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Abstract—Recently, two ideas have been explored that lead to more accurate algorithms for time-series classification (TSC). First, it

has been shown that the simplest way to gain improvement on TSC problems is to transform into an alternative data space where

discriminatory features are more easily detected. Second, it was demonstrated that with a single data representation, improved

accuracy can be achieved through simple ensemble schemes. We combine these two principles to test the hypothesis that forming a

collective of ensembles of classifiers on different data transformations improves the accuracy of time-series classification. The

collective contains classifiers constructed in the time, frequency, change, and shapelet transformation domains. For the time domain,

we use a set of elastic distance measures. For the other domains, we use a range of standard classifiers. Through extensive

experimentation on 72 datasets, including all of the 46 UCR datasets, we demonstrate that the simple collective formed by including all

classifiers in one ensemble is significantly more accurate than any of its components and any other previously published TSC

algorithm. We investigate alternative hierarchical collective structures and demonstrate the utility of the approach on a new problem

involving classifying Caenorhabditis elegansmutant types.

Index Terms—Time series classification, ensemble, shapelet

Ç

1 INTRODUCTION

TIME-SERIES classification (TSC) problems, where we may
consider any ordered data to be time-series data, arise

in a wide range of disciplines. The establishment of the
UCR repository for TSC problems [1] has engendered
growth in the number of algorithms proposed for TSC (for
example, see [2], [3], [4], [5], [6], [7], [8], [9]). These algo-
rithms are often evaluated on the same datasets, and the
admirable trend of releasing source code makes it feasible
to compare and test for significant differences in accuracy.

We propose a simple approach to TSC based on transfor-
mation and ensembling that is significantly more accurate
than any other algorithm that we are aware of, including
the standard benchmark nearest neighbour (NN) classifiers.
We believe our classifier, which we call the collective of
transformation-based ensembles (COTE), provides a new
benchmark in accuracy performance against which other
classifiers must be measured.

The motivation for COTE comes from our recent research
[10], [11], [12] which has explored two key ideas for TSC.
Our starting hypothesis was that the simplest way to gain
improved accuracy on TSC problems is to transform into an
alternative data space where the discriminatory features are
more easily detected. In [10], we showed that classifiers con-
structed on the power spectrum (PS), auto-correlation func-
tion (ACF) and time domain were more accurate than any
of the constituent classifier parts. More recently, we demon-
strated that the best way of using shapelets (short,

discriminatory subsequences first defined for TSC in [13]) is
as a shapelet transformation, which forms a new data space
[11]. Our second hypothesis was that we can improve TSC
performance through ensembling. Although the value of
ensembling is well known, our approach is unusual in that
we inject diversity by adopting a heterogeneous ensemble
rather than by using resampling schemes with weak learn-
ers. Our approach is in fact a meta-ensemble, since two of
the components (random forest and rotation forest) are
themselves ensembles. We have demonstrated the effective-
ness of heterogeneous ensembles in the time domain. Elastic
distance measures such as dynamic time warping (DTW)
are by far the most popular approach for TSC. In [12] we
showed that the variety of elastic distance measures that
have recently been proposed [4], [8], [9] are not individually
significantly better than DTW, but when combined into a
heterogeneous elastic ensemble (EE), the assimilated ele-
ments contribute to an overall significantly greater accuracy
than any of the constituent parts.

We now take the logical next step of combining transfor-
mations and ensembles. COTE contains classifiers con-
structed in the time, frequency, change, and shapelet
transformation domains combined in alternative ensemble
structures. The details of the transformations are described
in Section 3. For the time domain, we use the nearest neigh-
bour classifiers from the elastic ensemble [12]. For the other
domains, we use a range of standard classifiers described in
Section 4. Classification involves a weighted vote of mem-
bers of the collective. We evaluate accuracy on the bench-
mark 46 UCR datasets. We believe that EE was the first
classifier to be significantly more accurate than DTW on the
UCR datasets, and yet we show that COTE is significantly
more accurate than EE. We extend the study of the classifica-
tion ability of COTE to a further 26 datasets that have been
used in the literature but are not part of the standard UCR
data set, including two completely new problems involving
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classifying Caenorhabditis elegans types based on motion cap-
ture data. Our contributions can be summarised as follows:

1) There has been a recent glut of new TSC algorithms
using a wide range of techniques (see Section 2 for a
review). The results presented in Section 7.1 show
that COTE is significantly more accurate than them
all, including our own algorithm presented in [12].

2) We propose a simple heterogeneous ensemble that
reduces classification induced variance.

3) We describe new results for the shapelet transform
using the heterogeneous ensemble. This approach is
significantly better than 1NN-DTW. We compare
our results with those found using alternative shape-
let algorithms.

4) We propose a new way of using the autocorrelation
function transform for TSC, involving concatenating
autocorrelation, partial autocorrelation and autore-
gressive (AR) features.

5) We propose a novel way of choosing between trans-
formation spaces. We test the hypothesis that the
transformation is more important than the classifier
through a series of experiments and demonstrate
that the interaction between classifier and transform
is more complex than we initially thought.

In total, we utilise 35 classifiers. The simplest way of
combining these classifiers, which we call flat-COTE,
ensembles all 35 classifiers proportionate to their training
set cross validation accuracy. This approach is the most
accurate, but the least explanatory. We investigate ways of
forming hierarchical ensembles through choosing subsets of
data representations to use based on training set perfor-
mance. Based on our previous research [10], our a priori
hypothesis was that if we could choose the best transforma-
tion we would arrive at a better classifier, because we
assumed the choice of representation was more important
than the choice of classifier. It turns out that the truth is
more complex than that. Many of the data sets have dis-
criminatory features in multiple domains, and choosing the
transformation based on train set performance actually
makes COTE significantly worse. We investigate alternative
hierarchical collective structures that use weighting
schemes and selection schemes between ensembles on dif-
ferent transforms. We demonstrate that although most
approaches give significantly worse accuracy than the flat
approach of a single ensemble, a collective of transform-
based ensembles where inclusion is determined by a Mann-
Whitney rank sign test is not significantly worse.

The structure of this paper is as follows. In Section 2 we
provide some background into time series classification and
the algorithms that have been proposed in the literature. In
Section 3 we describe the data transforms used in the
ensemble and in Section 4 we identify the classifiers we use
on each data representation. Section 5 outlines the datasets
we use for the experimentation, the results of which are
presented in Sections 6, 7 and 8. Finally, we conclude and
highlight future directions in Section 9.

2 TIME SERIES CLASSIFICATION BACKGROUND

We define time series classification as the problem of build-
ing a classifier from a collection of labelled training time

series. We limit our attention to problems where each time
series has the same number of observations. Suppose we
have a set of n time series, T ¼ fT1; T2; . . . ; Tng, where each
time series has m ordered real-valued observations
Ti ¼< ti1; ti2; . . . ; tim > and a class value ci. The objective is
to find a function that maps from the space of possible time
series to the space of possible class values.

The key characteristic that differentiates TSC problems
from the general classification task is that the ordering of
the attributes is important. The best discriminatory features
for classification might be masked by the length of the
series, confounded by noise in the phase of the series or
embedded in the interaction of observations. Hence, TSC
generally requires techniques specific to the nature of the
problem. The alternative approaches to TSC are best under-
stood by considering how the data is represented or, equiv-
alently, how similarity between series is quantified.
Similarity between series can be based on several discrimi-
nating criteria, such as: similarity in time, spectra or auto-
correlation structure; global or local similarity; and data
driven or model based similarity.

2.1 Similarity in the Time Domain

Similarity in time is characterised by the situation where the
series from each class are observations of an underlying
common curve. Variation around this underlying common
shape may be caused by noise or possible phase shift. The
majority of research into TSC has concentrated on data
driven global similarity in time. The commonly used bench-
mark classification algorithm is 1-NN with an elastic dis-
tance such as dynamic time warping or edit distance to
allow for small shifts in the time axis. As first identified in
[14] and confirmed through extensive experimentation [15],
1-NN DTW with the warping window size set through
cross-validation on the training data, is surprisingly hard to
beat. A number of new elastic measures have been pro-
posed that are variations of the time warp and edit distance
approaches [4], [8], [9]. Two main classes of technique have
been proposed for detecting localised, phase independent,
similarity in time. The first involves finding shapelets in the
dataset [16]. Shapelets are discriminatory subseries in the
data. We discuss recent shapelet research in more detail in
Section 3.1.

The second popular localised approach involves deriving
features from varying size intervals of the series [2], [3], [5].
Lin et al. [2] propose a bag-of-patterns (BoP) approach that
involves converting a time series into a discrete series using
symbolic aggregate approximation (SAX) [17], creating a set
of SAX words for each series through the application of a
short sliding window, then using the frequency count of the
words in a series as the new feature set. An alternative is to
use summary statistics calculated over different width inter-
vals of a series. For a series of length m, there are
mðm� 1Þ=2 possible contiguous intervals. Deng et al. [5]
calculate three statistics over these intervals: the mean, stan-
dard deviation, and slope on each of the possible intervals.
They use these features to construct classifiers. Rather than
generate the entire new feature space of 3mðm� 1Þ=2 attrib-
utes, they employ a random forest classifier, with each
member of the ensemble assigned a random subset of fea-
tures from the interval feature space.
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Baydogan et al. [3] describe a bag-of-features
approach that combines interval and frequency features.
The algorithm, called time series based on a bag-of-fea-
tures representation (TSBF), involves separate feature
creation and classification stages. The feature creation
stage involves generating random intervals and then cre-
ating features representing the mean, variance, and slope
over the interval. The start and end point of the interval
are also included as features in order to retain the possi-
bility of detecting temporal similarity. There is then a
further feature transform that involves supervised learn-
ing. The features of each interval form an instance, and
each time series represents a bag. A classifier is used to
generate a class probability estimate for each instance.
The probability estimates of all instances for a given time
series (bag) are discretised, and a histogram for each pos-
sible class value is formed. The resultant concatenated
histograms form the feature space for the training set of
a classifier. A random forest classifier is used for the
labelling, and a random forest and support vector
machine for the classification.

2.2 Similarity in the Frequency Domain

Similarity in spectra relates to the situation where the rele-
vant discriminatory features are in the frequency domain of
each series. Data driven approaches commonly use the
periodogram, or power spectrum of the whole series
derived from the Fourier transform [10].

2.3 Similarity in Autocorrelation

The autocorrelation function describes the correlation
within the series over a range of lags. The Fourier trans-
form of the ACF of a series is in fact the power spectrum,
but the ACF is more useful than the spectrum for detect-
ing lower order relationships between series terms. In
time series forecasting, the ACF is most commonly used
in conjunction with the partial ACF (PACF) to fit an auto
regressive moving average (ARMA) model to a series. In
time series data mining, its primary usage has also been
to fit ARMA models, the parameters of which are then
used as discriminatory features [18]. Other research has
used the ACF and PACF as the features for a classifier
[10], [19]. We use a combination of these features in a
way detailed in Section 3.2.

An overview of some of the ways the periodogram and
ACF can be used for time-series classification is given in
[20]. Our approach is described in Section 3.2.

Another thread of research that is harder to classify
examines using complexity measures of the series to differ-
entiate classes. Batista et al. [7] propose an alternative dis-
tance measure based on difference in complexity. Silva and
de Souza [21] propose using recurrence plots in conjunction
with a Kolmogorov complexity based distance measure.

Finally, and perhaps most relevant to our work, Fulcher
and Jones [22] define a massive feature space involving
time, frequency and autocorrelation features then use a
greedy forward feature selection method with a linear dis-
criminant classifier.

We compare the results for the all of these classifiers
against COTE in Section 7.1.

3 DATA TRANSFORMATIONS

3.1 Localised Similarity in Shape in the Time
Domain: Shapelet Transform

A shapelet [13] is a time-series subseries used for time-series
classification. A good shapelet discriminates between clas-
ses using shapelet distance (sDist). For a shapelet S of length
l, and a time series T , the sDist is the minimum euclidean
distance between the shapelet and any length l subseries of
T . Let the set of length l subseries of T be denotedWl, then

sDistðS; T Þ ¼ minw2Wl
ðdistðs; wÞÞ:

A good shapelet will have small sDists to instances of
one class, and large sDists to instances of any other class.
We transform the original data using the best shapelets as
features, where attribute i in instance j of the transformed
data is sDistðSi; TjÞ, where Si is the ith best shapelet and Tj

is the jth instance of the original data.
The algorithmwe use to discover shapelets and transform

the data is described in Algorithm 1. It makes a single pass
through the original data, taking each subseries of each series
as a shapelet candidate. The set of sDist values for each can-
didate is found using findDistances and assessed using the
f-stat quality measure in the assessCandidate procedure. The
best k shapelets are returned, after removing overlapping
candidates in the method removeSelfSimilar. We use the
length estimation procedure described in [23] to determine
the appropriate values to use as theminimumandmaximum
shapelet lengths, and generate amaximumof k ¼ 10n shape-
lets, where n is the size of the training set of the original data.

Algorithm 1. ShapeletCachedSelection(T,min,max, k)

1: kShapelets ;
2: for all Ti in T do
3: shapelets ;
4: for l min tomax do
5: Wi;l  generateCandidatesðTi; lÞ
6: for all subsequence S inWi;l do
7: DS  findDistancesðS;TÞ
8: quality assessCandidateðS;DSÞ
9: shapelets:addðS; qualityÞ
10: sortByQualityðshapeletsÞ
11: removeSelfSimilarðshapeletsÞ
12: kShapelets mergeðk; kShapelets; shapeletsÞ
13: return kShapelets

The aim of the research described in [11] was to demon-
strate that transformation was better than using a shapelet
tree by evaluation of a range of classifiers on transformed
datasets. Further experimentation has allowed us to draw
stronger conclusions about the utility of the shapelet trans-
form. These are described in Section 6.

3.2 Frequency Domain: Periodogram Transform

For a real-valued time series T ¼< t1; t2; . . . ; tm >, the dis-
crete fourier transform (DFT) represents T as a linear combi-
nation of sinusoidal functions with amplitudes a; b and
phase w,

tx ¼
Xm
k¼1

ak cos ð2p � wk � xÞ þ bk sin ð2p � wk � xÞð Þ:
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The periodogram (or spectrum) is the series

P ¼< p1; p2; . . . ; pm >;

where

pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i

q
:

The periodogram is the Fourier transform of the ACF.
The spectrum and ACF are different characterizations of the
same information. The ACF is more useful for finding low-
order dependencies between the terms; the periodogram is
more useful for detecting lower-frequency correlations than
the ACF. The first DFT coefficient of a series with zero mean
will be zero. Since we always work with normalised series,
we can ignore this term. In addition, the DFT of a real-val-
ued series is symmetric, so that ðai; biÞ ¼ ðam�i�1; bm�i�1Þ.
This means we can discard half of the periodogram. The
periodogram transform is then P ¼< p2; p3; . . . ; pm=2 >.

3.3 Autocorrelation-Based Transform

The Autocorrelation function measures the interdepen-
dence of terms in the time domain, and is commonly used
in statistics and speech processing to model data where
there is a dependency between observations over a short
period of time. Positive autocorrelation in a series generally
indicates some form of persistence, in that the series tends
to remain in the previous state, whereas negative autocorre-
lation is indicative of high volatility. The ACF of time series
T is r ¼< r1; r2; :::; rm�l > (where l is the maximum lag),
where

rk ¼
E½ðti � miÞ � ðtiþk � miþkÞ�

si � siþk
:

rk are usually estimated from data by rk, where

rk ¼
Pm�k

i¼1 ðti � �tÞðtiþk � �tÞPm
i¼1ðti � �tÞ2 :

The quantity rk is the autocorrelation coefficient at lag k
and has range ½�1; 1�. If the series T has been normalised to
zeromean and unit variance, the calculation of rk simplifies to

rk ¼
Xm�k
i¼1
ðti � tiþkÞ:

The autocorrelation function is often used to fit an auto-
regressive model to a time series. An AR model is of the
form

ti ¼ cþ
Xp

j¼1
fitt�j þ "i;

where c is a constant, fi are model parameters and "i are
random variables (usually assumed to be independent and
identically distributed). Estimates of the parameters fi are
found by first estimating the partial autocorrelation function
(PACF). The PACF describes the autocorrelation between
variables ti and tiþk, with the linear dependence between
tiþ1 and tiþk�1 removed. The sample PACF is calculated

from the sample ACF. For any given value of p there are an
associated set of parameters Lp ¼ ð�1; �2; . . . ; �pÞ that satisfy

Rp ¼ LpFp;

where Rp ¼ ðr1; r2; . . . ; rpÞ are the first p terms of the ACF
and Fp is a Toepliz matrix of ACF terms defined as

Fp ¼

1 r1 r2 � � � rp�1
r1 1 r2 � � � rp�2
r2 r1 1 � � � rp�3
..
. ..

. ..
. . .

. ..
.

rp�1 rp�2 rp�3 � � � 1

2
666664

3
777775
:

The system of linear equations defined by Rp ¼ LpFp can
be solved for Lp,

Lp ¼ F�1p Rp:

So for all values of pwe have

L ¼
L1

L2

..

.

Lm�l

2
6664

3
7775 ¼

�1;1

�2;1 �2;2

�3;1 �3;2 �3;3

..

.

�m�l;1 �m�l;2 �m�l;3 � � � �m�l;m�l

2
666664

3
777775
;

where l is the maximum lag. The PACF is defined as the
vector of values

L ¼< �1;1; �2;2; . . . ; �m�l;m�l > :

Finding L involves solving m� l systems of linear equa-
tions. However, since F is a Toepliz matrix (all the diago-
nals are constant), the equations can be efficiently solved
using the Durbin-Levinson algorithm.

The parameters of an AR model of order p are estimated
from the L row p, i.e. W ¼< w1; w2; . . . ; wp > where
wi ¼ �p;i. The order of the model, p, is usually chosen to
minimize some criteria such as the Akaike Information Cri-
terion (AIC), or the Bayes Information Criterion (BIC).

The maximum lag, l, determines the length of the series
R, L, and W . By definition, the higher the lag, the less data
is available for the estimate, and the higher the variability in
the ACF. It is common to restrict the maximum lag severely,
and in all experiments we use the maximum lag size of m=4
or 100, whichever is smaller.

We have several options as to what variables to use to
capture discriminatory features in the change domain. We
could use the ACF (R), the PACF (L), or the AR model (W ),
individually or in any combination, with p set arbitrarily or
through some selection criteria. We evaluate these alterna-
tives in Section 6.2.

4 CLASSIFIERS

4.1 Heterogeneous Ensemble

The classifiers used are the WEKA [24] implementations of
k Nearest Neighbour (where k is set through cross valida-
tion), Naive Bayes, C4.5 decision tree [25], support vector
machines [26] with linear and quadratic basis function
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kernels, Random Forest [27] (with 100 trees), Rotation Forest
[28] (with 10 trees) and a Bayesian network. Each classifier
is assigned a weight based on the cross validation training
accuracy, and new data are classified with a weighted vote.
The set of classifiers were chosen to balance simple and
complex classifiers that use probabilistic, tree based and
kernel based models. With the exception of k-NN, we do
not optimise parameter settings for these classifiers via cross
validation. Our primary justification for forming heteroge-
nous ensembles of strong classifiers is to minimize the vari-
ance of the classifiers over different transformations.

We chose to do this to reduce the complexity of the algo-
rithm and to keep the focus of this research on the impor-
tance of transformation in TSC. Furthermore, we do not
perform any model selection through classifier selection
based on training performance. This extra level of cross vali-
dation may yield improved classifiers, but introduces a
computational overhead.

4.2 Elastic Ensemble

We use the heterogeneous ensemble of eight classifiers for
datasets in the frequency, change, and shapelet transforma-
tion domains. For the time domain, we use Elastic Ensemble
classifier [12]. The EE is a combination of nearest neighbour
classifiers that use elastic distance measures. There is a gen-
eral consensus that “simple nearest neighbor classification is
very difficult to beat” [7]. dynamic time warping with warp-
ing set through cross-validation (DTWCV) is the commonly
used benchmark. There have been a number of variants of
DTW. These include a weighted version of DTW (WDTW)
[8] that replaces the warping window with a weight func-
tion to penalise against large warpings. Alternative elastic
measures based on edit distance have also been proposed.
These include a distance measure based on the Longest
Common Subsequence (LCSS) problem, Edit Distance with
Real Penalty (ERP) [29], Time Warp Edit (TWE) distance [9]
and Move-Split-Merge (MSE) [4]. These are all constituents
in the elastic ensemble.

In [12], we show that none of these individual meas-
ures significantly outperforms DTWCV. However, we
demonstrate that by combining the predictions of 1-NN
classifiers built with these distance measures and using a
voting scheme that weights according to cross-validation
training set accuracy, we can significantly outperform
DTWCV. The 11 classifiers in EE are 1-NN with euclidean
distance (ED), full dynamic time warping, DTW with
window size set through cross validation (DTWCV),
derivative DTW with full window and window set
through cross validation (DDTW and DDTWCV),
weighted DTW (WDTW) and derivative weighted DTW
(WDDTW) [8], longest common subsequence, Edit Dis-
tance with Real Penalty [29], Time Warp Edit distance [9],
and the Move-Split-Merge distance metric [4]. EE outper-
forms a heterogenous ensemble constructed by treating
the time-series as vector features. Fig. 1 shows the scatter
plot of accuracies of the EE classifier against the heteroge-
neous ensemble classifier constructed in the time domain.
The EE is significantly better than the time-based hetero-
geneous ensemble, winning on 46 datasets, losing on 23,
with 3 ties. Further experimental comparison of time-
based and NN elastic ensembles can be found in [30].

5 DATASETS

We have collected 72 datasets, the names of which are
shown in Table 1. Forty six of these are available from the
UCR repository [1], 24 were used in other published work
[6], [11], [12], [23] and two are new datasets we present for
the first time. Further information and the datasets we have
permission to circulate are available from [31]. We have
removed the dataset ECG200 from all experiments, because
an error in data processing means that it can be perfectly
classified with a single rule on the sum of squared values
for each series (see [10] for further details). Furthermore, as
also recommended in [10], we have normalised the datasets
Coffee, Olive Oil, and Beef.

5.1 Classifying Mutant Worms

Caenorhabditis elegans is a roundworm commonly used as a
model organism in the study of genetics. The movement of
these worms is known to be a useful indicator for under-
standing behavioural genetics. Brown et al. [32] describe a
system for recording the motion of worms on an agar plate
and measuring a range of human-defined features [33]. It
has been shown that the space of shapes Caenorhabditis ele-
gans adopts on an agar plate can be represented by combina-
tions of four base shapes, or eigenworms. Once the worm
outline is extracted, each frame of worm motion can be cap-
tured by four scalars representing the amplitudes along each
dimension when the shape is projected onto the four eigen-
worms (see Fig. 2). Using data collected for the work
described in [32], we address the problem of classifying indi-
vidual worms as wild-type or mutant based on the time
series of the first eigenworm, down-sampled to second-long
intervals. We have 257 cases, which we split 70 percent/
30 percent into a train and test set. Each series has 900 obser-
vations, and each worm is classified as either wild-type (the
N2 reference strain—109 cases) or one of four mutant types:
goa-1 (44 cases); unc-1 (35 cases); unc-38 (45 cases) and unc-63
(25 cases). The data were extracted from the C. elegans behav-
ioural database [34]. The formatted classification problems
are available from thewebsite associatedwith this paper [31].

Our primary goal is to use these data sets to test
the hypothesis that ensembling across transformations

Fig. 1. Test accuracy of the elastic ensemble versus heterogeneous
ensemble in the time domain over 72 problems.
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significantly improves accuracy. Our secondary goal is to
explore alternative ways of combining classifiers and
ensembles to try and improve the accuracy of the overall
classifier and provide exploratory insights into a particular
classification problem. All datasets are split into a training
and testing set, and all parameter optimisation is conducted
on the training set only. We have made every effort to
remove bias. We made all design decisions prior to evalua-
tion on the test data and have selected data sets through col-
laboration with domain experts rather than to optimise
performance. For the majority of our experiments, we use a
single train/test split. We do this for for two reasons. First,
it is almost universal practice to do so with the UCR

datasets (for example [2], [3], [4], [6], [7], [8], [9], [22], [35],
all perform single train/test experiments) and it makes
sense for us to do so also in order to allow for a fair compar-
ison. Second, some of the data sets are designed so the
train/test split removes bias. For example, the electric devi-
ces problem involves repeated readings from electrical devi-
ces in several households. The train/test split is constructed
so that all the data from a particular household is either in
the train set or the test set. If we allow readings from a spe-
cific device to be in both train and test sets we introduce
bias, because matching a specific device is easier than learn-
ing to classify all devices of a given type. Hence, the major-
ity of the results we present are for the standard train/test
splits. However, we also recognise that the field of time
series classification should move towards evaluation
through resampling and/or cross-validation. In Section 7.4
we present results of a resampling experiment using a
subset of the 72 data sets.

6 SINGLE TRANSFORM RESULTS

6.1 Shapelet Ensemble (SE)

The shapelet transform used in conjunction with the hetero-
geneous ensemble described in Section 4.1 produces a clas-
sifier that is significantly more accurate than DTWCV, albeit
only marginally. On the 72 datasets, the shapelet ensemble
is better on 41, ties on 4 and is worse on 27. This gives a p
value of 0.057 with the binomial test (BT) and 0.0152 with a
Mann-Whitney test. If we restrict our attention to just the 46
UCR datasets, then SE is better on 25, worse on 17 and ties
on 4. There is no significant difference between the classi-
fiers on the UCR data. Thus we claim there is weak evidence
that SE is better than DTWCV, but the overall difference is
small. Full results are available from [31] and the UCR
results are shown in Table 2 below for reference. Perhaps
more relevant to COTE is the variability in the results. The

TABLE 1
Datasets Grouped by Problem Type

Image Outline Classification

DistPhalanxAge DistPhalanxOutline DistPhalanxTW FaceAll FaceFour WordSynonyms
MidPhalanxAge MidPhalanxOutline MidPhalanxTW OSULeaf Phalanges yoga
ProxPhalanxAge ProxPhalanxOutline ProxPhalanxTW Herring SwedishLeaf MedicalImages
Symbols Adiac ArrowHead BeetleFly BirdChicken DiatomSize

FacesUCR fiftywords fish

Motion Classification
CricketX CricketY CricketZ UWaveX UWaveY UWaveZ
GunPoint Haptics InlineSkate ToeSeg1 ToeSeg2 MutantWorms2

MutantWorms5
Sensor Reading Classification

Beef Car Chlorine Coffee Computers
FordA FordB ItalyPower LargeKitchen Lightning2 Lightning7
StarLightCurves Trace wafer RefrigerationDevices MoteStrain Earthquakes
ElectricDevices SonyRobot1 SonyRobot2 OliveOil Plane Screen

SmallKitchen
Human Sensor Reading Classification

TwoLeadECG ECGFiveDays ECGThorax1 ECGThorax2

Simulated Classification Problems
MALLAT CBF SyntheticControl TwoPatterns

The actual file names are in a string array in the supporting code.

Fig. 2. (A) a worm on an agar plate. (B) four representative eigenworms.
(C) example time series. Images taken with permission from [32]
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standard deviation in the difference of the error between SE
and DTWCV is 8.9 percent, indicating that selecting
between the techniques or combining predictions could
yield significant improvement.

Three other shapelet approaches have been proposed.
Logical shapelets [36], fast shapelets [6] and learnt shapelets
(LST) [35]. The accompanying website for [6] provides
results for logical and fast shapelets on 31 UCR data sets. SE
is better than logical on 28 data sets and better than fast
shapelets on 26. In both cases, SE is significantly better.
Results for 41 data sets are presented on the website associ-
ated with learnt shapelets [37]. LST beats SE on 29 data sets,
ties on 1 and loses on 11. The reported LST results are

significantly better than SE and are clearly very encourag-
ing. We believe LST is a promising approach to shapelet
generation that requires further research and validation.
The reported LST results are averaged over five runs with
parameter tuning on each fold. We used the LST code from
[37] to get results for 51 of our 72 data sets for a single run.
These 51 were selected purely because of time and memory
constraints. We found that LST was better on 25, tied on 2
and was worse on 24. Clearly there is no difference between
the techniques on this sample of datasets. we also found
that LST was not noticeably faster, and required more mem-
ory, than the shapelet transform with the optimizations
included. These experiments are not conclusive, but equally

TABLE 2
Collated Published Results on the UCR Data Sets

ED DTW TWED WDTW MSM TSF TSBF BoP CID RPCD FBL LTS SE COTE Best

Adiac 0.389 0.391 0.376 0.364 0.384 0.261 0.245 0.432 0.379 0.384 0.355 0.437 0.435 0.233 COTE
Beef 0.467 0.467 0.533 0.6 0.5 0.3 0.287 0.433 0.467 0.367 0.433 0.24 0.167 0.133 COTE
Car 0.267 0.233 0.267 0.133 COTE
CBF 0.148 0.004 0.007 0.002 0.012 0.039 0.009 0.013 0.001 0.289 0.006 0.003 0.001 CID
ChlorineCon 0.35 0.35 0.26 0.336 0.351 0.489 0.349 0.3 0.314 TSF
CinCECGTorso 0.103 0.07 0.069 0.262 0.054 0.021 0.167 0.154 0.064 RPCD
Coffee 0.25 0.179 0.214 0.133 0.236 0.071 0.004 0.036 0.179 0 0 0 0 0 Tie
CricketX 0.426 0.236 0.287 0.278 0.249 0.261 0.209 0.218 0.154 COTE
CricketY 0.356 0.197 0.2 0.259 0.197 0.292 0.249 0.236 0.167 COTE
CricketZ 0.38 0.18 0.239 0.263 0.205 0.292 0.201 0.228 0.128 COTE
DiatomSizeR 0.065 0.065 0.101 0.126 0.065 0.036 0.033 0.124 0.082 LTS
ECGFiveDays 0.203 0.203 0.07 0.183 0.218 0.136 0 0.001 0 Tie
FaceAll 0.286 0.192 0.189 0.257 0.189 0.231 0.234 0.219 0.144 0.19 0.292 0.218 0.263 0.105 COTE
FaceFour 0.216 0.114 0.024 0.136 0.057 0.034 0.051 0.023 0.125 0.057 0.261 0.048 0.057 0.091 BoP
FacesUCR 0.231 0.088 0.109 0.09 0.102 0.058 0.059 0.087 0.057 COTE
fiftywords 0.369 0.242 0.187 0.194 0.196 0.277 0.209 0.466 0.226 0.226 0.453 0.2323 0.281 0.191 TWED
fish 0.217 0.16 0.051 0.126 0.08 0.154 0.08 0.074 0.154 0.126 0.171 0.066 0.023 0.029 SE
GunPoint 0.087 0.087 0.013 0.04 0.06 0.047 0.011 0.027 0.073 0 0.073 0 0.02 0.007 RPCD
Haptics 0.63 0.588 0.565 0.488 0.571 0.614 0.532 0.523 0.481 COTE
InlineSkate 0.658 0.613 0.675 0.603 0.586 0.68 0.573 0.615 0.551 COTE
ItalyPower 0.045 0.045 0.033 0.096 0.044 0.157 0.031 0.048 0.036 LTS
Lightning2 0.246 0.131 0.213 0.1 0.164 0.18 0.257 0.164 0.131 0.246 0.197 0.177 0.344 0.164 WDTW
Lightning7 0.425 0.288 0.247 0.2 0.233 0.263 0.262 0.466 0.26 0.356 0.438 0.197 0.26 0.247 LTS
MALLAT 0.086 0.086 0.072 0.037 0.075 0.046 0.06 0.036 COTE
MedicalImages 0.316 0.253 0.232 0.269 0.258 0.289 0.271 0.396 0.258 TSF
MoteStrain 0.121 0.134 0.118 0.135 0.205 0.203 0.087 0.109 0.085 COTE
NonInvThorax1 0.171 0.185 0.103 0.138 0.1 0.093 COTE
NonInvThorax2 0.12 0.129 0.094 0.13 0.097 0.073 COTE
OliveOil 0.133 0.167 0.167 0.188 0.167 0.1 0.09 0.133 0.167 0.167 0.1 0.56 0.1 0.1 TSBF
OSULeaf 0.483 0.384 0.248 0.372 0.198 0.426 0.329 0.256 0.372 0.355 0.165 0.182 0.285 0.145 COTE
Plane 0.038 0 0 0 Tie
SonyAIBORobot 0.305 0.305 0.235 0.175 0.185 0.203 0.103 0.067 0.146 SE
SonyAIBORobotII 0.141 0.141 0.177 0.196 0.123 0.157 0.082 0.115 0.076 COTE
StarLightCurves 0.151 0.095 0.036 0.022 0.066 0.118 0.024 0.031 TSBF
SwedishLeaf 0.213 0.157 0.102 0.138 0.104 0.109 0.075 0.198 0.117 0.098 0.087 0.093 0.046 COTE
Symbols 0.1 0.062 0.121 0.034 0.059 0.096 0.227 0.036 0.114 0.046 TSBF
SyntheticControl 0.12 0.017 0.023 0.002 0.027 0.023 0.008 0.037 0.027 0.037 0.007 0.017 0 COTE
Trace 0.24 0.01 0.05 0 0.07 0 0.02 0 0.01 0.01 0 0.02 0.01 Tie
TwoLeadECG 0.253 0.132 0.112 0.046 0.138 0.126 0.003 0.004 0.015 LTS
TwoPatterns 0.09 0.0015 0.001 0 0.001 0.053 0.001 0.129 0.004 0.074 0.003 0.059 0 Tie
UWaveX 0.261 0.227 0.213 0.164 0.211 0.379 0.2 0.216 0.196 TSBF
UWaveY 0.338 0.301 0.288 0.249 0.278 0.383 0.287 0.303 0.267 TSBF
UWaveZ 0.35 0.322 0.267 0.217 0.293 0.407 0.269 0.273 0.265 TSBF
wafer 0.005 0.005 0.004 0.002 0.004 0.047 0.004 0.003 0.006 0.003 0 0.004 0.002 0.001 FBL
WordSynonyms 0.382 0.252 0.381 0.302 0.243 0.276 0.34 0.403 0.266 CID
yoga 0.17 0.155 0.13 0.165 0.143 0.157 0.149 0.17 0.156 0.134 0.226 0.15 0.195 0.113 COTE

# Data Sets 46 46 19 19 19 44 44 19 42 38 20 41 46 46

# Best 0 1 1 3 0 3 6 2 1 3 2 8 4 22
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they do not lead us to believe that the LST approach is sig-
nificantly better than the SE.

6.2 The Change-Based Ensemble

The most common way to use the ACF in time-series data
mining is to fit an AR model (i.e. use W with p set to mini-
mize AIC) to each series, then base similarity on differences
in model parameters, using, for example, euclidean distance
(see, e.g., [38], [39], [40]).

Fitting the AR model provides the most explanatory
power, but it does not necessarily capture the best discrimi-
natory features between series. This is because the model
selection criteria for the parameter p is fairly crude, and if dif-
ferent series from the same underlying model are modelled
with different p values, then the distance between the series
will be large. If the data is in fact generated by AR processes
for each class, then clearly the feature set W will be optimal.
Fig. 3 shows the average ranks of using ACF, AR and PACF
features in isolation and in combination with the heteroge-
neous ensemble described in Section 4.1 on over 2,000 simu-
lated data sets generated by the algorithm presented in [19].

Using just the AR parameters on this data produces sig-
nificantly better results. The ACF and PACF do not capture
the difference in classes, and the redundant features
degrade the performance when all features are used
together. This would seemingly lend argument to the stan-
dard practice of using the AR parameters as features.

However, Fig. 4 shows the same experiment repeated
with the 72 data sets we use in later experimentation. The
situation is now reversed. Using the AR parameters is sig-
nificantly worse than the other approaches, and the classi-
fier built on the concatenated feature sets perform the best.
Clearly, many of the problems are not suitable for autocor-
relation based features. However, some useful information
may still be in the autocorrelation function which is not cap-
tured by the AR parameters. These experiments lead us to
conclude that using the concatenation of ACF, PACF and
AR features gives the most robust solution for TSC with
change based features.

7 FLAT-COTE RESULTS

We deploy 35 different classifiers over four data representa-
tions. The most obvious ensemble approach is to include all
possible classifiers in one ensemble. The flat collective of
transform-based ensembles (flat-COTE) weights the vote of
each classifier by its cross-validation accuracy on the train-
ing data. We compare the accuracy ranks of ensembles con-
structed on each transform domain, flat-COTE, and, for
bench marking, 1-NN with euclidean distance and dynamic
time warping with warping window set through cross vali-
dation. The mean rank of flat-COTE is significantly higher
than all of the other classifiers (tested using the Friedman
rank test). Fig. 5 shows the critical difference diagram, as
described in [41]. The diagram shows the average ranks of
the classifiers. The solid horizontal lines group classifiers
into cliques, within which there is no significant difference
in rank.

In [12], we demonstrate that the elastic ensemble of 1-NN
classifiers is significantly more accurate than any one of the
component distance measures. Flat-COTE is significantly
better than DTWCV (Fig. 6) and EE (Fig. 7). The information
provided by the shapelet transform and, to a lesser extent,
the power spectrum and change domains, provides discrim-
inatory features that are hard, if not impossible, to detect in
the time domain.

This result raises two immediate questions. First, how
good is flat-COTE in comparison to other TSC classification
algorithms? Second, can we structure the collective so that it
uses only the transforms appropriate for the problem
domain?

Fig. 3. Critical difference diagram for change based transforms on simu-
lated AR data.

Fig. 4. Critical difference diagram for change based transforms on
72 data sets.

Fig. 5. Critical difference diagram for collective (flat-COTE) and the indi-
vidual ensembles on the Change domain (Change), the power spectrum,
Shapelet Transform (Shapelet) and the time domain Elastic Ensemble.
Single classifiers 1-Nearest neighbour with euclidean distance and
dynamic time warping distance with warping window set through cross
validation (DTW) are included for contrast.

Fig. 6. Scatter plot of test accuracies of DTW (window size set through
cross validation) against flat-COTE for all 72 data sets. DTW is better on
10 data sets, flat-COTE better on 60, and they tie on 2.
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7.1 Comparison to Other TSC Algorithms

In Section 2, we described numerous TSC algorithms that
have recently been proposed in the literature [2], [3], [5], [7],
[8], [9], [21], [22], [36]. We have not as yet implemented these
algorithms, but we can compare performance on the pub-
lished UCR datasets. These are collated in Table 2. All results
are rounded to three decimal places, for consistency across
publications. Flat-COTE is the most accurate on 22 of the
46 data sets. Many of the differences between classifiers is
tiny, but however we look at the data, it is clear that flat-
COTE is outperforming the other algorithms. For example, if
we restrict our attention to harder problems, where the best
accuracy is over 5%, flat-COTE is the most accurate on 16 of
27 data sets (59 percent), and when the best accuracy is over
10 percent, flat-COTE better on 11 out of 19 data sets
(58 percent).

Full comparative results are available on a spreadsheet
on the accompanying website [31]. A pairwise comparison
of each algorithm against flat-COTE is given below. We test
for significant difference using the binomial test and the
Wilcoxon sign rank test (WSR).

1) The feature based linear (FBL) classifier [22] is evalu-
ated on 19 UCR datasets. Flat-COTE is better on 15
of these, ties on 3, and is worse on 1 (wafer, where
COTE is 99.9 percent accurate, FBL 100 percent).
Flat-COTE is significantly better at the 1 percent
level. The p-values are 0.001 (BT) and 0.01 (WSR).

2) The results for LTS [35] for 41 UCR data sets are pre-
sented on the website [?]. Flat-COTE is better on 30
of these, ties on 2, and is worse on 9. Flat-COTE is
significantly better at the 1 percent level. The p val-
ues are 0.0005 (BT) and 0.0022 (WSR).

3) The TSBF classifier [3] is evaluated on 44 UCR data-
sets. In comparison to the best version of TSBF (TSBF
Rand), flat-Cote wins on 37 datasets and loses on 7.
Flat-COTE is significantly better at the 1 percent
level. The p-values are 2:65� 10�6 (BT) and

8:86� 10�6 (WSR).
4) Two versions of TSF [5], TSF entrance and TSF

entropy, are assessed on 44UCRdatasets. In compari-
son to TSF entrance (the best version of TSF), flat-Cote
wins on 35 datasets and loses on 9. Flat-COTE is sig-
nificantly better at the 1 percent level. The p-values
are 5:3� 10�5 (BT) and 1:65� 10�5 (WSR).

5) CID [7] is evaluated on 42 UCR datasets (the two
Fetal ECG datasets are missing). Flat-COTE is more

accurate on 41 and worse on 1. Flat-COTE is signifi-
cantly better at the 1 percent level. The p-values are

9:78� 10�12 (BT) and 1:12� 10�8 (WSR).
6) RPCD [21] present test accuracy on 37 datasets (the

UCR datasets without the simulated problems and
the two fetal ECG datasets). Flat-Cote wins on 32
datasets, ties on 1, and loses on 4. Flat-COTE is sig-
nificantly better at the 1 percent level. The p-values
are 9:71� 10�7 (BT) and 2:3� 10�6 (WSR).

7) The BOP approach [2] is evaluated on 19 UCR data-
sets. Flat-COTE is better on 16 of these, ties on 1, and
is worse on 2. Flat-COTE is significantly better at the
1 percent level. The p-values are 0.0007 (BT) and
0.002 (WSR).

8) TWE [9] with optimised parameters is evaluated on
19 UCR datasets. Flat-COTE is better on 16 of these,
ties on 1, and is worse on 2. Flat-COTE is signifi-
cantly better at the 1 percent level on these 19 data-
sets. The p values 0.0007 (BT) and 0.002 (WSR). It is
also significantly better on all 72 datasets.

9) MSM [4] is evaluated on 19 UCR datasets. Flat-COTE
is better on 16 of these, ties on 1, and is worse on 2.
Flat-COTE is significantly better at the 1 percent
level. The p values 0.0007 (BT) and 0.002 (WSR). It is
also significantly better on all 72 datasets.

10) DTW has been used as the standard benchmark algo-
rithm for UCR datasets in the vast majority of TSC
research. For the 46 UCR problems flat-COTE is bet-
ter on 40 of these, ties on 3, and is worse on 3. Over
all 72 datasets, flat-COTE is better on 63, worse on 6
and draws on 3.

11) Euclidean distance is also still often used to support
new TSC algorithms. Flat-COTE is better on 44 of
these, ties on 1, and is worse on 1. Over all 72 data-
sets, flat-COTE is better on 69, ties on 1 and is very
marginally worse on 2.

A critical difference diagram comparing the results of the
flat-COTE to the other TSC algorithms for the UCR datasets
is shown in Fig. 8. Flat-COTE is significantly more accurate
than all recent algorithms for TSC that have been evaluated
on the UCR datasets. To the best of our knowledge, these
are the best results ever published on the UCR data.

Like flat-COTE, FBL generates a large set feature to cap-
ture alternative discriminatory factors. Given the similarity

Fig. 7. Scatter plot of test accuracies of Elastic Ensemble [12] against
COTE for all 72 data sets. EE is better on 10 data sets, COTE better on
54, and they tie on 8.

Fig. 8. Critical difference diagram for flat-COTE and the other TSC algo-
rithms on 37 UCR datasets that are common across each paper. BOP
and FBL are omitted due to only having results for 19 datasets available.
The results for TWE and MSM were taken from [12] as the original work
of [9] and [4] also report results on 19 datasets.
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between COTE and FBL, it is worth considering why COTE
is so much more accurate. We believe the difference is
caused by two factors. First, we include shapelet features in
our ensemble, and these are not present in FBL. Second,
FBL relies on stepwise feature selection with a linear classi-
fier. Such a simple procedure is likely to miss feature inter-
actions that a more complex classifier such as rotation forest
can pick up on. The interaction between transform and clas-
sifier is more complex than we initially thought, and we
consider this in more detail in Section 8.

7.2 Algorithm Efficiency

Accuracy is not the only criteria for assessing TSC algo-
rithms. COTE is a combination of complex transformations
and classifiers and is no doubt slower than many of the
algorithms it outperforms in terms of accuracy. We
acknowledge this weakness but would mitigate it with two
observations. First, the ensemble is easy to parallelise
because there is no communication required between the
components until the ensembling stage. We currently run
COTE on a multiprocessor High Performance Computing
Cluster and are developing a GPU version. Once parallel-
ised, the ensemble is only as slow as its slowest component.
This is undoubtedly the shapelet transform, for which the
enumerative search is Oðn2m4Þ. We take advantage of the
shapelet speed ups involving alternative quality measures,
early abandon and caching that have been proposed [11],
[36]. Furthermore, heuristic search techniques such as that
described in [35] offer the potential for speeding up the
search without compromising quality. Our second observa-
tion is the most important criteria for assessing new TSC
algorithms is classification accuracy. The majority of classifi-
cation problems involve off line analysis where the domain
experts would be happy to dedicate processor time to find-
ing a good solution. We would suggest that a new algorithm
proposed on the basis of accuracy alone would only be of
interest if it is significantly more accurate than DTWCV and
not significantly less accurate than COTE.

The flat-COTE approach that we have proposed is very
simple to implement. However, the problem with an
approach of using one large ensemble is that it gives little
insight into the nature of the problem, and does not aid
exploratory analysis. We demonstrate this point with our
case study on wormmotion, before describing a hierarchical
classifier based on choosing one or more transform spaces,
based on training-set performance.

7.3 Case Study: Classifying Mutant Worms

In Section 5.1 we described two new TSC problems involv-
ing classifying mutant worms based on their motion. The
test accuracies for ensembles constructed on each represen-
tation and the flat-COTE are given in Table 3.

We observe that the time-domain classifier is the worst of
all. This is unsurprising, given the nature of the data, but it
is worth mentioning that time-domain classifiers are not
always the best approach, given their prevalence in the liter-
ature. The flat ensemble is less accurate than the best
approach, which is to use the change transform. This
emphasises that it is desirable to be able to determine the
best transform a priori. The shapelet ensemble is less accu-
rate than the power spectrum and change ensembles, but
shapelets offer the added bonus of greater explanatory
power. Fig. 9 shows the best shapelets for the wild-type and
mutant worm classification problem.

The best wild-type shapelet represents highly regular
movement, in that the worm cyclically adopts the eigen-
worm1 shape. The mutant shapelet is much more erratic,
with short localised variation from the regular pattern. This
explains why the Change transform is the best. The low
order ACF terms for the non mutants will be highly discrim-
inatory, because the movement at one time step is highly
correlated with the previous time step. This correlation is
much weaker with the mutant type.

Fig. 10 shows the best shapelet for each of the five classes
(wild type and four mutant classes). We see the same local-
ised variance with the mutants as with the two class prob-
lem, but there is also some variability in the degree of
deviation from the eigenworm between mutants. This pre-
liminary study has demonstrated that time series classifica-
tion could provide a useful way of automating what is
currently a very labour intensive process, and that the
ensemble approach gives very promising results.

7.4 Resampling Experiments

Even when using 72 data sets, relying on a predefined
train/test split runs the risk of over-fitting that particular
data split. To mitigate against this risk, we repeat our
experiments on a subset of 20 dataset using resampling.
These datasets were selected because they are the quickest
to model and classify. We combine the train and test sets,
then perform 50 random samples to form 50 train/test splits
with the same train set size as the original train/test split.

TABLE 3
Test Classification Errors for the Two-Class and Five-Class

Worm Problems with Five Different Ensembles

Dataset Flat-COTE EE Shapelet PS Change

Worms5 0.25 0.38 0.30 0.26 0.19
Worms2 0.18 0.38 0.23 0.19 0.14

Fig. 9. The best shapelets for wild-type (top) and mutant worms (bottom)
for the two class problem.
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Table 4 shows the train/test results for flat-COTE, the mean
error for DTW and the mean error for flat-COTE. Flat-COTE
is significantly better on 18 of the 20 data sets.

Full results are available from the associated website [31].
Fig. 11 shows the critical difference diagram for the

resampled data. Flat-COTE is significantly better than each
component ensemble except for the shapelet transform.

8 ALTERNATIVE ENSEMBLE STRUCTURES

The flat structure works well, but is less informative than an
ensemble that could provide information about which
transformation to use. We also thought that if we could
choose the best transform based on training set performance
we would be able to improve overall performance. To test
this, we investigated several alternative ensemble structures

that all involve first forming an ensemble on each transform
independently, then combining these transforms to output
predictions for the final classification.

8.1 Predicting the Correct Transform Space

Suppose that we could determine which transformation was
best beforehand. Surely that wouldmake the overall classifier
more accurate? Unfortunately our experiments show that it
makes the classifier worse. Table 5 shows the distribution of
best transform, as judged solely on the test set accuracy.

Imagine if we were able to perfectly predict this. The ora-
cle classifier would only use the transform that gave the
best test set accuracy. The results show that it would not in
fact improve overall performance. The oracle-COTE is not
significantly better than flat-COTE. Oracle-COTE wins on
27 dataset, flat-COTE on 36 and they tie on 9. Clearly, there
is little to choose between them. Even if we can pick the best
transform, it does not on average lead to greater accuracy.
The result implies that many problems have discriminatory
features in more than one domain. However, it may still be
desirable to choose a single transform in order to obtain
greater explanatory power. The question then arises, how
well can we predict the correct transform? One obvious
basis for selection would be training set cross validation
accuracy. However, if we use the simple decision rule of
choosing the transform ensemble that has the highest
average individual training accuracy, we are correct just
55 percent of the time and the resulting classifier is signifi-
cantly worse than flat-COTE. Choosing based on summary
statistics such as the max or median fair no better.

Another possibility would be that we could use the prob-
lem type as a form of transfer learning in a Bayesian context
to help predict the correct transform. Table 6 shows the pro-
portion of each dataset type won by the different transforms.
The numbers are small, so we cannot infer too much, but it
would seem that the EE over performs on motion problems
and that shapelets do disproportionatelywell on sensor data.

We experimented with a meta-classifier over the 72 data-
sets that used a range of training features such as compo-
nent classifier ranks, accuracies and dataset characteristics,
but our best accuracy for predicting the correct transform

Fig. 10. The best shapelets for the four mutant classes.

TABLE 4
DTW and Flat-COTE Errors from Train/Test Splits

and from 50 Resampling Experiments

DTW flat-COTE

Dataset tr/te resample tr/te resample

ArrowHead 0.840 0.775 (� 0.006) 0.840 0.817 (� 0.006)
Beef 0.633 0.607 (� 0.012) 0.867 0.855 (� 0.015)
BeetleFly 0.600 0.699 (� 0.015) 0.750 0.843 (� 0.014)
BirdChicken 0.650 0.714 (� 0.014) 0.850 0.879 (� 0.014)
CBF 0.998 0.966 (� 0.006) 0.999 0.988 (� 0.006)
Coffee 1.000 0.929 (� 0.009) 1.000 0.994(� 0.002)
ECGFiveDays 0.822 0.835 (� 0.008) 1.000 0.974(� 0.004)
FaceFour 0.909 0.862 (� 0.009) 0.909 0.917(� 0.009)
FacesUCR 0.937 0.912 (� 0.002) 0.943 0.947(� 0.002)
GunPoint 0.993 0.952 (� 0.004) 0.993 0.985(� 0.003)
ItalyPD 0.961 0.950 (� 0.002) 0.964 0.959(� 0.001)
Lightning7 0.767 0.738 (� 0.006) 0.753 0.732(� 0.009)
MoteStrain 0.886 0.853 (� 0.005) 0.915 0.873(� 0.006)
OliveOil 0.867 0.871 (� 0.008) 0.900 0.885(� 0.009)
SonyI 0.707 0.878 (� 0.008) 0.854 0.946(� 0.008)
SonyII 0.876 0.846 (� 0.005) 0.924 0.930(� 0.005)
SynthControl 0.990 0.989 (� 0.001) 1.000 0.996(� 0.000)
Toe1 0.921 0.853 (� 0.008) 0.969 0.947(� 0.002)
Toe2 0.915 0.884 (� 0.005) 0.885 0.937(� 0.004)
TwoLeadECG 0.933 0.837 (� 0.010) 0.985 0.951(� 0.006)

Bold indicates that flat-COTE resampling experiment has significantly lower
mean error than DTW.

Fig. 11. Critical difference diagram for flat-COTE and the individual
ensembles for the mean of 50 resamples on 20 datasets.

TABLE 5
Frequency of Test Set Wins by Transform

Transform Number of datassets

Elastic Ensemble 34
Shapelets 22
Power Spectrum 9
Change 7
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was little more than 60 percent, and the overall accuracy of
the resulting COTE classifier was significantly worse than
flat-COTE. There is simply too much noise in the training
set accuracy estimates for these datasets.

8.2 Weighting Each Transform

If we cannot (or do not want to) pick the best transform, the
next logical step is to introduce a hierarchical collective with
weighting for each transform ensemble. In the flat ensemble,
each classifier is weighted by its cross validation accuracy on
the training set. It would seem sensible then to introduce a
hierarchy of ensembles that also weights each transform by a
cross validation accuracy. However, the problem with this
approach is that it requires a further level of cross validation,
which for the shapelet transform and elastic ensemble in par-
ticular introduces an unacceptable time overhead. To esti-
mate the error accurately we would have to perform the
shapelet transform independently on each fold. For the elas-
tic ensemble, we would have to estimate the parameters for
each distance measure independently on each fold. Alterna-
tively, we could weight by some summary statistic of the
constituent members of each transform ensemble. We have
tried a range of statistics, such as equal weighting, mean,
median and the mean weighted by variance, but they are all
significantly worse than flat-COTE (see Fig. 12).

8.3 Select a Subset of Transforms

Selecting a single transform discards useful information,
and weighting is difficult because of the problem of finding
an unbiased estimate of transform utility. Nevertheless,
with many problems, certain transforms are clearly inap-
propriate and are likely to reduce the overall efficiency of
the collective. Therefore it is desirable to have a mechanism
that is able to select a subset of possible transforms based on
within-transform classifier variation. We phrase the choice
of whether to include a transform as a hypothesis test. If
there is strong evidence that the median classifier accuracy
on one transform is worse than that of the best transform,
then we discard it. To test this hypothesis, for each dataset
we select the best transform on the training data, then per-
form a two sample Mann-Whitney rank sum test at the 1
percent level against every other transform, where each
sample consists of the training accuracy of the constituent
classifiers. The selection process can thus choose 1, 2, 3 or 4
transforms to use. The resultant classifier, which we call
Mann-COTE, wins on 25 dataset, flat-COTE on 23 and they
tie on 24. There is no significant difference between them at
the 1 percent level. Mann-COTE most frequently selects two
transformations, and there is no apparent bias in perfor-
mance against number of transforms selected (see Table 7).

Mann-COTE retains the accuracy of the flat-COTE but
offers the possibility of greater exploratory power and likeli-
hood of removing unsuitable data representations. With a
larger population in each ensemble we would expect the
performance of Mann-COTE to equal, and possibly exceed,
the flat collective.

9 CONCLUSIONS AND FUTURE WORK

We have proposed an ensemble scheme for TSC based on
constructing classifiers on different data representations.
The standard baseline algorithms used in TSC research are
1-NN with euclidean distance and/or dynamic time warp-
ing. We have conclusively shown that COTE significantly
out-performs both of these approaches. We have shown it
to be significantly better than all of the competing algo-
rithms that have been proposed in the literature. We believe
the results we present represent a new state of the art
against which new TSC algorithms should be compared in
terms of accuracy. Of course, accuracy is not the only crite-
ria for assessing a classification algorithm. It is perfectly
valid to propose algorithms that offer speed up or greater
explanatory power, but no accuracy gains.

This result supports our belief that the best way to form
better time series classifiers is to separate the data represen-
tation from the classification [11], and that the greatest
improvement can be found through choice of data transfor-
mation, rather than classification algorithm [10]. However,
further analysis of the performance of COTE variants shows
that this is not as clear cut as we believed. Our expectation
was that if we could choose the right transformation from
the training data we would improve the overall perfor-
mance. This was not the case even if we cheated and picked
the best transformation on the test data. We think this is
caused by two factors. First, it is apparent that problems can
have discriminatory features in multiple representations.
This is understandable, particularly with multi-class prob-
lems. Second, we were downplaying the importance of the

TABLE 6
Percentages to Show Where Each Transform Space Produced

the Lowest Error Rates, Broken Down by Problem Type

Dataset Type EE Shapelets PS Change

Human Sensor 20% 80% 0% 0%
Image 46% 21% 18% 14%
Motion 73% 27% 0% 0%
Sensor 35% 39% 17% 9%

TABLE 7
Frequency of Test Set Wins for Mann-COTE versus Flat-COTE,
According to the Number of Transforms Selected for a Given

Dataset by Mann-COTE

Flat Wins Tie Mann Wins Total

One transform 9 3 7 19
Two transforms 12 4 13 29
Three transforms 2 5 5 12
Four transforms 0 12 0 12
Total 23 24 25 72

Fig. 12. Flat-COTE against alternative hierarchical weighted collectives.
The flat scheme is significantly more accurate than weighting the
ensemble according to any of the simple summary statistics that were
tried.
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classifiers. Algorithms such as rotation forest have very
strong internal mechanisms for dealing with deceptive
and/or redundant features. The interaction between classi-
fier and transformation is more subtle than we supposed
and is worthy of further investigation. This conclusion is
supported by the fact that COTE is significantly more accu-
rate than FBL, an algorithm that uses a massive feature
space with a simple classifier.

There are several ways that we could improve the collec-
tive: Alternative transforms based on frequency counts,
interval statistics, and complexity measures could all be
assimilated into the collective at a future point, if they are
found to add diversity; We could improve the existing
transforms. In speech processing and related fields, it is
common to use a spectral window, rather than transform
the whole series. This offers the possibility of detecting
localised discriminatory frequency features, which may be
useful for long series classification problems; Our choice of
classifiers in the heterogeneous ensemble is fairly arbitrary,
and the inclusion of more complex classifiers, the exclusion
of weaker classifiers, and the setting of parameters through
cross validation might significantly improve overall perfor-
mance; adapting hyper parameters of the data sets may
improve the transform selection process.

Our research is incremental. Our primary concern is find-
ing the best way to approach TSC problems, not to come up
with the most ingenious and complex algorithm. We have
proposed two novel ways of using shapelets and the ACF,
but essentially we build on existing research by combining
classifiers and representations that have been previously
proposed in the literature. In our search for the best
approach, we are classifier and representation neutral. If an
algorithm can be shown to have value for some problem
type, then we will absorb it into the collective. Our priority
is in the accurate assessment and comparison of TSC algo-
rithms to give guidance to those with real world TSC prob-
lems. If accuracy is the primary concern and the necessary
computing resources are available, our advice to any practi-
tioner is that ensembles over different data representations
are the best approach to TSC and that COTE is on average
the most accurate algorithm currently available. Our code
and results can all be downloaded from [31].
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