KLOGR ranked best almost

TABLE 4
Experiment I: Performance 1 for CM-KLOGR, KLOGR, and SVM,
Where HM is theHarmonic Mean of Sens, Spec, PPV, andNPV

Breast

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 95.65 92.00 97.78 95.27
KLOGR 100.00 95.65 92.31 100.00 96.88
SVM 100.00 93.48 88.89 100.00 95.36

Haberman

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 75.25
KLOGR 62.50 78.26 50.00 85.71 66.18
SVM 37.50 86.96 50.00 80.00 56.60

Ecoli-pp

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 93.10 71.43 100.00 89.40
KLOGR 100.00 93.10 71.43 100.00 89.40
SVM 100.00 86.21 55.56 100.00 80.64

Ecoli-imu

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 96.67 66.67 93.55 71.38
KLOGR 50.00 96.67 66.67 93.55 71.38
SVM 50.00 93.33 50.00 93.33 65.12

Pop_failures

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR 80.00 97.96 80.00 97.96 88.07
SVM 80.00 95.92 66.67 97.92 83.09

Yeast-1_vs_7

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 88.37 37.50 100.00 68.99
KLOGR 100.00 81.40 27.27 100.00 58.01
SVM 66.67 93.02 40.00 97.56 65.57

TABLE 5
Experiment I: Performance 2 for CM-KLOGR, KLOGR, and SVM,
Where HM is theHarmonicMean of Sens, Spec, PPV, andNPV

Breast

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 98.40
KLOGR 100.00 95.65 92.31 100.00 96.88
SVM 100.00 95.65 92.31 100.00 96.88

Haberman

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 87.50 82.61 63.64 95.00 80.36
KLOGR 50.00 100.00 100.00 85.19 77.31
SVM 50.00 100.00 100.00 85.19 77.31

Ecoli-pp

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 96.55 83.33 100.00 94.43
SVM 100.00 100.00 100.00 100.00 100.00

Ecoli-imu

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 100.00 100.00 93.75 78.95
KLOGR 50.00 96.67 66.67 93.55 71.38
SVM 50.00 100.00 100.00 93.75 78.95

Pop_failures

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR 80.00 97.96 80.00 97.96 88.07
SVM 80.00 100.00 100.00 98.00 93.67

Yeast-1_vs_7

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 66.67 100.00 100.00 97.73 88.43
SVM 100.00 51.16 12.50 100.00 33.46
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perfectly, and this suggests that CM-KLOGR has a higher
potential to maximize its performance than KLOGR and
SVM have. Summarizing the results in Tables 4 and 5, CM-
KLOGR worked better than KLOGR and SVM.

5.3.2 Performance of CM-KLOGR Compared to Those

of KLOGR and SVM with the Sampling Methods

We move onto the results obtained by CM-KLOGR, KLOGR
with undersampling (KLOGR-US), KLOGR with oversam-
pling (KLOGR-OS), SVM with undersampling (SVM-US),
and SVM with oversampling (SVM-OS). Table 6 shows Per-
formance 1 (the test performance), and Table 7 shows Per-
formance 2 (the ideal test performance).

In Table 6, for HM which is the harmonic mean of Sens,
Spec, PPV, and NPV, out of six datasets, CM-KLOGR
achieved the best for four, and KLOGR-US, KLOGR-OS,
SVM-US, and SVM-OS did so for one or two datasets,
respectively. Although the number of wins was not so large,
CM-KLOGR ranked best most frequently and was more sta-
ble in performance than the sampling methods were.

In Table 7, out of six datasets, CM-KLOGR achieved
the best for six, and KLOGR-US, KLOGR-OS, SVM-US,
and SVM-OS did so for zero to two datasets, respectively.
CM-KLOGR ranked best perfectly, and this suggests that
CM-KLOGR has a higher potential to maximize its per-
formance than the sampling methods have. In summary

TABLE 6
Experiment I: Performance 1 for CM-KLOGR, KLOGR with

Under/Oversampling (KLOGR-US and KLOGR-OS), and SVM
with Under/Oversampling (SVM-US and SVM-OS), Where HM

is the Harmonic Mean of Sens, Spec, PPV, and NPV

Breast

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 95.65 92.00 97.78 95.27
KLOGR-US 100.00 95.65 92.31 100.00 96.88
KLOGR-OS 100.00 95.65 92.31 100.00 96.88
SVM-US 100.00 91.30 85.71 100.00 93.85
SVM-OS 100.00 89.13 82.76 100.00 92.37

Haberman

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 75.25
KLOGR-US 100.00 00.00 25.81 50.00 00.00
KLOGR-OS 87.50 52.17 38.89 92.31 59.57
SVM-US 50.00 82.61 50.00 82.61 62.30
SVM-OS 50.00 78.26 44.44 81.82 59.26

Ecoli-pp

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 93.10 71.43 100.00 89.40
KLOGR-US 100.00 82.76 50.00 100.00 76.80
KLOGR-OS 100.00 89.66 62.50 100.00 84.83
SVM-US 100.00 93.10 71.43 100.00 89.40
SVM-OS 100.00 93.10 71.43 100.00 89.40

Ecoli-imu

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 96.67 66.67 93.55 71.38
KLOGR-US 75.00 76.67 30.00 95.83 57.02
KLOGR-OS 50.00 86.67 33.33 92.86 55.32
SVM-US 00.00 100.00 50.00 88.24 00.01
SVM-OS 50.00 93.33 50.00 93.33 65.12

Pop_failures

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR-US 100.00 04.08 09.62 100.00 10.84
KLOGR-OS 80.00 97.96 80.00 97.96 88.07
SVM-US 100.00 97.96 83.33 100.00 94.77
SVM-OS 40.00 97.96 66.67 94.12 65.75

Yeast-1_vs_7

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 88.37 37.50 100.00 68.99
KLOGR-US 100.00 02.33 06.67 99.99 06.67
KLOGR-OS 100.00 74.42 21.43 100.00 49.93
SVM-US 00.00 100.00 50.00 93.48 00.01
SVM-OS 33.33 81.40 11.11 94.59 28.00

TABLE 7
Experiment I: Performance 2 for CM-KLOGR, KLOGR with

Under/Oversampling (KLOGR-US and KLOGR-OS), and SVM
with Under/Oversampling (SVM-US and SVM-OS), Where HM

is the Harmonic Mean of Sens, Spec, PPV, and NPV

Breast

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 98.40
KLOGR-US 100.00 95.65 92.31 100.00 96.88
KLOGR-OS 100.00 95.65 92.31 100.00 96.88
SVM-US 100.00 95.65 92.31 100.00 96.88
SVM-OS 95.83 100.00 100.00 97.87 98.40

Haberman

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 87.50 82.61 63.64 95.00 80.36
KLOGR-US 87.50 73.91 53.85 94.44 73.91
KLOGR-OS 87.50 78.26 58.33 94.74 77.06
SVM-US 50.00 100.00 100.00 85.19 77.31
SVM-OS 50.00 100.00 100.00 85.19 77.31

Ecoli-pp

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR-US 100.00 96.55 83.33 100.00 94.43
KLOGR-OS 100.00 93.10 71.43 100.00 89.40
SVM-US 100.00 96.55 83.33 100.00 94.43
SVM-OS 100.00 96.55 83.33 100.00 94.43

Ecoli-imu

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 100.00 100.00 93.75 78.95
KLOGR-US 50.00 100.00 100.00 93.75 78.95
KLOGR-OS 50.00 96.67 66.67 93.55 71.38
SVM-US 50.00 96.67 66.67 93.55 71.38
SVM-OS 50.00 100.00 100.00 93.75 78.95

Pop_failures

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR-US 100.00 00.00 09.26 50.00 00.00
KLOGR-OS 100.00 93.88 62.50 100.00 85.74
SVM-US 00.00 100.00 50.00 90.74 00.01
SVM-OS 80.00 97.96 80.00 97.96 88.07

Yeast-1_vs_7

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR-US 66.67 95.35 50.00 97.62 71.77
KLOGR-OS 100.00 97.67 75.00 100.00 91.80
SVM-US 100.00 88.37 37.50 100.00 68.99
SVM-OS 100.00 88.37 37.50 100.00 68.99
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of the results in Tables 6 and 7, CM-KLOGR worked bet-
ter than the simple sampling methods. Remember that
sampling is a kind of preprocessing, and CM-KLOGR is
not exclusive to sampling. By the results that CM-KLOGR
worked better as a whole, and the sampling methods
were effective for some datasets, the positive perspective
of combining CM-KLOGR with sampling was suggested.

5.3.3 Comprehensive Discussion

Based on the discussions in Sections 5.3.1 and 5.3.2, it can be
concluded that CM-KLOGR outperformed its competitors
(KLOGR and SVM with and without under/oversampling
methods) in many conditions. CM-KLOGR worked well
under the default of equal weights on the four evaluation
criteria, and its good performance under different weights
is expected, too. This is examined in Experiment II.

Having confirmed the effectiveness of CM-KLOGR, con-
sider now its relation to the conventional imbalanced data
classification methods, the cost-sensitive, sampling, and
ensemble ones. CM-KLOGR can be interpreted to be
upward compatible to cost-sensitive methods; the crucial
difference is that CM-KLOGR directly increases the values
of the evaluation criteria, with no subjective or trial-and-
error cost setting. In principle, CM-KLOGR can work with

not only sampling methods but also ensemble methods. It
will be worthwhile to examine the performance of CM-
KLOGR combined with sampling and/or ensemble meth-
ods for a possible further improvement.

6 EXPERIMENT II: EVALUATION UNDER DIFFERENT

WEIGHTS ON EVALUATION CRITERIA

6.1 Purpose and Conditions
In Experiment I, with a default setting to assign equal
weights to each of the four evaluation criteria, CM-KLOGR
increased the values of HM. It is easy for CM-KLOGR to
assign different weights depending on the importance of
the evaluation criteria, and thus Experiment II examines
how CM-KLOGR works with different weights.

With regard to the weights, two types of cases were
assumed. One was that positives had a considerably higher
priority than negatives, and the overlooking and misrecogni-
tion of positives were penalized. For example, infected people
must be detected, and uninfected people must be screened
out. Sens and PPVwere emphasized by assigning a weight of
1 on them and 0 on the other evaluation criteria. The HM of
Sens and PPV (in other words, recall and precision), which is
equal to F-measure [48], was used for training CM-KLOGR,

TABLE 8
Experiment II: Performance 1 for CM-KLOGR, KLOGR, and
SVM, Where HM is the Harmonic Mean of Sens and PPV

Breast

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 95.65 92.00 97.78 93.88
KLOGR 100.00 95.65 92.31 100.00 96.00
SVM 100.00 93.48 88.89 100.00 94.12

Haberman

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 66.67
KLOGR 62.50 78.26 50.00 85.71 55.56
SVM 62.50 73.91 45.45 85.00 52.63

Ecoli-pp

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 93.10 71.43 100.00 83.33
KLOGR 100.00 93.10 71.43 100.00 83.33
SVM 100.00 86.21 55.56 100.00 71.43

Ecoli-imu

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 96.67 66.67 93.55 57.14
KLOGR 50.00 96.67 66.67 93.55 57.14
SVM 50.00 93.33 50.00 93.33 50.00

Pop_failures

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 60.00 97.96 75.00 96.00 66.67
KLOGR 80.00 97.96 80.00 97.96 80.00
SVM 80.00 97.96 80.00 97.96 80.00

Yeast-1_vs_7

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 81.40 27.27 100.00 42.86
SVM 66.67 93.02 40.00 97.56 50.00

TABLE 9
Experiment II: Performance 2 for CM-KLOGR, KLOGR, and
SVM, Where HM is the Harmonic Mean of Sens and PPV

Breast

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 97.87
KLOGR 100.00 95.65 92.31 100.00 96.00
SVM 100.00 95.65 92.31 100.00 96.00

Haberman

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 86.96 66.67 90.91 70.59
KLOGR 87.50 73.91 53.85 94.44 66.67
SVM 50.00 100.00 100.00 85.19 66.67

Ecoli-pp

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 96.55 83.33 100.00 90.91
SVM 100.00 100.00 100.00 100.00 100.00

Ecoli-imu

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 93.33 60.00 96.55 66.67
KLOGR 50.00 96.67 66.67 93.55 57.14
SVM 50.00 100.00 100.00 93.75 66.67

Pop_failures

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 83.33
KLOGR 80.00 97.96 80.00 97.96 80.00
SVM 80.00 100.00 100.00 98.00 88.89

Yeast-1_vs_7

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 66.67 100.00 100.00 97.73 80.00
SVM 66.67 93.02 40.00 97.56 50.00
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validating all the classifiers, and testing all the classifiers. The
other was a case in which both positives and negatives were
prioritized, and the overlooking of positives and negatives
were penalized, such as that infected and uninfected people
must be detected. Sens and Spec were put emphasis, and HM
was their harmonic meanwith a weight of 1 on Sens and Spec
and 0 on the others. The HM of Sens and Spec was used as
well as the HM of Sens and PPV in the former case. The
remaining conditions were the same as those of Experiment I.

6.2 Evaluation Process Design
For dividing and feeding datasets, setting the hyperpara-
meters, parameters, and cutoff, and estimating the classifi-
cation performance, the same processes in Experiment I
were applied (See Section 5.2). In Steps 1, 2, and 3, the HM
of Sens and PPV was used in the former case, and the HM
of Sens and Spec was used in the latter case.

6.3 Results and Discussion

6.3.1 Performance of CM-KLOGR to Raise Sens

and PPV

The results obtained by CM-KLOGR, KLOGR, and SVM are
provided anddiscussed in details, but because of space limita-
tions, those by KLOGR and SVM with sampling are omitted

and mentioned briefly. For CM-KLOGR, KLOGR, and SVM,
Tables 8 and 9 showPerformance 1 (the test performance) and
Performance 2 (the ideal test performance), respectively.

In Table 8, for HM which is the harmonic mean of Sens
and PPV, out of six datasets, CM-KLOGR achieved the best
for four, KLOGR did so for four, and SVM for one datasets,
respectively. CM-KLOGR and KLOGR ranked best most
frequently, but in regard to the difference in numerical val-
ues, CM-KLOGR is better than KLOGR. In Table 9, CM-
KLOGR achieved the best for five, KLOGR did so for zero,
and SVM for three datasets, respectively. CM-KLOGR
ranked best almost perfectly, and this suggests that CM-
KLOGR has a higher potential to maximize its performance
than KLOGR and SVM have.

Similar trends to those in Tables 8 and 9 appeared in the
comparison to KLOGR and SVM with sampling; CM-
KLOGR ranked best most frequently with respect to both
Performances 1 and 2. Summarizing all the results, CM-
KLOGR worked better than the other classifiers.

6.3.2 Performance of CM-KLOGR to Raise Sens

and Spec

Similarly to Section 6.3.1, the results obtained by CM-KLOGR,
KLOGR, and SVM are mainly discussed here. In Table 10 on

TABLE 10
Experiment II: Performance 1 for CM-KLOGR, KLOGR, and
SVM, Where HM is the Harmonic Mean of Sens and Spec

Breast

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 93.48 88.46 97.73 94.64
KLOGR 100.00 95.65 92.31 100.00 97.78
SVM 100.00 93.48 88.89 100.00 96.63

Haberman

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 78.62
KLOGR 75.00 78.26 54.55 90.00 76.60
SVM 50.00 78.26 44.44 81.82 61.02

Ecoli-pp

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 89.66 62.50 100.00 94.54
KLOGR 100.00 93.10 71.43 100.00 96.43
SVM 100.00 86.21 55.56 100.00 92.59

Ecoli-imu

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 90.00 40.00 93.10 64.29
KLOGR 75.00 93.33 60.00 96.55 83.17
SVM 75.00 80.00 33.33 96.00 77.42

Pop_failures

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 81.63 35.71 100.00 89.89
KLOGR 100.00 93.88 62.50 100.00 96.84
SVM 100.00 93.88 62.50 100.00 96.84

Yeast-1_vs_7

Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 88.37 37.50 100.00 93.83
KLOGR 100.00 81.40 27.27 100.00 89.74
SVM 100.00 81.40 27.27 100.00 89.74

TABLE 11
Experiment II: Performance 2 for CM-KLOGR, KLOGR, and
SVM, Where HM is the Harmonic Mean of Sens and Spec

Breast

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 97.87
KLOGR 100.00 95.65 92.31 100.00 97.78
SVM 100.00 95.65 92.31 100.00 97.78

Haberman

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 87.50 82.61 63.64 95.00 84.98
KLOGR 62.50 86.96 62.50 86.96 72.73
SVM 87.50 78.26 58.33 94.74 82.62

Ecoli-pp

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 96.55 83.33 100.00 98.24
SVM 100.00 100.00 100.00 100.00 100.00

Ecoli-imu

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 83.33 44.44 100.00 90.91
KLOGR 50.00 96.67 66.67 93.55 65.91
SVM 100.00 70.00 30.77 100.00 82.35

Pop_failures

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 97.92
KLOGR 100.00 93.88 62.50 100.00 96.84
SVM 100.00 95.92 71.43 100.00 97.92

Yeast-1_vs_7

Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 66.67 100.00 100.00 97.73 80.00
SVM 100.00 83.72 30.00 100.00 91.14
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Performance 1, for HM which is the harmonic mean of Sens
and Spec, out of six datasets, CM-KLOGR achieved the best for
two, KLOGR did so for four, and SVM for one datasets, respec-
tively. KLOGR ranked best most frequently, followed by CM-
KLOGR. For CM-KLOGR, its clear superiority and trend did
not appear. In Table 11 on Performance 2, CM-KLOGR
achieved the best for six, KLOGR did so for zero, and SVM for
two datasets, respectively. CM-KLOGR ranked best perfectly,
and this suggests that CM-KLOGR has a higher potential to
maximize its performance thanKLOGR and SVMhave.

The results by KLOGR and SVM with sampling were not
provided to save space, but let us note that, compared to them,
CM-KLOGR ranked best most frequently regarding both Per-
formances 1 and 2. In summary of all the results, although
CM-KLOGR could not outperform KLOGR in Table 10, the
high potential of CM-KLOGRwas suggested by its superiority
in Table 11 and that toKLOGR and SVMwith sampling.

6.3.3 Comprehensive Discussion

As discussed in Sections 6.3.1 and 6.3.2, CM-KLOGR
outperformed its competitors (KLOGR and SVM with and
without under/oversampling methods) in many conditions.
Specifically speaking, CM-KLOGRwasmore effective to raise
the harmonic mean of Sens and PPV, namely F-measure, and
that of Sens and Spec. Considering the results of Experiments
I and II together, CM-KLOGRworked effectively and flexibly
depending on the prioritized evaluation criteria, such as all of
Sens, Spec, PPV, and NPV, or two of them (Sens and PPV, or
Sens and Spec).

7 CONCLUSION

We proposed an imbalanced data classifier, the confusion-
matrix-based kernel logistic regression (CM-KLOGR).
CM-KLOGR aims to directly increase the harmonic mean of
evaluation criteria derived from a confusion matrix (sensi-
tivity, specificity, positive predictive value, and negative
predictive value), through a consistent learning process
realized by KLOGR and minimum classification error and
generalized probabilistic descent (MCE/GPD) learning. In
the experiments, CM-KLOGR outperformed KLOGR and
support vector machine (SVM) with or without sampling,
for several datasets under different settings of the weights
on the evaluation criteria. It was confirmed that CM-
KLOGR can increase the values of the evaluation criteria in
a well-balanced way, adaptively to their priorities.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 15K00323 and a MEXT-supported Program for the Stra-
tegic Research Foundation at Private Universities 2014-2018.

REFERENCES

[1] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284,
Sep. 2009.

[2] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and
F. Herrera, “A review on ensembles for the class imbalance
problem: Bagging-, boosting-, and hybrid-based approaches,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 4,
pp. 463–484, Jul. 2012.

[3] V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera, “An
insight into classification with imbalanced data: Empirical results
and current trends on using data intrinsic characteristics,”
Inf. Sci., vol. 250, no. 20, pp. 113–141, 2013.

[4] A. Purwar and S. K. Singh, “Issues in data mining: A comprehen-
sive survey,” in Proc. IEEE Int. Conf. Comput. Intell. Comput. Res.,
2014, pp. 1–6.

[5] P. Branco, L. Torgo, and R. P. Ribeiro, “A survey of predictive
modeling on imbalanced domains,” ACM Comput. Surveys,
vol. 49, no. 2, 2016, Art. no. 31.

[6] V. Roth, “Probabilistic discriminative kernel classifiers formulti-class
problems,” Lecture Notes Comput. Sci., vol. 2191, pp. 246–253, 2001.

[7] J. Zhu andT.Hastie, “Kernel logistic regression and the import vector
machine,” J. Comput. Graph. Statist., vol. 14, no. 1, pp. 185–205, 2005.

[8] S. Katagiri, B. H. Juang, and C.-H. Lee, “Pattern recognition using a
family of design algorithms based upon the generalized probabilistic
descentmethod,” Proc. IEEE, vol. 86, no. 11, pp. 2345–2373,Nov. 1998.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin,
Germany: Springer, 2006.

[10] V. N. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif.
Intell. Res., vol. 16, pp. 321–357, 2002.

[11] H. He, Y. B. Edwardo, A. Garcia, and S. Li, “ADASYN: Adaptive
synthetic sampling approach for imbalanced learning,” in Proc.
IEEE Int. Joint Conf. Neural Netw., 2008, pp. 1322–1328.

[12] Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser, “SVMs
modeling for highly imbalanced classification,” IEEE Trans. Syst.
Man Cybern. Part B Cybern., vol. 39, no. 1, pp. 281–288, Feb. 2009.

[13] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano,
“RUSBoost: A hybrid approach to alleviating class imbalance,”
IEEE Trans. Syst. Man Cybern. Part A Syst. Humans, vol. 40, no. 1,
pp. 185–197, Jan. 2010.

[14] B. C. Wallace, K. Small, C. E. Brodley, and T. A. Trikalinos, “Class
imbalance, redux,” in Proc. IEEE Int. Conf. Data Mining, 2011,
pp. 754–763.

[15] S. Wang, Z. Li, W. Chao, and Q. Cao, “Applying adaptive over-
sampling technique based on data density and cost-sensitive SVM
to imbalanced learning,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
2012, pp. 1–8.

[16] P. Yang, P. D. Yoo, J. Fernando, B. B. Zhou, Z. Zhang, and
A. Y. Zomaya, “Sample subset optimization techniques for imbal-
anced and ensemble learning problems in bioinformatics applic-
ations,” IEEE Trans. Cybern., vol. 44, no. 3, pp. 445–455,Mar. 2014.

[17] B. Das, N. C. Krishnan, and D. J. Cook, “RACOG and wRACOG:
Two probabilistic oversampling techniques,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 1, pp. 222–234, Jan. 2015.

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. Berlin,
Germany: Springer, 2014.

[19] X.-Y. Liu and Z.-H. Zhou, “The influence of class imbalance on
cost-sensitive learning: An empirical study,” in Proc. IEEE Int.
Conf. Data Mining, 2006, pp. 970–974.

[20] C. L. Castro and A. P. Braga, “Novel cost-sensitive approach to
improve the multilayer perceptron performance on imbalanced
data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 6, pp. 888–
899, Jun. 2013.

[21] B. Krawczyk, “Cost-sensitive one-vs-one ensemble for multi-class
imbalanced data,” in Proc. IEEE Int. Joint Conf. Neural Netw., 2016,
pp. 2447–2452.

[22] C. Zhang, K. C. Tan, and R. Ren, “Training cost-sensitive deep
belief networks on imbalance data problems,” in Proc. IEEE Int.
Joint Conf. Neural Netw., 2016, pp. 4362–4367.

[23] V. Nilulin, G. J. McLachlan, and S. K. Ng, “Ensemble approach for
the classification of imbalanced data,” Lecture Notes Artif. Intell.,
vol. 5866, pp. 291–300, 2009.

[24] S. Wang and X. Yao, “Relationships between diversity of classifi-
cation ensembles and single-class performance measures,” IEEE
Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 206–2019, Jan. 2013.

[25] Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel
ensemble method for classifying imbalanced data,” Pattern Recog.,
vol. 48, pp. 1623–1637, 2015.

[26] R. E. Schapire, “The strength of weak learnability,” Mach. Learn.,
vol. 5, no. 2, pp. 197–227, 1990.

[27] D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5,
pp. 241–259, 1992.

[28] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[29] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[30] I. Nouretdinov, et al., “Machine learning classification with confi-
dence: Application of transductive conformal predictors to MRI-
based diagnostic and prognostic markers in depression,” Neuro-
Image, vol. 56, no. 2, pp. 809–813, 2011.

1818 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2017



[31] V. Balasubramanian, S. S. Ho, and V. Vovk, Conformal Prediction
for Reliable Machine Learning: Theory, Adaptations and Applications.
Amsterdam, The Netherlands: Elsevier, 2014.

[32] K. Matsuda, M. Ohsaki, S. Katagiri, H. Yokoi, and K. Takabayashi,
“Application of kernel logistic regression to the prediction of liver
fibrosis stages in Chronic Hepatitis C,” in Proc. Joint Int. Conf. Soft
Comput. Intell. Syst. Int. Symp. Adv. Intell. Syst., 2012, pp. 780–784.

[33] Y. Fong, S. Datta, I. S. Georgiev, P. D. Kwnong, and G. D. Tomaras,
“Kernel-based logistic regressionmodel for protein sequence with-
out vectorialization,” Biostatistics, vol. 16, no. 3, pp. 480–492, 2015.

[34] X. Wang, E. P. Xing, and D. J. Schaid, “Kernel methods for large-
scale genomic data analysis,” Briefings Bioinf., vol. 16, no. 2,
pp. 183–192, 2015.

[35] Z. Liu and J. Hu, “Mislocalization-related disease gene discovery
using gene expression based computational protein localization
prediction,”Methods, vol. 93, no. 15, pp. 119–127, 2016.

[36] A. Nath and S. Karthikeyan, “Enhanced prediction and characteri-
zation of CDK inhibitors using optimal class distribution,”
Interdisciplinary Sci. Comput. Life Sci., pp. 1–12, 2016,
doi: 10.1007s12539–016-0151-1.

[37] C. Cortes and V. Vapnik, “Support-vector networks,” Mach.
Learn., vol. 20, pp. 273–297, 1995.

[38] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vec-
tor Machines and Other Kernel-based Learning Methods. Cambridge,
U.K.: Cambridge Univ. Press, 2000.

[39] S. S. Keerthi, V. Sindhwani, and O. Chapelle, “An efficient method
for gradient-based adaptation of hyperparameters in SVM mod-
els,” in Proc. Neural Inf. Process. Syst. Conf., 2006, pp. 673–680.

[40] B. H. Juang, W. Chou, and C. H. Lee, “Minimum classification
error rate methods for speech recognition,” IEEE Trans. Speech
Audio Process., vol. 5, no. 3, pp. 257–265, May 1997.

[41] E. McDermott, T. J. Hazen, J. L. Roux, A. Nakamura, and S. Kata-
giri, “Discriminative training for large-vocabulary speech recogni-
tion using minimum classification error,” IEEE Trans. Audio Speech
Language Process., vol. 15, no. 1, pp. 203–223, 2007.

[42] X. He, L. Deng, and W. Chou, “Discriminative learning in sequen-
tial pattern recognition,” IEEE Signal Process. Mag., vol. 25, no. 5,
pp. 14–36, Sep. 2008.

[43] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in
Proc. Int. Conf. Artif. Intell. Statist., 2009, pp. 448–455.

[44] D. G. Altman and J. M. Bland, “Diagnostic tests 1: Sensitivity and
specificity,” Brit. Med. J., vol. 308, no. 6943, 1994, Art. no. 1552.

[45] D. G. Altman and J. M. Bland, “Diagnostic tests 2: Predictive val-
ues,” Brit. Med. J., vol. 309, no. 6947, 1994, Art. no. 102.

[46] D. G. Altman and J. M. Bland, “Diagnostic tests 3: Receiver operat-
ing characteristic plots,” Brit. Med. J., vol. 309, no. 6948, 1994,
Art. no. 188.

[47] US National Library of Medicine, National Institutes of Health,
“PubMed,” 2016. [Online]. Available: https://www.ncbi.nlm.nih.
gov/pubmed

[48] C. J. van Rijsbergen, Information Retrieval. London, U.K.: Butter-
worths, 1979.

[49] M. Ohsaki, K. Matsuda, P. Wang, S. Katagiri, and H. Watanabe,
“Formulation of the kernel logistic regression basedon the confusion
matrix,” in Proc. IEEE Congr. Evol. Comput., 2015, pp. 2327–2334.

[50] M. Jansche, “Maximum expected F-measure training of logistic
regression models,” in Proc. Conf. Human Language Technol. Empir-
ical Methods Natural Language Process., 2005, pp. 692–699.

[51] T. Jaakkola and D. Haussler, “Probabilistic kernel regression mod-
els,” in Proc. Workshop Artif. Intell. Statist., 1999.

[52] G. C. Cawley and N. L. C. Talbot, “Efficient model selection for
kernel logistic regression,” in Proc. IEEE Int. Conf. Pattern Recog.,
2004, pp. 439–442.

[53] K. Tanaka, T. Kurita, and T. Kawabe, “Selection of import vectors
via binary particle swarm optimization and cross-validation for
kernel logistic regression,” in Proc. IEEE Int. Joint Conf. Neural
Netw., 2007, pp. 1037–1042.

[54] R. Memisevic, “Dual optimization conditional probability models,”
in Proc. NIPS Workshop Kernel Methods Structured Domains, 2006,
pp. 1–10.

[55] M. Lichman, “UCI machine learning repository,” Univ. California,
School of Inf. Comput. Sci. (2016). [Online]. Available: http://
archive.ics.uci.edu/ml

[56] J. Alcala-Fdez, et al., “KEEL data-mining software tool: Data set
repository, integration of algorithms and experimental analysis
framework,” J. Multiple-Valued Logic Soft Comput., vol. 17, no. 2/3,
pp. 255–287, 2011.

Miho Ohsaki received the BE, ME, and Dr Eng
degrees from the Kyushu Institute of Design (cur-
rently, Kyushu University), in 1994, 1996, and
1999, respectively. From 1999 to 2004, she was
an assistant professor at Shizuoka University.
From 2004, she started working at Doshisha
University, and is now a professor there. Her
research interests include machine learning and
its application to biomedical data analysis. She is
a member of the IEEE, the IPSJ, and the JSAI.

Peng Wang received the BE degree from Xidian
University in 2011 and the ME degree from both
Xidian University and Doshisha University by the
double degree program in 2014.

Kenji Matsuda received the BE and ME degrees
from Doshisha University, in 2011 and 2013,
respectively. He works with Yahoo! Japan Corpo-
ration. He is a member of the IEEE.

Shigeru Katagiri received the Dr Eng degree in
information engineering from Tohoku University, in
1982. From 1982 to 1986, he worked in the Electri-
cal Communication Laboratories, Nippon Tele-
graph and Telephone Public Corporation (currently
NTT). In 1986, hemoved to theAdvancedTelecom-
municationsResearch Institute International (ATR),
and in 1999 he returned to the NTTCommunication
Science Laboratories. Since 2006, he has been
with Doshisha University, where he is a professor in
the Graduate School of Science and Engineering.

He has played several roles in academic communities, including the chair
of the IEEE James L. Flanagan Speech and Audio Processing Award com-
mittee, the chair of the IEEE Kansai section, and a member of the Science
Council of Japan. He is a fellow of the IEEE and the NTTR&D.

Hideyuki Watanabe received the PhD degree
from Hokkaido University, in 1993. From 1993 to
2009, heworked for theAdvancedTelecommunica-
tions Research Institute International (ATR). From
2009 to 2016, he worked for National Institute of
Information and Communications Technology
(NICT). In 2016, he started working for ATR again.
His current research interests include studies on
pattern recognition theory, discriminative training,
and speech signal processing. He is a member of
the Acoustic Society of Japan, the IEICE, and
the IEEE.

Anca Ralescu received the bachelor’s degree in
mathematics from the University of Bucharest, in
1972, and the MA and PhD degrees in mathemat-
ics from Indiana University, in 1981 and 1983,
respectively. She is currently a professor of com-
puter science in the Department of Electrical Engi-
neering and Computing Systems, University of
Cincinnati. Her research interests are in the area
of intelligent systems, including machine learning,
knowledge representation, brain computer inter-
face, and management of uncertainty using prob-

abilistic and fuzzy sets approaches. She is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

OHSAKI ETAL.: CONFUSION-MATRIX-BASED KERNEL LOGISTIC REGRESSION FOR IMBALANCED DATA CLASSIFICATION 1819



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


