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Multi-Class Imbalance Classification Based on Data
Distribution and Adaptive Weights

Shuxian Li*?, Liyan Song ¥, Xiaoyu Wu

and Xin Yao

Abstract—AdaBoost approaches have been used for multi-class
imbalance classification with an imbalance ratio measured on class
sizes. However, such ratio would assign each training sample of the
same class with the same weight, thus failing to reflect the data
distribution within a class. We propose to incorporate the density
information of training samples into the class imbalance ratio so
that samples of the same class could have different weights. As one
could use the entire training set to calculate the imbalance and
density factors, the weight of a training sample resulting from the
two factors remains static throughout the training epochs. However,
static weights could not reflect the up-to-date training status of
base learners. To deal with this, we propose to design an adaptive
weighting mechanism by making use of up-to-date training status
to further alleviate the multi-class imbalance issue. Ultimately, we
incorporate the class imbalance ratio, the density-based factor, and
the adaptive weighting mechanism into a single variable, based on
which the adaptive weights of all training samples are computed.
Experimental studies are carried out to investigate the effectiveness
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of the proposed approach and each of the three components in
dealing with multi-class imbalance classification problem.

Index Terms—Multi-class imbalance classification, ensembles,
AdaBoost, adaptive weight, data density.

1. INTRODUCTION

LASS imbalance for which some are highly under-
C represented (over-represented) as minority (majority)
classes compared to others is common in real-world appli-
cations of multi-class classifications such as human behavior
recognition [1], video classification [2], and medical decision
making [3], which has posed significant challenges to the man-
agement and use of the data sets. Unprocessed class imbalance in
data often leads to misclassification, misleading, and even false
results, especially on the minority classes. This issue becomes
more obvious in applications such as medical decision making,
when the predictive performance on the minority classes (e.g.,
rare diseases) is more important than that on the majority classes
(normal). In particular, class imbalance with multiple classes in
a data set poses even bigger challenges, which remain unsolved.
Lately, the class imbalance problem has drawn increasing at-
tention from both academia and industry in an effort to retain
predictive performance [4].

Data sampling, cost-sensitive, and ensemble learning are
three common strategies for dealing with the multi-class im-
balance [4], [5], [6]. Sampling approaches encompass over-
sampling the minority class(es) or undersampling the majority
class(es) to achieve a balanced distribution of samples [7], [8],
[9]. They operate at the data-level and can enhance the pre-
dictive performance of various machine learning methods [7],
[8], [9], while under some challenges such as overfitting for
oversampling [7], the loss of important information for under-
sampling [7], [10], and the substantial computational costs [10],
[11]. Cost-sensitive approaches involve assigning distinct mis-
classification costs or sample weights to various classes [7],
[12]. These approaches are easy to implement and can be
combined with various machine learning algorithms [4], [7].
However, deciding the cost matrix or sample weights in the
training process is nontrivial. This challenge becomes even
more pronounced when multiple classes are involved [4]; their
values are determined in advance and as such remain static
throughout the training process. Ensemble learning approaches
involves combining multiple classifiers to enhance model accu-
racy, which have exhibited efficacy and flexibility [5], [13], [14],
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[15]. Given that ensembles have demonstrated effectiveness in
addressing multi-class imbalance problem [5], [15], [16], and
within which AdaBoost possesses a solid theoretical founda-
tion and is extensively employed in ensemble learning [5],
[15], [16], [17], our approach follows this comparable research
trajectory.

We note that existing strategies normally depend on the
information of class sizes to deal with class imbalance. In addi-
tion to this specific knowledge of class imbalance, we consider
obtaining other information to better reflect class imbalance that
can be applied throughout the training epochs of the AdaBoost
ensemble learning. Adopting class imbalance ratio will assign
each individual training sample of the same class with the same
weight value, failing to reflect the differences among training
samples of the same class. In other words, the class imbalance
ratio can only differentiate “between-class” training samples that
belong to different classes. We propose the density related vari-
able to capture the distribution of training samples of the same
class to distinguish such training samples. Then, we incorporate
this density information with the class imbalance ratio to further
enhance the capability of learning approaches in dealing with
class imbalance. In this way, training samples of the same class
would gain different weights, potentially improving predictive
performance of learning methods with class imbalance.

Since the imbalance and density factors are calculated based
on the entire training set in advance, their values remain static
across the entire training process. As a result, the weight of a
training sample resulting from the two factors cannot be adapted
to the most current training status, potentially hindering the class
imbalance mechanism from better dealing with multi-class im-
balance. More specifically, non-adapted weights cannot reflect
the up-to-date training status of constructed base learners for this
training sample, of which sample weight values that are suitable
at early training epochs would be obsolete at latter epochs
of the ensemble learning process. In this sense, assigning an
“adaptive” sample weight by making use of up-to-date training
status would further alleviate the multi-class imbalance issue.
For this, we propose to quantify the up-to-date training status
via the probability difference that training samples have been
correctly and most incorrectly classified across training epochs
so far, leading to the design of the adaptive margin.

We can then unify the between-class imbalance, the within-
class density, and the adaptive margin into a single factor to
determine the weights of training samples at each training
epoch. In this way, the proposed sample weight would be able
to both differentiate the between-class training samples and
the within-class training samples of the same class adaptively
throughout training epochs. Ultimately, the weights of training
samples can be encoded into the AdaBoost ensemble framework,
leading to a novel multi-class classification approach to tackle
the multi-class imbalance problem. We name the approach as
AdaBoost Ensemble with Adaptive Distribution based Sample
Weight (AdaBoost.AD). We will provide theoretical deduction to
demonstrate why the proposed AdaBoost.AD learning algorithm
would be valid.

Experimental studies on 12 multi-class and 8 binary-class
imbalanced data sets are conducted to investigate to what extent
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the proposed AdaBoost.AD can address the multi-class im-
balance issue by comparing against state-of-the-art multi-class
imbalance approaches. The effectiveness of each of the proposed
three components is analyzed experimentally, demonstrating
their impact on the performance of the proposed algorithm.

This paper contributes to the management of multi-class
imbalance data sets when they are used for classification. The
main contribution is summarized as follows.

1) We propose the adaptive distribution based sample weight
that can incorporate the between-class imbalance ratio,
the within-class density variable, and the adaptive margin
altogether to deal with multi-class imbalance.

2) Weintegrate the proposed adaptive sample weight with the
learning framework of AdaBoost ensembles, contribut-
ing to the proposed AdaBoost.AD. We further provide
the theoretical support on the learning algorithm of Ad-
aBoost.AD.

3) We demonstrate the effectiveness of the proposed Ad-
aBoost.AD for dealing with multi-class imbalance; we
also analyse each of the three components of the adaptive
sample weight.

The remainder of this paper is organized as follows. Section I1
discusses related work of multi-class imbalance problem. How
the within-class data distribution is defined and how it is in-
corporated with between-class data distribution are presented in
Section III. Section IV presents the way to define the adaptive
sample weights based on the training status throughout training
epochs. How to incorporate the proposed sample weights with
the AdaBoost ensemble framework and why the learning algo-
rithm is valid are discussed in Section V. Experimental design
and analysis of results are reported in Section VI. The paper is
concluded in Section VII.

II. RELATED WORK

Methods dealing with the multi-class imbalance problem can
generally be cast into three categories [4], [5], [6]: data sampling
approaches [7], [8], [9], cost sensitive approaches [18], and
ensemble approaches [5], [13], [14].

A. Data Sampling Methods for Multi-Class Imbalance

Methods of this category are data-level. The core idea is to in-
crease samples of the minority classes or to reduce samples of the
majority classes, thereby alleviating the imbalance issue among
different classes. Then, learning models can be constructed to
make prediction without alternations [7], [8], [9].

ROS (Random Over-Sampling) that randomly replicates mi-
nority samples and RUS (Random Under-Sampling) that ran-
domly deletes majority samples are the most popular data
sampling methods. They were originally designed to deal with
binary-class imbalance problem yet can be easily extended to
dealing with the multi-class imbalance problem [5], [7]. Later
in 2013, Lin et al. proposed a more sophisticated over-sampling
technique for dealing with multi-class imbalance that takes
classification difficulty of each training sample into account [6].
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Moreover, SMOTE (Synthetic Minority Over-sampling Tech-
nique) [8] is another popular over-sampling method that gener-
ates synthetic minority data. There have been many variants of
SMOTE [9], [19], [20], [21]. ADASYN (Adaptive Synthetic
Sampling Approach) is one of the most popular variant of
SMOTE, which is better able to generates synthetic data around
the minority samples that are more isolated from their class label
in the neighborhood [9]. However, most sampling based methods
cater for class imbalance by manipulating the between-class
imbalance ratio which typically remain static throughout the
iterative training process (if any).

Sampling methods normally need to compute the pair-wise
distance, and euclidean distance is popularly adopted for the
computation [8], [9], [19], [20], [21]. More recently, there are
studies that employed other distance metrics to try to capture
additional characteristics of the data space, and subsequently
gained good ability in dealing with multi-class imbalance. These
include the Mahalanobis distance based over-sampling [22],
Helliger distance based over-sampling [23], adaptive Maha-
lanobis distance-based over-sampling [24], and entropy-based
sample distance [10], [11].

There are also some synthetic image generation methods in
the community of deep learning that can be potentially used to
alleviate multi-class imbalance [11]. Yet, those approaches are
image data specific and time-consuming.

Sampling methods are straightforward and uncomplicated
to implement. They operate at the data-level and can enhance
the predictive performance of various machine learning meth-
ods by mitigating the bias towards the majority classes. There
are also some cons. Oversampling can induce overfitting by
duplicating existing data [7], while undersampling may re-
sult in the loss of important information within the majority
class, resulting in reduced model performance [7], [10]. Addi-
tionally, applying sampling approaches can be challenging in
scenarios with multiple classes and substantial computational
costs [10], [11].

B. Cost-Sensitive Methods for Multi-Class Imbalance

Methods of this category are algorithm-level, which normally
deal with class imbalance inside the classification methods
themselves by assigning distinct misclassification costs or sam-
ple weights to various classes. These approaches are easy to
implement and can be combined with various machine learning
algorithms once costs or sample weights are properly defined,
dealing with multi-class imbalance directly [4], [7]. Usually, the
sample weights of a minority class is usually larger than that of
a majority class [7], [12].

Designing good strategies to set sample weights is essential
for cost-sensitive methods to deal with multi-class imbalance.
A simple way is to set up sample weights according to class
sizes, so that learning algorithms would emphasize samples of
higher weights [18]. Whereas this technique may fail to achieve
good performance when the information of class sizes is too
limited to depict informative data distribution. More advanced
cost-sensitive techniques also exist in the literature, yet they
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are either time-consuming [25] or designed for binary classi-
fiers [26], [27].

So far, itis still a difficultissue to design good sample weights,
which might necessitate domain expertise for appropriate setup,
and this challenge becomes even more pronounced when mul-
tiple classes are involved [4].

In this paper, we will propose an advanced strategy to derive
sample weights based on the between-class and within-class
data distribution, and experimentally justify its effectiveness in
dealing with multi-class imbalance.

C. Ensemble Methods for Multi-Class Imbalance

Ensemble approaches involve combining multiple classifiers
to enhance model accuracy, which have shown to perform gen-
erally well in the multi-class classification problem, and thus
are popularly chosen as the benchmark learning approach in
dealing with multi-class imbalance [5], [16]. Although conven-
tional ensemble methods were not deliberately designed to deal
with class imbalance, they can be equipped easily with other
techniques that cater for class imbalance such as sampling or
cost-sensitive techniques [25], [28], [29], offering their flexibil-
ity. JanEnsemble [30] is a state-of-the-art ensemble approach
specifically crafted for addressing multi-class imbalance prob-
lem. This method employs adaptive optimization techniques to
combine a variety of base learners, leading to a more potent
classifier. To mitigate the class imbalance issue, each individual
base learner is trained using a synthesized balanced data set that
contains samples from different classes.

AdaBoost is a popular ensemble learning framework that
was originally designed for binary classification [31] and then
generalized to multi-class classification [17]. Wang et al. further
boosted AdaBoost to AdaBoost.NC by encouraging the diversity
of training samples so that those with larger error and lower
diversity were more likely to be retained for training next base
learners [5], [16], [32].

AdaBoost-based methods are extensively employed in multi-
class imbalance, which have demonstrated the effectiveness
and robustness with a solid theoretical foundation, including
such as SMOTEBoost [13], RUSBoost [14], AdaBoost.NC [5],
LexiBoost and Dual-LexiBoost [15]. Among them, LexiBoost
and Dual-LexiBoost are state-of-the-art and thus are chosen as
our competing methods. They were designed as a two-stage lex-
icographic linear programming framework. Specifically, Lex-
iBoost dealt with multi-class imbalance via solving a linear
programming problem, whereas Dual-LexiBoost embedded the
solver of linear programming into the learning process of the
AdaBoost ensemble. Both LexiBoost and Dual-LexiBoost are
capable of dealing with binary and multi-class imbalance prob-
lems. Although ensemble methods can entail a computational
burden due to the involvement of multiple base learners, this
concern is not so significant compared with their effectiveness
in dealing with multi-class imbalance [5], [15], [16].

In this paper, we will propose an adaptive distribution based
AdaBoost ensemble to deal with multi-class imbalance, which
can also be used in the binary class scenario. Sections III, IV,
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and V will discuss our sample weight based AdaBoost approach
into detail.

III. DATA DISTRIBUTION BASED SAMPLE WEIGHT

As explained previously, we adopt the AdaBoost [17] as the
multi-class learning framework. Suppose that we have a data
set consisting of n training samples {(X;, y;)} to build a set of
base learners for dealing with a c-class classification problem,
where X; € R? denotes a d-dimensional input features of the
i-th training sample, y; € {1,..., ¢} denotes the true label of
the i-th training sample, and ¢ = 1, ..., n. Assuming there are
m training epochs in total for the AdaBoost ensemble, there will
be m base learners {h:(-)} with ¢t € {1,...,m}, each of which
is associated to a model weight 3; and is constructed at the ¢-th
training epoch [17].

Using the above notations, this section will first specify the
way to depict multi-class imbalance based on between-class
sizes and then present a (temporary) sample weight by encoding
the within-class data density into the between-class imbalance
ratio for dealing with multi-class imbalance.

A. Encoding Between-Class Data Distribution

Lety € {1,...,c}and N(y) be the non-negative function that
gives the number of training samples with label y. Following the
conventional manner to deal with class imbalance [6], we define
the multi-class imbalance ratio associated to a training sample
(X, y) based on class sizes as

N(y)
7(X7 y) - miny/ N(y/) - 17 (1)
where min, N(y') denotes the minimal class size, and y' €
{1,...,c}. Specifically, the smallest class is used as a “bench-
mark” based on which imbalance ratios of other classes would
be computed. A smaller (larger) class in comparison to the
benchmark class would obtain a smaller (larger) class imbal-
ance value. Taking a three-class classification problem with
the between-class data distribution of 10 : 5 : 2 as an example,
training samples of the second class will have their imbalance
ratio computed as 5/2 = 2.5.

Training samples of larger (smaller) imbalance ratio indicate
relatively adequate (inadequate) data information that can be
provided to model training. Thus, one might need to associate
lower (higher) weights to those training samples, as will be ex-
plained later in Section III-C. In practice, samples with different
class labels would usually have different class imbalance ratios;
whereas samples of the same class would have the same class
imbalance ratio, demonstrating a “between-class” property of
the data distribution.

Although class imbalance ratio could depict the between-class
data distribution based on which one can design an approach to
deal with multi-class imbalance, deriving sample weights only
based on the imbalance ratio would result in the same weight
for training samples of the same class, which does not take
into account the difference among training samples of the same
class. We will introduce a factor to depict the within-class data
distribution of each class in the subsequent section.
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Fig. 1. Dense area vs sparse area of samples of class 1.

B. Encoding Within-Class Data Distribution

To specify the differences of data distribution among train-
ing samples of the same class, we will produce the density
for each training sample within this class. Such density of a
training sample would be decided based on the amount samples
of the same class being located within the neighborhood of
this data, being with a unified density scale that is especially
decided for this class. As aresult, the associated sample weights
would reflect the information of not only the between-class but
also within-class data distribution, potentially helping with the
multi-class imbalance issue.

Fig. 1 illustrates a data scenario that samples of class 1
(blue dot) overlaps those of class 2 (red triangle) in two areas
with varying within-class distribution properties: a “dense” area
containing more samples of class 1 compared to a “sparse” area
containing much less samples of class 1. Intuitively, incapability
of dealing with samples of class 1 in the dense area would
probably cause more significant drop in predictive performance
of classification models compared to that in the sparse area.
Therefore, training samples of class 1 in the dense (sparse)
area should be over-fitted (under-fitted) while dealing with class
imbalance to gain better overall predictive performance.

Given the i-th training sample (X, y;) out of the total n, we
use N (X;) to denote the k-nearest neighbor set of X; among
the entire training samples, where £ is a predefined parameter.
Supposing that there are k; < k samples in the neighbor set
N (X;) that are with the same class as y;, we name the subset of
N (X;) as the within-class neighbor set of (X;,y;) and denote
itas NV(X;, y;).! We use N(X;,;); to denote the j-th within-
class neighbor of X; in the class neighbor set for j = 1,..., &,
based on which the general density of (X;,y;) is defined as

{ (& X awwte )/ 1o ik >0
0, if k; =0,
@)
where d(-, -) denotes the distance of two training samples and T’
is a constant determined based on all training samples (defined
later). We can see that the general density value of a training
sample is determined based on the average distance of this
sample away from its selective within-class neighbors and the
within-class neighbors involved in this computation depends
on how many training samples of this class are within the

p(Xiayi) =

INote the difference of N'(X;,y;) from A'(X;), which needs to query the
true label y; for construction.
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k-nearest neighbors. We adopt euclidean distance and set k& = 5
throughout the experiments following previous study [10].

The constant 7" is defined as Y - ; p(X;,y;)/n, which can be
considered as a normalizer for inducing a unit sample density
across all training samples. It is for this reason that p(X;, ;)
is named as a general density. In this way, training samples
from different data sets would gain a uniformed data scale,
well prepared for the treatment later on. Specifically, training
samples with larger (smaller) general density values than 1 (the
benchmark unit) indicate them to be in a denser (sparser) area
compared to the benchmark density.

General density of training samples is established at the scale
of entire training set in order to unify the density scale of data sets
with varying characteristics. To explicitly quantify the difference
in terms of the within-class data distribution, we define the
inverse within-class density* of training sample (X;,y;) as

exp{_p(Xi> yl)}
Z; ’
where p(X;, y;) denotes the general density in (2) and Z; repre-

sents the within-class normalizer at the level of each class (i.e.,
within-class), defined as

P (Xiyyi) = 3)

> exp{—p(X;,y)}

1
Zi= —

where subset C; contains training samples of the same label
as y; and ||C;]] is the size of the sub-training set. As a result,
within-class density values for each class would have a unit
inverse density.

Specifically, training samples of each class would derive a
unified inverse within-class density, benchmarking around a unit
value, and a smaller (larger) value indicates a desire for having a
larger (smaller) sample weight for dealing with class imbalance.

C. Distribution Based Sample Weight

Training samples with smaller between-class imbalance and
inverse within-class density values would be assigned with
higher weights so that the training process would pay more
attention to them, better dealing with class imbalance. This
information can be incorporated into a single data distribution
factor, being defined as

Oé(X, y) = exp{—'y(X, y) : pil(X’ y)}7 4)

where ~(+) denotes the between-class imbalance ratio in (1) and
p~1(+) denotes the inverse within-class density in (3). We can
see that «(+) ranges in (0, 1].

Supposing a new training epoch ¢ + 1, the weight of training
sample (X, y) in the conventional AdaBoost ensemble can be
reformulated as

w(t+1) (Xv y) = a(Xv y) ! w(t) (X7 y) : exp{_ﬁt : ]l[ht (X)=vy] }7

)
where () has been formulated in (4), w® (-) denotes the sample
weight that is iteratively decided at the previous training epoch z,

2We opt for the “inverse” density to simplify the way to encode data distribu-
tion information into sample weights, as will be noted later.
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B¢ denotes the weight of the base learner 1 (-) that is constructed
attraining epoch ¢, and 1 opgition] 18 the indicator function defined
as

1 L 1 if the condition is true,
[condition] *== () jf otherwise.

In particular, base learner h;(-) and its weight 5; are obtained ac-
cording to the conventional AdaBoost ensemble framework [17].

Therefore, we could encode the data distribution based sam-
ple weight directly into the ensemble learning framework of
AdaBoost.

IV. MAKING SAMPLE WEIGHT ADAPTIVE

As the between-class imbalance ratio and the inverse within-
class density of a training sample are calculated based on the en-
tire training set in advance, their values remain static throughout
the training epochs of the AdaBoost ensemble framework. As
a result, the weight of a training sample resulting from the two
factors as in (5) cannot be adapted to the most current training
status, potentially hindering the class imbalance mechanism
from working well.

More specifically, non-adapted weights cannot reflect the
up-to-date training status how well base learners perform on
this training sample, possibly causing sample weights that are
suitable at early training epochs to become obsolete later on.
Thus, assigning adaptive sample weights by making use of
up-to-date training status would potentially further alleviate the
multi-class imbalance problem.

This section will propose to quantify up-to-date training status
via the probability difference that training samples have been
correctly and the most incorrectly classified across training
epochs so far, and then encode the training status into distribution
based sample weights, contributing to the adaptive distribution
based sample weight.

A. Tracing Up-to-Date Training Status

Given a sample (X, ) at training epoch ¢, we use o) (X, 3//)
to denote the outputs of ¢ base learners of AdaBoost that vote X

toclassy € {1,...,c}, which can be formulated as
t
o (X,y) = Zﬁu A, (x)=y75 (6)
v=1

where 1(; is the indicator function and h,(-) denotes the base
learner that is constructed earlier at the v-th training epoch. With
this in mind, the probability that X is predicted to class ¢ can be
quantified as

PO(X, ) = exp{o"(X,y)}

W) S exp{o® (X, 1))
based on all the base learners that have been constructed so far
via the softmax function.

Repeating the above calculation across all training samples
for all label classes, we can attain a probability matrix as
demonstrated in Table I, recording the up-to-date probabilities of
each training sample being predicted to each class at the training
epoch ¢.

(N
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TABLE 1
PROBABILITY MATRIX AT TRAINING EPOCH ¢
Sample Class 1 Class 2 Class ¢
X PO(X,,1) PH(Xy,2) PY (X1, c)
Xo PO (X2,1) PY(Xs,2) PO (X, c)
X PO(X,,1) PY(X,,2) PY(X,,c)

Given current training epoch ¢, we propose to quantify the
up-to-date training status to be the difference between the prob-
ability that training samples have been correctly classified and
that they are uppermost incorrectly classified throughout training
epochs so far, for which we define as the adaptive margin.
Specifically, based on the probability matrix of Table I, the
adaptive margin of an arbitrary training sample (X, y) can be
formulated as

o (X, y) =PW(X,y) - H,lgxP(” (X, 9)+1, ®
y'#y
whereyandy’ € {1,...,c} denote datalabels, P(!) (X, y) repre-
sents the probability X can be correctly classified as computed in
(7),and max,, 2, P (V) (X, y/) represents the maximal probability
X can be misclassified. We can know that (*)(-) ranges from 0
to 2.

The special case of ¢ (X;) =1, corresponding to P(*)
(Xi,y:) = maxy 4, P®(X;,y'), showcases the highest uncer-
tainty the up-to-date AdaBoost ensemble would confront for
prediction. Training samples with o(*) (-) > 1 mean that they can
be correctly predicted by the up-to-date classifier; whereas those
with 0 (-) < 1 mean that they would be wrongly classified.
In this sense, 0 (X) can be used to indicate the difficulty
training sample X would be correctly predicted, and smaller
(larger) o® (X)) means a higher (lower) difficulty the AdaBoost
ensemble can perform the prediction.

Altogether, we design the adaptive margin ¢ (-) to trace
the up-to-date training status of base learners of the AdaBoost
ensemble, based on which we would make sample weights
adaptive in the subsequent section.

B. Adaptive Distribution Based Sample Weight

At a training epoch, samples with smaller adaptive margin
would be assigned with higher weights so that the training
process at this moment would pay more attention to them,
better dealing with the up-to-date class imbalance issue. The
adaptive margin factor can be further incorporated into static
data distribution factor of (4), contributing to an adaptive data
distribution factor as

(X, y) = exp{—v(X,y) - p ' (X,y) e D (X, 9)}

where (), p1(-), and ¢(¥)(-) are the between-class imbalance
ratio in (1), the inverse within-class density factor in (3), and the
adaptive margin in (8), respectively. We can know that () ()
ranges in (0, 1].

Supposing a new training epoch ¢ + 1, the weight of training
sample (X,y) in the AdaBoost ensemble framework can be
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defined as
WX y) = a® (X, y) - WP (X,y)

~exp{ =P - Ijn, (x)=y] }> (10)
where o) (-) has been defined in (9), and w™® (X, y) denotes the
adaptive sample weight that is iteratively decided at the previous
training epoch ¢. Other notations are the same to the static sample
weight in (5). The crucial difference between them is oY) (-) that
contribute the adaptive nature to the adaptive weight of (10).

Therefore, we can encode the adaptive data distribution based
sample weight into the ensemble learning framework of Ad-
aBoost as will be explained in Section V-A. It is also noteworthy
that the non-adapted sample weights of (5) will not be employed
in practice; rather it is a temporary outcome during the process
of deriving the adaptive sample weight in this section.

V. ADABOOST ENSEMBLE WITH ADAPTIVE DISTRIBUTION
BASED SAMPLE WEIGHT

This section aims to incorporate the adaptive distribution
based sample weights into the AdaBoost ensemble framework
(the backbone of the classification framework), leading to a
novel multi-class imbalance learning approach. We name the
approach as AdaBoost Ensemble with Adaptive Distribution
based Sample Weight (AdaBoost.AD). We will also present the
learning algorithm of the proposed AdaBoost.AD in detail and
provide theoretical support on why this learning algorithm to be
valid.

A. Learning Algorithm of AdaBoost.AD

Algorithm 1 summarizes the learning algorithm of the pro-
posed AdaBoost.AD, which generally follows the learning pro-
cedure of conventional AdaBoost [17]. The major differences
between them are highlighted in blue (gray), among which the
computation of model weights (step 6) and the update of sample
weights (steps 1, 2, 7 and 8) are two important components.

For training epoch ¢, model weight 3; of the newly constructed
base learner h(-) and sample weights w(*+1)(.) that are about
to be used at next training epoch are two important learnable
variables in the learning algorithm of AdaBoost.AD. Learning
sample weights has been presented in Section IV-B, so we will
detail how to determine the model weight in this section. Since
the update of the two variables are interlinked, we will reiterate
the formulation of sample weights here for clarification.

Given sample weights w(®)(-) that were decided at previous
training epoch ¢, the model weight of the newly constructed base
learner h¢(-) is determined as

5, = log Z?:l w(t)(Xi7yi) ' ﬂ[ht(Xi):yi]
2 WO (X, i) - Ly (x5

. an

where 1j; is the indicator function. Similar to the conven-
tional AdaBoost [17], the model weight of base learner of
AdaBoost.AD is computed according to the ratio of the number
of correct prediction over that of incorrect prediction. Nor-
mally, the denominator would be smaller than the numerator
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Algorithm 1: Learning Algorithm of AdaBoost.AD. The TABLETI
: ) . ESSENTIAL NOTATIONS
Primary Enhancement of AdaBoost.AD in Comparison to
the Conventional AdaBoost Includes Steps 1-2 and 6-8. [ Notation | Description
Inputs: (1) n training samples {(X;,y;)} where i = 1, g Indicator function
.,nand y; € {1,...,c}, and (2) the number of base X; The feature vector of the i-th training sample
? y7/ ) b g p
learner m. Yi The true label of the i-th training sample
Outputs: (1) base learners {%(-)} and (2) the associated he() Base learners of the AdaBoost ensemble that is
model weights {§;} witht =1,...,m t constructed at training epoch ¢
1: Compute between-class imbalance ~(+) as (1). B Model weight of base learner h¢ ()
2: Compute inverse within-class density p~*(-) as (3). o()(X,.yy) | The adaptive data distribution factor of training
3: Initial sample weights w() (X, y;) = 1/n. »¥) | sample (X, y;) at training epoch ¢
4: for training epoch ¢ = 1 until m do LW (X;,y;) | Loss of training sample (X;, y;) at training epoch ¢
5:

Construct base learner A, (-) based on training samples

and up-to-date sample weights w(*)(-) that was

computed at previous training epoch.

6: Compute model weight /3, in (11) based on the latest
sample weights w(®)(-).

7:  Compute or update adaptive margin o*)(-) as (8).

8: Update sample weights w1 () as (12) by
considering v(-), p~'(-), and o()(-) altogether.

9: end for

Prediction: Given a test sample X, the predicted label
can be decided by 7 = argmaxje(y, o} 2 yeq Bt -
Lin, ()=

so that we would usually have positive model weights, i.e.,
By > 0.

Next, we will prepare for the learning procedure at next
training epoch with updated sample weights based on the new
base learner A, (+) and its derived model weight /3;. As has been
formulated in (10), the weight of training sample (X, y;) that
is about to be used at next training epoch ¢ + 1 is formulated as

w(Hl)(Xi,yz‘) = w (X, i)

Xz‘):yi]}' (12)

We can see that the adaptive data distribution factor o) (X, y/)
in (9) pioneers the advancement of the proposed AdaBoost.AD
over the conventional AdaBoost. With the informative knowl-
edge encoded, training samples associating to larger o) ()
would induce higher sample weights and become more impor-
tant at the next training epoch, being potentially beneficial to al-
leviate the class imbalance issue with time adaptively. Moreover,
the way we propose the learning algorithm of AdaBoost.AD
follows that of the conventional AdaBoost ensemble, so that we
can largely retain the learning framework of AdaBoost with the
minimal yet crucial alterations.

Providing the trained AdaBoost.AD, the prediction of a test
sample X can be performed as

al®) (Xi»yi) :

: eXP{—Bt : ﬂ[ht(

maXc}Zﬁt Ain,x0)=1) (13)

being similar to the prediction mechanism of the conventional
AdaBoost [17]. The effectiveness of the proposed AdaBoost.AD

in dealing with multi-class imbalance will be investigated exper-
imentally in Section VI, by competing against state-of-the-art
Boost-based ensembles.

B. Theoretical Analyses on the Learning Algorithm

In this section, we aim to provide theoretical supports on the
validity of the proposed learning algorithm of AdaBoost.AD.
Especially, we will validate our derivation of sample weight
as in (12) and showcase the correct formulation of our model
weightasin (11). We will pursue the theoretical analyses with the
analogy of the learning procedure of the conventional AdaBoost
ensemble for the purpose of simplicity and clarity. Essential
notations can be found in Table II.

With respect to the conventional AdaBoost ensemble, at train-
ing epoch t, the loss of training sample (X, y;) with respect to
all base learners constructed so far can be formulated in the
exponential form as

‘C(t)(Xiayz —eXP( Zﬁu gy L7yl>

where g, (X, i) = Ljn, (x:)=y:] — 3-and hy(-) represents base
learners of the AdaBoost ensemble that is constructed at training
epoch v. According to the property of exponential function, this
sample loss can be rephrased as

,C() Xl,yz HGXp ﬂu gu( Z?y’l))

v=1

where exp(—/, - g, (X;,v;)) can represent the sample loss of
(X, y;) with respect to a single base learner h,,(+).

On the other hand, the adaptive data distribution factors
{a(”) (Xi,yi)} in (9) encode the information that are about to
facilitate the construction of base learners and the computation of
associated model weights. Therefore, each ") (X}, ;) should
be aligned with the sample loss of each base learner, formulated
as

t

II

LO(X,,y:) =

oY (X;, )

. exp(—ﬁy : gV(Xi7 yl))7

(14)
contributing to the novel parts of the learning algorithm of
the proposed AdaBoost.AD. For clarity, the advancement of
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AdaBoost.AD over the conventional AdaBoost ensemble is
highlighted in blue throughout this subsection.

We further decompose the L£()(X;, y;) into the multi-
plication of three components as [[],_, D (X;, 5:)] -
[exp(f Z;t/;ll v’ gu(Xiv yl))] : exp(fﬂt : gt<Xi’ yl))
Assembling to define w(®) (X, ;) to be

w(t) (Xia yz) =

t t—1
lH a(”l)(Xi,yi)] : [eXp (— > 8, -gu(Xi,yz-))] :
v=1 v=1 s
The sample loss in (14) can be rephrased as
LO(Xiy:) = wD(Xi,yi) - exp(=Br - 1(Xi,wi)- - (16)

By analogy to (15), the iterative formulation of sample weight
of (X;,y;) at training epoch ¢ + 1 can be deduced as

W(Hl)(mei)

— lﬁ a(”_l)(Xi,yz‘)] : [exp( - Ui_lﬂu 'gV(Xi>yi))‘|

v=1

a® (X, y) |- w0 (X5, ) - exp (— Bt - 9¢(Xi, yz))

=l o (X, y) |-

W (X, y:) - exp (—5t : <ﬂ[m<xi>—yi1 —;»
w (X, ) - exp(—Be - L, (x,)=y)) - Ct
a7

where ¢; = exp(f;/2) at the last step is a constant with respect
to the training sample (X}, y;) and thus can be eliminated from
the equation of sample weight in the end.

Therefore, the ultimate sample weight can be simplified,
without loss of generalization, as

= a(t) (Xza y’L) .

WD (X, ;) =
o (X, 4i) - w0 ( Xy, 3) - exp(=Pr - L, (x,)=y])»

providing theoretical support for our design of iterative sample
weights w1 (-) based on the adaptive data distribution factor
as in (10) and (12).

Next, we will derive how to compute the model weight of
the newly constructed base learner based on the latest sample
weights. Conventionally, the weight of a base learner should be
deducted by minimizing the optimization function (across all
training samples), formulated as

n

Zﬁ (Xiwi) = > w(Xi, 03) - exp(—B - 9e(Xi, i)

i=1

To minimize the objective, the partial derivatives in terms of
each model weight 3; should be set to zero, contributing to the
equations, for ¢t = 1,...,m, that

Zw(t) (X i) - (=9¢(Xi, 91)) - exp(=P - 9t(Xi, i) = 0.
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Moreover, the entire training samples can be divided into
two parts: those that can be correctly classified with the con-
dition of “h4(X;) =y;” and those that are incorrectly clas-
sified with the condition of “h;(X;) # y;”. Substituting with

9t (X, ¥i) = Vno(xi)=y] — %, the previous equation can be

rephrased as
> WX ) exp (— %)
hi(X3)=y;
= Z w® (X, i) - exp (%)
he (X3)#ys

Extracting exp(;/2), assigning logarithm operator to both sides
of the equation, and reallocating the indexes of summation, we
can derive

g (¢ >(X7,y,) : ﬂ[ht(Xi):yi]
EL w (X, 9i) - Lny (x)20,]

Therefore, the above deduction provides theoretical support for
our formulation of model weight 3; as in (11).

ﬂt:lo

VI. EXPERIMENTAL STUDIES

This section aims to investigate the proposed AdaBoost.AD
from two perspectives: the performance comparison against
state-of-the-art multi-class imbalance approaches and the effect
of the three components of the adaptive distribution based sam-
ple weight.

A. Experimental Setting

Experimental studies will be performed based on 12 open
multi-class imbalanced data sets and 8 open binary-class im-
balanced data sets, which are available from the Keel reposi-
tory [33]. Table III summarizes the basic description of data sets
investigated in this paper. Note that we have deleted the classes
that have less than 10 samples in total. The reason is that we
opt for 5-fold cross-validation (CV) [34] to evaluate predictive
performance of learning approaches, where 4/5 samples are used
for training and the rest 1/5 are used for evaluation. As a result,
classes with less than 10 samples would have at most two test
sample, potentially making performance evaluation on this class
less reliable.

The proposed AdaBoost.AD (“AdaAD”) will be compared
against two groups of multi-class ensemble methods. The first
group consists of three classical AdaBoost ensemble meth-
ods, including AdaBoost.M1 [17], AdaBoost.M2 [17], and
AdaBoost.NC [5]. They are equipped with the oversampling
technique ADASYN [9] for dealing with class imbalance, lead-
ing to AdaBoost.M1 with ADASYN (“AdaM1+ADASYN”),
AdaBoost.M2 with ADASYN (“AdaM2+ADASYN”), and Ad-
aBoost.NC with ADASYN (“AdaNC9+ADASYN” with its
model parameter A =9 following prior work [5])), respec-
tively. Our preliminary experiments found general superiority of
ADASYN when combining with the three classical AdaBoost
ensembles in dealing with class imbalance in comparison to
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TABLE III
STATISTICAL INFORMATION OF THE INVESTIGATED DATA SETS

Data set |#Data|#Fea|#Class| Class Distribution | IR ‘
Balance 625 | 4 3 288:49:288 5.88
Contraceptive| 1473 | 9 3 629:333:511 1.89
Ecoli 327 7 5 143:77:52:35:20 7.15
Glass 205 | 9 5 70:76:17:13:29 5.85
Hayesroth | 132 | 4 3 51:51:30 17
Newthyroid | 215 | 5 3 150:35:30 5
Pageblocks | 537 | 10 3 492:33:12 41
Penbased | 1100 | 16 | 10 |115:114:114:106:114:106:105:115:105:106| 1.10
Shuttle 2167 | 9 3 1706:338:123 13.87
Thyroid 720 | 21 3 17:37:666 39.18
Wine 178 | 13 3 59:71:48 1.48
Yeast 1479 | 8 9 463:429:244:163:51:44:35:30:20 23.15
Ecoli01 220 | 7 2 143:77 1.86
Ecolil 336 | 7 2 77:259 3.36
Ecoli2 336 7 2 52:284 5.46
Ecoli3 336 | 7 2 35:301 8.6
Haberman | 306 | 3 2 81:225 278
Newthyroidl | 215 | 5 2 35:180 5.14
Newthyroid2 | 215 | 5 2 35:180 514
Yeast3 1484 | 8 2 163:1321 8.10

#Data denotes the total number of samples within this data set, #Fea denotes the number of features,
#Class denotes the number of classes, Class Distribution illustrates the sample
distribution across each class, and IR signifies the imbalance ratio computed as the ratio between the
size of the largest class and the size of smallest class.

other techniques such as random oversampling, random under-
sampling [7], hybrid sampling [35], and SMOTE [8].

The second group of competing methods consists of four
state-of-the-art AdaBoost-based multi-class classifiers that can
deal with class imbalance on their own, including two versions
of LexiBoost[15], Dual-LexiBoost [15], and JanEnsemble [30].
Specifically, LexiBoost framed with AdaBoost.M1 and Ad-
aBoost.M2 lead to “LexiBoostM1” and “LexiBoostM2” in the
experimental studies. Except for JanEnsemble, decision tree is
adopted as the base learner of the ensemble approaches and the
total training epoch is set to 50, following the prior works [5],
[36]. Our experimental configuration of JanEnsemble adheres to
the source code provided by the authors [30], for which the base
learners consisted of a variety of learning machines including
k-Nearest Neighbor (kNN), Discriminant Analysis (DISCR),
Support Vector Machines (SVM), Artificial Neural Networks
(ANN), and Decision Trees (DT). The number of base learners
is decided through automated adaptive optimization within the
method.

Predictive performance is evaluated based on the 10 times 5-
fold cross-validation (CV) [34]. G-mean [25] and Avg-AUC [37]
are chosen as the performance metrics as they are popularly
used and less sensitive to the class imbalance issue. For each
performance metric, we will report the average performance
metric “+” standard deviation. To gain a comprehensive perfor-
mance analysis, we perform Friedman tests [38] for statistical
comparisons of multiple methods across all data sets. The null
hypothesis (HO) states that all models are equivalent in terms of
predictive performance. The alternative hypothesis (H1) states
that at least one pair of the methods differ. If the null hypothesis
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isrejected, Holm-Bonferroni correction [39] will be conduced as
the post-hoc test. For pair-wise comparisons on each data set, we
conduct Wilcoxon signed rank tests [40] between the proposed
AdaBoost.AD and each of the competing methods to determine
whether there are significant performance differences. The sec-
ond last rows of Tables IV and V show the results, in which
“win” denotes the number of data sets that our AdaBoost.AD
is significantly better than the corresponding competitor, “tie”
denotes the number of data sets that no significant difference
can be found between AdaBoost.AD and the competitor, and
“lose” denotes the number of data sets that AdaBoost.AD is
significantly worse than the competitor.

The experiments are run in MATLAB R2021a on Dell work-
station with Intel(R) Core(TM) i7-8700 CPU. Experimental
results of LexiBoostM1, LexiBoostM?2, Dual-LexiBoost, and
JanEnsemble were produced based on the implementation in
MATLAB provided by the authors.

B. Performance Comparison

In this section, we will demonstrate the superiority of our
proposed AdaBoost.AD against the six competing methods.
Tables IV and V show the predictive performance of investi-
gated methods in terms of G-mean and Avg-AUC, respectively.
The proposed AdaBoost.AD is listed in the last column. Note
that, like LexiBoostM1, LexiBoostM?2, Dual-LexiBoost, and
JanEnsemble, the proposed AdaBoost.AD does not need to be
equipped with additional class imbalance technique since it is
designed to tackle the multi-class imbalance problem on its own.

In terms of G-mean, Table IV shows that our AdaBoost.AD
outperformed the other methods on 12 out of 20 data sets, thus
illustrating its superiority of yielding good predictive perfor-
mance. Friedman test at the significance level 0.05 rejects HO
with the p-value 3.885 - 10712, meaning that some of these
methods perform significantly differently. Next, we conduct
post-hoc tests to facilitate further comparisons, to determine
whether our proposed method exhibits statistically significant
differences from its competitors. AdaBoost.AD is chosen as the
control method for consistently performing the best among all
classifiers. Post-hoc tests show that our method has significant
differences from all competing methods, as highlighted in yel-
low within the second last row of Table IV. Moreover, Friedman
tests also provide rankings of these methods. Let 7 denote the
rank of the ¢-th method on the j-th data set, and N denote the
total number of data sets. The average rank of the i-th method
is calculated as R; = % > j r]., providing a reasonable idea of
how well the method performs compared to others. The third
last row of Table IV (“avgRank”) reports the average rank of
each method across all data sets (R;). The average rank of our
proposed AdaBoost.AD is 1.8, being the best (lowest) value
among the competing methods. This result indicates that our
method consistently outperformed the others across data sets.

The second last row of Table IV reports the win-tie-lose
counts of AdaBoost.AD in comparison to other methods. When
compared against AdaM1+ADASYN, AdaM2+ADASYN,
AdaNC9+ADASYN, LexiBoostM1, LexiBoostM2, Dual-
LexiBoost, and JanEnsemble, our proposed AdaBoost.AD sig-
nificantly outperforms each of themon 12, 13, 10, 19, 18, 15, and
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TABLE IV
PREDICTIVE PERFORMANCE IN TERMS OF G-MEAN

Data set AdaM1+ADASYN | AdaM2+ADASYN | AdaNC9+ADASYN | LexiBoostM1 | LexiBoostM2 | Dual-LexiBoost [ JanEnsemble [ AdaAD
balance 0.057+0.143 0.092+0.176 0.24140.237 0.4634+0.190 | 0.505+0.139 | 0.673+0.097 | 0.83540.073 | 0.635+0.078
contraceptive 0.465+0.030 0.46140.033 0.5104-0.026 0.469+0.037 | 0.47940.033 | 0.480+0.032 | 0.47840.031 | 0.483+0.032
ecoli 0.785+0.063 0.769+0.080 0.764+0.091 0.70040.172 | 0.705+0.086 | 0.731+0.080 | 0.8034-0.055 | 0.768+0.073
glass 0.630+0.265 0.55140.304 0.62040.242 0.4784-0.299 | 0.4694+0.274 | 0.478+0.264 | 0.4914-0.203 | 0.6684-0.185
hayesroth 0.82540.060 0.702+0.104 0.8631+0.071 0.82240.066 | 0.821+£0.068 | 0.826+0.060 | 0.71440.097 | 0.8024-0.079
newthyroid 0.893+0.076 0.91240.064 0.904+0.074 0.899+40.071 | 0.908+0.070 | 0.896+0.066 | 0.692+0.121 | 0.94840.055
pageblocks 0.648+0.321 0.682+0.316 0.670+0.308 0.60540.315 | 0.609+0.360 | 0.656+0.308 | 0.5834-0.382 | 0.8434-0.199
penbased 0.9724-0.010 0.969+0.012 0.94240.017 0.904+0.039 | 0.882+£0.041 | 0.856+0.024 | 0.90940.025 | 0.9714-0.011
shuttle 0.999+40.003 0.999+0.003 0.998+0.003 0.996+0.005 | 0.996+£0.005 | 0.996+0.003 | 0.99440.006 | 0.9984-0.003
thyroid 0.859+0.195 0.905+0.162 0.878+0.154 0.788+0.228 | 0.877+0.202 | 0.884+0.155 | 0.898+0.102 | 0.97640.032
wine 0.933+0.042 0.943+0.047 0.930+0.063 0.92640.044 | 0.925+0.046 | 0.928+0.057 | 0.9384-0.035 | 0.9674-0.028
yeast 0.183+0.238 0.093+0.189 0.208+0.249 0.114+0.195 | 0.05240.129 | 0.231£0.218 | 0.15240.207 | 0.3054-0.214
ecoli0l 0.956+0.029 0.97240.025 0.97240.022 0.97140.022 | 0.966+0.028 | 0.977+0.022 | 0.974+0.027 | 0.9784-0.020
ecolil 0.873+0.052 0.869+0.049 0.87940.052 0.7934-0.066 | 0.814+0.069 | 0.858+0.056 | 0.853+0.048 | 0.8804-0.047
ecoli2 0.870+0.088 0.892+0.064 0.872+0.067 0.81340.091 | 0.844+0.073 | 0.839+0.069 | 0.8754-0.097 | 0.8994-0.058
ecoli3 0.770+0.154 0.81440.091 0.782+0.119 0.710+0.151 | 0.71740.150 | 0.735+0.129 | 0.77140.145 | 0.8444-0.089
haberman 0.51940.090 0.52640.081 0.599+0.081 0.520+0.080 | 0.529+0.076 | 0.560+0.085 | 0.55140.093 | 0.585+-0.077
newthyroid1l 0.944+0.075 0.95140.076 0.9564-0.077 0.921+0.079 | 0.92940.076 | 0.925+0.087 | 0.83540.167 | 0.953+0.075
newthyroid2 0.959+0.056 0.957+0.048 0.957+0.061 0.93610.067 | 0.940+0.066 | 0.940+0.050 | 0.83740.136 | 0.9744-0.054
yeast3 0.875+0.036 0.87540.042 0.888+0.039 0.774+0.061 | 0.81140.056 | 0.875+0.038 | 0.84540.053 | 0.9104-0.027

avgRank 4525 3.925 3.3 6.65 6.1 4.65 5.05 1.8
win-tie-lose 12-7-1 13-7-0 10-8-2 19-1-0 18-2-0 15-4-1 15-3-2 control
correlation —0.3069 —0.2354 —0.2775 —0.3746 —0.2836 —0.2016 —0.167 —0.097

Each entry is the mean+std of 10 times 5-fold CV. The last column corresponds to our proposed AdaBoost.AD (AdaAD). The best model on each data set is highlighted in bold. The third last row lists
the average ranks (avgRank) of each model across data sets. Significant difference against AdaBoost.AD is highlighted in yellow (gray). The second last row lists numbers of win-tie-lose of AdaBoost. AD
(AdaAD) versus other methods across all data sets. The last row lists the Spearman’s correlation between performance of each method and imbalance ratios across data sets.
The bold values denote the best average performance of models on the data set.

TABLE V
PREDICTIVE PERFORMANCE IN TERMS OF AVG-AUC

Data set AdaM1+ADASYN | AdaM2+ADASYN | AdaNC9+ADASYN | LexiBoostM1 | LexiBoostM2 | Dual-LexiBoost [ JanEnsemble [ AdaAD
balance 0.666+0.019 0.671+0.021 0.710+0.026 0.69240.042 | 0.690+0.045 | 0.772+0.055 | 0.8841-0.044 | 0.7384-0.047
contraceptive 0.608+0.021 0.606+£0.022 0.63910.020 0.611+0.026 | 0.61940.022 | 0.614+0.024 | 0.62240.023 | 0.614+0.025
ecoli 0.878+0.033 0.869+0.041 0.868+0.044 0.840+0.056 | 0.834+0.043 | 0.846+0.041 | 0.89040.030 | 0.867+0.039
glass 0.8451+0.044 0.829+0.044 0.825+0.049 0.778+0.067 | 0.76940.047 | 0.768-+0.045 | 0.74840.061 | 0.835+0.041
hayesroth 0.880+0.038 0.792+0.070 0.906+0.047 0.877+0.044 | 0.880+0.043 | 0.88340.036 | 0.805+0.061 | 0.868-+0.050
newthyroid 0.926+0.049 0.939+0.041 0.933+£0.047 0.9294-0.048 | 0.9354+0.047 | 0.926+0.045 | 0.8174-0.058 | 0.9634-0.037
pageblocks 0.832+0.090 0.847+0.097 0.840+0.087 0.805+0.093 | 0.823+0.109 | 0.838+0.085 | 0.83040.101 |0.90740.076
penbased 0.985+0.005 0.983+0.006 0.969+0.009 0.949+0.021 | 0.93740.022 | 0.923+0.013 | 0.95340.012 | 0.984+0.006
shuttle 0.9994-0.002 0.999-+0.002 0.998+0.002 0.99740.004 | 0.997+0.004 | 0.99740.002 | 0.99640.005 | 0.999+4-0.002
thyroid 0.921+0.068 0.945+0.069 0.926+£0.065 0.8784-0.103 | 0.93240.077 | 0.930+0.065 | 0.9344-0.062 | 0.9834-0.022
wine 0.951+0.031 0.959+0.034 0.949+0.044 0.946+0.031 | 0.946+0.032 | 0.948+0.041 | 0.95740.024 |0.97610.021
yeast 0.731+0.021 0.714+0.022 0.729+0.026 0.685+0.030 | 0.66540.027 | 0.69340.023 | 0.7244-0.025 | 0.700+0.024
ecoli0l 0.957+0.029 0.973+0.024 0.972+0.022 0.97240.022 | 0.967+0.027 | 0.977+0.021 | 0.9744-0.026 | 0.9790.020
ecolil 0.876+£0.048 0.871+0.046 0.881+£0.050 0.8024-0.058 | 0.8204+0.063 | 0.861+0.054 | 0.8574-0.045 | 0.8824-0.046
ecoli2 0.878+0.075 0.896+0.058 0.878+£0.060 0.825+0.077 | 0.851+0.064 | 0.847+0.059 | 0.886+0.078 | 0.90340.055
ecoli3 0.796+0.114 0.827+0.078 0.802+0.094 0.74840.095 | 0.749+0.112 | 0.762+0.095 | 0.80140.109 | 0.8494-0.084
haberman 0.557+0.068 0.565+0.056 0.616+0.069 0.55140.066 | 0.551+0.064 | 0.5754+0.071 | 0.588+0.067 | 0.595+0.073
newthyroidl 0.948+0.065 0.954+0.067 0.95910.067 0.926+0.069 | 0.9344+0.066 | 0.931+0.075 | 0.86240.123 | 0.956+0.066
newthyroid2 0.961+0.051 0.959+0.045 0.959+0.055 0.939+0.060 | 0.943+0.058 | 0.942+0.048 | 0.85940.107 | 0.97610.047
yeast3 0.880+0.033 0.880+0.038 0.891+0.036 0.78940.051 | 0.822+0.048 | 0.879+0.035 | 0.8544-0.046 |0.91140.026

avgRank 4225 3.625 3.15 6.65 6.1 5.25 4.8 22
win-tie-lose 10-8-2 12-7-1 10-7-3 17-3-0 18-2-0 14-5-1 13-3-4 control
correlation -0.2505 -0.1399 —0.252 —0.2557 —0.2339 —0.2038 —0.0654 —0.0797

Each entry is the meantstd of 10 times 5-fold CV. The last column corresponds to our proposed AdaBoost.AD (AdaAD). The best model on each data set is highlighted in bold. The third last row lists
the average ranks (avgRank) of each model across data sets. Significant difference against AdaBoost.AD is highlighted in yellow (gray). The second last row lists numbers of win-tie-lose of AdaBoost. AD
(AdaAD) versus other methods across all data sets. The last row lists the Spearman’s correlation between performance of each method and imbalance ratios across data sets.
The bold values denote the best average performance of models on the data set.
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15 data sets, and is significantly outperformed by each of them
ononly 1,0, 2,0,0, 1, and 2 data set(s). Additionally, it achieves
parity with each of them on 7, 7, 8, 1, 2, 4, and 3 data set(s).

In terms of Avg-AUC, Table V shows that our AdaBoost.AD
outperformed the other methods on 11 out of 20 data sets.
Friedman test at the significance level 0.05 rejects HO with
the p-value 2.580 - 10-11, meaning that some of these methods
perform significantly differently. Next, we conduct post-hoc
tests to facilitate further comparisons, to determine whether
our method exhibits statistically significant differences from its
competitors. AdaBoost.AD is chosen as the control method for
consistently performing the best. Post-hoc tests exhibit that our
method has significant superiority to all the competing methods
except for AdaM2+ADASYN and AdaNC9+ADASYN, where
statistical significance was not observed in terms of ranking de-
spite the win-tie-lose results suggesting our method’s advantage.
Moreover, the average rank of our proposed AdaBoost. AD is 2.2,
being the best (lowest) value among the competing methods.
This result indicates that our method consistently outperformed
the others across data sets.

The second last row of Table V reports the win-tie-lose counts
of AdaBoost.AD in comparison to other methods. A closer
inspection reveals that AdaBoost.AD significantly outperforms
each of the competitors on 10, 12, 10, 17, 18, 14, and 13 data

sets, while being outperformed significantly by each of them on
only 2, 1, 3,0, 0, 1, and 4 data set(s). Additionally, it achieves
parity with each of them on 8, 7, 7, 3, 2, 5, and 3 data sets.

Therefore, the proposed AdaBoost.AD consistently demon-
strates superior predictive performance in terms of both G-mean
and Avg-AUC across the majority of data sets. Nevertheless,
there are several data sets where AdaBoost.AD is outperformed
by the competitors. For example, AdaBoost.AD is inferior to
AdaNC9 in terms of G-mean in two data sets (i.e., Contraceptive
and Hayesroth).

Fig. 2(a) shows the recall in terms of each individual class
for data set Contraceptive. We can see that the proposed Ad-
aBoost.AD gets the lowest recall on class 1 in comparison to
other methods, while retaining relatively better recall on class 2
and class 3. In consequence, the overall performance in terms of
G-mean becomes relatively low. We can also see from Table III
that class 2 and class 3 of Contraceptive are the minorities, so
that they might be overemphasized in the learning process of
AdaBoost.AD, sacrificing the predictive performance on class
1.

Fig. 2(b) shows the recall in terms of each individual class for
data set Hayesroth. We can see that the proposed AdaBoost.AD
gets the relatively lower recall on class 1, while gaining relatively
better recall on class 2 and class 3. By referring to Table III, we
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know that class 3 is the minority in contrast to class 1 and class 2
of having similar class sizes. For this phenomenon, it is conjec-
tured that the proposed AdaBoost.AD tends to overemphasize
the performance on class 3 (the minority) while sacrificing
the performance on class 1 and class 2 altogether. It is also
conjectured that the training samples of class 2 could be more
difficult to gain correct predictions, and AdaBoost.AD would
induce smaller adaptive margin values for them. In this sense,
AdaBoost.AD will put more attention to training samples of
class 2, gaining a relatively high recall on class 2.

In addition, we illustrate two data sets with three class
labels for which AdaBoost.AD can significantly outperform
the competitors in a large magnitude, namely Newthyroid and
Pageblocks in Fig. 2(c) and (d), respectively. We can see that
AdaBoost.AD usually outperform the competitors in terms of
the recall of most classes. By referring to Table III, we know
that class 2 and class 3 are the minorities in contrast to class
1 for Newthyroid and Pageblocks. The proposed AdaBoost. AD
performs well to improve predictive performance on the minori-
ties while having no significant impact on the majority class, as
it is designed.

C. Effect of Each of the Three Components of Adaptive
Distribution Based Sample Weight

In this section, we aim to study the effectiveness of each of
the proposed three components of adaptive distribution based
sample weight, including the between-class imbalance ratio, the
inverse within-class density, and the adaptive margin factor.

To this end, we respectively remove each of the three compo-
nents from the proposed sample weight of AdaBoost.AD, lead-
ing to AdaBoost.AD eliminating the between-class imbalance
ratio (“AdaAD-imb”), AdaBoost.AD eliminating the inverse
within-class density (“AdaAD-den”), and AdaBoost.AD elimi-
nating the adaptive margin (“AdaAD-mrg”). The three variants
would be compared against AdaBoost.AD. If the predictive
performance declined significantly after eliminating the compo-
nent, we can conclude that this eliminated component is crucial
in dealing with multi-class imbalance.

In general, Table VI reports predictive performance in terms
of G-mean. Friedman test at the significance level 0.05 rejects
HO with p-value 4.526 - 1072, and thus H1 is taken. Table VII
reports predictive performance in terms of Avg-AUC. Friedman
test at the significance level 0.05 rejects HO with p-value 0.0012,
and thus H1 is taken. Therefore, there is significant difference
between AdaBoost.AD and the three degraded variants in terms
of both G-mean and Avg-AUC. In the rest of this section, we
will investigate the effect of each of the three components in
more detail.

1) Effect of the Between-Class Imbalance Ratio: The effect
of between-class imbalance ratio with respect to dealing with
class imbalance is analyzed via the performance comparison
between AdaBoost.AD vs AdaAD-imb. Specifically, the update
of sample weights of AdaAD-imb at the training epoch ¢ + 1 is
formulated as

(X y) = ol (X y) -l (XLy)
~exp{ =P - Ljn, (x)=y] }»
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TABLE VI
PERFORMANCE COMPARISON IN TERMS OF G-MEAN BETWEEN ADABOOST.AD
AND ITS DEGRADED VARIANTS (ADAAD-IMB, ADAAD-DEN, AND

ADAAD-MRG)

[ Dataset AdaAD-imb | AdaAD-den [ AdaAD-mrg [ AdaAD |
Balance 0.205+0.218 | 0.636+0.071 | 0.65740.122 | 0.635+0.078
Contraceptive | 0.467+0.033 | 0.46310.030 | 0.47940.029 | 0.4837-0.032
Ecoli 0.75740.133 | 0.728+0.129 | 0.748+0.077 | 0.7684-0.073
Glass 0.493+0.318 | 0.68140.119 | 0.5534-0.287 | 0.668+-0.185
Hayesroth 0.800+0.070 | 0.74740.074 | 0.7054-0.136 | 0.8024-0.079
Newthyroid | 0.913+0.058 | 0.909+0.071 | 0.922+0.072 | 0.948+0.055
Pageblocks | 0.570+0.351 | 0.8824-0.086 | 0.7254-0.210 | 0.8434-0.199
Penbased 0.97140.012 | 0.97340.011 | 0.9724+0.013 | 0.971+0.011
Shuttle 0.997+0.005 | 0.9844-0.021 | 1.0004-0.000 | 0.9984-0.003
Thyroid 0.88740.153 | 0.866+0.118 | 0.9894-0.004 | 0.976+0.032
Wine 0.965+0.030 | 0.958+0.036 | 0.95940.035 | 0.967+0.028
Yeast 0.009+0.065 | 0.298+0.181 | 0.28740.134 | 0.305+0.214
Ecoli01 0.97940.021 | 0.970+0.026 | 0.972+0.023 | 0.978+0.020
Ecolil 0.846+0.056 | 0.875+0.047 | 0.86740.055 | 0.880+0.047
Ecoli2 0.88140.075 | 0.888+0.063 | 0.88540.065 | 0.899+0.058
Ecoli3 0.675+0.142 | 0.848+0.076 | 0.810+0.099 | 0.844+0.089
Haberman | 0.535+0.083 | 0.581+0.069 | 0.59440.072 | 0.585+0.077
Newthyroidl | 0.92540.082 | 0.951+0.076 | 0.931+0.076 | 0.953+0.075
Newthyroid2 | 0.935+0.077 | 0.968+0.038 | 0.944+0.068 | 0.974+0.054
Yeast3 0.829+0.048 | 0.9064-0.025 | 0.9054-0.030 | 0.9104-0.027

avgRank 335 260 25 | 15 |

Each entry is the mean-+std of 10 times 5-fold CV. The best performed method on each data set is
highlighted in bold. The bottom row lists the average ranks (avgRank) of each method across data
sets. Significant difference against AdaBoost.AD is highlighted in yellow (gray).

The bold values denote the best average performance of models on the data set.

where Ozgt)(X7 y) = exp{—p 1 (X,y) - c®(X,y)} denotes
adaptive within-class density that is formulated by setting y(-) =
11in (9). In this way, any positive impact of the imbalance ratio
in the update of sample weights of AdaBoost.AD on predictive
performance would be inhibited.

Table VI shows that the average rank of AdaAD-imbis 3.35 in
terms of G-mean, being larger (worse) than the average rank of
the proposed AdaBoost.AD. This indicates that after eliminating
the between-class imbalance ratio from the sample weight of
(12), the predictive performance declines significantly, demon-
strating the effectiveness of the between-class imbalance ratio
in dealing with class imbalance. Post-hoc tests of Friedman also
show that AdaBoost.AD significantly outperforms AdaAD-imb
with the p-value of 5.191 - 1075,

Similarly, we can see from Table VII that the average rank
of AdaAD-imb is 3.15 in terms of Avg-AUC, being larger
(worse) than the average rank of the proposed AdaBoost.AD.
This further indicates that eliminating between-class imbalance
ratio from the sample weight would cause a significant decline
in predictive performance. Post-hoc tests of Friedman show
significant inferiority of AdaAD-imb to AdaBoost.AD with
p-value 1.193 - 1074

Therefore, the between-class imbalance ratio of (1) plays an
important role in dealing with class imbalance and should not
be omitted.

2) Effect of the Inverse Within-Class Density: The effect
of inverse within-class density with respect to dealing with
class imbalance is analyzed via the performance comparison
between AdaBoost.AD vs AdaAD-den. Specifically, the update
of sample weights of AdaAD-den at the training epoch ¢ 4 1 is
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TABLE VII
PERFORMANCE COMPARISON IN TERMS OF AVG-AUC BETWEEN
ADABOOST.AD AND ITS DEGRADED VARIANTS (ADAAD-IMB, ADAAD-DEN,
AND ADAAD-MRG)

Data set [ AdaAD-imb [ AdaAD-den [ AdaAD-mrg [ AdaAD l
Balance 0.671£0.023 | 0.73940.043 | 0.7564-0.054 | 0.73840.047
Contraceptive | 0.60740.022 | 0.60140.022 0.6154-0.023 | 0.61440.025
Ecoli 0.8774-0.038 | 0.850+0.044 | 0.853+0.043 | 0.867+0.039
Glass 0.81940.043 | 0.8264-0.042 | 0.8224-0.043 | 0.835+4-0.041
Hayesroth 0.86310.045 | 0.8224-0.053 | 0.8124-0.080 | 0.868+-0.050
Newthyroid | 0.939+0.038 | 0.93740.046 | 0.946+0.047 | 0.96310.037
Pageblocks 0.8134+0.084 | 0.9184-0.059 | 0.8304-0.084 | 0.90740.076
Penbased 0.984+0.006 | 0.9854-0.006 | 0.98540.007 | 0.98440.006
Shuttle 0.998+0.004 | 0.9884-0.015 | 1.00040.000 | 0.99940.002
Thyroid 0.9324+0.064 | 0.91740.067 | 0.9924-0.003 | 0.98340.022
Wine 0.974+0.022 | 0.9694:0.026 | 0.97040.025 | 0.976+40.021
Yeast 0.7104-0.019 | 0.6804-0.023 | 0.67340.026 | 0.700+0.024
Ecoli01 0.97940.021 | 0.9704:0.025 | 0.97340.023 | 0.979+0.020
Ecolil 0.85240.051 | 0.87740.046 | 0.870+0.052 | 0.8824-0.046
Ecoli2 0.889+0.066 | 0.893+0.057 | 0.891+0.059 | 0.9034-0.055
Ecoli3 0.72940.095 | 0.8524-0.074 | 0.82140.085 | 0.84940.084
Haberman 0.5724+0.058 | 0.5854-0.069 | 0.6144-0.073 | 0.5954-0.073
Newthyroidl | 0.930+0.073 | 0.954+0.066 | 0.93540.067 0.9561-0.066
Newthyroid2 | 0.93940.068 | 0.969+0.036 | 0.94740.060 0.9761-0.047
Yeast3 0.84240.040 | 0.9064-0.025 | 0.90740.028 | 0.911+40.026

avgRank 315 275 25 | 16|

Each entry is the mean+std of 10 times 5-fold CV. The best performed method on each data set is
highlighted in bold. The bottom row lists the average ranks (avgRank) of each method across data
sets. Significant difference against AdaBoost.AD is highlighted in yellow (gray).

The bold values denote the best average performance of models on the data set.

formulated as

WitV (X, ) = o (X, y) - wi (X, y)

exp{—0¢ * Lin,(x)=y) }»

where ol (X, y) = exp{—7(X,y) - 0 (X,y)} denotes the
adaptive between-class imbalance ratio that is formulated by
setting p~1(-) = 1in (9). In this way, any positive impact of the
inverse within-class density in the update of sample weights of
AdaBoost.AD on predictive performance would be inhibited.

Table VI shows that the average rank of AdaAD-den is 2.60,
being larger (worse) than the average rank of AdaBoost.AD. This
indicates that after eliminating the inverse within-class density
from the sample weight of (12), the predictive performance
declines significantly, demonstrating the effectiveness of the in-
verse within-class density in dealing with class imbalance. Post-
hoc tests of Friedman also show that AdaBoost.AD significantly
outperforms AdaAD-den with the p-value of 5.056 - 1073,

Similarly, we can see from Table VII that the average rank of
AdaAD-denis 2.75, being larger (worse) than the average rank of
the proposed AdaBoost.AD. This further indicates that eliminat-
ing inverse within-class density from the sample weight would
cause a significant decline in predictive performance. Post-hoc
tests of Friedman show significant inferiority of AdaAD-den to
the proposed AdaBoost.AD with p-value 3.525 - 1073,

Therefore, the inverse within-class density factor of (3) plays
an important role in dealing with class imbalance and should not
be omitted.
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3) Effect of the Adaptive Margin Factor: The effect of adap-
tive margin factor with respect to dealing with class imbal-
ance is analyzed via the performance comparison between Ad-
aBoost.AD vs AdaAD-mrg. Specifically, the update of sample
weights of AdaAD-mrg at the training epoch ¢ + 1 is formulated
as

Wi (X ) =a3(X,y) - w8 (X, y) - exp{=B1 - L, (x)=y) )

where a3(X,y) = exp{—y(X,y) - p 1 (X,y)} denotes the
static data distribution that is formulated by setting o(®)(-) = 1
in (9). In this way, any positive impact of the adaptive margin
in the update of sample weights of AdaBoost.AD on predictive
performance would be inhibited.

Table VI shows that the average rank of AdaAD-mrg is 2.50,
being larger (worse) than the average rank of AdaBoost.AD.
This indicates that after eliminating the adaptive margin from
the sample weight of (12), the predictive performance declines
significantly, demonstrating the effectiveness of the adaptive
margin in dealing with class imbalance. Post-hoc tests of Fried-
man also show that AdaBoost.AD significantly outperforms
AdaAD-mrg with the p-value of 9.982 - 1073,

Similarly, we can see from Table VII that the average rank
of AdaAD-mrg is 2.45, being larger (worse) than the average
rank of the proposed AdaBoost.AD. This further indicates that
eliminating the adaptive margin from the sample weight would
cause a significant decline in predictive performance. Post-hoc
tests of Friedman show significant inferiority of AdaAD-mrg to
AdaBoost. AD with p-value 2.502 - 1072,

Therefore, the adaptive margin factor of (8) plays an important
role in dealing with class imbalance and should not be omitted.

D. Impact of Imbalance Ratio on Performance

This section aims to investigate the influence of imbalance
ratios on the performance of the investigated methods, including
our proposed AdaBoost.AD, we employ Spearman’s correla-
tion [41] to establish a connection between the predictive per-
formance of those methods and the imbalance ratios across data
sets. The results of Spearman’s correlation are interpreted as very
weak (0.00 - 0.19), weak (0.20 - 0.39), moderate (0.40 - 0.59),
strong (0.60 - 0.79), and very strong (0.80 - 1.00), following
Evans [42].

The last row of Table IV shows that, in terms of G-mean,
the correlations for AdaM1+ADASYN, AdaM2+ADASYN,
AdaNC9+ADASYN, LexiBoostM1, LexiBoostM2, Dual-Lexi-
Boost, JanEnsemble, and AdaBoost.AD are —0.3069 (weak),
—0.2354 (weak), —0.2775 (weak), —0.3746 (weak), —0.2836
(weak), —0.2016 (weak), —0.167 (very weak), and —0.097 (very
weak), respectively. This implies that both JanEnsemble and our
proposed AdaBoost.AD display minimal (very weak) sensitivity
to the imbalance ratios. This underscores the robustness of our
proposed AdaBoost.AD, along with JanEnsemble, compared
with other methods across a wide range of class imbalance ratios.

Similarly, the last row of Table V shows that, in
terms of Avg-AUC, the correlations for AdaM1+ADASYN,
AdaM2+ADASYN, AdaNC9+ADASYN, LexiBoostM1, Lex-
iBoostM2, Dual-LexiBoost, JanEnsemble, and AdaBoost.AD
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are —0.2505 (weak), —0.1399 (very weak) —0.252 (weak),
—0.2557 (weak), —0.2339 (weak), —0.2038 (weak), —0.0654
(very weak), and —0.0797 (very weak), respectively. This im-
plies that AdaM2+ADASYN, JanEnsemble, and AdaBoost.AD
displace minimal (very weak) sensitivity to the imbalance ratios.
This underscores the robustness of our AdaBoost.AD, along
with AdaM2+ADASYN, JanEnsemble, compared with other
methods across a wide range of class imbalance ratios.

Therefore, the proposed AdaBoost.AD consistently demon-
strates minimal (very weak) sensitivity to a broad range of
imbalance ratios when considering Spearman’s correlation. This
underscores its robust predictive capability across diverse imbal-
ance ratios.

VII. CONCLUSION

We proposed an adaptive distribution based sample weight
that can incorporate the between-class and the within-class
data distribution into a single variable whilst tracing the up-to-
date training status throughout the entire training process. The
between-class imbalance ratio distinguishes training samples of
different classes, dealing with class imbalance at a higher level
of information describing data classes. The inverse within-class
density further distinguishes the training samples of the same
class based on the local data distribution information. The adap-
tive margin factor traces the up-to-date training status, having
the potential to upgrade the between-class imbalance ratio and
the inverse within-class density evolving with time.

Furthermore, we proposed to encode the adaptive distribution
based sample weights into the AdaBoost ensemble approach,
contributing to AdaBoost Ensemble with Adaptive Distribution
based Sample Weight (AdaBoost.AD). Theoretical support on the
validity of the proposed learning algorithm of AdaBoost.AD is
provided. Specifically, we validated our iterative update of the
adaptive sample weight and demonstrated the correct formula-
tion of the model weight.

Experimental results on 12 multi-class and 8 binary-class
imbalanced data sets showed the superiority of the proposed
AdaBoost.AD against state-of-the-art multi-class imbalance ap-
proaches in dealing with the class imbalance problem and
achieving significantly better predictive performance. By elimi-
nating each of the three components from the proposed adaptive
distribution based sample weights of AdaBoost.AD, we induced
three degraded variants of the proposed AdaBoost.AD, which
are AdaAD-imb, AdaAD-den, and AdaAD-mrg, respectively.
Experimental analyses showed the effectiveness of each of the
components in dealing with class imbalance and showed that
they should not be omitted.
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