
Exploiting Single-Threaded Model
in Multi-Core In-Memory Systems

Chang Yao, Divyakant Agrawal, Fellow, IEEE, Gang Chen, Qian Lin, Beng Chin Ooi, Fellow, IEEE,

Weng-Fai Wong, Senior Member, IEEE, and Meihui Zhang,Member, IEEE

Abstract—The widely adopted single-threaded OLTP model assigns a single thread to each static partition of the database for

processing transactions in a partition. This simplifies concurrency control while retaining parallelism. However, it suffers performance

loss arising from skewed workloads as well as transactions that span multiple partitions. In this paper, we present a dynamic single-

threaded in-memory OLTP system, called LADS, that extends the simplicity of the single-threaded model. The key innovation in LADS

is the separation of dependency resolution and execution into two non-overlapping phases for batches of transactions. After the first

phase of dependency resolution, the record actions of the transactions are partitioned and ordered. Each independent partition is then

executed sequentially by a single thread, avoiding the need for locking. By careful mapping of the tasks to be performed to threads,

LADS is able to achieve a high degree of balanced parallelism. We evaluate LADS against H-Store, a partition-based database; DORA,

a data-oriented transaction processing system; and SILO, a multi-core in-memory OLTP engine. The experimental study shows that

LADS achieves up to 20x higher throughput than existing systems and exhibits better robustness with various workloads.

Index Terms—Transaction management, concurrency control, single-threaded model, multi-core, in-memory OLTP system

Ç

1 INTRODUCTION

ONLINE transaction processing (OLTP) is at the core of the
Internet economy. However, while hardware has been

scaling according to Moore’s Law [1], the scaling of transac-
tion processing has been lackluster. Fig. 1 shows a growth
comparison between Intel’s single-threaded CPU perfor-
mance1 and IBM’s TPC-C performance2. As a reference, we
can see a widening gap between hardware capability scaling
and that of OLTP. As we move into the multi-core era, serv-
ers will not only have much more significant processing
capabilities but also much larger memory [2], [3]. Unfortu-
nately, the historical trend seems to cast doubt as to whether
the ever-improving hardware capabilities can be efficiently
translated to significantly better OLTP performance. Harizo-
poulos et al. [4] showed that traditional database manage-
ment systems spent substantial amounts of time on logging
(�12 percent), locking/latching (�30 percent) and buffer
management (�35 percent). In other words, even if the entire

database resides in memory and transactions are short-lived,
the overheads of managing concurrent transaction execution
would severely limit the scalability, especially when there
are heavily-contended critical sections [5].

Traditional concurrency control protocols can be catego-
rized into lock-based protocols and timestamp-based proto-
cols. For lock-based protocols, lock thrashing and deadlock
avoidance are the main challenges. For timestamp-based pro-
tocols, the main issues are the high abort rate and the need for
a well-coordinated timestamp allocation. Recently, the single-
threaded model is widely used [5], [6], [7], [8] to improve the
efficiency of in-memory database systems. In thismodel, each
worker thread is uniquely assigned to a static partition of the
database.When a transaction arrives, a worker that is respon-
sible for its processingwill obtain all the locks of the partitions
to be accessed. By doing so, all the critical sections that are
contended for can be resolved in advance. In a scenariowhere
most transactions only need to access data in a single parti-
tion, the threads can work independently, achieving a high
degree of parallelism. However, in practice, no matter how
well the database has been partitioned, transactions that span
multiple partitions cannot be totally avoided. Such transac-
tions typically cause a substantial amount of blocking as
threads tend to contend with each other to acquire all the nec-
essary locks, resulting in more CPU idle time. Furthermore,
continuously changing workloads may cause load imbalance
where some worker threads experience significant blocking
while others have too much work to handle. For a statically
partitioned database where each partition is assigned to a
thread, a skewedworkload could lead to skewedCPUutiliza-
tion. Consequently, it significantly reduces the efficiency of
the entire system. Fig. 2 demonstrates an experimental study
of CPU utilization in H-Store [6], a partitioned database sys-
tem that adopts the single-threaded model for transaction
processing. The experiment is conducted on a 24-core server

1. www.cpu-world.com/benchmarks/desktop_CPUs_single.html
2. www.tpc.org/tpcc/results/tpcc_results.asp

� C. Yao, Q. Lin, B. C. Ooi, and W.-F. Wong are with the Department of
Computer Science, School of Computing, National University of Singapore,
Singapore 117417, Singapore.
E-mail: {yaochang, linqian, ooibc, wongwf}@comp.nus.edu.sg.

� D. Agrawal is with the Department of Computer Science, University of
California, Santa Barbara, CA 93106-5110.
E-mail: agrawal@cs.ucsb.edu.

� G. Chen is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, Zhejiang, China. E-mail: cg@zju.edu.cn.

� M. Zhang is with the Information Systems Technology and Design Pillar,
Singapore University of Technology and Design, Singapore 487372,
Singapore. E-mail: meihui_zhang@sutd.edu.sg.

Manuscript received 23 Feb. 2016; revised 2 June 2016; accepted 5 June 2016.
Date of publication 8 June 2016; date of current version 7 Sept. 2016.
Recommended for acceptance by X. Lin.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2578319

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016 2635

1041-4347 � 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

www.cpu-world.com/benchmarks/desktop_CPUs_single.html
www.tpc.org/tpcc/results/tpcc_results.asp
mailto:
mailto:
mailto:
mailto:

and runs workloads with different percentages of cross-
partition transactions. As can be seen from the result, the per-
centage of CPU idle time of H-Store increases with the incre-
ment of cross-partition transactions. When there is no cross-
partition transaction in the workload, each worker thread can
process transactions independently without any blocking.
When the workload contains cross-partition transactions,
potential contention among worker threads appears with its
probability rising along the increment of cross-partition trans-
actions. To resolve contention, thread blocking is usually
inevitable, which degrades the CPUutilization.

In this paper, we examine the design ofmulti-core in-mem-
ory OLTP systemswith the goal of improving the throughput
of transaction processing through better fitting of the single-
threaded model onto modern multi-core hardware. In partic-
ular, we propose LADS, a dynamic single-threaded OLTP
system, which separates the concurrency control from the
actual transaction execution. LADS first resolves a batch of
transactions into a set of record actions. A record action is a con-
secutive sequence of (atomic) operations on the same tuple
within a transaction. LADS makes use of dependency
graphs [9] to capture dependency relations among record
actions within a batch of transactions. It then decomposes the
dependency graphs into sub-graphs such that the subgraphs
are about the same size, and the number of edges across these
sub-graphs is minimized. The sub-graphs are subsequently
distributed to the available worker threads for execution in

such a manner that the actions to be performed on the same
record are assigned to the same worker. Within one sub-
graph, record actions are executed in transaction order to
resolve the dependencies between transactions. For record
actionswith dependencies (edges) between sub-graphs of dif-
ferent worker threads, LADS also ensures that they are exe-
cuted in order so that dependencies among sub-graphs of the
same transaction can be quickly resolved. Hence, transaction
aborts due to out-of-order execution of conflicting record
actions are completely eliminated. Further, instead of parti-
tioning the database statically, LADS dynamically partitions
the workload according to its actual distribution to achieve a
higher CPU utilization. As shown in Fig. 3, LADS first tracks
the workload distribution during the transaction dependency
resolution, and then partitions the workload dynamically to
balance the workload among the available workers. In this
example, LADS partitions the workload into four parts (i.e.,
fAg, fB; Ig, fCg and fJ;Eg) and assigns them to the available
workers. Meanwhile, LADS is also locality aware as it takes
into account thememory hierarchy of themulti-core platform,
and supports optimizations to avoid cache coherence over-
head. More importantly, LADS reduces the use of centralized
components with no locks/latches required during its proc-
essing,which further improves the computation efficiency.

The design of LADS is based on the principle of fast
batch processing in a multi-core in-memory system which
enables a latency/throughput trade-off. As with any batch
processing system, latency is a valid concern. However, in
practice, this is not as big an issue as it appears to be. First,
in real applications, requests at the client side are always
sent to the server in batches in order to reduce the network
overhead [10]. Besides, transactions are processed and com-
mitted in a batched manner in systems using group commit
protocols [11] to reduce disk I/O cost, and in-memory sys-
tems need to periodically flush transaction logs to disk to
ensure reliability [12]. Second, data accesses in multi-core
in-memory systems are very fast compared with that of tra-
ditional disk-based systems [13]. This should reduce the
overall latency. Finally, the latency due to batch processing
can be optimized by tuning the batch size. In short, the
latency of a well designed multi-core transaction processing
can be bounded to an acceptable bound. Evaluation of our
implementation of LADS shows that it achieves signifi-
cantly higher throughput, and scales well.

In summary, LADS offers the following innovations:

� The representation and resolution of dependencies
between atomic record actions of a batch of transac-
tions in dependency graphs.

Fig. 1. A historical plot illustrates an increasing trend and gap of CPU
and OLTP performance.

Fig. 2. CPU utilization of H-Store.

Fig. 3. Dynamic partitioning based on actual workloads.

2636 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

� The separation of contention resolution and transac-
tion execution into two stages that allows for the
decentralized and dynamic partitioning of the
dependency graphs into work balanced subgraphs
which can be scheduled onto independent threads
such that no synchronization is required.

� Techniques to deal with issues including depen-
dency across dependency subgraphs, range queries,
and logging within the same two-phase execution
framework.

� Extensive performance study of LADS against a par-
titioned database system that supports the single-
threaded model and two popular multi-core in-
memory OLTP engines. Experimental result shows
that LADS performs up to 20x faster than state-of-
the-art systems. More importantly, LADS can better
exploit the advances in hardware, and achieve a scal-
ing that is more in line with Moore’s Law.

The remainder of the paper is organized as follows. In
Section 2, we review the related work. A novel dynamic sin-
gle-threaded transaction processing model is presented in
Section 3. We describe the implementation details of LADS
in Section 4. A comprehensive evaluation is presented in
Section 5. Finally, the paper is concluded in Section 6.

2 RELATED WORK

Many research efforts have been devoted to improve the
performance of multi-core in-memory systems. We provide
a brief survey on works that are relevant to our proposal.

2.1 Systems with Traditional Concurrency Control
Protocols

Systems using lock-based protocols typically require a lock
manager, in which lock tables are maintained to grant and
release locks. The data structure in the lock manger is typi-
cally very large and complex, which incurs both storage
and processing overheads. Light-weight Intent Lock
(LIL) [14] maintains a set of lightweight counters in a global
lock table instead of lock queues for intent locks. Although
LIL simplifies the data structure of intent locks, transactions
that cannot obtain all the locks have to be blocked until a
release message from the other transactions is received. In
order to reduce the overhead of a global lock manager, asso-
ciating the lock states with each data record has been pro-
posed [15]. However, this technique requires each record to
maintain a lock queue, and hence increases the burden of
record management. By compressing all the lock states at
one record into a pair of integers, Very Lightweight Lock-
ing [16] simplifies the data structure to some extent. How-
ever, it achieves this by dividing the database into disjoint
partitions, which affects the performance on workloads that
cannot be well partitioned.

Optimistic Concurrency Control (OCC) [17], which is a
variant of timestamp-based protocol, is widely adopted.
However, its performance is sensitive to contention intensity
[4], [18]. Multi-Version Concurrency Control (MVCC) [19],
[20] is another protocol with which read operations do not
blockwrite operations. HyPer extendsMVCC to enforce seri-
alizability [21], and BOHM [22] optimizes MVCC by avoid-
ing all sharedmemorywrites for read tracking.

Hekaton [23] employs lock-free data structures and OCC-
based MVCC protocol to avoid applying writes until the
transaction is about to commit. However, the centralized
timestamp allocation may remain the bottleneck, and the
read overhead may increase since each read needs to update
the dependency set of the other transactions. SILO [24] is an
in-memory OLTP database prototype optimized for multi-
core systems. SILO supports a variant of OCCmethodwhich
employs batch timestamp allocation to alleviate the perfor-
mance loss. FOEDUS [2] is proposed to scale up the database
and allow transactions to manipulate both DRAM and
NVRAM efficiently. However, both Silo and FOEDUS do not
perform nor scale well for high contentionworkloads.

Research efforts have also been devoted to decomposing
transactions into smaller pieces to increase execution paral-
lelism [25], [26], [27]. Homeostasis protocol [28] extracts
consistency requirements from transactions via program
analysis, with which transactions can be correctly executed
while minimizing communications. Application level analy-
sis could provide conditions for coordination-free execu-
tion [29]. However, compared with LADS, these works only
support transaction-level conflict checking and resolution
that do not expose all the available parallelism.

Concurrency control via analyzing transaction depen-
dencies formalized as graphs has been studied in relational
database, such as the precedence graph [9]. A precedence
graph is a directed graph where each vertex represents a
transaction and each edge represents the precedence of con-
flict between the two connected transactions. Concurrency
control based on the precedence graph is by ensuring the
graph to be acyclic. Unlike the precedence graph, the depen-
dency graph in LADS is more fine-grained as it takes the
record actions of transactions to form the vertices in the
graph. Moreover, the dependency graph is naturally acyclic
upon its construction so that no real-time cycle detection or
prevention is needed in LADS.

2.2 Systems with Single-Threaded Model

H-Store [6] is a partitioned database system, where each
partition is treated as an independent database. A thread in
each partition is responsible for processing the transactions,
and there is no need for concurrency control within a parti-
tion. The single-threaded model provides high efficiency for
single-partition transactions. However, a transaction that
spans multiple partitions needs to obtain partition-level
locks before processing operations, which inevitably
restricts the single-threaded model’s scalability and process-
ing efficiency. HyPer [7] is another partitioned database sys-
tem that also makes use of the single-threaded model.

DORA [5] is a logically partitioned database for multi-
core systems. Unlike H-Store and HyPer, DORA decom-
poses a transaction into transaction pieces and assigns them
to the threads based on where the data of interest reside. It
employs a private locking mechanism to resolve conflicts
during processing. Although it eliminates the centralized
lock manager used in the traditional two-phase locking pro-
tocol, it may still incur some amount of overhead on the
local lock management. Further, like H-Store, transactions
spanning multiple partitions are potentially a performance
bottleneck. PLP [30] extends DORA by physically partition-
ing the database based on a multi-rooted Bþ-tree structure,

YAO ET AL.: EXPLOITING SINGLE-THREADED MODEL IN MULTI-CORE IN-MEMORY SYSTEMS 2637

where each partition corresponds to a subtree and is man-
aged by one thread. It supports flexible repartitioning to
reduce the costly effect of cross-partition transactions. How-
ever, it requires a centralized routing table, and frequent
repartitioning also affects parallelism among transactions.
In contrast, LADS employs the single-threaded model in
both dependency graph construction and actual transaction
execution. Execution of transactions according to the depen-
dency graph reduces the coordination cost among the
threads to an extent, which improves its efficiency and
scalability.

Load balancing is typically required to redistribute the
workload among partitions in single-threaded systems, and
various techniques have been proposed in recent years.
Horticulture [31] provides an automatic partitioning algo-
rithm and generates partitioning strategy for a sample
workload. E-Store [32] provides a two-tiered approach to
handle hot and cold chunks respectively. It first distributes
hot tuples throughout the cluster and then allocates cold
tuples to fill the remaining space. Squall [33] introduces
fine-grained live repartitioning by interleaving data migra-
tion with execution. All these techniques perform reparti-
tioning or reconfiguration by tracking transactions’
historical access patterns. However, real-time load balanc-
ing based on the analysis of historical information is diffi-
cult to materialize. They are therefore not effective for
randomized workloads since frequent repartitioning incurs
high overhead. In comparison, LADS processes transactions
in a batched manner and supports a real-time load balanc-
ing by evenly distributing a batch of workload to the avail-
able workers, without the need to track historical
access patterns.

3 TRANSACTION PROCESSING IN LADS

Traditionally, any contention that exists among transactions
is resolved by means of locks or timestamps. This can lead
to thread blocking or waste of computation due to transac-
tion aborts. In LADS, each worker thread obtains a batch of
transactions from the transaction queue, and resolves their
dependencies at the granularity of record action (defined

below) before processing them. The batch size is determined
based on the number of transactions in the transaction
queue and a pre-defined maximum batch size. In this man-
ner, LADS separates contention resolution from the actual
transaction execution.

LADS first constructs dependency graphs in parallel
according to the transactions’ timestamps and logics. Specif-
ically, each worker constructs one dependency graph for a
set of transactions and then decomposes the constructed
graph into subgraphs. During the actual transaction execu-
tion, each worker thread executes according to one sub-
graph. With dependency graphs, workers can process the
transactions with the guarantee of conflict serializability. As
mentioned earlier, LADS exploits single-threaded model to
the fullest, and consequently, the single-threaded model is
adopted in the dependency graph construction, depen-
dency graph partitioning and actual transaction execution.

3.1 Dependency Graph Construction

Before constructing a dependency graph for a set of transac-
tions, LADS has to resolve dependency relations within one
single transaction. It parses the statements of a transaction
and decomposes it into a set of record actions, where each
record action only accesses a single record in the database.
The formal definition of the record action is given below:

Definition 1 (Record Action). A transaction is a unit of oper-
ations performed on the database. Operations consecutively
conducted on the same record within one transaction (with no
intervening operation on another distinct record) constitute a
single record action a.

Given a record action a, rðaÞ denotes the record on which
it acts upon, and cðaÞ, fðaÞ, rðaÞ respectively denote the
transaction’s timestamp, function set and parameter set.

Fig. 4(a) shows an example, where the database has only
one table. There are three types of transactions, namely
transfer, save, and withdraw. In this example, transaction t8
attempts to transfer $7 from account 1003 to account 1005.
LADS firstly decomposes t8 into two record actions,
ð8 : minus; 1003; 7Þ and ð8 : add; 1005; 7Þ. Record action

Fig. 4. An example of dependency graph construction and partitioning with three types of transactions: Save, Withdraw, and Transfer.

2638 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

ð8 : minus; 1003; 7Þ operates on account 1003 by subtracting
$7 from its balance. Record action ð8 : add; 1005; 7Þ attempts
to add $7 to account 1005.

Next, we define two types of dependency relations on
record actions: logical dependency �logic and temporal depen-
dency �temporal.

Definition 2 (Logical Dependency). Record action ai logi-
cally depends on aj, denoted as

ai �logic aj

if and only if both ai and aj belong to the same transaction, i.e.,
cðaiÞ ¼ cðajÞ, and ai must be executed after aj.

From the above definition, we can see that �logic deter-
mines the logical execution order of record actions within
one transaction. In the previous example, record action
ð8 : add; 1005; 7Þ is logically dependent on ð8 : minus;
1003; 7Þ, since transaction t8 has to ensure that the balance
in account 1003 is sufficient. Apart from the logical depen-
dency relation, we also need to resolve the contention of
record actions from different transactions, which is defined
by the temporal dependency relation �temporal.

Definition 3 (Temporal Dependency). A temporal depen-
dency exists between record actions ai and aj, denoted as

ai �temporal aj

if and only if ai and aj belong to different transactions with
cðaiÞ > cðajÞ, and rðaiÞ ¼ rðajÞ.

As shown in Fig. 4(a), record actions ð8 : minus; 1003; 7Þ
and ð8 : add; 1005; 7Þ temporally depend on ð6 : minus; 1003;
4Þ and ð2 : add; 1005; 8Þ respectively.

Now, we define the dependency graph, where a vertex rep-
resents a record action and an edge represents a depen-
dency relation between two record actions. The formal
definition is as follows:

Definition 4 (Dependency Graph). Given a set of transac-
tions T ¼ ft1; t2; . . . ; tng, and the associated sets of record
actions ’t1 ;’t2

; . . . ;’tn , the dependency graph G ¼ ðV; EÞ is a
directed graph and consists of

� V ¼ ’t1 [’t2
[� � � [’tn , and

� E ¼ fðai;ajÞjðaj �logical ai or aj �temporal aiÞ;
ai 2 ’ti

;aj 2 ’tj
g

In particular, it is not efficient to analyze every record
action a on record rðaÞ as we add a into dependency graph
G. Furthermore, explicitly recording all the temporal depen-
dency edges between a pair of record actions may result in
many edges. Therefore, during dependency graph construc-
tion, we maintain the latest record action LðkÞ for each record
k that has been accessed in G.

By decomposing a transaction into record actions, logical
dependency relations are naturally resolved. When record
action a is inserted into the dependency graph, an edge
from LðrðaÞÞ to a is created, since a �temporal LðrðaÞÞ. We
maintain an action queue fk for each record k. Given a
record action a, it should be appended to the end of frðaÞ.

The record actions in a queue should satisfy either �temporal

or �logical. Record actions in different queues may only have
�logical. Note that �temporal never exists between record

actions in different queues according to its definition. The
dependency graph construction algorithm for a set of trans-
actions T is given in Algorithm. 1.

Algorithm 1. Dependency Graph Construction.

Input: transaction set T
Output: dependency graph G for T

1: Initialize an empty graph G
2: foreach t 2 T do
3: ft fa1;a2; . . . ;amg decomposed from t
4: for i 1 tom do /*for temporal dependency */
5: G.AddVertex (ai)
6: if LðrðaiÞÞ exists then G.AddEdge (LðrðaiÞÞ, ai)
7: LðrðaiÞÞ ai

8: for i 1 tom� 1 do /*for logical dependency */
9: for j iþ 1 tom do
10: if ai �logic aj then G.AddEdge(aj, ai)
11: return G

During the dependency graph construction, each worker
thread maintains a constructor to resolve dependency rela-
tions among a batch of transactions, which is essentially a con-
secutive number of transactions from its transaction queue,
and build the dependency graph accordingly. When the sys-
tem is saturated, the batch size is equal to the predefinedmax-
imum batch size. Otherwise, after finishing one round of
batch processing, theworkerwill check the transaction queue.
If the number of transactions waiting in the transaction queue
is less than the predefined maximum batch size, all of them
will be processed as a batch. The batch size in LADS changes
dynamically to adapt toworkloads of different request rates.

Each worker is responsible for the construction of one
dependency graph. To better exploit the parallelism in the
CPU, several graphs can be constructed in parallel by different
worker threads. Each thread can construct a dependency
graph asynchronously since dependency graph construction
for a batch of transactions is a completely independent process.

3.2 Dependency Graph Partitioning

Each worker thread then decomposes each constructed
dependency graph G ¼ ðV; EÞ into subgraphs for distribu-
tion over all the available worker threads. For optimal per-
formance, it is necessary to ensure that, as far as possible,
each worker thread gets the same amount of work. Further-
more, execution of a record action in one worker thread
may result in sending of information to its dependent
record actions in other worker threads.

The objective of the decomposition is to get a partition C
of V with n elements. That isC ¼ fV1;V2; � � � ;Vng, where

V1 [� � � [Vn ¼ V
Vi \ Vj ¼ ;; 8i 6¼ j;

such that the partitions are of about the same size with
minimal number of cross-partition edges.

We note that the graph decomposition problem is iso-
morphic to the classical uniform graph partitioning prob-
lem [34]. To solve the problem, we only need to minimize
the size of edge cut among the partitions.

X

i6¼j
j �ij j;

YAO ET AL.: EXPLOITING SINGLE-THREADED MODEL IN MULTI-CORE IN-MEMORY SYSTEMS 2639

where �ij ¼ fðap;aqÞjap 2 Vi and aq 2 Vjg with constraint
that

8i; jVij � ð1þ �Þ jVj
n

As all the record actions in fk are to be performed on the
same record k, it is better to group them to the same parti-
tion. We define a new weighted graph G ¼ ðV;EÞ.

V ¼ ffijfi 6¼ ;g

E ¼ fðfi;fjÞjap 2 fi;aq 2 fj ðap;aqÞ 2 E or ðaq;apÞ 2 Eg:

A vertex in the weighted graph G is a record action queue,
whose weight equals to the number of record actions in the
queue. The weight of one edge equals to the number of logi-
cal dependency relations between the two queues. We use
function w to calculate the weight. Compared with the ini-
tial dependency graph G, the weighed graphs G has much
fewer vertices and edges. This simplifies the complexity of
partitioning. In Fig. 4(b), the weighted graph only contains
four vertices and three edges. The graph decomposition
problem is to minimize the following function:

X

i6¼j
wð�ijÞ;

where �ij ¼ fðp; qÞjp 2 Vi; q 2 Vjgwith the constraint that

8i; wðViÞ � ð1þ �ÞwðVÞ
n

We adopt a greedy algorithm to accelerate the depen-
dency graph partitioning. LADS first evenly partitions the
weighted graph according to key range and extracts edge
cuts based on the partitioning result. Since LADS is designed
for a multi-core environment such as NUMA [35], we also
take data locality into consideration for performance pur-
poses. Correspondingly, data within the same NUMA node
are given a higher probability for them to be in the same par-
tition. It then invokes a repartitioning process to minimize
the weight of the edge cuts. The basic idea is summarized in
Algorithm. 2. To illustrate the idea, consider the earlier
example and Fig. 4(b), where the weighted graph is decom-
posed into two partitions, f1000; 1001g and f1003; 1005g.
During transaction execution, worker 1 is responsible for the
record actions on accounts 1000 and 1001, and worker 2 is
responsible for the record actions on accounts 1003 and 1005.

3.3 Transaction Execution

A global synchronization operation is enforced to ensure
that all the worker threads will complete the graph con-
struction and partitioning phase before entering the transac-
tion execution phase simultaneously. Given a set of
partitions C ¼ fV1;V2; � � � ;Vng, LADS distributes it to the
available workers to perform the actual transaction execu-
tion in parallel. Each worker i executes the record actions of
Vi in a greedy manner as summarized in Alg. 3. Initially,
the worker selects record actions with no in-edges in the
subgraph and inserts them into an executable set that it
maintains. Any record action in the executable set will not
conflict with any other remaining record actions and can be
executed correctly. A worker thread then iteratively selects

record actions from the executable set to execute. After one
record action is executed, it will be removed from the sub-
graph together with its out-edges from the original depen-
dency graph G. Those record actions without in-edges in the
residual graph should then be inserted into the executable
set. Fig. 5 illustrates an example of the above procedure. Ini-
tially, there is one executable record action ð2 : minus;
1003; 8Þ in subgraph 2. When it is executed, record actions
ð6 : minus; 1003; 4Þ and ð2 : add; 1005; 8Þ are inserted into
the executable set. The process is repeated until all the
record actions in Vi are fully executed.

Algorithm 2. Graph Partitioning

Input:weighted graph G ¼ ðV;EÞ
Output: a set of subgraphs fG1;G2; ;Gng

1: Partition G into a set of subgraphs fG1;G2; ;Gng with about
the same weight according to the key range

2: Ecross
S

p6¼q �pq /*edge cut among partitions */
3: foreach eij 2 Ecross do
4: benefit[eij] = wðEcrossÞ � wðEi!j

crossÞ
5: end
6: max itrs maximum iteration number
7: for l 1 tomax itrs do
8: Sort (benefit)
9: eij benefit.EdgeWithMaxBenefit ()
10: Gp GetSubgraph (vi)
11: Gq GetSubgraph (vj)
12: if 8k; wðVkÞ � ð1þ �Þ wðV Þn and benefit[eij] > 0 then
13: Gp.RemoveVertex(vi)
14: Gq.AddVertex(vi)
15: Update (benefit)
16: else
17: Break
18: end
19: end
20: return fG1;G2; . . . ;Gng

Fig. 5. Transaction execution based on the dependency graph.

2640 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

Algorithm 3. Transaction Execution Based on the Depen-
dency Graph

Input: dependency graph Gi ¼ ðVi; EiÞ
1: R ; /*initialize executable set */
2: whileR 6¼ ; and Gi:Size > 0 do
3: R.AddVertex (Gi.RootVertex)
4: aq R.Pop()
5: aq.Execute()
6: Gi.RemoveOutEdge (aq)
7: Gi.RemoveVertex (aq)

LADS evenly partitions the workload for the transaction
execution phase, thus addressing the problem of workload
skew. In addition, LADS reorders operations before transac-
tion execution so that operations on the same record can be
executed within a short time interval, thereby improving
cache hit rate.

As there are more than one dependency graph available
during the execution, it is possible that there exist conflicts
among dependency graphs. We resolve such conflicts by
processing the conflicting dependency graphs sequentially.
After all the record actions of a graph are fully processed,
the corresponding transactions commit in a group manner.

3.3.1 Handling Transaction Aborts

Since LADS resolves all the conflicts among transactions
before transaction execution, transaction abort caused by
the conflicts is eliminated. However, transaction aborts
due to field constraints of the database are still possible.
For instance, the remaining balance in Fig. 4(a) cannot be
negative. This can lead to cascading aborts even in
LADS. To avoid the overhead of cascading aborts, we
add a condition-variable-check function as the first
record action in each transaction. Other record actions in
the transaction logically depend on this first record
action. If the first record action aborts, it sends disable
messages to the rest of the record actions in the same
transaction. As a consequence, no cascading abort is pos-
sible during the transaction execution. For example, in
Fig. 5, record action ð4 : minus; 1000; 5Þ will abort, since
the balance left in account 1000 is not sufficient. Before
aborting, it will send a disable message to record action
ð4 : add; 1001; 5Þ, which will not be executed later on.

3.3.2 Handling Range Queries

LADS also supports queries that access a range of keys
in the database. The keys accessed by such a range query
may change during the actual transaction execution, and
violates serializability. LADS deals with this challenge
by organizing the record action of range query at a
coarser granularity. In this case, LADS treats the entire
transaction as a single record action that needs to update
the entire column, table, or partition, as the case may
require. So all the record actions of the subsequent trans-
actions to be performed on that column (table or parti-
tion) must depend on this composite record action. In
the worst case where all the transactions perform range
queries, LADS would degrade to a partitioned database
system. As range query is usually rare in OLTP applica-
tions, this should not be a problem in practice.

3.4 Correctness

We now prove that the dependency graph G constructed
by LADS guarantees conflict serializability. The depen-
dency graph G works as a schedule h of transaction set
T . We can prove that h is conflict-serializable. According
to the conflict serializability theorem [36], we only need
to show that the conflict graph G(h) constructed based
on h is acyclic.

Definition 5 (Conflict Graph). Given the dependency graph
G ¼ fV; Eg, let h be its schedule. The conflict graph G(h) =
(V ,E) of h is defined by

V ¼ T

ðti; tjÞ 2 E , ði 6¼ jÞ and 9ai;aj 2 V;aj � ai

According to our previous definitions of dependency
relations, the conflict relation in the conflict graph GðhÞ
should be either �temporal or �logic.

First, let us consider �temporal in GðhÞ. If there is a directed
edge from ai to aj, then i < j. Now if GðhÞ is cyclic, then we
can always find a cycle with edges, ðai0 ;ai1Þ, ðai1 ;ai2Þ, � � �,
ðaiv�1 ;aivÞ, ðaiv ;ai0Þ, where i0 < i1 < . . . < iv�1 < iv and

iv < i0. Obviously, this violates the initial condition,
namely i < j. In other words, if we only consider �temporal,
G(h) must be acyclic.

Next, we consider�logic. Based on its definition,�logic will
not lead to an edge in G(h) because �logic only exists
between two record actions within the same transaction. So
G(h) is still acyclic. We can conclude that G(h) must be acy-
clic and thus h is a conflict-serializable schedule.

4 IMPLEMENTATION

In this section, we present the architecture of LADS. As a
relational database engine, LADS organizes data into tables.
Each row with a unique key is called a record, which is
stored in a segment of allocated memory.

4.1 System Architecture

The architecture of LADS consists of four components as
shown in Fig. 6.

The Transaction Initiator maintains a set of transaction
request queues that are handled by different worker
threads. Typically, arriving transactions are not proc-
essed by the system immediately. Rather, they will wait
in a transaction queue. In some applications, transaction
requests may have different priorities [37], [38]. LADS
can adjust the priority of each queue (worker thread)
accordingly.

The Dependency Graph Execution Engine is responsible
for constructing dependency graphs and conducting the
transaction execution in batches. To improve efficiency,
worker threads construct multiple dependency graphs in
parallel. LADS processes the graphs based on their prior-
ities. The number of parallel threads is equal to the num-
ber of transaction queues, and the threads alternate
between graph construction and graph execution phase,
much like a simple Bulk Synchronous Parallel execution
model [39].

YAO ET AL.: EXPLOITING SINGLE-THREADED MODEL IN MULTI-CORE IN-MEMORY SYSTEMS 2641

The Storage Manager is designed to manage the data in
the database. It interacts with the execution engine to
retrieve, insert, update and delete data. Both the Bþ-tree
index and hash index are supported. LADS guarantees the
serializability and conflict-free read/write operations.

The Statistics Manager collects runtime statistical informa-
tion such as real-time throughput and latency. It also inter-
acts with the other components to adjust the system
configuration dynamically. For example, since LADS pro-
cesses transactions in batches, the batch size affects both the
throughput and latency. A larger batch size should result in
a higher throughput, while a smaller batch size provides a
shorter response time. The maximum batch size can be
adjusted accordingly based on the statistics and the
requirements.

4.2 Implementation Details

4.2.1 Timestamp Assignment

When a transaction arrives, LADS assigns a timestamp to
the transaction and inserts it into the transaction queue.
Compared with other timestamp-based protocols, the time-
stamp assignment in LADS is thread-private and does not
rely on any centralized resources. LADS only makes use of
timestamps to resolve temporal dependency for transac-
tions in the same transaction queue. However, it is possible
that conflicts also exist between transactions that are in dif-
ferent transaction queues. As shown in Fig. 6, LADS con-
structs several graphs in parallel. It will then execute them
one after another. By doing this, LADS resolves the conflicts
between dependency graphs without using the timestamps.

4.2.2 Data Layout

LADS maintains a row-based database, and each record
contains the following information:

� The record data. To reduce cache coherence overhead,
LADS employs cache line alignment when it stores
the record data.

� The pointer to a record action queue. LADS adds a field
in each record to store the pointer that refers to its
record action queue.

As discussed in Section 3.3, after all the record actions of
one graph have been processed, the transactions will com-
mit at the same time. The record data is only modified by
the last update. In the example shown in Fig. 5, four record
actions operate on account 1001. However, only the update
performed by record action ð7 : add; 1001; 4Þ modifies the
record in place.

4.2.3 Transaction Decomposition

To build the dependency graph, LADS first parses the state-
ments of each transaction, and then transforms them into a
set of record actions. Although OLTP transactions are typi-
cally short-lived, they may contain some complex state-
ments such as conditional statements.

LADS handles transactions with conditional logic by add-
ing extra record actions. In Fig. 7, the transaction updates
record A if it satisfies the condition lc. Otherwise, it updates
record B. Fig. 7(a) shows how this conditional logic is repre-
sented in the dependency graph. During actual transaction
execution, the record action that handles the conditional
logic should send messages to disable record actions in the
false branch, as shown in Fig. 7(b) and Fig. 7(c).

4.2.4 Transaction Logs and Checkpointing

Being an in-memory data engine, LADS stores all the data in
main memory. Yet, for reliability, LADS flushes transaction

Fig. 6. Architecture of LADS.

Fig. 7. An example of handling conditional statement.

2642 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

logs into disks for recovery purposes. LADS makes use of
command logging [40], [41]. Each record action in the
dependency graph is associated with a log record consisting
of the record key, function set, parameters, and dependency
information. No real data is recorded in the log files, and
hence the logging overhead and size of the logs are reduced.
During recovery, we only need to replay those log records
to reconstruct the dependency graphs and then execute the
reconstructed graph. Instead of generating log records for a
single transaction, LADS can construct log records for trans-
actions in a batched manner. Writing all those log records as
a batch fully utilizes the disk I/O bandwidth, thereby
improving the system’s overall performance. Furthermore,
each worker maintains a separate log buffer to eliminate
contention during the processing.

In order to recover the database within a bounded time,
LADS also performs periodic checkpointing. It maintains
several checkpointing threads. The entire memory is
divided up into sections and each checkpointing thread is
responsible for one such section. Even as the checkpointing
threads are working, transactions continue to execute. How-
ever, those commits are not reflected in the checkpointing.
This means our checkpointing is not a consistent snapshot
of the database, and it needs to combine with the logging.
To recover from a failure, LADS has to reload the latest
checkpoint, and replay the transaction log records from that
time point onwards. It then reprocesses the committed
transactions.

5 EXPERIMENTS

In this section, we shall evaluate LADS against H-
Store [6], a partition-based database that adopts the sin-
gle-threaded model; DORA [5], a data-oriented transac-
tion processing system; and SILO [24], a multi-core in-
memory OLTP engine with optimistic concurrency con-
trol protocol. The original H-Store is mainly imple-
mented in Java. For a fairer comparison, we re-
implemented H-Store in C++, and also reduced some of
its functionality, such as network communication. For
clarity, we call our implementation H’-Store. Similarly,
since DORA is originally implemented on a disk-based
storage manager called Shore-MT [42], we extended
DORA so that it makes use of the same storage manager
as LADS to maintain the entire database in memory.

5.1 Experimental Setup

All the experiments are conducted on a multi-core server
equipped with four Intel Xeon 2.2 GHz processors that have
six cores each. This gives us a total of 24 cores. The server
has 64 GB of DRAM. The four processors are connected to
form a NUMA architecture. Each core has a private 32 KB
L1 cache, a 256 KB L2 cache and supports two hyper-
threads. Each six-core processor has a 12 MB L3 cache
shared by its cores.

Two popular OLTP benchmarks, namely YCSB [43]
and TPC-C [44], are used in the evaluations. First, the
YCSB benchmark contains various combinations of read/
write operations. Originally, each YCSB transaction only
reads/writes a single data record, which usually gener-
ates few conflicts during execution. To simulate the

situation with high contention of data access in the evalu-
ations, we extend the YCSB benchmark such that each
transaction reads or writes 20 records. Moreover, we
shrank the record size from the standard 1000 bytes to
100 bytes. This makes a fairer comparison with SILO
which requires allocating memory space for every version
of a record, and shrinking the record size mitigates the
issue of SILO’s memory allocation being its performance
bottleneck [24]. Second, the TPC-C benchmark simulates
a complete order-entry environment whose transaction
scenario is more complex than that of YCSB. Five types
of transactions (New-Order, Payment, Delivery, Order-
Status and Stock-Level) are generated in the TPC-C
benchmark.

In a multi-core environment, contention among threads
seriously affects system performance. There are three factors
that typically dominate the intensity of contention. The first
is the percentage of write operations in the workload. While
reads on the same record can always be operated in parallel,
writes on the same record must be performed sequentially.
Hence, more write operations usually lead to higher conten-
tion. The second is the skewness of data access. In practice,
OLTP applications tend to access certain data more fre-
quently. For example, in an online shopping scenario, popu-
lar items are accessed more frequently than others. YCSB
simulates the skewness of data access through a Zipfian dis-
tribution [45] in which the parameter u determines the level
of skewness. For a given number of working threads, a larger
u results in more contentions. In the evaluations, by setting u
to 0:5, 0:8 and 0:9, 10 percent of the records in the database
are accessed by about 35, 60, and 75 percent of all transac-
tions, respectively. The third factor is the number of concur-
rent threads. A larger amount of parallel transactions usually
leads to more contention. Apart from the three factors above,
for partitioned database systems with the single-threaded
model, the percentage of cross-partition transactions is
another important factor. A cross-partition transaction may
block the threads that work on the partitions where the trans-
action needs to access, and thus affect system performance.
In the following experiments, we study the performance of
LADS with respect to all these factors using the two bench-
marks. The parameters are listed in Table 1, where each
underlined value indicates the default setting.

5.2 Impact of Write Operations

We first evaluate how the performance of the four systems is
affected by write operations by running the YCSB bench-
mark. Fig. 8(a) shows the performance variation when the

TABLE 1
Parameter Values for Evaluations

Parameter Values

Number of threads 4, 8, 12, 16, 20, 24, 28, 32, 36,
40, 44, 48

YCSB Zipfian u 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1

Percentage of YCSB writes 0, 0.25, 0.5, 0.75, 1
Number of TPC-C warehouse 4, 8, 24
Percentage of cross-partition
transaction

0, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7,
0.8, 0.9, 1

YAO ET AL.: EXPLOITING SINGLE-THREADED MODEL IN MULTI-CORE IN-MEMORY SYSTEMS 2643

Zipfian u is set to 0:8 and no cross-partition transactions are
involved. All the four systems perform better on workload
with more read operations, since write operations are usu-
ally more expensive. The performance of SILO drops signifi-
cantly as the percentage of write operations increases in the
workload. This is because, with increasing amount of write
conflicts, SILO has to spend more time in resolving conten-
tion upon transaction commits. Furthermore, Fig. 8(b) shows
the results when cross-partition transactions are involved.
Unlike LADS, the performance of H’-Store and DORA drops
significantly, and it becomes resilient to the variation of per-
centage of write operations. This is expected since thread
blocking caused by cross-partition transaction is expensive
and it hasmore impact than the effects of write operations.

5.3 Impact of Workload Skewness

Next, we study the impact on system robustness with
skewed workloads. The skewness may exist among parti-
tions and/or within a single partition.

To simulate the skewness among partitions, we apply all
the workloads on a single partition. Fig. 9(a) shows the
throughput of the four systems running the YCSB bench-
mark. As can be seen, increasing the number of threads has
no effect on the throughput of H’-Store, because only one
thread can work on the partition. On the other hand, DORA,
SILO and LADS scale well with the increased number of
threads. DORAmaintains logical partitions and the periodic
adjustment of the logical partitions reduces the effects of
workload skewness. For both SILO and LADS, the whole
database is shared by all available threads that can work on
the same partition simultaneously. With more contentions in
the workloads, Fig. 9(b) and Fig. 9(c) show that the

throughput of SILO decreases significantly. This results
from the increased transaction aborts caused by the conflict-
ing data operations. Although both DORA and LADS are
more resilient to variations in contention, the throughput of
DORA increases much slower than that of LADS, especially
for workloads of higher contention. DORA uses locks to
resolve conflicts among transactions. Furthermore, to avoid
deadlocks, each thread in DORA latches the incoming action
queues on all accessed logical partitions before dispatching
actions of a transaction phase. This restricts parallelism. In
contrast, LADS partitions and executes the workloads
according to the dependency graphs computed. Deadlocks
and transaction aborts due to conflict are totally eliminated.
Moreover, the whole processing logic of LADS is lock/latch-
free and does not rely on any centralized component. Thus,
LADS copes better with the workload skewness among the
partitions under different degrees of contention.

Apart from the workloads skewness among partitions,
skewness within a single partition is also common. The
skewness of the YCSB workloads is controlled by the
parameter u of the Zipfian distribution. Fig. 10(a) shows
the impact of the Zipfian u on the performance of all the
four systems when the number of threads is fixed at 24.
The database is evenly divided into 24 partitions according
to the key range. When u is small, data accesses are more
likely to be uniformly distributed. As u increases, the data
access distribution becomes more skewed, resulting in
higher contention. The throughput of SILO drops with the
increase of u, since there are more transaction aborts due to
conflict. The throughput of DORA slightly decreases at the
beginning and then increases at a later stage. On one hand,
higher skewness causes more locking/latching, which

Fig. 8. Effects of write operations on the YCSB benchmark. The number of threads is fixed as 24 and Zipfian u ¼ 0:8.

Fig. 9. Effects of skewed workload on the YCSB benchmark.

2644 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

restricts the parallelism during the transaction dispatching
and thus degrades the throughput. On the other hand,
higher skewness benefits DORA’s cache efficiency and as a
consequence, leads to a throughput increase. The perfor-
mance of H’-Store and LADS increases with the Zipfian u.
This is because some data items are more frequently
accessed, which improves the cache efficiency. To further
examine the cache efficiency of LADS, Fig. 10(b) shows the
CPU utilization breakdown of LADS in visiting L1, L2, L3
caches and DRAM. We count their accesses and calculate
the results according to statistical empirical values as sug-
gested in [46]. The results show that LADS experiences
more cache accesses for workloads of higher skewness.
Furthermore, Fig. 10(c) shows the cache miss rate with
respect to the skewness variation. When u is increased
from 0 to 1, the L1, L2 cache miss rate decreases by 1 per-
cent and 6 percent, respectively. LADS executes conflicting
operations successively during the transaction execution,
thereby reducing the cache miss rate. Compared with the

L1 and L2 cache miss rates, the L3 cache miss rate
decreases slightly more because cores on the same die
share the same L3 cache. The above results confirm that
LADS exhibits good robustness when faced with skewed
single-partition workloads.

5.4 Impact of Cross-Partition Transactions

We next evaluate the impact of cross-partition transactions
on performance in the four systems, where the number of
available worker threads is fixed to be 24. Fig. 11 and Fig. 12
show the throughput of running the YCSB benchmark and
TPC-C benchmark with different levels of contention as we
increase the percentage of cross-partition transactions. For
the YCSB benchmark, the database is evenly divided into 24
partitions according to the key range. For the TPC-C bench-
mark, the database is statically partitioned by warehouse,
such that each partition contains all the tables in one ware-
house. The number of partitions equals to the number of
warehouses.

Fig. 10. Effects of data access skew and cache efficiency.

Fig. 11. Effects of cross-partition transactions on the YCSB benchmark.

Fig. 12. Effects of cross-partition transactions on the TPC-C benchmark.

YAO ET AL.: EXPLOITING SINGLE-THREADED MODEL IN MULTI-CORE IN-MEMORY SYSTEMS 2645

As shown by the results, H’-Store is sensitive to the per-
centage of cross-partition transactions. Even a small amount
of cross-partition transactions (as little as 1 percent) can
cause a significant drop in its throughput, since a cross-par-
tition transaction blocks threads on all the partitions that it
accesses during its execution. Similarly, the throughput of
DORA also drops significantly with respect to the increase
of the percentage of cross-partition transactions. When a
transaction arrives, the thread in DORA latches all the rele-
vant incoming queues of its accessed logical partitions
before dispatching it. Furthermore, when a transaction com-
mits, it needs to notify all the partitions involved to release
the related locks. This restricts the parallelism and tends to
generate a performance bottleneck. In contrast, SILO and
LADS are robust to the variation of the percentage of cross-
partition transactions, since data are shared across all the
worker threads. LADS works like a shared-memory data-
base and eliminates thread blocking during the dependency
graph construction. It then partitions and executes the
workloads according to the constructed dependency graph
like a partitioned database. In short, the above results con-
firm that LADS could handle cross-partition transactions
efficiently.

5.5 Scalability and Durability

In the following set of experiments, we evaluate the scalabil-
ity of LADS and the cost of ensuring durability.

The results in Fig. 9 already show that LADS scales well
on the YCSB benchmark with different levels of contention.
We now evaluate the scalability using the TPC-C bench-
mark. Fig. 13 shows the results with 24 warehouses and 10
percent of the transactions involving more than one parti-
tion. All the four systems exhibit good scalability when the
number of available workers is less than 24. However, all
four systems fail to scale when the number of warehouses is
less than the number of worker threads, although LADS still
shows better scalability than the other three. In TPC-C,
every Payment transaction updates the same field in the
warehouse table. These updates cannot be executed in par-
allel, even if idle threads are available. As the number of
workers increases, H’-Store, DORA and SILO obtain little
performance gain. LADS also does not scale smoothly but
still maintains an upward trend, albeit at a slower rate, since
LADS can execute record actions on other tables in parallel.

LADS provides durability by writing logs to disk along
transaction processing, which is done by separate threads.
Each logging thread maintains a log buffer and flushes the
contents to individual log file before a transaction commits.
In Fig. 14, the throughput of LADS with logging decreases
by 15 percent compared with that without logging.
Although logging incurs additional overheads, it does not
affect the scalability of LADS.

5.6 Impact of Batch Size in LADS

In this section, we evaluate the impact of batch size on the
performance in LADS. The batch size is constrained by the
number of transactions in the transaction queue and a pre-
defined maximum batch size. Fig. 15 and Fig. 16 show the
impacts of the batch size on throughput and latency respec-
tively. When the number of threads is fixed, the throughput
first increases with the batch size before plateauing when
the computation resources are fully stretched. With more
worker threads, LADS always needs a larger batch size to
fully exploit their computation potential. As with through-
put, the average latency also increases with the batch size.
In LADS, threads process the constructed dependency
graphs sequentially during transaction execution, thereby
increasing the waiting time of the later graphs and thus
leads to a higher latency. A trade-off has to be made
between the throughput and latency by tuning the batch
size. In particular, LADS dynamically adjusts the maximum

Fig. 13. Scalability on the TPC-C benchmark. Fig. 14. Effects of logging on the YCSB benchmark.

Fig. 15. Effects of batch size on throughput.

2646 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

batch size based on the statistics information and the user-
defined requirements.

5.7 Performance on Dynamic Workloads

In practice, workloads are always changing continuously.
Without prior knowledge of any future workloads, it is
hard for any system to adapt in real time. Hence, robustness
to dynamic workloads is an important factor. To evaluate
such robustness, we conduct experiments to simulate real-
world workloads on the YCSB benchmark by generating
transactions with random percentages of cross-partition
transactions and contention intensities. In a one-hour simu-
lation, we change the workload parameters every minute,
and keep all systems running at full capacity. The average
percentage of cross-partition transactions is 10 percent and
the average Zipfian u is 0:7. For LADS, we set the default
size of the transaction queue to 5000 which is equal to the
predefined maximum batch size of LADS.

In Fig. 17(a), the throughput of LADS fluctuates within a
narrow range. In contrast, the throughput of H’-Store, DORA
and SILO shows severe fluctuations because they are sensi-
tive either to the percentage of cross-partition transactions or
the intensity of contention. Fig. 17(b) shows the average
latency with respect to the dynamic workloads. The average
latency of H’-Store and DORA also fluctuates severely. For
H’-Store and DORA, a cross-partition transaction blocks
threads on the partitions that are accessed. Consequently, it

increases the waiting time of transactions in the transaction
queue and leads to a higher latency. Comparedwith H’-Store
and DORA, the average latency of LADS and SILO shows lit-
tle variations for workloads of different settings. Since LADS
processes transactions in a batched manner, its average
latency is affected by both transaction complexity and batch
size. The average latency of LADS is higher than that of SILO,
since LADS commits a batch of transactions at one time.
Overall, the results above confirm that LADS exhibits supe-
rior robustness to dynamicworkloads.

5.8 Micro-Benchmarking

Finally, we study the performance breakdown in LADS.
Fig. 18 shows the percentages of CPU utilization contrib-
uted by the individual components of LADS.

As shown in Fig. 18(a), for the YCSB benchmark, the cost
of each component is almost the same for different conten-
tion intensities. Most of the CPUs cycles (about 75 percent)
are spent in resolving and executing transactions. Such
effective CPU utilization on the actual transaction process-
ing contributes to the better performance in LADS. The cost
of resolving dependency relations within one transaction
depends on the complexity of each transaction. Thus, the
cost of dependency graph construction remains nearly the
same with respect to different contentions. Moreover, by
evenly partitioning the workloads in the granularity of
records, LADS reduces the effects of thread starving to a
certain extent. Thus, the communication cost, including syn-
chronization cost, takes up only a small fraction of the total
cost during execution. Hence, the cost of transaction execu-
tion stays nearly constant with different contention settings.

In addition, the result for the TPC-C benchmark is
shown in Fig. 18(b). As can be seen, the communication
cost increases when there are fewer warehouses. When the
number of warehouses changes from 4 to 24, the percent-
age of communication cost drops from 37:5 to 5 percent.
There are two reasons that lead to this change. First, the
contention in the TPC-C benchmark is limited to a small
set of records. This internal characteristic increases the
complexity of obtaining balanced partitions and constrains
its execution parallelism. Second, TPC-C transactions have
more logical dependency relations, and most of them are
also on the same set of records, causing an increase in com-
munication cost.

Fig. 16. Effects of batch size on latency.

Fig. 17. A one-hour dynamic workload simulation on the YCSB benchmark.

YAO ET AL.: EXPLOITING SINGLE-THREADED MODEL IN MULTI-CORE IN-MEMORY SYSTEMS 2647

6 CONCLUSION

In this paper, we proposed LADS, a dynamic single-
threaded OLTP system. LADS extends the simplicity of the
single-threaded model while overcoming the latter’s robust-
ness issue under different kinds of workloads. LADS
resolves conflicts among transactions by constructing
dependency graphs for which there are no aborts that may
arise due to conflicts during the transaction execution. It dis-
tributes incoming workloads to available workers in a bal-
anced manner to achieve higher parallelism and efficiency.
LADS also leverages modern hardware features. Our exten-
sive experimental study shows that LADS can achieve up to
20	 higher throughput than three state-of-the-art systems.

ACKNOWLEDGMENTS

The first version of this work has been made available at
CoRR/arXiv3 since 12 March 2015. The authors would
like to thank the anonymous reviewers for their valuable
comments that help improve the paper. This work was
in part supported by the A*STAR project 1321202073.
Gang Chen’s work was partially supported by the
National Basic Research Program of China 973
(No. 2015CB352400). Meihui Zhang’s work was funded
under the Energy Innovation Research Programme
(EIRP, Award No. NRF2014EWTEIRP002-026), adminis-
tered by the Energy Market Authority (EMA). The EIRP
is a competitive grant call initiative driven by the Energy
Innovation Programme Office, and funded by the
National Research Foundation (NRF).

REFERENCES

[1] R. R. Schaller, “Moore’s law: Past, present, and future,” IEEE Spec-
trum, vol. 34, no. 6, pp. 52–59, 1997.

[2] H. Kimura, “Foedus: Oltp engine for a thousand cores and
nvram,” in Proc. Spec. Int. Group Manag. Data, 2015, pp. 691–706.

[3] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker,
“Staring into the abyss: An evaluation of concurrency control
with one thousand cores,” Proc. Very Large Data Base Endowment,
vol. 8, no. 3, 2014, pp. 209– 220.

[4] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker,
“Oltp through the looking glass, and what we found there,” in
Proc. Spec. Int. Group Manag. Data, 2008.

[5] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki, “Data-ori-
ented transaction execution,” Proc. Very Large Data Base Endow-
ment, vol. 3, no. 1–2, 2010, pp. 928–939.

[6] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, “H-store: A high-performance, distributed main
memory transaction processing system,” in Proc. Very Large Data
Base Endowment, vol. 1, no. 2, 2008, pp. 1496–1499.

[7] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots,”
in Proc. Int. Conf. Data Eng., 2011.

[8] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso, “Database
engines on multicores, why parallelize when you can distribute?”
in Proc. EuroSys, 2011, pp. 17–30.

[9] A. Whitney, D. Shasha, and S. Apter, “High volume transaction
processing without concurrency control, two phase commit, sql or
c++,” in Proc. 7th Int. Workshop High Performance Trans. Syst., 1997,
pp. 211–217.

[10] R. H. Louie, Y. Li, and B. Vucetic, “Practical physical layer net-
work coding for two-way relay channels: performance analysis
and comparison,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp.
764–777, Feb. 2010.

[11] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stone-
braker, and D. A. Wood, “Implementation techniques for main
memory database systems,” in Proc. Spec. Int. Group Manag. Data,
1984, pp. 1–8.

[12] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-mem-
ory big data management and processing: A survey,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 7, pp. 1920–1948, Jun. 2015.

[13] K.-L. Tan, Q. Cai, B. C. Ooi, W.-F. Wong, C. Yao, and H. Zhang,
“In-memory databases: Challenges and opportunities from soft-
ware and hardware perspectives,” ACM Spec. Int. Group Manag.
Data Record, vol. 44, no. 2, pp. 35–40, 2015.

[14] H. Kimura, G. Graefe, and H. A. Kuno, “Efficient locking techni-
ques for databases on modern hardware.” in Proc. ADMS, 2012,
pp. 1–12.

[15] V. Gottemukkala and T. J. Lehman, “Locking and latching in a
memory-resident database system,” in Proc. Very Large Data Base,
1992, pp. 533–544.

[16] K. Ren, A. Thomson, and D. J. Abadi, “Lightweight locking for
main memory database systems,” Proc. Very Large Data Base
Endowment, vol. 6, no. 2,2012, pp. 145–156.

[17] H. T. Kung and J. T. Robinson, “On optimistic methods for con-
currency control,” ACM Trans. Database Syst.ems, vol. 6, no. 2, pp.
213–226, 1981.

[18] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control per-
formance modeling: Alternatives and implications,” ACM Trans.
Database Syst, vol. 12, no. 4, pp. 609–654, 1987.

[19] P. A. Bernstein, V. Hadzilacos, and N. Goodman, “Concurrency
control and recovery in database systems,” Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1987.

[20] C. Mohan, H. Pirahesh, and R. Lorie, “Efficient and flexible meth-
ods for transient versioning of records to avoid locking by read-
only transactions,” in Proc. Spec. Int. Group Manag. Data, 1992,
pp. 124–133.

[21] T. Neumann, T. M€uhlbauer, and A. Kemper, “Fast serializable
multi-version concurrency control for main-memory database
systems,” in Proc. Spec. Int. Group Manag. Data, 2015, pp. 677–689.

Fig. 18. Cost analysis of LADS. The number of threads is fixed to 24 and the percentage of cross-partition transactions is 10 percent.

3. http://arxiv.org/abs/1503.03642.

2648 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

http://arxiv.org/abs/1503.03642

[22] J. M. Faleiro and D. J. Abadi, “Rethinking serializable multiver-
sion concurrency control,” Proc. Very Large Data Base Endowment,
vol. 8, no. 11, 2015, pp. 1190–1201.

[23] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R.
Stonecipher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s
memory-optimized oltp engine,” in Proc. Spec. Int. Group Manag.
Data, 2013, pp. 1243–1254.

[24] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proc. Symp.
Oper. Syst. Princ., 2013, pp. 18–32.

[25] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis, “Concurrency con-
trol for step-decomposed transactions,” Inf. Syst., vol. 24, no. 8,
pp. 673–698, 1999.

[26] H. Garcia-Molina, “Using semantic knowledge for transaction
processing in a distributed database,” ACM Trans. Database Syst.,
vol. 8, no. 2, pp. 186–213, 1983.

[27] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez, “Transaction
chopping: Algorithms and performance studies,” ACM Trans.
Database Syst., vol. 20, no. 3, pp. 325–363, 1995.

[28] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster,
and J. Gehrke, “The homeostasis protocol: Avoiding transaction
coordination through program analysis,” in Proc. Spec. Int. Group
Manag. Data, 2015.

[29] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica, “Coordination avoidance in database systems,”
Proc. VLDB Endowment, vol. 8, no. 3, pp. 185–196, 2014.

[30] I. Pandis, P. T€oz€un, R. Johnson, and A. Ailamaki, “Plp: Page latch-
free shared-everything oltp,” Proc. Very Large Data Base Endow-
ment, vol. 4, no. 10,2011, pp. 610–621.

[31] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic data-
base partitioning in shared-nothing, parallel oltp systems,”
in Proc. Spec. Int. Group Manag. Data, 2012, pp. 61–72.

[32] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboul-
naga, A. Pavlo, and M. Stonebraker, “E-store: Fine-grained elastic
partitioning for distributed transaction processing systems,” Proc.
Very Large Data Base Endowment, vol. 8, no. 3,2014, pp. 245–256.

[33] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. El
Abbadi, “Squall: Fine-grained live reconfiguration for partitioned
main memory databases,” in Proc. Spec. Int. Group Manag. Data,
2015, pp. 299–313.

[34] B. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs,” The Bell System Technical J., vol. 49, no. 2,1970,
pp. 291–307.

[35] C. Lameter, “NUMA (Non-Uniform Memory Access): An over-
view,” New York, NY, USA, vol. 11, no. 7, pp. 40:40–40:51, Jul.
2013, Doi: 10.1145/2508834.2513149.

[36] G. Weikum and G. Vossen, “Transactional information systems:
Theory, algorithms, and the practice of concurrency control and
recovery,” Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[37] M. J. Carey, R. Jauhari, and M. Livny, “Priority in dbms resource
scheduling,” in Proc. Very Large Data Base, 1989, pp. 397–410.

[38] D. T. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-
Balter, “Priority mechanisms for oltp and transactional web
applications,” in Proc. Int. Conf. Data Eng., 2004, pp. 535–546.

[39] L. G. Valiant, “A bridging model for parallel computation,” Com-
mun ACM, vol. 33, no. 8, pp. 103–111, 1990.

[40] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker,
“Rethinking main memory oltp recovery,” in Proc. Int. Conf. Data
Eng., 2014, pp. 604–615.

[41] C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu, “Adaptive log-
ging: Optimizing logging and recovery costs in distributed in-
memory databases,” in Proc. 2016 Int. Conf. Manage. Data, San
Francisco, California, USA, 2016, no. 16, pp. 1119–1134, Doi:
10.1145/2882903.2915208.

[42] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi,
“Shore-mt: A scalable storage manager for the multicore era,” in
Proc. Extending Database Technol., 2009, pp. 24–35.

[43] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with ycsb,” in Proc.
Symp. Cloud Comput., 2010, pp. 143–154.

[44] TPC-C Specification, Revision 5.11. (2010, Feb.). [Online]. Avail-
able: http://www.tpc.org/tpcc/

[45] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Wein-
berger, “Quickly generating billion-record synthetic databases,”
in Proc. Spec. Int. Group Manag. Data, 1994, 243–252.

[46] J. L. Henning, “Spec cpu2000: Measuring cpu performance in the
new millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

Chang Yao received the BSc degree from
Peking University, China, in 2013. He is currently
a PhD student of computer science at the
National University of Singapore. His research
interests include the areas of database systems,
computer architecture, machine learning, and
information retrieval.

Divyakant Agrawal is currently a professor of
computer science at the University of California,
Santa Barbara. His research expertise includes
the areas of database systems, distributed com-
puting, data warehousing, and large-scale infor-
mation systems. He has served on the program
committees of many leading conferences, as the
program chair of ACM SIGMOD 2010, and as the
general chair/cochair of ACM SIGPATIAL 2009,
2010 and 2011. He is a fellow of the IEEE and
ACM.

Gang Chen received the BSc, MSc and PhD
degrees in computer science and engineering
from Zhejiang University in 1993, 1995, and
1998, respectively. He is currently a professor in
the College of Computer Science, Zhejiang Uni-
versity. His research interests include databases,
information retrieval, information security, and
computer-supported cooperative work. He is also
the executive director of Zhejiang University–
Netease Joint Lab on Internet Technology. He is
a member of the IEEE.

Qian Lin received the BSc degree from the
South China University of Technology in 2008
and the MSc degree from Shanghai Jiao Tong
University in 2011. He is currently a PhD student
of computer science at the National University of
Singapore. His research interests include the
areas of database systems, distributed comput-
ing, real-time data analytics, virtualization tech-
nologies, and trusted computing.

Beng Chin Ooi is currently a distinguished pro-
fessor of computer science at the National Uni-
versity of Singapore. His research interests
include database system architectures, perfor-
mance issues, indexing techniques and query
processing, in the context of multimedia, spatio-
temporal, distributed, parallel, peer-to-peer, in-
memory, and cloud database systems. He has
served as a PC member for a number of interna-
tional conferences (including SIGMOD, VLDB,
ICDE, WWW, EDBT, DASFAA, GIS, KDD,

CIKM, and SSD). He was an editor of the VLDB Journal and the IEEE
Transactions on Knowledge and Data Engineering, editor-in-chief of the
IEEE Transactions on Knowledge and Data Engineering (2009–2012),
and a co-chair of the ACM SIGMOD Jim Gray Best Thesis Award com-
mittee. He is serving as a trustee board member and the president of the
VLDB Endowment. He is a fellow of the IEEE and ACM.

YAO ET AL.: EXPLOITING SINGLE-THREADED MODEL IN MULTI-CORE IN-MEMORY SYSTEMS 2649

Weng-Fai Wong received the BSc degree from
the National University of Singapore in 1988, and
the Dr. Eng. Sc. degree from the University of
Tsukuba, Japan, in 1993. He is currently an asso-
ciate professor in the Department of Computer
Science, the National University of Singapore.
His research interest is in computer architecture,
compilers, and high-performance computing. He
is a member of the ACM, and a senior member of
the IEEE.

Meihui Zhang received the BEng degree in com-
puter science from the Harbin Institute of Tech-
nology, China, in 2008 and the PhD degree in
computer science from the National University of
Singapore in 2013. She is currently an assistant
professor at the Singapore University of Technol-
ogy and Design. Her research interest includes
crowdsourcing-powered data analytics, massive
data integration, and spatio-temporal databases.
She is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2650 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

