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Abstract—A set of views defined by selection queries splits a database relation into sub-relations, each containing a subset of the

original rows. This decomposition into horizontal fragments is lossless when the initial relation can be reconstructed from the fragments

by union. In this paper, we consider horizontal decomposition in a setting where some of the attributes in the database schema are

interpreted over a specific domain, on which a set of special predicates and functions is defined. We study losslessness in the presence

of integrity constraints on the database schema. We consider the class of conditional domain constraints (CDCs), which restrict the

values that the interpreted attributes may take whenever a certain condition holds on the non-interpreted ones, and investigate lossless

horizontal decomposition under CDCs in isolation, as well as in combination with functional and unary inclusion dependencies.

Index Terms—Selection, views, losslessness, constraints, CDC, consistency, separability
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1 INTRODUCTION

THE problem of updating a database through a set of
views consists in propagating updates issued on the

views to the underlying base relations over which the view
relations are defined, so that the changes to the database
reflect exactly those to the views. This is a classical problem
in database research, known as the view update problem ([1],
[2], [3]), which in recent years has received renewed and
increasing attention ([4], [5], [6], [7], [8], [9]).

View updates can be consistently propagated in an unam-
biguous way under the condition that the mapping between
database and view relations is lossless, which means that not
only do the view relations depend on the database relations,
but also the converse is true. However, just knowing that
such an “inverse” dependency exists is not yet sufficient to
effectively propagate the changes from the views to the data-
base. What is essential to know is how, in some constructive
way, the database relations depend on the view relations.
This amounts to being able to define each database relation
in terms of the views by means of a query, in much the same
way the latter are defined from the former [10]. In such a con-
text, database decompositions [11] play an important role,
because their losslessness is associated with the existence of
an explicit reconstruction operator that, as the name suggests,
prescribes how a database relation can be rebuilt from the
pieces, called fragments, into which it has been decomposed.

Horizontal decomposition is the process of splitting a given
relation into sub-relations on the same attributes and of the

same arity, each containing a subset of the rows of the origi-
nal relation. For example, consider the relation R shown in
Fig. 1, recording data about the employees of a company:
their name (EMP), the department (DEP) and the position
(POS) in which they are employed, and their income (e.g.,
euros per month) consisting of a fixed salary (SAL) plus a
variable bonus (BON). In Fig. 1, the relation R is decom-
posed into three fragments: V1 selects the rows of R with
employees working as managers in departments other than
ICT, V2 selects the rows of R with employees who get
strictly less than 4;000 as bonus, and V3 selects the rows of
R with employees who do not work as managers. This kind
of decomposition is lossless when the original relation can
be reconstructed from the fragments by union; in other
words, the reconstruction operator for horizontal decompo-
sition is the union. In the example of Fig. 1, the set of views
fV1; V2; V3g constitutes a lossless horizontal decomposition
of R, as the union of V1, V2 and V3 contains all (and only)
the rows of R. Each proper subset of fV1; V2; V3g constitutes
a lossy decomposition of R, because each view selects at
least one row that is not selected by any of the others; e.g.,
the union of V1 and V2 does not contain the third row of
R, hLinda;Finance;Consultant; 5;000; 4;000i, which is selected
only by V3.

Observe that the horizontal decomposition specified by
the definitions of views V1, V2 and V3 in Fig. 1 is lossless
for the given relation R, but this is not the case for every
relation (over the same attributes). For instance, the tuple
hSam; ICT;Manager; 6;000; 5;000i is not selected by any of
these views; indeed, every relation containing a row for
an employee who works as a manager in the ICT depart-
ment and receives a bonus greater than 4;000 would not
be losslessly decomposed by V1, V2 and V3. In the pres-
ence of integrity constraints, however, things may be dif-
ferent, because some tuples, such as the one above, might
not be allowed in the input relation.

The study of horizontal decomposition ([12], [13], [14],
[15]) has mostly focused on settings where data values can
only be compared for equality. However, most real-world
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applications make use of data values coming from domains
with a richer structure (e.g., ordering) on which a variety of
other restrictions besides equality can be expressed (e.g., that
of being within a range or above a threshold). Examples are
the attributes SAL and BON of the relation in Fig. 1, the
dimensions, weights and prices in the database of a shipping
company, or the various amounts (credits, debits, interest and
exchange rates, etc.) recorded in a banking application. It is
therefore of practical interest to consider a scenario where
some of the attributes in the database schema are interpreted
over a specific domain, such as the reals or the integers, on
which a set of predicates (e.g., smaller/greater than) and func-
tions (e.g., addition and subtraction) are defined, according to
a first-order language C.

In the present paper, we consider horizontal decomposi-
tion in a setting with interpreted attributes, in which frag-
ments are defined by selection queries consisting of a
condition on the non-interpreted attributes, expressed by a
Boolean combination of equalities, and a condition on the
interpreted attributes, expressed by a formula in C. In par-
ticular, we study the losslessness (w.r.t. every input relation)
of horizontal decompositions specified in this way, in the
presence of integrity constraints on the database schema.
We work under the pure universal relation assumption
(URA) [11], that is, we restrict ourselves to a database
schema consisting of only one relation symbol, as custom-
ary in the study of database decomposition.

1.1 Contribution and Outline

In Section 2, we introduce a class of integrity constraints
called conditional domain constraints (CDCs). By means of a
formula in C, a CDC restricts the values that the inter-
preted attributes can take whenever a certain condition is
satisfied by the non-interpreted ones. Depending on the
expressive power of C, CDCs can capture constraints that
naturally arise in practise; for example, in the scenario of
Fig. 1, it may be required that employees in the ICT depart-
ment have a total income (i.e., salary plus bonus) of at
most 5;000, that employees working as managers get a
bonus of at least 2;000, and that employees never receive a
bonus greater than their salary. These constraints can be
expressed as:

DEPDEP ¼ ‘‘ICT’’ ) SALSALþ BONBON � 5;000 (1a)

POSPOS ¼ ‘‘Manager’’ ) BONBON � 2;000 (1b)

SALSAL� BONBON � 0: (1c)

As we shall see, the views of Fig. 1 losslessly decompose
every relation satisfying the above CDCs.

In our investigation, we do not commit to any specific
language C and we simply assume that C is closed under
negation.

In Section 3, we characterise consistent sets of CDCs in
terms of satisfiability in C. Whenever the satisfiability of sets
of formulae in C is decidable, our characterisation directly
gives a decision procedure for checking whether a set of
CDCs is consistent. This is the case, e.g., for the so-calledUnit
Two Variable Per Inequality fragment of linear arithmetic over
the integers, whose formulae (referred to as UTVPIs) consist
of at most two variables and variables have unit coefficients,
as well as for Boolean combinations of such formulae. We
prove that deciding consistency is NP-complete for both of
these languages.

In Section 4, we characterise lossless horizontal decom-
position under CDCs in terms of unsatisfiability in C. When-
ever the satisfiability of sets of formulae in C is decidable,
this characterisation gives a decision procedure for checking
whether a horizontal decomposition is lossless under CDCs.
We show that this problem is co-NP-complete when C is the
language of either UTVPIs or Boolean combinations of
UTVPIs.

In Section 5, we study lossless horizontal decomposition
under CDCs in combination with traditional integrity con-
straints. We show that functional dependencies (FDs) do
not interact with CDCs and can thus be allowed without
any restriction, whereas this is not the case for unary inclu-
sion dependencies (UINDs). We provide a domain propaga-
tion rule to derive a set of CDCs that fully captures the
interaction between a given set of UINDs and opportunely
restricted CDCs w.r.t. lossless horizontal decomposition,
which makes possible to employ the general technique for
deciding losslessness also in the presence of UINDs. In
addition, we consider restricted combinations of CDCs with
both FDs and UINDs.

We conclude in Section 6 with a discussion of the results,
relevant related work and future research directions.

2 PRELIMINARIES

We start by introducing the necessary notation and notions
that will be used throughout the paper. We assume some
familiarity with formal logic and its application to data-
base theory.

Basics. An n-tuple is an ordered list of n elements, where
n is a positive integer. We denote tuples by overlined low-

ercase letters (e.g., t) and we write them as comma-
separated sequences enclosed in parentheses; the kth ele-

ment of a tuple t is denoted by t½k�. For example, if t is the

4-tuple ða; b; c; aÞ, then t½3� ¼ c. An n-ary relation on a set A,
where n is called the arity of the relation, is a set of
n-tuples of elements of A.

A schema is a finite set S of relation symbols, also called a
relational signature. Each relation symbol S has a positive
arity Sj j indicating the total number of positions in S, which
are partitioned into interpreted and non-interpreted ones.

Fig. 1. Selection views over a company database.
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Relation symbols of arity n are called n-ary; we indicate that
Sj j ¼ n by writing S=n.
Let dom be a possibly infinite set of arbitrary values, and

let idom be a set of values from a specific domain (e.g., the
integers Z) on which a set of predicates (e.g., �) and func-
tions (e.g., þ) are defined, according to a first-order lan-
guage C closed under negation. An instance over a schema S

associates each S 2 S with a relation SI of appropriate arity
on dom [ idom, called the extension of S under I, such that
the values for the interpreted and non-interpreted positions
of S are taken from idom and dom, respectively. The set of
elements of dom [ idom occurring in an instance I is called
the active domain of I, denoted by adomðIÞ. An instance is
finite if its active domain is, and all instances in this paper
are assumed to be finite. A fact is given by the association,

denoted by RðtÞ, between a relation symbol R and a tuple t
of values of appropriate arity; an instance can be repre-
sented as a set of facts.

Constraints.A language over a relational signatureS is a set
of first-order logic (FOL) formulae over S with constants
dom [ idom under the standard name assumption (i.e., the
interpretation of each constant is the constant’s name itself).
A formula in some language L is called an L-formula. The
sets of constants and relation symbols that occur in a formula
’ are denoted by constð’Þ and sigð’Þ, respectively; we extend
constð�Þ and sigð�Þ to sets of formulae in the natural way.

A constraint is a closed formula (that is, without free
variables) in some language. For a set G of constraints, we
say that an instance I over sigðGÞ is a model of (or satisfies)
G, and write I � G, to indicate that the relational structure
hadomðIÞ [ constðGÞ, Ii makes every formula in G true
under the standard FOL semantics. We write I � ’ as short
for I � f’g, and say that I satisfies ’. A set of constraints G
entails (or logically implies) a constraint ’, written G � ’, if
every finite model of G also satisfies ’. All sets of con-
straints in this paper are finite.

Propositional theories. A propositional variable is a variable
whose value can be either T (true) or F (false). A propositional
formula is a Boolean combination of propositional variables,
including the two special propositional variables > and ?,
whose values are always T and F, respectively. A proposi-
tional theory is a set of propositional formulae. We denote
the set of propositional variables occurring in a proposi-
tional formula P by varðP Þ and we extend varð�Þ to proposi-
tional theories in the natural way. A valuation of a set of
propositional variables (also called a truth-value assignment)
assigns a truth-value (i.e., either T or F) to each propositional
variable in the set. The truth-value aðP Þ of a propositional
formula P under a valuation a of its propositional variables
is determined by the standard semantics of the Boolean con-
nectives. We say that a satisfies (or makes true) P , and write
a � P , if aðP Þ ¼ T. Given a propositional theory P, a valua-
tion of varðPÞ satisfies P, written a � P, if a satisfies every
propositional formula in P.

2.1 Horizontal Decomposition

We consider a source schema R, consisting of a single relation
symbol R, and a decomposed schema V, disjoint with R, of
view symbols with the same arity as R. We formally define
horizontal decomposition as follows.

Definition 1. Let R ¼ fRg and V ¼ fV1; . . . ; Vng. Let D be a set
of constraints over R and let S be a set of exact view defini-
tions, one for each Vi 2 V, of the form 8x : ViðxÞ $ ’ðxÞ,
where ’ is a safe-range1 formula over R. Then, S is a horizon-
tal decomposition of R into V under D if D [ S � 8x :
ViðxÞ ! RðxÞ for every Vi 2 V. We say that S is lossless if
D [ S � 8x :RðxÞ $ V1ðxÞ _ � � � _ VnðxÞ.
For the sake of simplicity, w.l.o.g. we assume that the first

kRk positions of R and of every V 2 V are non-interpreted,
while the remaining Rj j � kRk positions are interpreted.
Under this assumption, instances over R [V associate each
relation symbol with a subset of the Cartesian product

domk 	 idomn�k, where n ¼ Rj j and k ¼ kRk. Unless other-

wise specified, when we speak of a tuple t we implicitly

assume that t is of arity n and that the first k values of t are
from dom while the rest are from idom. W.l.o.g. we also
assume that a variable associated with the ith position of R
is named xi if i � k, and yi�k otherwise. By default, x and y
denote the tuples ðx1; . . . ; xkÞ and ðy1; . . . ; yn�kÞ, respectively.

Since every C-formula is over variables associated with
interpreted positions, we write fðyÞ to indicate that f is a
C-formula whose free variables are among the variables in

y. For a tuple ty of n� k values from idom, we denote by

fðtyÞ the result of replacing every occurrence in f of the free

variable yi with the value t½i�. We say that ty is a solution to f

if fðtyÞ is true under the semantics of C. In such a case, we

also say that the assignment b associating each yi with ty½i�
satisfies f, and we write b � f.2

Source constraints. The class of integrity constraints we
consider on the source schema R is that of conditional domain
constraints, which restrict the admissible values at inter-
preted positions by means of formulae in C, when a certain
condition holds on the non-interpreted ones. Formally, a
CDC is a formula of the form

8x; y : �Rðx; yÞ ^ �ðxÞ� ! dðyÞ; (2)

where �ðxÞ is a Boolean combination of equalities x ¼ a,
with x from x and a from dom, and dðyÞ 2 C. We use x 6¼ a
as short for :ðx ¼ aÞ and, for ease of notation, we write (2)
simply as �ðxÞ ! dðyÞ. Here, we make use of a more general
variant of the CDCs introduced in [16], where the condition
�ðxÞ was limited to a conjunction of possibly negated equal-
ities. In general, (2) is more expressive than a CDC of the
form used in [16], as in the latter negation is allowed only
atomically, that is, in front of equalities, and so disjunction
cannot be expressed. However, there is no difference in
expressivity between the two variants when considering
sets of CDCs, because the antecedent of (2) can always be
rewritten in disjunctive normal form (DNF) and the CDC
split into a set of CDCs having the same consequent and
each disjunct as antecedent.

View definitions. The view symbols in V are defined by
selection queries with conditions on both interpreted and
non-interpreted positions. Formally, each V 2 V is defined
by a formula of the form

1. For details on the syntactic notion of range restriction, corre-
sponding to the semantic notion of domain independence, refer to [11].

2. Sometimes, by abuse of terminology, we say that an assignment b
is a solution to a C-formula f, with the obvious meaning.
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8x; y : V ðx; yÞ $ �
Rðx; yÞ ^ �ðxÞ ^ sðyÞ�; (3)

where �ðxÞ is as in (2) and sðyÞ 2 C. In the following, we
write (3) simply as V : �ðxÞ ^ sðyÞ. View definitions of this
form clearly generalise those in [16], where �ðxÞ is limited to
a conjunction of possibly negated equalities and disjunction
cannot be expressed. While this has an impact on end-users,
who can define more expressive views, there is no differ-
ence between the two formalisms w.r.t. losslessness, in that
any view symbol V defined by (3) can be split into a set of
views, defined by formulae of the form used in [16], that
together select exactly the same tuples as V ; given �ðxÞ in
DNF, each of these view definitions has the same selection
condition as V on the interpreted attributes and a disjunct
of �ðxÞ as selection condition on the non-interpreted ones.

The technique we will present in Section 4 for checking
whether a set of selections of the form (3) is lossless can also
be applied when (some of) the selections have the form
V : �ðxÞ _ sðyÞ by considering, in place of each such selec-
tion, the two selections V 0 : �ðxÞ and V 00 : sðyÞ.

Running example. To clarify the notation and illustrate the
concepts introduced so far, we now give an example that will
be used also in the rest of the paper. It is based on the source
schema of Fig. 1, the CDCs (1a)-(1c) informally described in
Section 1 and the views previously specified in Fig. 1 by
means of SQL statements.

Example 1. Let R be a relation symbol of arity 5, whose posi-
tions are associated with attributes EMP, DEP, POS,
SAL, BON, in this order, with the last two interpreted
over the integers. Differently from the example of Fig. 1,
for simplicity we assume that salaries and bonuses are
given in thousands of euros/month. Let a ¼ ‘‘ICT’’ and
b ¼ ‘‘Manager’’, and consider the following set D
of CDCs: fx2 ¼ a ! y1 þ y2 � 5 ;x3 ¼ b ! y2 � 2 ;> !
y1 � y2 � 0g.Let V ¼ fV1; V2; V3 g, and let S be the hori-
zontal decomposition given by V1 : x2 6¼ a ^ x3 ¼ b,
V2 : y2 < 4, and V3 : x3 6¼ b.

Specific languages. The techniques we will present for
deciding whether a set of CDCs is consistent (Section 3)
and whether a horizontal decomposition islossless under
CDCs (Section 4) give actual algorithms when satisfiabil-
ity in C is decidable; in the case of losslessness, C is addi-
tionally required to be closed under negation. Thus, even
though our investigation is in general independent of the
choice of C, from a practical point of view it makes sense
to consider concrete languages that enjoy both of the
above properties. Two prominent such languages are
Unit Two-Variable Per Inequality formulae (UTVPIs) and
Boolean combinations thereof. UTVPIs, a.k.a. Generalised 2
SAT (G2SAT) formulae [17], are a fragment of linear arith-
metic over theintegers. Formally, a UTVPI formula has
the form axþ by � d, where x and y are integer variables,
a; b 2 f�1; 0; 1g and d 2 Z.

UTVPIs can express comparisons between two variables
and between a variable and an integer, as well as compare the
sumor difference of two variableswith an integer. As integers
allow to represent also real numbers with fixed precision,
UTVPIs may be sufficient for most applications. The CDCs
and the view definitions of Example 1 can be expressed when
C is the language ofUTVPIs.

Whether a set of UTVPIs is satisfiable can be checked in
polynomial time ([18], [19], [20]). We refer to a Boolean com-
bination of UTVPIs as BUTVPI; deciding the satisfiability of
a set of BUTVPIs is NP-complete [21].

3 CONSISTENT SETS OF CDCS

Before turning our attention to horizontal decomposition,
we first deal with the relevant problem of determining
whether a set of CDCs is consistent, that is, whether it has a
non-empty model.3 It is important to make sure that the
integrity constraints over the source schema are consistent,
as every horizontal decomposition is meaninglessly lossless
when there are in fact no legal relations to decompose.

In this section, wewill characterise the consistency of a set
of CDCs in terms of satisfiability in C, where C is not required
to be closed under negation. The consistency problem for
CDCs is the decision problem that takes as input a set D of
CDCs and answers the question: “Is D consistent?” We will
show that when C is the language of either UTVPIs or
BUTVPIs this problem is NP-complete. The technique
employed here provides the basis for the approachwe follow
in Section 4 in the study of lossless horizontal decomposition.

Observe that, given their form, CDCs affect only one tuple
at a time, and so whether an instance satisfies a set of CDCs
depends on each tuple of the instance in isolation from the
others. Indeed, a set of CDCs is consistent precisely if it is sat-
isfiable on an instance consisting of only one tuple, therefore
we can restrict our attention to single tuples. Moreover, we
are not really interested in the actual values of a tuple at non-
interpreted positions; what we need to know is simply
whether such values satisfy the conditions in the antecedent
of each CDC or not. To this end, with each equality between
a variable xi and a constant a we associate a propositional
variable pai , whose truth-value indicates whether the value in
the ith position is a. To each valuation of such propositional
variables corresponds the (possibly infinite) set of tuples sat-
isfying the equalities associatedwith the names of the propo-
sitional variables. For example, a valuation assigning true to

pa1 and false to pb2 identifies all the tuples in which the value
of the first element is a and the value of the second is differ-
ent from b. A bit more care is neededwith valuations of prop-
ositional variables that refer to the same position (i.e., have
the same subscript) but to different constants (i.e., have dif-

ferent superscripts). For example, pa1 and pb1 (with a 6¼ b)
should never be both evaluated to true.

As we shall see, checking whether a set D of CDCs is con-
sistent amounts to first building a propositional theory by
replacing the equalities with the corresponding proposi-
tional variables, and then looking for a valuation a such that:

� any two propositional variables referring to the same
position but to different constants are not evaluated
both to true; and

� the set ofC-formulae that “apply” under a is satisfiable.

Definition 2. Let D ¼ ff1; . . . ;fng be a set of CDCs over R. For
each fi 2 D, recalling it has the form (2), we construct

3. Since CDCs are universally-quantified closed implicational for-
mulae, any set thereof is always trivially satisfied by the empty
instance.
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propðfiÞ ¼ P ! vi; (4)

where P is a propositional formula (possibly >) obtained from
the condition �ðxÞ in the antecedent of f by replacing each
equality xi ¼ a between a variable xi and a 2 idom with the
propositional variable pai , and vi is a fresh propositional vari-
able associated with the C-formula dðyÞ, denoted by idfðviÞ,4 in
the consequent of f. We denote fpropðfÞ j f 2 Dg by PD and
we call it the propositional theory associated with D.

We consider the set varðPDÞ of propositional variables
occurring in PD partitioned into varpðPDÞ ¼ fvarðP Þ j ðP !
viÞ 2 PDg and varvðPDÞ ¼ varðPDÞ n varpðPDÞ.

For a pair of distinct propositional variables pai and pbi
associated with the same position i but distinct dom con-
stants a and b, we consider the propositional formula pai ^
pbi ! ?, called the axiom of unique value for pai and pbi , intui-
tively stating that two distinct constants are not allowed in
the same position. The axioms of unique value for a set of
propositional variables consist of the axiom of unique value

for each pair of distinct propositional variables pai and pbi in

the set. A tuple t is consistent with a valuation a if, for every

propositional variable pai , it holds that t½i� ¼ a precisely if
aðpai Þ ¼ T. In general, given a valuation a of a set of proposi-
tional variables, by construction there exists a tuple consis-
tent with a if and only if a satisfies the corresponding
axioms of unique value for that set.

Definition 3. Let D be a set of CDCs over R. The auxiliary the-
ory Paux for PD consists of the axioms of unique value for
varpðPDÞ.

Example 2. The propositional theory associated with D

of Example 1 is PD ¼ f pa2 ! v1; p
b
3 ! v2; > ! v3g for

which varpðPDÞ ¼ f pa2; pb3 g and varv ðPDÞ ¼ fv1; v2; v3g.
The auxiliary theory for PD is Paux ¼ ? . The association
between the propositional variables in varvðPDÞ and the
set of UTVPIs from the CDCs in D is idf ¼ f v1 7! y1 þ
y2 � 5; v2 7! y2 � 2; v3 7! y1 � y2 � 0 g.
Given a set D of CDCs and a valuation a of varpðPDÞ,

we say that a CDC f 2 D is applicable under a if a makes the
l.h.s. of propðfÞ true. We can use a to “filter” PD and con-
struct a set consisting of the consequent of each CDC in D
that is applicable under a. This set contains the C-formulae
that must be necessarily satisfied by the values at inter-
preted positions of every tuple consistent with a, that is,
whose values at non-interpreted positions satisfy the ante-
cedents of the CDCs applicable under a.

Definition 4. Let D consist of CDCs over R, and let a be a valua-
tion of varpðPDÞ. The a-filtering of PD is the set

Pa
D ¼ f idfðvÞ j ðP ! vÞ 2 PD; aðP Þ ¼ T g ; (5)

consisting of C-formulae associated with propositional varia-
bles that occur in some propositional formula of PD whose
l.h.s. holds true under a.

The main result of this section characterises the consis-
tency of a set of CDCs in terms of satisfiability in C. We
remark again that the result holds in general for any

language C, not necessarily closed under negation. This
requirement will become essential only in the upcoming
Sections 4 and 5.

Theorem 1. Let D be a set of CDCs over R, and let Paux be the
auxiliary theory for PD. Then, D is consistent if and only if
there exists a valuation a of varpðPDÞ satisfying Paux and
such that Pa

D is satisfiable.

Whenever the satisfiability of sets of C-formulae is decid-
able, Theorem 1 gives an algorithm to check whether a set
of CDCs is consistent, as we illustrate below in our running
example, where C is the language of UTVPIs.

Example 3. With respect to PD of Example 2, consider the

valuation a ¼ fpa2 7! T; pb3 7! F g, for which we have Pa
D ¼

f y1 þ y2 � 5; y1 � y2 � 0 g. Obviously, a satisfies the
(empty) auxiliary theory Paux for PD. In addition, Pa

D is
satisfiable as, e.g., fy1 7! 3; y2 7! 2g is a solution to every
UTVPI in it.

We will now give the proof of Theorem 1, for which
we first need to prove a technical lemma. Let n ¼ Rj j
and k ¼ kRk; with each tuple t is associated the assign-
ment b : fy1; . . . ; yn�kg ! idom, which we refer to as the

assignment induced by the interpreted positions of t, such

that bðyi�kÞ ¼ t½i� for every i 2 fkþ 1; . . . ; ng. Intuitively,
the following lemma shows that any tuple that is consis-
tent with a valuation a satisfies a set of CDCs precisely
if the assignment induced by its interpreted positions
satisfies the a-filtering.

Lemma 1. Let D be a set of CDCs over R, and let a be a valuation
of varpðPDÞ. Let t be consistent with a, and let b be the assign-

ment induced by the interpreted positions of t. Then, fRðtÞg �
D if and only if b satisfies Pa

D.

Proof. Let n ¼ Rj j and k ¼ kRk.
Claim 1. Let f 2 D and propðfÞ ¼ P ! v. Then, aðP Þ ¼ T

iff �ðxÞ is true under fx1 7! t½1�; . . . ; xk 7! t½k�g.
Proof. Since t is consistent with a, for i 2 f1; . . . ; kg we

have that t½i� ¼ a if and only if aðpai Þ ¼ T.
Claim 2. For each propðfÞ ¼ P ! v with f 2 D, it is the

case that I 6� f if and only if aðP Þ ¼ T and b 6� idfðvÞ.
Proof. As f is a CDC, I 6� f if and only if the antecedent

�ðxÞ of f holds true under fx1 7! t½1�; . . . ; xk 7! t½k�g
and the consequent dðyÞ of f is not true under

fy1 7! t½kþ 1�; . . . ; yn�k 7! t½n�g. In turn, this is the
case if and only if both aðP Þ ¼ T (by Claim 1) and b

does not satisfy idfðvÞ ¼ dðyÞ (by construction).
We prove Lemma 1 by showing that I 6� D if and only

if b does not satisfy Pa
D.

“if” Assume b 6� Pa
D, that is, there is some C-for-

mula c 2 Pa
D not satisfied by b. By construction of Pa

D,
c is the consequent of a CDC f 2 D such that
propðfÞ ¼ P ! v, with c ¼ idfðvÞ and aðP Þ ¼ T. Thus,
as b does not satisfy c, by Claim 2 I 6� f, and there-
fore I 6� D.

“Only if” Assume I 6� D. Then, there exists some f 2 D
which is not satisfied by I. Since propðfÞ ¼ P ! v, Claim
by 2 aðP Þ ¼ T and b 6� idfðvÞ. Hence, idfðvÞ 2 Pa

D. There-
fore, b 6� Pa

D. tu
4. idf stands for “interpreted domain formula”.
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Proof of Theorem 1. Let n ¼ jRj and k ¼ kRk.
”if” Let a and b be such that a � Paux and b � Pa

D.
Then, as a � Paux, it is never the case that two distinct
propositional variables in varpðPDÞ associated with the
same position are both true under a. Thus, there exists

a tuple t consistent with a and such that b is the
assignment induced by its interpreted positions. There-

fore, as b � Pa
D, the instance fRðtÞg is a model of D by

Lemma 1.
“only if” Assume that D is consistent, that is, it has a

non-empty model. In particular, as every formula in D is

in one tuple, there is a tuple t such that the instance

I ¼ fRðtÞg is a model of D. Take a as follows: for every
propositional variable p 2 varpðPDÞ, aðpÞ ¼ T if p ¼ pai
and t½i� ¼ a, otherwise aðpÞ ¼ F. By construction, a �
Paux and t is consistent with a. Therefore, as I � D, the

assignment b induced by the interpreted positions of t
satisfies Pa

D by Lemma 1. tu
The satisfiability problem for C takes as input a set G of

C-formulae and answers the question: “Is G satisfiable?”

Lemma 2. The satisfiability problem for C linearly reduces to the
consistency problem for CDCs.

Proof. Let G ¼ ff1; . . . ;fng be a set C-formulae. Then, take
D ¼ f> ! fi jfi 2 Gg, let PD ¼ f> ! vi j i ¼ 1; . . . ; ng
and idf ¼ fvi 7! fi j i ¼ 1; . . . ; ng. The auxiliary theory for
PD is Paux ¼ ? . As varpðPDÞ ¼ ? , the only valuation of
varpðPDÞ is a ¼ ? , which satisfies Paux and for which
Pa

D ¼ fidfðviÞ j vi 2 varvðPDÞg ¼ G. Thus, by Theorem 1,
the set D of CDCs is consistent iff G is satisfiable. The
reduction is linear in the size of G. tu
With regard to the consistency problem for CDCs whose

consequents are either UTVPIs or BUTVPIs, we have the fol-
lowing complexity results.

Theorem 2. When C is the language of either BUTVPIs or UTV-
PIs, the consistency problem for CDCs is NP-complete.

Proof sketch. Constructing the propositional theories PD

and Paux requires linear time, checking that a valuation a

of varpðPDÞ satisfies Paux takes polynomial time, and
checking that an assignment from the variables in y to
integers satisfies Pa

D (whose construction takes linear
time) can be done in polynomial time, whether Pa

D con-
sists of either UTVPIs or BUTVPIs. Hence, in light of
Theorem 1, we can verify a given solution to the consis-
tency problem, when C is the language of either UTVPIs
or BUTVPIs, in polynomial time.

The NP-hardness of the consistency problem when C
is the language of BUTVPIs follows by Lemma 2 from
the fact that the satisfiability problem for BUTVPIs is
NP-hard.

The NP-hardness of the consistency problem when C
is the language of UTVPIs can be shown by a reduction
from SAT. tu

4 LOSSLESS SELECTIONS UNDER CDCS

The technique described in the previous section can be
opportunely extended and applied for checking whether

a set of selection views of the form (3) is lossless under
CDCs, that is, whether every source relation satisfying
the given CDCs can be reconstructed by union from the
fragments into which it is decomposed by the given
view definitions.

In this section, we will characterise lossless horizontal
decomposition in terms of unsatisfiability in C, where C
is closed under negation. The losslessness problem in C is
the decision problem that takes as input a horizontal
decomposition S specified by selections of the form (3) and
a set D of CDCs and answers the question: “Is S lossless
under D?” We will show that this problem is co-NP-com-
plete when C is the language of either UTVPIs or BUTVPIs.
For these languages, our characterisation provides an expo-
nential-time algorithm for deciding the losslessness of S
under D, by means of a number of unsatisfiability checks
in C which is exponentially bounded by the size of D.

By definition, a horizontal decomposition S of R into

V1; . . . ; Vn is lossless under a set D of CDCs over R if RI ¼
V1

I [ � � � [ Vn
I for every model I of D [ S. As the extension

of each view symbol is always included in the extension of
R, the problem is equivalent to checking that there is no

model I of D [ S where a tuple t 2 RI does not belong to

any Vi
I . In turn, this means that for each definition in S,

which has the form (3), the values in t at non-interpreted

positions do not satisfy �, or the values in t at interpreted
positions do not satisfy the C-formula s.

The formulae in S apply to one tuple at a time and, as
already observed in Section 3, so do CDCs; therefore we
can again focus on single tuples. With each equality we
associate, as before, a propositional variable whose
truth-value determines whether the equality is satisfied.
Given a valuation a, we consider the set consisting of
C-formulae in the r.h.s. of all the CDCs that are applica-
ble under a and the negation of the selection condition
dðyÞ of each view definition in S whose selection condi-
tion �ðxÞ is satisfied by a. Then, checking losslessness is
equivalent to checking that there exists no valuation a

for which the above set of C-formulae is satisfiable.
Indeed, from such a valuation and the corresponding
assignment of values from idom satisfying the relevant
C-formulae, we can obtain a tuple that provides a coun-
terexample to losslessness.

Similarly to what we did in Section 3 for sets of CDCs, we
build a propositional theory associated with a given hori-
zontal decomposition.

Definition 5. Let S ¼ ff1; . . . ;fng be a horizontal decomposi-
tion. For each fi 2 S, which has the form (3), we build

propðfiÞ ¼ P ! v0i; (6)

in which v0i is either a fresh propositional variable associated
(by means of idf) with the C-formula sðyÞ, if any, occurring in
fi, or ? otherwise.5 We denote fpropðfÞ j f 2 S g by PS and
we call it the propositional theory associated with S.

We consider the set varðPSÞ of propositional variables
occurring in PS partitioned into varpðPSÞ ¼ fvarðP Þ j ðP !
viÞ 2 PSg and varvðPSÞ ¼ varðPSÞ n varpðPSÞ.

5. This is because the constraints in Smay not specify a C-formula.
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Given a set D of CDCs over R and a horizontal decom-
position S of R, the propositional theory associated with
D [ S is P ¼ PD [PS, where PD and PS are the proposi-
tional theories of Definitions 2 and 5 associated with D
and S, respectively. The set varðPÞ ¼ varðPDÞ [ varðPSÞ
of propositional variables occurring in P is partitioned into
varpðPÞ ¼ varpðPDÞ [ varpðPSÞ and varvðPÞ ¼ varvðPDÞ [
varvðPSÞ.
Definition 6. Let D be a set of CDCs over R and let S be a

horizontal decomposition of R. The auxiliary theory Paux

for P ¼ PD [PS consists of the propositional formulae in
PS whose r.h.s. is ? and the axioms of unique value for
varpðPÞ.
Observe that the above is a proper extension of

Definition 3: whenever S is empty, the auxiliary theory
for P coincides with the auxiliary theory for PD.

Example 4. The propositional theory associated with S of

Example 1 is PS ¼ f:pa2 ^ pb3 ! ?;> ! v02;:pb3 ! ?g. Let
P ¼ PD [PS, where PD is the propositional theory
already given in Example 2. The association between the
propositional variables in varvðPÞ and UTVPIs is idf of
Example 2 extended with v02 7! y2 < 4, and the auxiliary

theory forP isPaux ¼ f:pa2 ^ pb3 ! ?;:pb3 ! ?g.
Definition 7. Let S be a horizontal decomposition, and let a be a

valuation of varpðPSÞ. The a-filtering of PS is the set

Pa
S ¼ f: idfðv0Þ j ðP ! v0Þ 2 PS; aðP Þ ¼ T; v0 6¼ ? g (7)

consisting of the negation of C-formulae associated with prop-
ositional variables that occur in some propositional formula of
PS whose l.h.s. holds true under a.

Observe that in (7), differently from (5), C-formulae are
negated. This is because a counter-instance I to losslessness

is such that V1
I [ � � � [ Vn

I ¼ ? and RI has only one tuple;
therefore, whenever the formula �ðxÞ in the selection that
defines a view symbol is satisfied by I, the C-formula dðyÞ, if
any, is not. On the other hand, the C-formula in the conse-
quent of a CDC must hold whenever the condition in the
antecedent is satisfied.

For a valuation a of varpðPÞ, the a-filtering of P is the set
Pa ¼ Pa

D [Pa
S, which, as C is closed under negation, con-

sists of C-formulae.
The main result of this section is the following characteri-

sation of lossless horizontal decomposition in terms of
unsatisfiability in C.

Theorem 3. Let S be a horizontal decomposition of R, let D be a
set of CDCs over R, and let Paux be the auxiliary theory for
P ¼ PD [PS. Then, S is lossless under D if and only if the
a-filteringPa ¼ Pa

D [Pa
S ofP is unsatisfiable for every valua-

tion a of varpðPÞ satisfying Paux.

Whenever the satisfiability of C-formulae is decidable,
Theorem 3 provides an algorithm for deciding whether a
given horizontal decomposition is lossless. We illustrate
this in our running example with UTVPIs.

Example 5. Consider P and Paux from Example 4. The only
valuation of varpðPÞ satisfying Paux is a ¼ f pa2 7! T;

pb3 7! Tg, for which the a-filtering of P is

Pa ¼ �
y1 þ y2 � 5; y2 � 2; y1 � y2 � 0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pa
D

[�
y2 � 4

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Pa
S

:

Note that y2 � 4 in Pa
S is : idfðv02Þ, that is, the negation of

y2 < 4. The set Pa ¼ Pa
D [Pa

S is unsatisfiable because

from y1 þ y2 � 5 and y2 � 4we get y1 � 1, which together
with y1 � y2 � 0 yields y2 � 1, in conflict with y2 � 2. So,
the horizontal decomposition S is lossless under D.6

We will now give the proof of Theorem 3, for which we
first need to prove two additional lemmas. In the following,
and in the rest of the paper, let e’ denote the formula
8x; y : Rðx; yÞ $ W

V 2V V ðx; yÞ, and recall that a horizontal

decomposition S is lossless under D if and only if D [ S � e’.
We start by showing that, when D consists of CDCs, D [ S
does not entail e’ precisely if there is a counterexample to it
with only one tuple.

Lemma 3. Let S be a horizontal decomposition of R and let D be a
set of CDCs over R. Then, D [ S 6� e’ if and only if there exists

a tuple t such that the instance I ¼ fRðtÞg is a model of D [ S.

Proof. The “if” is trivial. For the “only if”, assume that
D [ S 6� e’. Then, there exists a model J of D [ S such that

J 6� e’, that is, RJ 6¼ V1
J [ � � � [ Vn

J . The extension of each
Vi always contains a subset of the tuples in the extension

of R under every instance, hence there must be t 2 RJ

such that t 62 Vi
J for every i 2 f1; . . . ; ng. Let I ¼ fRðtÞg;

as every constraint in D [ S is in one tuple and J �
D [ S, we have that I � D [ S. tu
The next lemma is more technical: intuitively, it shows

that any tuple that is consistent with a valuation a satisfy-
ing the auxiliary theory provides a counterexample to loss-
lessness if and only if the assignment induced by its
interpreted positions satisfies the a-filtering.

Lemma 4. Let S be a horizontal decomposition of R, let D be a set
of CDCs over R, and let Paux be the auxiliary theory for
P ¼ PD [PS. Let a be a valuation of varpðPÞ, let t be a tuple
consistent with a, and let b be the assignment induced by the

interpreted positions of t. Whenever a � Paux, we have that
fRðtÞg � D [ S if and only if b satisfies Pa.

Proof. Let n ¼ Rj j and k ¼ kRk.
Claim 1. Let propðfÞ ¼ P ! v0, with f 2 S. Then, I 6� f

iff aðP Þ ¼ T and, whenever v0 6¼ ?, b � idfðv0Þ.
Proof. Since f 2 S has the form (3), I 6� f iff �ðxÞ is true

under fx1 7! t½1�; . . . ; xk 7! t½k�g and sðyÞ, if any, holds
true under fy1 7! t½kþ 1�; . . . ; yn�k 7! t½n�g. As v0 6¼ ?
iff f contains a C-formula sðyÞ ¼ idfðv0Þ, the claim fol-
lows by construction of a and b.
Assume a � Paux. We will show that I 6� D [ S if and

only if b does not satisfy Pa.
“if”. Assume b 6� Pa. Then, there is a C-formula

c 2 Pa that is not satisfied by b. By construction of Pa,
either c or its negation appear in some f 2 D [ S,
depending on whether f 2 D or f 2 S, respectively. If

6. In the scenario of our running example it would makes sense to
require salaries and bonuses to be non-negative quantities, which can
be done by consistently adding the CDCs > ! y1 � 0 and > ! y2 � 0
without affecting the losslessness of the decomposition.
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f 2 D, then propðfÞ ¼ P ! v with aðP Þ ¼ T, so I 6� f (by
Claim 2 in the proof of Lemma 1). If f 2 S, then
propðfÞ ¼ P ! v0 with v0 6¼ ? and aðP Þ ¼ T, hence I 6� f

by Claim 1. In either case I 6� D [ S.
“only if”. Assume I 6� D [ S. Then, there is some f 2

D [ S that is not satisfied by I. If f is in D, by Lemma 1
b 6� Pa

D, hence b 6� Pa. If f is in S, propðfÞ ¼ P ! v0; as
I 6� f, by Claim 1 aðP Þ ¼ T and v0 6¼ ? implies b � idfðvÞ.
Suppose v0 ¼ ?, then propðfÞ is in Paux and, since
a � Paux, we obtain aðP Þ ¼ F, which is a contradiction.
So, v0 6¼ ? and b � idfðv0Þ. In turn, we have that
b 6� : idfðv0Þ and : idfðv0Þ 2 Pa. Therefore, b 6� Pa. tu

Proof of Theorem 3. Let n ¼ Rj j and k ¼ kRk. We will show
that D [ S 6� e’ if and only if there exist a and b satisfying
Paux and Pa, respectively.

“if” Let a and b be such that a � Paux and b � Pa.
Since a � Paux, no two distinct propositional variables
in varpðPÞ associated with the same position are both

true under a. Hence, there is a tuple t consistent with
a and such that b is the assignment induced by its

interpreted positions. So, the instance I ¼ fRðtÞg is a
model of D [ S by Lemma 4. Thus, as I 6� e’, D [ S 6� e’
by Lemma 3.

“only if”. Assume that D [ S 6� e’. By Lemma 3, there

exists a tuple t such that I ¼ fRðtÞg is a model of D [ S.
Let b be the assignment induced by the interpreted posi-

tions of t, and let a be the valuation such that, for each

p 2 varpðPÞ, aðpÞ ¼ T if p ¼ pai and t½i� ¼ a, and aðpÞ ¼ F

otherwise. We will show that a satisfies Paux and, in turn,
b � Pa by Lemma 4, since I � D [ S. By construction, a
satisfies every propositional formula in Paux of the form

pai ^ pbi ! ? with pai ; p
b
i 2 varpðPÞ and pai 6¼ pbi . All other

propositional formulae in Paux have the form propðfÞ ¼
P ! ?, where f is a constraint in S that does not contain
a C-formula sðyÞ. As I � D [ S, the condition �ðxÞ in

each such f 2 S is not true under fx1 7! t½1�; . . . ;
xk 7! t½k�g. Therefore, propðfÞ ¼ P ! ? is true under a

as aðP Þ ¼ F by construction of a. tu

The unsatisfiability problem for C is the complement of
the satisfiability problem for C.

Lemma 5. The unsatisfiability problem for C linearly reduces to
the losslessness problem in C.

Proof. Let G ¼ ff1; . . . ;fng be a set C-formulae. We will
show how to construct a horizontal decomposition
that is lossless under D ¼ ? precisely if G is unsatisfi-
able. To this end, take S ¼ fVi : : fi jfi 2 G g and
observe that, as C is closed under negation, : fi 2 C.
Thus, S consists of selections of the form (3), where
s ¼ : fi and � ¼ >. Therefore, S is indeed a horizon-
tal decomposition.

Let P ¼ PD [PS ¼ ? [ f v0i j i ¼ 1; . . . ; n g for which
idf ¼ f v0i 7! : fi jfi 2 G g. Then, the auxiliary theory
for P is Paux ¼ ? . Since varpðPÞ ¼ ? , the only valua-
tion of varpðPÞ is a ¼ ? , which satisfies Paux and for
which Pa ¼ f:idfðv0iÞ j v0i 2 varvðPSÞ g ¼ G. Therefore, by
Theorem 3, S is lossless under D ¼ ? if and only if G is
unsatisfiable. The reduction is linear in the size of G. tu

With regard to the losslessness problem in the languages
of UTVPIs and BUTVPIs, we have the following complexity
results.

Theorem 4. When C is the language of either BUTVPIs or UTV-
PIs, the losslessness problem in C is co-NP-complete.

Proof sketch. Constructing the propositional theories P and
Paux takes linear time, checking whether a valuation a of
varpðPÞ satisfies Paux requires polynomial time, and
checking that an assignment of integers to the variables
in y satisfies Pa (whose construction takes linear time)
can be done in polynomial time, whether Pa consists of
UTVPIs or BUTVPIs. Hence, in light of Theorem 3, we
can verify a given solution to the complement of the loss-
lessness problem, in either language, in polynomial time.
Therefore, the losslessness problem is in co-NP in both
cases.

The co-NP-hardness in the case of BUTVPIs follows
by Lemma 5 from the fact that the satisfiability prob-
lem for BUTVPI-formulae is NP-hard and so its com-
plement is, in turn, co-NP-hard. The co-NP-hardness
in the case of UTVPIs can be shown by a reduction
from UNSAT. tu

5 ADDING FDS AND UINDS

So far, we have considered lossless horizontal decomposi-
tion under CDCs in isolation; in this section, we extend our
study to the case in which the integrity constraints over the
source schema are combinations of CDCs with more tradi-
tional database constraints. This investigation is vital to
understand whether, how and to what extent the techniques
we described in Section 4 can be applied to existing data-
base schemas on which a set of integrity constraints other
than CDCs is already defined.

Here, we focus on two well-known classes of integrity
constraints, namely functional dependencies and unary
inclusion dependencies [11]. Under certain restrictions—as
we shall see—their interaction with CDCs can be fully cap-
tured, w.r.t. lossless horizontal decomposition, in terms of
CDCs. It is important to remark that we consider restrictions
solely on the CDCs, so that existing integrity constraints
need not bemodified in anyway in order to allow for CDCs.

Let us recall that an instance I satisfies a UIND R½i� 

R½j� if every value in the ith column of RI appears in the jth

column of RI . The following example shows that, if we
allow CDCs together with constraints from another class,
such as UINDs, their interaction may influence the lossless-
ness of horizontal decomposition.

Example 6. Let R and V be relation symbols of arity 2,
whose positions are interpreted over the integers. Let S
be the horizontal decomposition defined by V : y1 > 3,
and let D be a set of integrity constraints on R consisting
of the CDC > ! y2 > 3 and the UIND R½1� 
 R½2�. It is
easy to see that D entails > ! y1 > 3. Therefore, S is loss-
less under D because V selects all of the tuples in R,
which is clearly not the case without the UIND.

We now introduce a general property, separability, that
will constitute the main technical tool for the subsequent
analysis of combinations of CDCs with FDs and UINDs.
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Informally, a class of constraints is separable from CDCs
if, after making explicit the result of their interaction,
which is captured by a suitable set of inference rules, we
can disregard constraints from that class and focus solely
on CDCs, as far as lossless horizontal decomposition is
concerned. In what follows, for a set D of constraints we
denote by cdcðDÞ the maximal subset of D consisting
solely of CDCs.

Definition 8 (Separability). Let C be a class of integrity con-
straints, let S be a finite set of sound inference rules7 for C
extended with CDCs, and let D consist of CDCs and C-con-
straints. We say that the C-constraints are S-separable in D
from the CDCs if every horizontal decomposition is lossless
under D exactly when it is lossless under cdcðD�Þ, where D�

denotes the S-closure of D.8 We say that the C-constraints are
separable if there is some S for which they are S-separable.
Thus, to check whether a horizontal decomposition S is

lossless under an S-separable combination D of CDCs and
other constraints, one can proceed as follows:

1) compute the deductive closure D� of D w.r.t. S,
which makes explicit the interaction between CDCs
and the other constraints in D by adding entailed
constraints;

2) by using the technique of Section 4, check whether S
is lossless under cdcðD�Þ, that is, the set obtained by
discarding from D� all of the constraints that are not
CDCs.

Observe that S-separability implies S0-separability for

every sound S0 � S.

5.1 Functional Dependencies

We begin our investigation of separability by showing
that FDs do not interact with CDCs and so, as far as the
losslessness of horizontal decomposition is concerned,
they can be freely allowed in combination with them.

Theorem 5. Let D be a set of CDCs and FDs. Then, the FDs are
? -separable in D from the CDCs.

Proof. We will prove that a horizontal decomposition is
lossless under D if and only if it is lossless under cdcðDÞ.

“if”. We have that cdcðDÞ 
 D and, in turn, D entails
cdcðDÞ; therefore cdcðDÞ � e’ implies D � e’.9

“only if”. Whenever a horizontal decomposition is not
lossless, by Lemma 3 there is a witness instance I with
only one tuple. Since the violation of an FD involves at
least two tuples, I satisfies all of the FDs in D.10 tu

5.2 Unary Inclusion Dependencies

Since in general it is not possible to compare values from
dom with values from idom, we consider only UINDs of
the form R½i� 
 R½j� where positions i and j are either both
non-interpreted or both interpreted. We refer to the UINDs

in the former case as X-UINDs and in the latter as Y-UINDs.
Let n ¼ Rj j and k ¼ kRk; we write R½xi� 
 R½xj� with i; j 2
f1; . . . ; kg to denote the X-UIND R½i� 
 R½j� and we write
R½yi� 
 R½yj� with i; j 2 f1; . . . ; n� kg to denote the Y-UIND
R½iþ k� 
 R½jþ k�.

5.2.1 UINDs on Interpreted Attributes

First, we study the interaction between Y-UINDs (that is,
UINDs at interpreted positions) and a restricted form of
CDCs, which we shall introduce shortly. This interaction is
captured by the following domain propagation rule:

> ! dðyiÞ R½yj� 
 R½yi�
> ! dðyjÞ ; ðdpÞ

whose soundness is easily shown below.

Theorem 6. Let D be a set of CDCs and UINDs. If D � 8x;
y : Rðx; yÞ ! dðyiÞ and D � R½yj� 
 R½yi�, then D � 8x; y :
Rðx; yÞ ! dðyjÞ.

Proof. If D is inconsistent, the claim follows trivially. Thus,
let I be a model of D; hence I satisfies the CDC 8x; y :

Rðx; yÞ ! dðyiÞ and the UIND R½yj� 
 R½yi�. If RI ¼ ? ,

then trivially I � 8x; y : Rðx; yÞ ! dðyjÞ. So, let RI 6¼ ?

and suppose I 6� 8x; y : Rðx; yÞ ! dðyjÞ. Then, there

exists t 2 RI for which dðt½jþ k�Þ holds true, with k ¼
kRk. By the UIND, there must be t

0 2 RI such that t
0½i þ

k� ¼ t½jþ k�. Hence dðt0½iþ k�Þ is not true, in contradic-
tion of I � 8x; y : Rðx; yÞ ! dðyiÞ. tu
It turns out that when all of the CDCs that mention a var-

iable y corresponding to an interpreted position affected by
some Y-UIND have the form > ! dðyÞ, the domain propa-
gation rule fully captures the interaction between such
CDCs and Y-UINDs w.r.t. losslessness.

Definition 9. We say that a set D of CDCs and Y-UINDs is dp-
controllable if, for every Y-UIND R½yi� 
 R½yj� in D with
i 6¼ j, all of the CDCs in D mentioning the variable y, where y
is yi or yj, are of the form > ! dðyÞ.

Theorem 7. Let D be a dp-controllable set of CDCs and
Y-UINDs. Then, the Y-UINDs are fðdpÞg-separable in D
from the CDCs.

The above theorem is a special case of a more general
result (Theorem 10) given later on.

Even though in general dp-controllability is not a neces-
sary condition for the fðdpÞg-separability of Y-UINDs from
CDCs, the following examples show two different situations
where, in the absence of dp-controllability, the Y-UINDs are
not fðdpÞg-separable from the CDCs.

Example 7. Let R be a ternary relation symbol, whose last
two positions are interpreted over the integers. Let D con-
sist of the Y-UIND R½y1� 
 R½y2� and of the CDCs x1 ¼
a ! y2 > 2, x1 6¼ a ! y1 > 0, x1 6¼ a ! y1 < 0, and con-
sider the view symbol V : y1 > 1. For x1 6¼ a there is no
suitable value for y1 to satisfy the above CDCs, thus

every model I of D is such that, for every t 2 RI , t½1� ¼ a

and t½3� > 2. Moreover, by the Y-UIND R½y1� 
 R½y2�, we

also have that t½2� > 2, and therefore every tuple in RI is

7. We assume the reader to be familiar with the standard notions
(from proof theory) of inference rule, soundness, deductive closure.

8. As the constraints that are not CDCs are in any case filtered out
from D�, it does not matter whether C extended with CDCs is closed
under S or not.

9. Recall that e’ ¼ 8x; y : Rðx; yÞ $ Wn
i¼1 Viðx; yÞ.

10. As a matter of fact, it satisfies any FD.
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also in V I , which means that V is lossless under D.
Clearly, this is not the case in the absence of the Y-UIND,
that is, under cdcðDÞ. Let D� be the fðdpÞg-closure of D.
Then, as D� ¼ D, we have that V is lossy under cdcðD�Þ
and, therefore, the Y-UIND is not fðdpÞg-separable in D
from the CDCs.

Example 8. Let R be a relation symbol of arity 4 and with all
of its positions interpreted over the integers. Consider
the view symbol V : y3 < 3 ^ y4 > 4, and let D consist of
the Y-UIND R½y1� 
 R½y2� and the CDCs > ! y1þ y3 > 0,
> ! y2þ y4 � 0, > ! y3 � y4 � 0. The above CDCs entail
> ! y1 � y2 � 1, thus in every model I of D each tuple

t 2 RI must be such that t½1� � t½2� � 1.
By the Y-UIND R½y1� 
 R½y2�, for each d in p2ðRIÞ11

there exists d0 2 p2ðRIÞ with d0 � dþ 1. Then, as d0 6¼ d,
the instance I is either infinite or empty. Hence, every
horizontal decomposition is lossless under D.

On the other hand, let D� be the fðdpÞg-closure of
D and observe that D� ¼ D. Let J ¼ fRð1; 0; 0; 0Þg;
then, since J � cdcðD�Þ, V is lossy under cdcðD�Þ.
Therefore, the Y-UIND is not fðdpÞg-separable in D
from the CDCs.

5.2.2 UINDs on Non-Interpreted Attributes

We now turn our attention to combinations of CDCs and
X-UINDs (i.e., UINDs at non-interpreted positions). First,
we show that the syntactic restrictions introduced in [16]
on the CDCs are not sufficient for the ? -separability of
X-UINDs. Indeed, the following is a counterexample to
Theorem of [16].

Example 9. Let R be a ternary relation symbol, with the
third position interpreted over the integers. Let D con-
sist of the CDC x2 ¼ a ! y1 � 0 ^ y1 > 0 and the X-
UIND R½1� 
 R½2�. The CDCs in D are trivially non-
overlapping with the UINDs [16] and partition-free [16].
Consider the horizontal decomposition S specified by
the selections V1 : x1 6¼ a, V2 : x2 6¼ b and V3 : y1 6¼ 0.
Observe that every tuple other than ða; b; 0Þ is cap-
tured by at least one of the above selections. Let
I ¼ fRða; b; 0Þg; clearly, I � cdcðDÞ [ S but I 6� e’,
hence S is not lossless under cdcðDÞ. However, S is
lossless under D as every model of D [ S also satisfies
e’. This is due to the fact that there exists no instance
J such that J � D and Rða; b; 0Þ 2 J . Indeed, to satisfy
the UIND R½1� 
 R½2�, such an instance J must also

contain a tuple t 2 RJ with t½2� ¼ a which, on the
other hand, does not satisfy the CDC x2 ¼ a ! y1 � 0
^y1 > 0. Hence, the X-UINDs are not ? -separable in D
from the CDCs.

Below, we introduce a restriction on the CDCs, which
ensures the ? -separability of the X-UINDs.

Definition 10. A set D of CDCs is globally consistent if, for
every kRk-tuple tx of dom constants, there is a tuple ty of

Rj j � kRk values from idom such that the instance fRðtÞg,
with t ¼ htx; tyi, is a model of D.

Note that cdcðDÞ in Example 9 is not globally consistent.

Theorem 8. Let D consist of CDCs and X-UINDs such that
cdcðDÞ is globally consistent. Then, the X-UINDs are
? -separable in D from the CDCs.

The above theorem, like Theorem 7, is a special case of a
more general result (Theorem 10) given later on.

It is possible to check for the global consistency of a set D
of CDCs in a way similar to the one described in Theorem 1
for consistency, by building the propositional theory PD

associated with D, along with the auxiliary theory Paux for
PD, and then checking that the a-filtering Pa

D of PD is satisfi-
able for every (rather than just for one) valuation a of
varpðPDÞ that satisfies Paux. Indeed, under the assumptions
of Theorem 1, D is globally consistent if and only ifPa

D is sat-
isfiable for every valuation a of varpðPDÞ satisfying Paux.
Checking for global consistency is expensive, because it
requires an exponential number of satisfiability checks in C;
the associated decision problem is in PSPACE (the space
used for one satisfiability check can be reused for the next)
for UTVPIs as well as for BUTVPIs.

Devising purely syntactic restrictions that guarantee the
global consistency of CDCs depends on the specific con-
straint language C in use, which is indeed what we over-
looked in [16]. As it turns out, the non-overlapping and
partition-free restrictions of [16] ensure global consistency
(and so also the ? -separability of X-UINDs) only for sets of
CDCs whose consequents are UTVPIs. This is not the case
anymore for CDCs whose consequents are BUTVPIs, which
indeed allow to express Example 9.

We provide a condition that, although not guaranteeing
global consistency, ensures the? -separability of the X-UINDs.
Moreover, this restriction can be checkedmore efficiently than
global consistency, as it requires only a polynomial number of
C-satisfiability checks.

Definition 11. Let D be a set of CDCs. We say that the CDCs in
D are disjoint w.r.t. an X-UIND R½xi� 
 R½xj� if for any two
CDCs f1ðx1; y1Þ and f2ðx2; y2Þ in D, with xj in x1, the conse-
quent of f1 is satisfiable and has no variables in common with
the consequent of f2.

Intuitively, the above requires that all of the variables
appearing in the consequent of any CDC f whose ante-
cedent mentions the variable xj affected by an X-UIND
R½xi� 
 R½xj� do not occur in the consequent of any other
CDC; moreover, the consequent of each such f must be
satisfiable.

Theorem 9. Let D be a set of CDCs and X-UINDs, where
the CDCs are disjoint w.r.t. each X-UIND in D. Then, the
X-UINDs are ?-separable in D from the CDCs.

The above theorem is a special case of a more general
result (Theorem 11) given later on in Section 5.3.

Clearly, as global consistency is a property of the CDCs
in isolation, whereas disjointness is relative to a X-UIND,
these two notions are incomparable, in the sense that one
does not imply the other and vice versa, as shown below.

Example 10. Let R be a ternary relation symbol, whose
third position is interpreted over the integers, and let
c be the X-UIND R½2� 
 R½1�. The set D1 consisting of
the CDCs x1 ¼ a ! y1 < 0 and x1 ¼ a ! y1 > 0 is not
globally consistent, as there is no suitable value for the11. pi denotes projection on the ith position.
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third position (associated with y1) whenever the value
of the first (associated with x1) is a, but the CDCs in D1

are disjoint w.r.t. c. On the other hand, the set D2 con-
sisting of x1 ¼ a ! y1 > 0 and x2 ¼ a ! y1 > 1 is not
disjoint w.r.t. c (because both CDCs mention a variable
affected by c and their consequents have y1 in com-
mon) but D2 is globally consistent.

5.2.3 UINDs on All Attributes

We now study the separability of UINDs (i.e., X-UINDs and
Y-UINDs together)12 from CDCs. The following is a general-
isation of both Theorem 7 and Theorem 8.

Theorem 10. Let D be a set of globally consistent CDCs, X-
UINDs and Y-UINDs, such that the CDCs and Y-UINDs are
dp-controllable. Then, the UINDs are fðdpÞg-separable in D
from the CDCs.

To give the proof of the above theorem, we will need to
prove several lemmas, showing how any given model of
the (saturated set of) CDCs can be extended in order to sat-
isfy the UINDs as well.

Lemma 6. Let D be a dp-controllable set of CDCs and Y-UINDs,
and let t be a tuple such that fRðtÞg � cdcðD�Þ, where D� is
the fðdpÞg-closure of D. Let c ¼ R½i� 
 R½j� be a Y-UIND in

D, and let t
0
be identical to t except for t

0½j� ¼ t½i�. Then,
fRðt0Þg � cdcðD�Þ [ fcg.

Proof. Let D0 ¼ cdcðD�Þ. Since all of the UINDs in D are Y-

UINDs, i; j > k with k ¼ kRk. As t satisfies D0 and t
0
dif-

fers from t only on the jth element, t
0
satisfies every

CDC in D0 not mentioning the variable yj�k. The only

CDCs in D0 which are allowed to mention yj�k have the
form > ! dðyj�kÞ. For each such CDC, since R½i� 
 R½j�
is in D0, by (dp) also > ! dðyi�kÞ is in D0. Hence dðt½i�Þ
holds true, and in turn dðt0½j�Þ is true as well, because

t
0½j� ¼ t½i�. Therefore, t0 satisfies all the CDCs of the form

> ! dðyj�kÞ. Moreover, t
0
trivially satisfies the UIND c,

as t
0½i� ¼ t

0½j� ¼ t½i�. tu

Lemma 7. Let D be a dp-controllable set of CDCs and Y-UINDs,
and let I be a model of cdcðD�Þ, where D� is the fðdpÞg-closure
of D. Then, there exists an instance J � I such that J � D�.

Proof sketch. Let J0 ¼ I. We will iteratively add tuples to J0
so as to obtain a model of D�. At each iteration k, proceed
as follows:

1) Find a violation of some Y-UIND R½i� 
 R½j� in
D�, that is, a value d 2 piðRJkÞ which is not in

pjðRJkÞ.
2) Take t 2 RJk such that t½i� ¼ d and t½j� 6¼ d.
3) Let Jkþ1 ¼ Jk [ fRðt0Þg, with t

0
identical to t except

for t
0½j� ¼ d.

By construction, J satisfies all of the Y-UINDs in D

and, since at each step fRðt0Þg � cdcðDÞ by Lemma 6, it
can be shown that J � cdcðDÞ by an easy induction. tu

Lemma 8. Let D consist of X-UINDs and globally consistent
CDCs, and let I be a model of cdcðDÞ. Then, there exists an
instance J such that J � I and J � D.

Proof sketch. Let D0 ¼ cdcðDÞ and J0 ¼ I. We will show
how to build a model J � I of D by iteratively adding
tuples to J0. At each iteration k, proceed as follows:

1) Find a violation of some X-UIND R½i� 
 R½j� in D,

i.e., a dom constant a 2 piðRJkÞ which is not in

pjðRJkÞ.
2) Take t 2 RJk such that t½i� ¼ a and t½j� 6¼ a.
3) Let Jkþ1 ¼ Jk [ fRðt0Þg, where t

0
agrees with t at

non-interpreted positions except for t
0½j� ¼ a. Suit-

able values of t
0
at interpreted positions exist by

Definition 10 as D0 is globally consistent.
By construction, J satisfies all of the X-UINDs in D

and by an easy induction we get that J � cdcðDÞ, as
at each step fRðt0Þg � cdcðDÞ by the global consistency

of D0. tu
Proof of Theorem 10. Let D� be the closure of D under

fðdpÞg, and let D0 ¼ cdcðD�Þ. Observe that D� 
 D, as (dp)
is sound by Theorem 6. According to Definition 8, we

will show that D [ S � e’ if and only if D0 [ S � e’.
“if”. As D0 [ S 
 D� [ S, every model of D� [ S is also

a model of D0 [ S. Hence, D� [ S � D0 [ S and, since D� 

D, in turn D [ S � D0 [ S. Therefore, D [ S � e’ whenever

D0 [ S � e’.
“only if”. By contraposition. Assume that D0 [ S 6� e’.

Then, as D0 consists solely of CDCs, by Lemma 3 there

is a tuple t such that I ¼ fRðtÞg satisfies D0 [ S. In

turn, as D0 is over R, I is also a model of D0. By
Lemma 8, there exists an instance J 0 � I satisfying all
of the X-UINDs in D� and, by Lemma 7, there exists
J 00 � J 0 satisfying all of the Y-UINDs in D�. Moreover,
by construction, for each tuple in J 00 there is a tuple
in J 0 having the same values at non-interpreted posi-
tions, thus J 00 also satisfies all of the X-UINDs in D�.
Therefore, J 00 is model of D� and, as D� 
 D, of D as

well. Let J be the instance over R [V with RJ ¼ RJ 00

(the extension of each Vi under J is unambiguously

determined by RJ ). Clearly, J � D [ S but J 6� e’,
because t 2 RJ while t 62 V1

J [ � � � [ Vn
J . tu

Next, we show that replacing global consistency of the
CDCs in the assumptions of Theorem 10 by disjointness
w.r.t. the X-UINDs yields another sufficient condition for
the fðdpÞg-separability of the UINDs from the CDCs.

Theorem 11. Let D be a set of CDCs and UINDs such that the
CDCs are disjoint w.r.t. each X-UIND in D, and the CDCs
and Y-UINDs are dp-controllable. Then, the UINDs are
fðdpÞg-separable in D from the CDCs.

The proof of the above theorem is analogous to that of Theo-
rem 10, with the difference that in the “only if” direction the
existence of the instance J 0 is guaranteed by the following
lemma rather than Lemma 8.

Lemma 9. Let D be a set of X-UINDs and CDCs such that the
CDCs are disjoint w.r.t. each X-UIND in D, and let I be a

12. Recall that UINDs between non-interpreted and interpreted
positions are not allowed, as they make little sense.
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model of cdcðDÞ. Then, there exists an instance J such that
J � I and J � D.

Proof sketch. The construction ofJ is the same as in Lemma8,

with the difference that in step 3 suitable values for t
0
at

interpreted positions exist by the disjointness of the CDCs
w.r.t. the X-UINDs. tu

5.3 FDs and UINDs Together

Unfortunately, the separability results presented above for
combinations of CDCs and UINDs do not automatically
carry over to the case in which FDs are also present. In
fact, although FDs do not directly interact with CDCs, they
do in general interact with UINDs,13 which in turn interact
with CDCs.

We write FDs over R as implications between sets of
positions of R (e.g., f1; 3g ! f4g). We call X-FD (resp., Y-
FD) an FD whose l.h.s. and r.h.s. both consist of non-inter-
preted (resp., interpreted) positions; and we call XY-FD
(resp., YX-FD) an FD where the l.h.s. consists of non-inter-
preted (resp., interpreted) positions and the r.h.s. of inter-
preted (resp., non-interpreted) ones.

The following generalises Theorem 7 in the presence of
X-FDs and YX-FDs.

Theorem 12. Let D be a set of CDCs, Y-UINDs, X-FDs and YX-
FDs, where the CDCs and Y-UINDs are dp-controllable.
Then, the X-FDs, YX-FDs and Y-UINDs are fðdpÞg-separable
in D from the CDCs.

Proof sketch. The proof of Theorem 10 can be modified as
follows: in the “only if” direction take J 0 ¼ I, which con-

tains only the tuple t, and construct J 00 as in Lemma 7
(with D� ¼ D), by extending J 0 with tuples that have the

same values as t at non-interpreted positions. Therefore,
J 00 satisfies any FD whose r.h.s. is a set of non-interpreted
positions. tu
Theorem 8 does not hold anymore in the presence of Y-

FDs, that is, X-UINDs and Y-FDs are not ? -separable in gen-
eral from globally consistent CDCs, as shown below.

Theorem 13. There is a set of X-UINDs, Y-FDs and globally
consistent CDCs, in which the X-UINDs and Y-FDs are not
? -separable from the CDCs.

Proof. Let R be a relation symbol of arity 4, whose last two
positions are interpreted over the integers. Let D consist
of the X-UIND R½1� 
 R½2�, the Y-FD R : f3g ! f4g, and
the CDCs x1 ¼ a ^ x2 ¼ b ! y1 ¼ 0 ^ y2 > 1 and x2 ¼
a ! y1 ¼ 0 ^ y2 < 1. These CDCs are globally consistent,
because their consequents are satisfiable and their antece-
dents are never true at the same time (as x2 cannot be
simultaneously equal to b and a). Let S be the horizontal
decomposition specified by V1 : x1 6¼ a and V2 : x2 6¼ b.
Clearly, S is lossy under cdcðDÞ as the instance I ¼
fRða; b; 0; 2Þg satisfies cdcðDÞ and S; indeed, the tuple

ða; b; 0; 2Þ is in RI but it is not selected by either V1 or V2.
Suppose thatS is lossy underD. Then, there exists amodel

J of D [ S and a tuple t 2 RJ such that t 62 V1
J [ V2

J . By

definition of V1 and V2, we have that t½1� ¼ a and t½2� ¼ b

and, in turn, t½3� ¼ 0 and t½4� > 1 by the first CDC. By the

X-UIND, there must be t
0 2 RJ such that t

0½2� ¼ a and, in

turn, t
0½3� ¼ 0 and t

0½4� < 1 by the second CDC. But then, t

and t
0
violate the Y-FD, since they agree on the third posi-

tion but must differ on the fourth. So J 6� D, which is a
contradiction. Hence, S is lossless under D, and we con-
clude that the X-UIND and Y-FD are not ? -separable in D
from the CDCs. tu
The CDCs in the above proof are globally consistent, but

not disjoint w.r.t. the X-UIND. However, Theorem 9 does
not hold either in the presence of Y-FDs, that is, not even
disjointness is enough to ensure the ? -separability of X-
UINDs and Y-FDs from CDCs.

Theorem 14. There exists a set of CDCs, X-UINDs and Y-FDs,
in which the CDCs are disjoint w.r.t. each X-UIND, but the
X-UINDs and Y-FDs are not ? -separable from the CDCs.

Proof. Let R be a relation symbol of arity 4 with its last two
positions interpreted over the integers. Let D consist of
the X-UIND R½1� 
 R½2�, the Y-FD R : f3g ! f4g, and the
CDC x2 ¼ a ! y1 ¼ 0 ^ y2 ¼ 2, trivially disjoint with the
X-UIND. Consider the horizontal decomposition S speci-
fied by V : x1 6¼ a ^ x2 6¼ b ^ y1 6¼ 0 ^ y2 6¼ 1. Clearly, S is

lossy under cdcðDÞ because the instance I ¼ fRðtÞg,
where t ¼ ða; b; 0; 1Þ, satisfies cdcðDÞ and S; indeed, t is
not selected by V . Suppose that S is lossy under D; since

V selects any tuple other than t, there is a model J of

D [ S such that t 2 RJ but t 62 V J . By the X-UIND, there

must be t
0 2 RJ such that t

0½2� ¼ a and, in turn, t
0½3� ¼ 0

and t
0½4� ¼ 2 by the CDC. But then, t and t

0
violate the Y-

FD, because they agree on the third position but differ on
the fourth. So J 6� D, which is a contradiction. Hence, S
is lossless under D, and we conclude that the X-UIND
and Y-FD are not ? -separable in D from the CDCs. tu

6 DISCUSSION AND OUTLOOK

In this paper, we studied lossless horizontal decomposition
under constraints in a setting where the values for some of
the attributes in the schema are taken from an interpreted
domain. Data values in such a domain can be compared in
ways beyond equality, according to a first-order language
C. We did not make any assumption on C, other than requir-
ing it to be closed under negation.

In the above setting, we considered a class of integrity
constraints, CDCs, based on those introduced in [16]. We
have characterised the consistency of a set of CDCs in terms
of satisfiability in C and we have shown that the problem of
deciding consistency is NP-complete when C is the language
of either UTVPIs or BUTVPIs.

We considered a more general form of selections than in
[16] and characterised, in terms of unsatisfiability in C,
whether a horizontal decomposition specified by such selec-
tions is lossless under CDCs. We have shown that the prob-
lem of deciding losslessness is co-NP-complete when C is
the language of either UTVPIs or BUTVPIs.

We also considered losslessness under CDCs in com-
bination with FDs and UINDs. We introduced and

13. The interaction between FDs and UINDs can be fully captured,
as there is a sound and complete axiomatization for the finite implica-
tion of FDs and UINDs [11].
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studied the important notion of separability, which indi-
cates whether constraints other than CDCs can be disre-
garded w.r.t. losslessness, after incorporating the effect
of their interaction in terms of entailed CDCs. A sum-
mary of all the separability results presented in this
paper is given in Table 1.

A promising direction for future research we are currently
investigating is the generalisation of the separability results for
UINDs to arbitrary inclusion dependencies (INDs). Observe
that INDs, differently from UINDs, can affect both interpreted
and non-interpreted attributes at the same time, e.g., in
R½x1; y1� 
 R½x2; y2�. Some care is needed in allowing FDs in
this setting as well, because logical implication for unrestricted
combinations of FDs and INDs is undecidable and has no axi-
omatization [11].

Another interesting direction is that of allowing equal-
ities between two variables in the antecedents of CDCs
as well as in the selection conditions on non-interpreted
attributes of view definitions. We believe our approach
could be extended in this direction by representing such
equalities by propositional variables and by adding suit-
able axioms to the auxiliary theory to handle transitivity
and symmetry.

The main motivation for our study of lossless horizon-
tal decomposition is that it provides the groundwork for
the consistent and unambiguous propagation of updates
in the context of selection views. By applying the general
criterion of [6], given a lossless horizontal decomposition
it is possible to determine whether an update issued on
some (possibly all) of the fragments can be propagated
to the underlying database without affecting the other
fragments. Similarly, it is possible to partition the source
relation by adding suitable conditions in the selections
that define the fragments, so that each is disjoint with
the others. In general, a lossy horizontal decomposition
can always be turned into a lossless one by defining an
additional fragment, called a complement, which selects
the missing tuples. In particular, there is a unique mini-
mal complement selecting all and only the rows of the
source relation that are not selected by any of the other
fragments. In follow-up work, we will show how to com-
pute the definition of such a complement, in the scope of
an in-depth study of partitioning and update propaga-
tion in the setting studied in this paper.

Most of the work in the field of horizontal decomposition
has been carried out in the context of distributed databases
systems, where one ismainly concernedwith finding an opti-
mal decomposition w.r.t. some parameters (e.g., workload,

query-execution time, storage quotas), rather than determin-
ingwhether a given horizontal decomposition is lossless.

De Bra ([12], [13]) developed a theory of horizontal
decomposition to partition a relation into two sub-relations
such that one satisfies certain FDs that the other does not.
The approach is based on constraints that capture partial
implications between sets of FDs and exceptions to sets of
FDs, for which a sound and complete set of inference rules
is provided. These constraints are ? -separable from our
CDCs (for the same reason FDs are).

Maier and Ullman [15] consider horizontal decomposi-
tion involving physical and virtual fragments over the same
attributes. Fragments are defined in an arbitrary (first-order)
language closed under Booleans, where entailment is decid-
able and consisting of formulae that, as in our case, can be
evaluated by examining one tuple at a time, in isolation
from the others. Differently from our case, the language
allows to express equalities between variables associated
with non-interpreted attributes. But, if such equalities are
forbidden, the setting of [15] can be recast into ours: the
union of the physical fragments is the single source relation

RI we consider here, the definitions of the physical frag-
ments can be taken as integrity constraints over R, and the
definition of each virtual fragment (given in terms of the
physical fragments and other virtual ones) can be expressed
only in terms of R by query unfolding.Then, the problem of
determining whether the virtual fragments constitute a loss-
less horizontal decomposition of the physical fragments,
which is not addressed in [15], can be solved by applying
the techniques we described in this paper. Virtual fragments
in [15] are defined by selection and union, that is, in our
notation, by formulae of either the form �ðxÞ ^ sðyÞ or
�ðxÞ _ sðyÞ. As we remarked in Section 2, in such a case loss-
lessness can be checked by considering two views �ðxÞ and
sðyÞ in place of each view of the latter form.
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