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Abstract—This work introduces a set of scalable algorithms to identify patterns of human daily behaviors. These patterns are extracted

from multivariate temporal data that have been collected from smartphones. We have exploited sensors that are available on these

devices, and have identified frequent behavioral patterns with a temporal granularity, which has been inspired by the way individuals

segment time into events. These patterns are helpful to both end-users and third parties who provide services based on this

information. We have demonstrated our approach on two real-world datasets and showed that our pattern identification algorithms are

scalable. This scalability makes analysis on resource constrained and small devices such as smartwatches feasible. Traditional data

analysis systems are usually operated in a remote system outside the device. This is largely due to the lack of scalability originating

from software and hardware restrictions of mobile/wearable devices. By analyzing the data on the device, the user has the control over

the data, i.e., privacy, and the network costs will also be removed.

Index Terms—Frequent pattern mining, temporal granularity, multivariate temporal data, human-centric data

Ç

1 INTRODUCTION

THE computing and networking capabilities of mobile
and wearable devices, makes them appropriate tools for

obtaining and collecting information about user activities’
(mobile sensing). This has led to a significant expansion of
opportunities to study human behavior ranging from public
transport navigation [1] to well-being [2]. Moreover, the
advent of mobile and wearable devices enables researchers
to unobtrusively identify human behavior to an extent that
was not previously possible. Nevertheless, there is still a
lack of wide acceptance of mobile sensing applications in
real-world settings [3].

There are different reasons for this mismatch between
capability and acceptance. First, the limitation of resources
and a lack of accuracy in the collected contextual data, espe-
cially is a challenge with regard to the battery life [4]. Fur-
thermore, the small size of sensors that are dealing with
radio frequency, i.e., Bluetooth, WiFi and GPS, affects the
quality of their data [5] (the smaller the device, the less accu-
rate the data). For instance, Fig. 1 visualizes two days of data
from two users. As it can bee seen, the location data (�), WiFi
data (~) and other data objects are not available at all the
time. The next reason is the proximity of the smartphone to
the user, because these devices are not always carried by

their owners [6]. However, smartwatches and wearables are
body-mounted and thus the proximity problem is less chal-
lenging. Lastly, the operating system restrictions of mobile
devices, which removes background services when the CPU
is under a heavy load (in order to preserve the battery life).
As a result, there is no ideal data collection approach that can
sense and record individuals’ information 24/7 with no data
loss or uncertainty.

Existing works that support a mobile data mining [7], [8],
[9], [10] have offered very promising results. However, these
studies employ specific hardware, which is known for data
quality among users [7], [8], or they analyze data offline out-
side the device [9], [10]. We believe there is lack of scalable
data mining methods that can handle the uncertainty. In this
work, we introduce scalable algorithms1 that utilize a variety
of sensors, e.g., WiFi, location, etc. that are available on the
device. By leveraging collected multivariate temporal data
our algorithms can identify frequent human behavioral patterns
(FBP) with a time estimation (temporal granularity), similar to
the human perception of time.We have tested our algorithms,
and their scalability, on two real-world datasets, and two
small devices, i.e., a smartphone and smarwatch.

Identification of frequent patterns in human behavior has
applications in several domains, which vary from recom-
mendation systems to health care and transportation optimi-
zation. For instance, a health care application can monitor a
user’s physical activity routine. However, if there is a change
in their routines, which is not recognized or notified by the
user (such as depression related behaviors), then the system
can recognize this and notify care givers about the change.
Another use-case can be transportation optimization. In
order to arrive at the train station on time, a system can learn
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the routine commuter patterns of a user, and notify them
about the appropriate time for leaving toward the station.
On the other hand, the scalability (in terms of resource effi-
ciency) enables on-device and online analysis, and therefore
removes both the network cost and privacy risks of transfer-
ring personal data to the cloud.

The results of our algorithms are a set of identified
FBPs, which is a combination of time stamped attribute/
value (sensor/data) with a confidence level. For ins-
tance, {confidence:60 percent; 15:00-16:00; call:

#951603XXXX; sms:#951603XXXX} is a user profile that
includes one FBP. This example shows two repeated behav-
iors, which are (i) making or receiving a call and (ii) sending
or receiving a text message to 951603XXXX. These two behav-
iors have been occurred 60 percent of the time, between 15:00-
16:00 everyday.

The followings are characteristics and contributions of
this research:

� Real-world Data: We have benefited from using two
real-world datasets. One is a human-centric lifelog-
ging dataset UbiqLog [11]. This dataset, in comparison
with other mobile sensing datasets [7], [8], has been
created using real-world settings. This is due to the
variety of devices and the users’ ability to turn on/off
sensors. The second dataset that has been used, Device
Analyzer [12], is hardware-centric. This is the largest
real-world dataset, which has been created from
Android phones. It includes timestamped hardware
settings and operating system level changes of phones.
Our focus is on human-centric behaviors. However,
our algorithms can also be used to extract FBP in mul-
tivariate temporal data. Therefore, we have used the
Device Analyzer dataset in our evaluations to demon-
strate our algorithms versatility and in-dependency
from the underlying data.

� Temporal Granularity: Unlike digital systems, human
understanding of time is not precise. Our daily behav-
iors occur in time intervals. For instance, a person does
not arrive at work every day at exactly the same time,

or eat lunch at exactly the same time every day. A time
interval always exists for routine behaviors, even if it
is only a small break, e.g., five minutes. This is also
true for precise time scheduled tasks, such as a meet-
ing. Therefore, it is essential to have flexibility in tem-
poral analysis. We have implemented this dynamic of
human behavior by introducing a simple but novel
human-centric temporal granularity method. Our algo-
rithms use this temporal granularity instead of the
original timestamp. Therefore, it should not be catego-
rized as a time series approach.

� Scalability and Sensor Independence: A salient
advantage of our approach is its scalability. It is light-
weight and can be integrated into small devices with
limited computing capabilities, e.g., wearables. More-
over, notwithstanding its temporal dependency, it
does not consider the type of the underlying sensor
data. We have converted heterogeneous sensor data
into three tuples, which includes sensor name, data
and discrete time. Such sensor independency makes
the algorithm capable of running in settings that
include temporal multivariate data, independent
from any specific sensor. Furthermore, employing a
combination of sensors rather than focusing on spe-
cific sensors, and using temporal granularity instead
of exact timestamps, allows us tomitigate uncertainty
by ignoring sensor data that is not available, and
focusing instead on the available data.

Algorithm proposed in this paper has been implemented
in the “insight forWear”2 an smartwatch app that is released
into the market and benefit from predictive analytic. At the
time of writing this paper, it is one of the top five lifelogging,
quantified-self app in the Google Playmarket.

The remainder of this paper is organized as follows: First
we start by formalizing the problem. Then, we describe
datasets that have been utilized. Next, we describe the
implementation of our algorithms; this is followed by the

Fig. 1. Two days visualization for the data of two different users. The top two belong to User1 and the bottom ones belongs to User2. Location and
WiFi logs from User1 between 7:00 to 8:00 and activity logs from User 2 from 5:30 to 6:30 represent the small temporal differences in human
behavior.

2. https://play.google.com/store/apps/details?id=com.insight.
insight

RAWASSIZADEH ET AL.: SCALABLE DAILY HUMAN BEHAVIORAL PATTERN MINING FROM MULTIVARIATE TEMPORAL DATA 3099

https://play.google.com/store/apps/details?id=com.insight.insight
https://play.google.com/store/apps/details?id=com.insight.insight


experimental evaluation. Afterward, we explain related
work and conclude this paper.

2 DEFINITIONS AND PROBLEM STATEMENT

We live in a spatio-temporal world and all of our behaviors
occur in a specific location and time [13]. Therefore, to digi-
tally quantify human behavior the target system should
sense both time and location. Since location sensors, such as
GPS, are not reliable (especially indoors) and it is not possi-
ble to collect this type of data at all time (24/7), we can only
use time to link different information objects together. We
define the problem as follows:

Problem 1. Given timestamped activities of the user, assuming
they are occurring in a routine, the goal is to efficiently create a
profile, which summarizes frequent behavioral patterns of a
user.

To be able to formulate the problem first we describe our
definitions. Table 1 lists notations that we have used in this
section.

Human behavior is composed of many daily activities
that are distinctive and recurring. Here, these types of activ-
ities have been called “frequent behavioral patterns”.

Definition 1. Entity e, is assumed to be a fine-grained unit of
human behavior and consists of a tuple of three e ¼<A;D; T >.
Each entity contains a timestamp (time interval), T , attribute
name,A, and attribute value (data)D.

For example, < “activity”,“walking”, 10:25-10:47> is an
entity and A is the “activity”. The first task of quantifying a
frequent behavior is to find entities that are occurring in the
same time interval, in a series of consecutive days. Time
intervals here refer to a normalized notion of the time, based
on the temporal granularity. For example, the given time of
10:25-10:47 will be normalized to 10:00-11:00. In order to
check if two time intervals of two (or more than two) days
are similar. The number of equal entities in all time inter-
vals, should be equal or greater than a threshold, which we
call a minimum entities threshold, u. In other words, u is the
minimum number of similar entities that should exists, in a

specific time interval between two or more consecutive days.
For example, assume u has been set to two and we are com-
paring two days. In one day we may have < activity, walk-
ing, 10:40-11:00> , < app, skype, 10:50-11:00> then for the
next day we have < activity, walking, 10:40-11:00> , < app,
whatsapp, 10:50-11:00> . Since u is set to two, at least two of
these entities should be completely similar between 10:30-
11:00. However, in the given example only one of them is
similar, because there are different data, i.e., D (whatsapp &
skype) for the “app” attribute A. Therefore, the 10:30-11:00
time interval, and its data, will not be counted as a frequent
pattern between two days. We have introduced u because
some sensors, such as WiFi, have significantly more records
than other sensors. Consequently, because of the similar
WiFi records, there will be too many similar entities in each
time interval, and not other sensors. Therefore, we define u

as a filter to force the similarity calculation to operate with
better precision (more than one similar sensor). Here simi-
larity calculation returns “true” for exact equality, otherwise
“false” (not euclidean numerical similarity calculation).

Definition 2. Group g, is a collection of similar entities, for a
specific time interval, in a set of consecutive days. Therefore,
g ¼ fe1; e2; . . . ; ekg, e 2 g. In simple terms, if the number of
entities in a specific time interval are greater or equal than u,
then they will be collected in a set and this set is being called
group. Tc is a time interval that is constant among all entities
of a group. In other words, groups are FBPs and the notation of

a group is as follows: g ¼ f8e : eiðtÞ ¼ Tc;
Pk

i¼0 ðeÞ � ug

k is the number of entities, which is always greater or equal
to u. eiðtÞ presents the time interval of the ith entity in the
group. After the groups have been identified, the window
moves to another set of days. To reduce the number of com-
parisons windows are disjointed and do not overlap.

We can simply compare entities together without creating
groups. However, group based comparison avoids computa-
tional complexity. Comparing entities for all days together
(without groups) creates a huge burden on performance
Oð2nÞ, assuming n is the number of all days. To avoid this
complexitywe use the slidingwindow approach. The sliding
window first comparesmwindow size (WS) number of days
together, as shown in Fig. 3a. Then it compares the windows’
results together, i.e., m0 (assuming there will be m0 number

of windows). This means the complexity is OððmÞ2 þm0Þ. m
is the size of the window and it is significantly smaller than
n, which is the number of all existing days. At the end, all of
the results from each sliding window will be compared
together to construct the profile that will be explained later.
Moreover, the results that came from windows includes a
fewer amount of entities than simply comparing all existing
entities of between days. Therefore, the number of compari-
sons will be significantly reduced and the computational
complexity will become near linear. We will demonstrate
this impact in the evaluation section later (Section 5.2).

The next step is to identify similar groups that have been
repeated frequently among all days (compare results of
windows together). Our initial experiments have resulted a
large number of groups that have been created by compar-
ing between few number of all days. However, the lifetime
of these groups are too short, and thus we can not literally

TABLE 1
Notations and Their Descriptions

Notation Description

e entity, is a tuple of < A;D; T > that presents a
fine-grained information unit

T time interval of the entity based on temporal
granularity, e.g., 16:00-15:00, 12:25-12:30

A attribute name of an entity.
D value of an entity. In this model per sensor only

one data element will be used.
g a set of similar entities (inside a window) that

repeat in a consecutive days.
u minimum required number of entities between

the same time intervals of two or more days.
countðgÞ count the number of g appearances

among all days (for each person).
� minimum number of repeats for a group to

consider this group in the profile.
profile a set of similar groups that have been repeated

more than � times.

3100 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016



call them a “frequent behavior”. To remove these groups we
have defined another threshold: lifetime confidence threshold,
��. If the number of identified groups, among all days, is
equal or greater than �, then they will be considered as fre-
quent patterns and will appear in the Profile. For instance,
within six days worth of data, a windows size of two (two
days will be compared together each time) has been used
and � of three. The result of each windows is as follows:
Window1:g1,g2, Window2:g2,g3,g4, Window3:g2,g3. Since this
example uses � ¼ 3, only g2will be considered as a frequent
behavior, and all other groups will be neglected. The profile
is described as follows:

Definition 3. Profile, is characterized by a set of repeated similar
groups g which have been identified more than or equal � times,
i.e., Profile ¼ fg1; g2; . . . ; gkg. We can formalize profile as:

Profile ¼ S k
i¼0gi ; ifðcountðgiÞ � �Þ

n o

In other words, Profile is a container of groups for a per-
son or the union between k number of groups. If the count
is greater or equal to �, then these groups stay in the profile.
The countðgiÞ function counts the occurrences of a group gi,
among other windows and stores this group in the profile.

This process results in a single (or multiple if we do the
same for weekends or other specific days) profile for each
user. Each group in the profile has a confidence in percent-
age, similar to the example that has been used in the intro-
duction. The confidence presents the ratio of repeat for the
target group during the course of analysis. Using the confi-
dence enables the system to prioritize groups based on their
repeat frequency.

3 DATASET

As previously noted, the development and testing of our
work has benefited from access to two real-world datasets,
UbiqLog [11] and Device Analyzer [12]. In contrast with
previously considered smartphone datasets, i.e., Reality
Mining [7] (uses Nokia N6600) and Nokia’s Lausane
data campaign [8] (uses Nokia N95), these datasets were
collected in real-world settings, and have taken into account
the device variety of users. Moreover, in contrast to pre-
vious datasets, they are both contemporary, and thus
they consider the recent trend in the heavy usage of
smartphones.

UbiqLog. The open source3 UbiqLog [11] application, has
been used to create the UbiqLog dataset. This application
relies on participants’ smartphones and has collected more
than two months of lifelogging data from each participant.
To preserve participants’ privacy, UbiqLog is designed in
such a way that participants can disable or enable sensors at
any time. Participants have been asked to enable sensors
that have been listed in Table 2. Activity data have been
obtained from Google Play Services, Contact numbers in
Call and SMS were stored with pseudonymization and SMS
content was completely removed. The data collection pro-
cess was performed in 2013 and 2014, on 35 participants.
More description about the UbiqLog dataset and its partic-
ipants’ characteristics is provided in [14].

Table 2 shows a general overview about the data that has
been collected from the participants. With the exception of
WiFi and Bluetooth, which were sampled every six minutes,
all other sensor data objects have been collected as they
became available. Fig. 1 presents a visualization of four days
of data for two users, which we created to gain a high level
view of the data. This figure represents the small temporal
differences between user’s activities, within two consecutive
days and illustrates the need for temporal granularity.

Device Analyzer. Device Analyzer [12] is the largest data-
set available that contains hardware statuses and device
configurations of Android smartphones. It collects data for
about 23,000 users and it includes more than 10 billion
records of “raw” sensor data. This is a promising real-world
dataset. However, unlike the UbiqLog dataset, Device Ana-
lyzer’s focus is on hardware-specific information collection
and not user-centric data. Therefore, we cannot perform
user-centric analysis, using this dataset. Nevertheless, since
it includes multi-variate timestamped data, we can use this
dataset to demonstrate the scalability of our approach on
other multivariate timestamped data. 35 random users
(equal to the number of UbiqLog participants) have been
chosen for our experiments. In total 132 million raw data
records have been processed. These data objects include
timestamped information about hardware-related data,
such as network usage, WiFi connections, system processes,
high frequency background services (HF), etc. Table 3
shows the number of records that we have used in our anal-
ysis from 35 users of the Device Analyzer dataset.

4 FREQUENT BEHAVIORAL PATTERN

IDENTIFICATION ALGORITHMS

In order to implement our algorithms for the problem
described above, first the data format should be converted
from heterogeneous data to machine-processable data, i.e.,
the raw data needs to be converted to the previously
described entity format. As previously stated, the data has
been collected from heterogeneous sources. Some sensors
have multiple values, for instance WiFi has BSSID, SSID
and Capalities (WPA, PSK, etc.). Nevertheless, for each sen-
sor our model chooses only one value. In particular, each
sensor (attribute) A, requires a single data point (value) D.
Therefore, “BSSID” has been chosen for WiFi and Bluetooth,
the pseudonymized phone number for SMS and Calls,
“process name” for Application and tilting, in-vehicle,

TABLE 2
UbiqLog Dataset Records for Each Sensor

Sensor Name Num. of Instances

WiFi 8,750,111
Location 725,560
SMS 28,849
Call 99,022
Application Usage 45,803
Bluetooth Proximity 117,236
Activity State 15,641
All Data 9,782,222

All records are semantically rich and are human readable
records. Therefore, there is no raw sensor data, such as
accelerometer data, in this dataset.

3. https://github.com/rezar/ubiqlog
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on-bicycle, walking, still, and unknown for the activity sen-
sors (UbiqLog uses Google play services for activity recog-
nition and therefore there is no raw accelerometer data
inside the dataset). A similar approach has also been used
for the Device Analyzer dataset, which we do not report it
here to preserve space.

During the second step, we propose an algorithm that
identifies the movement (based on location changes) state,
which will be used to enrich the semantics of the data within
the notion of the location. In third step, we need to convert
the timestamp to a time similar to the human perception of
time. Afterward, in the fourth step we describe the behavior
similarity and FBP detection algorithms. Fig. 2 presents the
flow of FBP detection from raw, heterogeneous sensor data.

4.1 Location State Estimation

Red dots (�) in Fig. 1 are not just GPS data. They could also
be a combination of Cell-ID, GPS, and any third party ser-
vice that provides geographical coordinates. Lamentably, in
a real-world setting, 24/7 geographical coordinates identifi-
cation is not possible, especially in indoor environments
and due to battery limitations, GPS is usually turned off.
Cell-ID does provide geographical coordinates and it is
more frequently available, but it is too imprecise for location
recognition [15]. Fig. 1 shows the uncertainty that has been
existed among all sensor data. On the other hand, location
state such as being in home, at work, etc. is widely used for
human behavior detection [7], [16], [17], [18].

Previously, there have been a few works [15], [19] that
focus on extracting location from a combination of different
data sources. In contrast, there are several other works that
focus on extracting location from a single source of informa-
tion [20], [21], [22], [23] and provide promising results. Never-
theless, as it has been show in Fig. 1 in a real-world setting we
have sparse set of geographical coordinates but we can benefit
from combination of sensors (WiFi, GPS, CellID). Therefore, we
need a novel algorithm to transform these data to movement
state, which could be moving, stationary or unknown. Our
notion of location (movement state) is more limited than
other spatial based research efforts, which consider the geo-
graphical locations or trajectories of users. However, our

definition has the two advantages of simplicity and greater
availability. The contribution of location annotation in this
work is to be as used as a supplementary element to improve
the probability of the FBP detection.

Occasionally, geographical coordinates is completely
unavailable, as is the case with the Device Analyzer dataset.
In these cases, theWiFi data has been used for estimating the
location. Based on this description, the location estimation
algorithm must be able to identify location changes from a
combination of sensors (sensor fusion). Furthermore, it is
important to note that our focus is on the data that is being
collected from the users’ device (user-centric) and not a third
party service, such as a call detail record (CDR) [24], [25].

Algorithm 1. Location State (Based on Movement)
Estimation from Different Signals

Data: entities,signalType
Result: results

1 if (isWiFi = signalType) then
2 forall the (locations in entities) do
3 moving contDiff(locations);
4 if (moving != ? ) then
5 results:add(moving);
6 else if (moving = ? &
7 contSim(locations) != ? ) then
8 results:add(stationary);
9 else
10 results:add(unknown);

11 else
12 forall the (locations in entities) do
13 locstate parseGPS(locations);
14 if (locstate = ? ) then
15 locstate parseOtherSignals(locations);
16 if (locstate =moving) then
17 results:add(moving);
18 else if (locstate ¼ stationary & contSim(locations) !

= ? ) then
19 results:add(stationary);
20 else
21 results:add(unknown);
22 return results;

Algorithm 1 presents our location state estimate. The algo-
rithm receives a set of entities and a signal type as inputs, and
it returns a list of entities with a location state in the results.
Entities with location states include additional data, which is
the location state. Therefore we have a four tuple entity.

As the first step, the algorithm checks signalType, line 1.
If the signal type is only WiFi, then it returns true; other-
wise, there is a combination of location signals, and the
algorithm continues from line 11. The contDiff method, at
line 3, searches for a sequence of continuous WiFi BSSIDs,
which have different names. If a sequence exists, and if no
WiFi BSSID has been repeated in the sequence, this is a sign
of a moving event. Therefore, a moving event is created and
appended to the results list (line 5). Otherwise, if there is a
sequence of WiFi BSSIDs, but at least one of them is

TABLE 3
35 Random Users’ Records from

Device Analyzer Dataset

Sensor Name Num. of Instances

WiFi 2,288,642
Application 98,392,622
Phone 15,719,384
SMS 104,643
Bluetooth 9,620
Analytics 2,910
Power 5,716,330
System 1,051,175
Audio 4,839,668
CPU 1,143,736
Image 2,281,293
Video 152,397
Memorycard 83,572
Net 232,954
HF 16,687
All Data 132,035,633

Fig. 2. FBP extraction flow from raw hetregenous sensor data.
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repeated (they are not unique), the contSim method returns
them, and a stationary event will be created and appended
to the event list (results) at line 8. For instance, in the
sequence w1; w2; w3; w4; w1; w3 includes two repeated ele-
ments, w1 and w3. In this case, the algorithm will create a
stationary event from this sequence. In line 10, if there is no
WiFi signal at all, then an unknown event will be created
and appended to the results list. In summary, the algorithm
checks WiFi BSSID data objects that have appeared sequen-
tially and if they are not unique, then it creates a stationary
event. Otherwise, if there are unique elements, the algo-
rithm creates a moving event, and if none of these cases
exists, then it creates an unknown event.

Algorithm 2. Temporal Granularity Calculation

Data:Din, precision
Result:Dout

1 //iterate through entities of a date for (i=0;ði < Din:e
ðlengthÞ)) do

2 // read hour and minutes of current entity
3 TmpCeil ceilðDiðT ÞH; precisionÞ;
4 TmpFloor floorðDiðT ÞH; precisionÞ;
5 Tabs  distanceðDiðT ÞH; TmpCeil; TmpFloorÞ;
6 DiðT Þ  Tabs;
7 Dout:addðDiðT ÞÞ
8 returnDout;

If geographical coordinates exist, then the status of the
location is easily recognized. To calculate location state
from geographical coordinates the algorithm checks the dif-
ferences between two consecutive points and calculates the
state (if it is moving or stationary). Method parseGPS, line
13, implements this scenario.

Nevertheless, occasionally the GPS might not be turned
on and so therewill be very fewGPS logs (mostlywhen users
are navigating). In the UbiqLog dataset, most location logs
will be from Cell-ID. As it has been described, it is not possi-
ble to precisely identify if the user’s location has changed or
if the cell tower has been switched. Therefore, the calculation
should be flexible with 800 to 1,000 meter accuracy [20]. To
cover this precision problem, instead of calculating the dis-
tance between two consecutive points (geographical coordi-
nates), we calculate the distance between three consecutive
points. If the distance between the first and third point is
more than 800 meters, then we can conclude the user is mov-
ing. Method parseOtherSignals, line 15, implements the loca-
tion (movement state) calculation fromCell-ID data objects.

The complexity of Algorithm 1 is linear, OðnÞ, because
even if we assume all coordinates are Cell-IDs there is no
need for a comparison between each element and its two
previous ones. Therefore, in a worst case scenario, we will
have a 3n comparison, which is still a linear complexity.

Afterward, a file is created for each user, which includes
their data. Each of these records contains four elements:
attribute name, timestamp and attribute data, which is a
presentation of a three-tuple entity and location.

4.2 Temporal Granularity

According to Poidevin [26], we do not perceive time in and
of itself, but rather, we perceive changes or events in time.
To be able to model human behavior, a precise machine

timestamp should be transferred to a format similar to the
way humans perceive time. In a more technical sense,
humans perceive events in relation to both location and
time [13]. In contrast to the location, all existing mobile and
wearable devices can record information with a timestamp.

In order to simulate the human perception of time tem-
poral granularity [27] (TG) will be used. Setting the TG is
also depends on the target application. Here we attempt to
make a TG for the daily behaviors. For instance, every even-
ing a user may make a phone call. However, it is unlikely
that s/he will call every day exactly at 5:00 pm; s/he could
call one day at 5:21 pm and another day at 4:53 pm. As a
result, we define TGs based on common daily time scheduling,
and a use rounding algorithm to convert times based on the
given precision.

Algorithm 3. Group Creation from Similar Entities

Data:Dins, ws,u
Result: All Detected Groups in a Window

1 grpAll; grpPrev ? ;
2 entArr; entArrNext ? ;
3 while (ðDins:hasNextÞ < ws) do
4 //reading entities of current day
5 entArr Dins:current:e;
6 //reading entities of next day;
7 entArrNext Dins:next:e;
8 //compare and collect similar entities;
9 entSimilar compareðentArr; entArrNext; uÞ;
10 // add similar entities into a group;
11 grpTmp:addðentSimilarÞ;
12 if (grpPrevious:containsDataðÞ) then
13 grpPrevious getSimilarðgrpTmp; grpPrevÞ;
14 grpAll:addðgrpPrevÞ;
15 else
16 grpAll:addðgrpPrevÞ;
17 return groupAll;

Algorithm 2 is the algorithm for calculating TG. It is
simple and deals only with a timestamp conversion,
based on given precision and predefined rules, thus its
computational complexity is also OðnÞ. Since it could be
read easily we save space and do not describe it in
detail. In short, it receive a day, Din, with all entities
inside that day, and the precision for TG such as one
hour, half an hour, etc. It then iterates through time ele-
ment entities for the given day, and creates two normal-
ized time (TmpCeil and TmpFloor) based on ceiling and
flooring the given time. Next, it calculates the distance
between the original time, i.e., DiðT ÞH , and both ceil and
floor. Afterward, it returns the shortest one that is either
ceil or floor. The returned time objects now substitutes
the original time of the entity.

The TG creation algorithm, from the timestamp, can work
with different timeframes. However, in our experimental
evaluation, we define six time frames, which have been used
in daily communication: Five minutes (for time-sensitive
tasks such as attending a meeting), a quarter of an hour, half
an hour, an hour, one and half hours and two hours.

This temporal similarity transformation can handle
uncertainty by focusing on similar data in a perceptible
time interval (i.e., a quarter of an hour, half an hour, etc.).
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Therefore, using TG reduces uncertainty originating from
different times of routine behaviors.

4.3 Frequent Behavioral Pattern Detection

After the data has been transformed and its timestamp has
been converted, then the similarity detection algorithm
starts to build groups of similar entities. First, we introduce
the group creation algorithms from similar entities, then we
describe the method that builds users’ profiles by filtering
groups. Fig. 3 visualizes Algorithm 3 that we have proposed
for group creation. The window size is set to be three
(Fig. 3a), one day as a weekend (green boxes) will be
neglected,4 and u is equal to two. Fig. 3b shows that two
entities, in each time frame will be compared between two
consecutive days. By comparing two days, D1,W1, with D2,
W2, two groups, G1 and G2, have been extracted. For the
sake of brevity, we have not visualized a comparison
between more than two days. Algorithm 3 receives the
input days, Dins, window size ws, and minimum threshold
u. In line 3, it iterates through the days, Dins, and reads enti-
ties for each day. It then compares the current entities to the
entities of the next day, using the compare method and
keeps the similar ones in a temporary group grpTmp (lines 9
to 11). If a previous similarity group exists, grpPrev, then it
updates that group via the getSimilar method, in line 13.
This process is repeated for the given learning days and all
similar groups in the given window size. Results will be col-
lected and returned in an array called grpAll. In summary,
each window returns a set of groups. Since behaviors are
just combinations of groups, we can add them all together
to have one set that includes group objects. This set will be
called Profile. Algorithm 4 summarizes the collected
groups and returns the profile object. In line 3, it iterates

through the objects of a given group array. It increases the
confidence of repeated group objects and removes them
from the array in line 5 to 8. Next, it calculates an intersec-
tion between groups, and if the appearance of a group is
more than the � threshold (line 10), then this group will be
added to the user’s profile. At the end, it returns the Profile
object. Both Algorithms 3 and 4 are linear (as it has been
described in Section 2).

Algorithm 4. Creating Profile from Groups

Data: Groups, �
Result: Profile

1 Profile ? ;
2 // finding similar groups;
3 while (Groups:hasNext) do
4 // two groups are equal;
5 if (Groups:next ¼ Groups:current) then
6 // increase the confidence of the current group

Groups:current:confidenceþ 1;
7 // remove the repeated group;
8 Groups removeðGroups:nextÞ;
9 // prune groups confidence based on �;
10 while (Groups:hasNext) do
11 if (Groups:current:confidence � �) then
12 Profile:addðGroups:currentÞ;
13 return Profile;

Existing works [9], [28] provide association rule mining
to identify correlation between contextual data. However,
our work aims to identify human behavior, instead of the
unique contextual data approach.

4.4 Algorithms Limitations

It is important to note that we still cannot map these infor-
mation objects onto all existing real-life events, such as
nested events, e.g., being at work includes drinking coffee,
using a printer, etc. Nevertheless, our work offers a signifi-
cant step toward more intuitive understanding of human
behavior (especially with the TG we are using). Moreover,
our approach does not rely on a unique source or sensor;
therefore, data is extracted from multiple sources. There-
fore, if a single sensor fails, its impact is insignificant. This
helps mitigate the problem of uncertainty originates from
the nature of contextual data.

Another important issue with our approach is its behav-
ioral scope limitation. The model we have proposed here is
time dependent. This approach can identify daily consecutive
behaviors but not all routine behaviors. For instance, going
to the cinema every two or three months or going to a cam-
paign once a year, is not going to be identified by our
approach. These are routine behaviors, but our approach can
not identify them. A solution to that problem is to collect all
anomalous behaviors and apply the algorithm on the collec-
tion of those behaviors. This solution has not been explored
in this work, becausewe focus on daily routine behaviors.

Furthermore, if a behavior occurs in a sparse temporal
settings, such as calling a person every day, at different
times of the day, then it is not considered as a routine
behavior. The current version of our algorithm limits the
behavior comparison in a scope of the sliding window and
temporal granularity. In other word, the routineness of a

Fig. 3. Group creation based on similarities between entities. ‘D’
presents day and ‘W’ presents week. (a) presents a sliding window with
a size of three. (b) presents similar entities that have been detected
between two days; window size and u both are equal to two.

4. The target city of the experiment only has a one-day weekends.
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behavior should be within the scope of a temporal granular-
ity. Nevertheless, based on the experiment described in [14]
there are very few daily routine behaviors that have sparse
temporal settings.

5 EXPERIMENTAL EVALUATION

The first step in our experimental evaluation is the creation of
a ground truth dataset that can help us in estimating the accu-
racy of algorithms. In particular, we evaluate the accuracy of
the FBP identification algorithms based on (i) different seg-
ments of the day, (ii) different TGs, and (iii) we report about
the accuracy of our approach in comparison to other algo-
rithms. We use Apriori [29], FP-Growth [30] as a baseline,
andMTK [31] and estDec+ [32] as state-of-the-art algorithms.
Apriori is a baseline algortihm for frequent itemset mining;
FP-Growth is a well-known baseline for fast itemset mining.
MTK (Memory-constraint Top-K frequent-patternmining) is
scalable and can operate in limited memory environments.
estDec+ is a new fast and memory efficient algorithm that
uses a weighted-based approach for item set mining, which
is similar, but significantly more advanced, than the
weighted algorithm has been used byMobileMiner.

The following experiments describe the next phase of our
evaluation and demonstrate the utility and efficiency of our
algorithms: First, we demonstrate the scalability of the FBP
detection algorithm by analyzing the impact of window size
and grouping on the execution time. Our FBP approach is
lightweight enough to be used in wearable and mobile devi-
ces. These devices have limited resources [5], thus investi-
gating the execution time is very crucial in demonstrating if
our approach is scalable on these devices. Next, we report
about the execution time of our approach and compare it
with other algorithms on both mobile phones and smart-
watches. Moreover, we compare FBP battery and memory
utilization with these algorithms.

We then report about the sensor impact on FBP identifi-
cation. This could assist us in identifying the most influen-
tial device sensors that can be used to identify FBPs and
remove unnecessary sensor data collection to preserve disk
space and battery. Finally, we present a statistical overview
of the impact of changing the thresholds (i.e., � and u), TGs
and sensors on the FBP identification. This can help devel-
opers to identify boundaries to configure these variables so
that they are effective for the sensors.

It is important to note, the focus of this research is on end-
users’ behavior and thus the device setting data are not neces-
sarily representing the users’ behavior. Nevertheless, we
have used the Device Analyzer dataset to demonstrate the
scalability of our algorithm onmultivariate temporal data.

5.1 Accuracy Analysis

5.1.1 Ground Truth Dataset

In order to evaluate the accuracy and quality of the identified
FBPs, we have created a ground truth dataset, which is com-
posed of more than 5,000 identified entities (that participate
in FBPs), from five users. It contains randomly identified
FBP data that has been labeled by the users as either true or
false. The number of identified entities in the profile objects
are different among users, but each user has labeled about
1,000 entities that belong to him/her self. Users were asked
to label if they agree (true) with each of their identified

entities in their profile or if they do not agree (false). Each
user only labels his or her entities and not other users’
behaviors (profile, groups, entities).

5.1.2 Accuracy of Identified FBPs

After collecting the labels, we carefully examined the accu-
racy of our algorithms using three temporal segments of the
day: 0:00-07:59 (0-8), 08:00-15:59 (8-16) and 16:00-23:59 (16-
24) and different TGs. This time based segmentation has
been inspired by similar work in mobile data mining [10],
but it is more accurate than the two divisions proposed by
Ma et al. [10].

The result of labeling shows that FBPs with more than
20 percent confidence were mostly labeled as positive
results, and lower than 20 percent confidence were labeled
as negative results. 20 percent seems to be a low confidence
level and we believe this is because of the short lifetime of
FBPs that have originated by the sparsity of the data.

Based on one hour TGs, Fig. 4 shows two segments of the
day 0-8 and 8-16 and contains more accurately identified
FBPs than from the 16-24 segment. This could be attributed
to the fact that between 0-8 is usually a time when a user is
asleep (a very routine behavior) and 8-16 is usually the time
when a user is at work/school (also a routine behavior).
Surprisingly, 16-24 (leisure time), has a low likelihood of
having routine behaviors and its accuracy is lower than the
other segments. This is in contrast with our initial hypothe-
sis that 8-16 might have the lowest number of routine
behaviors than the other two segments, because participants
in the UbiqLog dataset were students, and should not have
a very different behaviors from 16-24.

Table 4 reports about the accuracy of the identified FBPs,
based on labels, with different TGs and not using a TG at all
(baseline). The results of this analysis shows that FBP identi-
fication accuracy is influenced by different values of TG and
the segmentation of the day. Table 4 shows that identifying
FBPs using “an hour” as the TG improves the accuracy of
the FBP identification, compared to other TGs. In other
words, one hour TG has the highest accuracy among other
TGs. Nevertheless, choosing 15’, 30’, 90’ and 120’ as TG per-
forms almost the same or slightly lower than 60’ but better
than 5’. The inaccuracy of five minutes is due to the fact that
this TG is too precise for an application to model human
behavior. We can conclude that most routine human behav-
iors that can be identified from a smartphone have a one
hour approximation. Nevertheless, we should consider that
the sensitivity of TG is application specific. For instance,
an application can identify FBPs by using smartwatch

Fig. 4. Correct and incorrectly labeled FBPs based on time segment for
TG ¼ 60’.
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heart-rate and physical activity sensors. In this instance, it
should have a short TG so that it can recognize anomalous
hear-rate activities during a routine exercise.

Our other evaluation uses the same users to annotate the
results delivered by similar algorithms, and compares the
accuracy of our FBP algorithm with Apriori, FP-Growth,
MTK and estDec+. Table 5 shows the labeling results of
users. With no TG (baseline) or low (5’) and high (120’) TG,
other methods perform better than FBP. For the rest of the
TGs, FBP outperforms other methods. This accuracy origi-
nates in the use of � and u. Other algorithms are very useful
for the general problem domain. Nevertheless, for multivar-
iate temporal data, defining a minimum required number
of entities (u) and filtering noise based on the minimum
number of repeated groups (�), results in improved accu-
racy. Unlike Apriori, both MTK and estDec+ apply another
level of filtering such as considering top frequent itemsets
by MTK or recent ones by estDec+. Therefore, baseline algo-
rithms that do not filter have superior accuracy.

5.2 Scalability

Our algorithms must be capable of being integrated into
small devices, which have restricted computational resources
compared to desktop computers. In order to demonstrate that
our algorithms are lightweight, we havemeasured the execu-
tion time, which is the representation of scalabilty. Moreover,
we have chosen to evaluate the execution time of our algo-
rithm among Apriori and FP-Growth as baseline algorithms
and MTK and estDec+ as state-of-the-art algorithms. Apriori
is the well-known algorithm for frequent itemset mining. It is
not the fastest or most resource efficient but we have chosen
it as a baseline algorithm and it has been used in other mobile
data analysis works [9], [28]. In contrast, FP-Growth is scal-
able and is known as a baseline of the fastest frequent itemset
mining algorithms. Furthermore,MTK and estDec+ both also

have been used as state-of-the-art algorithms that are scalable
and fast.

5.2.1 Sliding Window Impact on the Execution Time

Execution time is directly correlated to scalability and scal-
ability is a major contribution of this work. It has been
achieved through (i) the adoption of a sliding window and
(ii) the reduction of the number of comparisons via utilizing a
group based comparison. To demonstrate scalability, first we
have analyzed the execution time performance of the FBP
algorithm with different window sizes for 60 days. This time
frame has been utilized as it covers a significant period of
time so that the capability of the FBP algorithm can be fully
tested. Dealing with a large number of days is an important
requirement in Lifelogging systems, which use small devices
[33]. The baseline here is not using the window, and it com-
pares each day with all the other days. Fig. 5 summarizes
these performance changes for both the UbiqLog and Device
Analyzer datasets. The legend on the top-left side in Fig. 5
shows the window size. Since weekend behaviors are differ-
ent than weekday behaviors, we recommend to compare
them separately from theweekday data. In particular, we rec-
ommend not using awindow size larger than five or six days.
However, this depends on the weekend duration, i.e., if
weekends are two days or one day. Therefore, the upper
bound could be the number of theweekdays.

The results illustrate that increasing the window size sig-
nificantly improves the execution time performance. In
other words, a smaller slope means better performance, and
increasing the window size decreases the slope significantly
in both datasets. Even increasing the number of days, does
not affect the performance of the FBP algorithm. The results
depicted in Fig. 5 belong to one user, for 60 days, and have
been measured on a MacBook with Intel Core 2 Duo 2.4
GHz CPU and 8 GB RAM. Another factor that affects the
scalability is the use of grouping instead of simple compari-
sons. FBPs are designed for multivariate temporal data.
Most of the similar algorithms to FBP are frequent itemset
mining algorithms.

Table 6 reports on the execution time differences (in sec-
onds) between the algorithms from 2 to 10 days on the same
MacBook machine, without using the sliding window. Our
algorithm outperforms Apriori (Ap.) but it is quite similar
to FP-Growth (FG). Nevertheless, MTK and estDec+ (eD+)
both outperform FBP. Note that the sliding window has
been disabled in this experiment. The next experiments
report with the sliding window enabled.

5.2.2 Comparison with Other Algorithms

We have compared the FBP execution time, memory and bat-
tery utilization of a sample of user data (one user from each

TABLE 4
FBP Identification Accura-Cy with Different Temporal Segments

of a Day and Different TGs (0’ is the Baseline)

TG Temporal Segment

0-8 8-16 16-24 All

0’ 0.52 0.56 0.46 0.48
5’ 0.66 0.62 0.64 0.62
15’ 0.79 0.71 0.72 0.65
30’ 0.84 0.74 0.70 0.69
60’ 0.84 0.76 0.71 0.77
90’ 0.80 0.75 0.71 0.75
120’ 0.81 0.73 0.70 0.75

TABLE 5
Accuracy of Our FBP Algorithm in Comparision to Apriori,

FP-Growth, MTK, and estDec+ Algorithms, with Different TGs

TG Apri FP-Growth MTK estDec+ FBP

0’ 0.55 0.54 0.55 0.51 0.48
5’ 0.66 0.62 0.62 0.67 0.63
15’ 0.58 0.60 0.63 0.62 0.65
30’ 0.65 0.63 0.66 0.67 0.69
60’ 0.69 0.71 0.68 0.73 0.77
90’ 0.75 0.71 0.70 0.71 0.75
120’ 0.78 0.78 0.77 0.78 0.75

Fig. 5. The effect of window size on the execution time performance.
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dataset) on both smartphones and smartwatches. Based on
default SPMF library settings [34] minimum support for all
algorithms have been set to two. �, u have been set to two
and a window size of three for FBP has been used. To port
these algorithms we have used the implementation from
SPMF [34], and we have adapted them for Android devices.
For the smartphone test we have used a Nexus 5, with 2.26
GHz quad-core Krait 400 CPU with 2 GB Ram. For the
smartwatch test, we have used a Sony S3, with four core
ARM Cortex-A7 1.2 GHz CPU and 512 MB Ram. However,
due to small RAM and CPU of smartwatches, a maximum
of 10 of days worth of data has been considered for the anal-
ysis. Otherwise, similar to other resource intensive operat-
ing systems, the Android Wear timeouts the long running
process based on its resource preservation policy.

Fig. 6 shows the execution time of running FBP in compari-
son to other algorithms on the smartphone, within the
described settings. Fig. 7 shows the execution time of FBP in
comparison to other algorithms on the smartwatch. For more
than six days of analysis, FBP execution time performance is
faster than other algorithms. This has been highlighted espe-
cially as the number of days increases, the FBP execution time

does not change significantly and stays at a near constant
value. It has even outperformed state-of-the-art algorithms,
which are known to be fast and scalable algorithms that oper-
ates on limited memory. However, for a smaller amount of
data, FBP does not perform better thanMTK or estDec+.

Table 7 shows the comparison between FBP and other
algorithms for battery utilization on the smartphone.
Respectively Table 8 shows the similar data on the smart-
watch. Tables 7 and 8 show FBP battery utilization is lower
than all other algorithms, but only with larger than 10 days
of data. In particular, for a small number of days (less than
10 days), there is no significant battery utilization differen-
ces between algorithms, and FBP does not perform as effi-
cient as others.

It could be argued that a fast execution time can be easily
achieved through increasing the memory usage, which is an
important resource. To demonstrate the scalability based on
memory use, Fig. 8 shows the maximum allocated heap
used on the smartphone for both datasets, and it compares
FBP memory use with other algorithms. Respectively, Fig. 9
shows FBP the maximum allocated heap memory on the
smartwatch. Figs. 8 and 9, show that when the number of
days increases FBP is more memory efficient than other
algorithms. When there are a small number of days all other
algorithms outperforms the FBP. Therefore, from a memory
usage perspective, when there are more than 10 days of
data available, FBP is more efficient than other algorithms.
Nevertheless, similar to the battery utilization, calculating
for small number of days, shows that the memory usage for
all algorithms is very insignificant and not worth for further
investigation.

These evaluations demonstrate the scalability of our
algorithms, while preserving accuracy. From a technical

TABLE 6
Execution Time (in Seconds) of the Five Algorithms,

While “Not” Using the Sliding Window, on the MacBook

Num Days UbiqLog Device Analyzer

Ap. FG MTK eD+ FBP Ap. FG. MTK eD+ FBP

2 0.36 0.25 0.34 0.45 0.47 0.33 0.56 0.46 0.51 0.60
4 0.57 0.29 0.35 0.67 0.53 0.44 0.81 0.76 0.57 0.79
6 1.05 0.64 0.40 0.83 0.98 1.19 0.98 0.88 0.99 1.21
8 1.81 1.09 0.57 0.93 1.25 1.93 1.47 1.56 1.26 1.01

10 2.32 1.40 0.68 1.02 1.81 2.17 1.98 1.69 1.34 1.32

Fig. 6. Execution time comparision between FBP and other algorithms
on the smartphone.

Fig. 7. Execution time comparision between FBP and other algorithms
on the smartwatch.

TABLE 7
A Comparison between Battery Utilization in Micro-Amper-Hour

(mAh) of the Five Algorithms on the Smartphone,
for Both Datasets

NumDays UbiqLog Device Analyzer

Ap. FG MTK eD+ FBP Ap. FG MTK eD+ FBP

10 245 208 220 212 212 360 149 113 128 115
20 255 218 225 218 215 625 262 231 234 239
30 247 234 232 218 220 861 347 352 368 303

40 285 228 239 221 221 911 389 399 413 329

50 318 268 251 226 227 1,032 428 417 489 337
60 346 271 263 240 236 1,428 445 470 519 349

Ap. stays for Apriori, FG for FP-Growth, and eD+ for estDec+.

TABLE 8
A Comparison between Battery Utilization in Micro-Amper-Hour
(mAh) of Five Algorithms on the Smartwatch, for Both Datasets

NumDays UbiqLog Device Analyzer

Ap. FG MTK eD+ FBP Ap. FG MTK eD+ FBP

2 0.03 0.01 0.02 0.10 0.018 0.34 0.02 0.02 0.04 0.05
4 0.03 0.03 0.05 0.12 0.31 0.72 0.06 0.08 0.11 0.07
6 0.04 0.09 0.09 0.13 0.73 0.81 0.09 0.11 0.12 0.19
8 0.09 0.18 0.14 0.16 0.76 0.89 0.14 0.11 0.16 0.21
10 1.27 0.23 0.23 0.25 0.79 0.94 0.19 0.17 0.21 0.25

Ap. stays for Apriori, FG for FP-Growth and eD+ for estDec+.
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perspective, this superiority is because of: (i) using a sliding
window that filters most of the irrelevant entities, and thus
reduces comparisons significantly. (ii) theta and lambda
that propose two layers of hierarchical filtering and result in
both improving accuracy and reduction in the search space,
which overcomes the state-of-the-art methods [31], [32].

5.3 Users Characteristics

As it has previously been stated, resource utilization is a
challenge on small devices. To mitigate this issue, the sys-
tem should be prevented from continuously running our
algorithms. Instead, it is more important to know when the
most appropriate time to run the algorithms are. In particu-
lar, we should know the frequency that these algorithms
should be run. For instance, a group of users could have
routine behaviors during the evening and not many routine
behaviors during the day; if a system learns this, then it will
execute the algorithms only in the evening.

To achieve this goal, we have analyzed the temporal dif-
ferences among users in terms of their routine behaviors.
Identification of these temporal differences enables the tar-
get system to decide about the optimal execution time.

Fig. 10a shows the distribution of FBPs detected in these
three temporal segments, for all 35 users. The stack bar plot
in Fig. 10a has been ordered based on the number of FBPs
detected between 0-8. This figure does not visualize FBP
confidence. As previously stated, based on the users’ labels,
FBPs that have more than 20 percent accuracy are highly
frequent behavioral patterns.

After this initial step, the second task is to identify if we
can generalize users’ characteristics on the described tempo-
ral segment. In this instance, we have used a topic modeling
approach, latent semantic indexing (LSA) [35], to cluster
users based on their temporal FBPs, within their confidence.

Our approach assumes users as documents and numbers of
FBPs within their temporal segment plus confidence as
terms. These are terms: 0-8 & <20 percent, 0-8 & >20

percent, 8-16 & <20 percent, 8-16 & >20 percent,
16-24 & <20 percent, 16-24 & >20 percent.

Fig. 10b shows a multidimensional scaling [36] that has
been performed on the results of our LSA clustering. The
two red dots on the top are outliers, which have signifi-
cantly different behaviors than other users. These results
illustrates three clusters. C3 presents higher density and it
include users who provide fewer FBPs during 16-24 with a
larger and higher confidence FBPs during 8-16. C2 illus-
trates users who have an average number of FBPs (with
both low and high confidence) distributed among two seg-
ments: 8-16 and 16-24. C1 presents the third cluster. This
cluster has more identified FBPs at 0-8 temporal segment
and fewer FBPs in the other two segments.

Understanding the temporal segment with the highest
FBP detection rate enables the system to identify the best exe-
cution time for FBP detection. The fist conclusion we can
draw is that our algorithms could be executed in the time seg-
ment that users have more FBPs (based on the user cluster)
and not in two other time segments. Therefore, we preserve
resources by not executing these algorithms frequently. The
second conclusion is that, this clustering approach assists
the system to reduce the search space through filtering data
that is not being used for the FBP detection. In other words, if
a system knows the target user’s cluster, the FBP detection
algorithms can be applied to only the related temporal
segment(s) and not all of the segments.

5.4 Thresholds and Sensors Effects

This section first provides an overview about sensors
effectiveness in FBP detection, based on the time of the day.
Next, it reports about parameter sensitivities. Our approach
is multivariate and sensor independent, but continuously
collecting data and thus analyzing large amounts of infor-
mation is a resource intensive process. Therefore, identify-
ing the effective sensors in FBP detection, based on time of
the day, could assist us in trimming the data source and
thus not using all of the existing sources 24/7. To gain
such an overview we report on sensors that have partici-
pated in FBPs, based on the time of day. Fig. 11a shows
the distribution of sensor data based on the time of the
day, in the UbiqLog dataset. Since the number of WiFi and
location logs are significantly larger than other sensors,

Fig. 8. Maximum heap allocation memory size (in MB) comparision
between FBP and other algorithms on the smartphone.

Fig. 9. Maximum heap allocation memory size (in MB) comparison
between FBP and other algorithms on the smartwatch.

Fig. 10. (a) FBP distribution among users in three temporal segments
(0-8, 8-16, 16-24). (b) Multidimensional scaling of clusters of users
based on the temporal distribution of their FBPs. We have colored the
cluster elements based on the characteristics of the users.
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WiFi and location have been shown separately in Fig. 12a.
Fig. 11b shows the identified FBPs based on the time of
the day and the number of sensor appearances in FBPs.
Similarly, Fig. 12b shows the number of WiFi and Location
records (extracted from Algorithm 1) that have participated
in the creation of FBPs.

For each sensor we have divided the quantity of that sen-
sors in the FBP logs by the overall number of that sensors in
the dataset. This provides us with the impact ratio (effec-
tiveness) of the sensor for FBP identification. For instance,
the effectiveness of the activity sensor for FBP detection can
be calculated as: 2;174� 15;641 ¼ 0:139. 2,174 are the num-
ber of FBP logs that include activity sensors and 15,641 are
the overall number of activity sensor logs in the dataset. In
the UbiqLog dataset, Activity has the highest ratio, followed
by SMS, Location state or movement (based on Algorithm
1), Application usage, Calls, WiFi and Bluetooth which has
the lowest ratio.

It is notable that the ratio that we have calculated consid-
ers each sensor in abstract, with the creation of our FBPs
being based on a combination of different sources. There-
fore, we do not recommend focusing only on one sensor.
Moreover, we can not generalize these findings to all other
ubiquitous human-centric datasets. Bluetooth data collec-
tion, in the UbiqLog dataset, is based on scanning the envi-
ronment every six minutes and logging all available
Bluetooth proximities, which might not be applicable in
other datasets. This Bluetooth data collection policy results
in sparse Bluetooth logs, and thus Bluetooth data is ineffec-
tive in FBP detection. Activity and SMS have a significant
role in FBP identification. At the time of running our data
collection experiment, not all devices were equipped with
the Google Play API, which has been used for the activity
recognition. Nevertheless, a large number of FBPs have
been created because of activity data.

The second evaluation has analyzed the impact of varia-
bles on FBP detection. “Minimum entities threshold”,
“lifetime confidence threshold” and “temporal granularity”
are three configurable variables that have been used in our
approach. We have tested our FBP detection and profiling
algorithms within six different types of TGs: 5’, 15’, 30’, 60’,

90’, 120’ and 0’, which is not using TG. Fig. 13 shows the aver-
age number of detected FBPs for each TG,with differentmin-
imum entities thresholds (u) and lifetime confidence
threshold (�) in the UbiqLog dataset. Fig. 13 shows that
increasing � and u detects a fewer number of FBPs.Moreover,
it shows that themaximum limit for � is four and setting theta
to four is also leaning toward its maximum. Clearly, mini-
mum for both � and u is two, because onemeans that they are
not in use. As an example for setting these variables consider
a scenariowhere a system tries to quantify a user’s gym atten-
dance behavior. If only detecting the location is enough then u

= 1. However, the system may try to detect routine activities
of the user inside the gym. In this case, both location and
activity should be detected then u = 2).

However, results in Fig. 13 show that increasing both �
and u to more than three reduces the chance of detecting
any FBPs. This is due to the fact that increasing these

Fig. 11. (a) Collected sensor data based on the time of day. (b) Identified
FBPs based on sensors and the time of the day.

Fig. 12. (a) Collected WiFi and Location logs. (b) Identified FBPs based
on WiFi alone and the identified location state (not original location).

Fig. 13. Average number of FBP (X Axis) for each temporal granularities,
based on different minimum entities threshold(u) and lifetime confiden-
ces threshold(�) (Y axis).
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variables increases the precision, but lowers the probability
of FBP identification. Based on the maximum number of
identified motifs (u = 2) in Fig. 12, we demonstrate that it is
not feasible to model and predict human behavior 24 hours
a day, via a smartphone. These findings are in line with [6],
which argues that the smartphone’s proximity to the user,
restricts a 24/7 behavior observation. In addition to this,
Fig. 13 shows a possible maximum for the u. Furthermore,
there will be very few FBPs identified with a u larger than
three. The value of � is associated with the number of identi-
fied FBPs, and similar to u increasing the � reduces the num-
ber of FBPs. Nevertheless, � is not as effective as u. Note that
u depends on the number of available sensors on the device.
For instance, in the “insight for Wear” example we have
used 2 for u. This means two equal sensors in each temporal
granularity represents a routine behavior. � is also applica-
tion dependent, we use 2 for � with window size 3, to con-
sider a behavior in a week as a routine behavior.

6 RELATED WORK

Amajor contribution of this research is a generic mobile data
mining system. We claim it is generic because of its multi-
sensor support and application independence. Our second-
ary contribution is frequent itemset mining algorithms and
their sub components such as analyzing the temporal aspect
of human behavior. Moreover, we discuss algorithms for
location estimation based on users’ smartphone data. There-
fore, three categories of related works have been studied:
mobile data mining efforts that focus on device data collec-
tion (not 3rd party providers), frequent itemset mining algo-
rithms, and location estimation from smartphone data.

6.1 Mobile Data Mining

Research that relies on collecting data from users’ mobile
devices is mostly application-specific and focuses on pre-
dicting one element of data (single sensor). For instance, a
category of research explores activity recognition from
accelerometer data [37], [38]. Recent approaches [37] have
tried to employ a data dictionary and use semi-supervised
learning to learn human activities. This makes the data min-
ing process lightweight as well as scalable for implementa-
tion on mobile devices. MobileMiner [28] and ACE [9] are
two works that are particularly relevant to our research.
Both studies are very similar and consider the co-occurrence
patterns in human behavior, via mobile phones, through
association rule mining. Their approach is realistic in terms
of deployment. However, they focus on co-occurrences of
more than one data object. In contrast, we have identified
FBPs and not just co-occurrences. Likewise, since we aim
for human behavior detection we benefit from the temporal-
ity of behavior, and thus there is no need to have at least
two data objects available for prediction (one is enough if
the application uses u ¼ 1). Another similar work is [10],
which extracts users’ routine behavior by identifying appli-
cation usage correlation with time and location. This work
transforms geographical coordinates based on the time of
the day to “work” or “home”. Our location transformation
(movement state estimation) is more accurate than this
transformation, and we include precise time of the day,
while transforming the location.

6.2 Frequent Itemset Mining and Temporal
Granularity

As it has been previously stated, our work digitally maps
timestamps for human activities onto human temporal per-
ception. The work most similar to ours is [39], which focuses
onmining users’ daily location patterns via trajectorymining
and defines the TG as a day. Another approach for identify-
ing daily behavior is within [10], who tries to match the daily
location of users to the applications that they use. They con-
verted a day into two segments (8:00-18:00 and 18:00-8:00)
andmodel application usage in each of these segments.

It is important to note that we are dealing with temporal
events that fit into the Allen’s interval algebra [40], and so it
is not about time series analysis [41]. Time series are dealing
with continuous sequences of precisely timestamped data.
For instance, [42] proposed a language for expressing tempo-
ral knowledge in time interval. The authors proposed TKSR
(Time Series Knowledge Representation) representation as a
resolution to resolve Allen’s logic limitations such as han-
dling the ambiguity that exists in overlaps of Allen’s relation.
This work proposes a five stage datamining approach based
on TSKR representation, i.e., (Time Series Knowledge Min-
ing) TSKM, which focuses on mining coincidences and par-
tial orders. Our approach treats data in a similar fashion but
it has focuses on frequent behaviormining.

Other scalable approacheswhich are fast andmemory effi-
cient. For instance, the DCI-CLOSED [43] algorithm uses
depth-first visits of the search space and adopts a vertical bit-
map representation of the dataset. The scope of our behavior
identification is a time interval of a temporal granularity,
therefore our algorithms does not consider if an itemset is a
closed itemset, or not. Two other state-of-the-art algorithms
have also been used in our experimental evaluation. MTK
[31] is an itemset mining algorithm that operates based on the
given memory constraint. It resolves the issue of creating the
FP-Tree in the memory by providing a customized search
d-stair search, which limits the number of candidates that are
generated-and-tested in each database scan. estDec+ [32]
uses the compressible-prefix tree and to staymemory efficient
it keeps only recent frequent itemsets and neglects the previ-
ous ones. Since it is both fast and memory efficient we use it
in our evaluation as one of the state-of-the-art algorithms.

6.3 Location Estimation from Smartphone

There are several research benefits from utilizing smart-
phone location logs, i.e., GPS, WiFi and Cell-ID, to identify
locations of interest and daily movement patterns. Reality
mining [7], is one of the first efforts toward identifying
behavior from smartphone contextual data. Their bench-
mark location dataset has been used widely in other works
[16], [17], [18]. These works use Reality Mining location
data to identify daily location change patterns. However,
recently, the uncertainty of a realistic deployment has been
taken into account and there are some works have been try-
ing to support this uncertainty while mining for location
data that has originated from unreliable sensors [18].
Semantically, location is the most valuable piece of informa-
tion in digital human behavior identification, and therefore
these studies map location onto human behavior. However,
we believe that human behavior is not just based on changes
in location, and studies should also include activities that
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are happening within the location. Therefore, our interpre-
tation of human behavior is different from other works.
Since our research can use all of the existing sensors on a
device, it can be extended to any type of human behavior
analysis application. In other words, we benefit from a com-
bination of sparse information sources and not just one informa-
tion source. There is another category of work, which uses
trajectory of location [44], [45] for movement pattern predic-
tion and classification. Since they use geographical coordi-
nates their notion of location is different than ours.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a scalable approach for
daily behavioral pattern mining from multiple sensor infor-
mation. This work has been benefited from two real-world
datasets and users who use different smartphone brands.
We use a novel temporal granularity transformation algo-
rithm that makes changes on timestamps to mirror the
human perception of time. Our frequent behavioral pattern
detection approach is generic and not dependent on a single
source of information; therefore, we have reduced the risk
of uncertainty by relying on a combination of information
sources to identify frequent behavioral patterns. Further-
more, our approach is lightweight enough that it can be run
on small devices, such as smartwatches, and thus reduces
the network and privacy cost of sending data to the cloud.
Results of the experimental evaluation shows our algorithm
outperforms the baseline and two state-of-the-art algo-
rithms in both execution time and accuracy. Moreover, con-
verting raw timestamps to temporal granularities increase
the accuracy of the FBP identification, which is influenced
by different values of temporal granularity, the segment of
the day and the sensor type. These findings assist the sys-
tem in identifying the appropriate run time and sensor
impact of the behavioral pattern identification.

In our future work, we are trying to model concept drift
and its relation with forgetting or churn that is in the nature
of human behavior. Moreover, we plan to compare the per-
formance of the sliding window with the performance of
the damped window.
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