
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024 5265

Multi-Class Imbalance Classification Based on Data
Distribution and Adaptive Weights

Shuxian Li , Liyan Song , Xiaoyu Wu , Member, IEEE, Zheng Hu , Yiu-ming Cheung , Fellow, IEEE,
and Xin Yao , Fellow, IEEE

Abstract—AdaBoost approaches have been used for multi-class
imbalance classification with an imbalance ratio measured on class
sizes. However, such ratio would assign each training sample of the
same class with the same weight, thus failing to reflect the data
distribution within a class. We propose to incorporate the density
information of training samples into the class imbalance ratio so
that samples of the same class could have different weights. As one
could use the entire training set to calculate the imbalance and
density factors, the weight of a training sample resulting from the
two factors remains static throughout the training epochs. However,
static weights could not reflect the up-to-date training status of
base learners. To deal with this, we propose to design an adaptive
weighting mechanism by making use of up-to-date training status
to further alleviate the multi-class imbalance issue. Ultimately, we
incorporate the class imbalance ratio, the density-based factor, and
the adaptive weighting mechanism into a single variable, based on
which the adaptive weights of all training samples are computed.
Experimental studies are carried out to investigate the effectiveness

Manuscript received 15 June 2022; revised 14 August 2023; accepted 19
March 2024. Date of publication 4 April 2024; date of current version 4 October
2024. This work was supported in part by the National Natural Science Founda-
tion of China (NSFC) under Grant 62002148 and Grant 62250710682, in part by
Guangdong Provincial Key Laboratory under Grant 2020B121201001, in part by
the Program for Guangdong Introducing Innovative and Enterpreneurial Teams
under Grant 2017ZT07X386, in part by the Research Institute of Trustworthy
Autonomous Systems (RITAS), in part by the NSFC/Research Grants Council
(RGC) Joint Research Scheme under Grant N_HKBU214/21, in part by the Gen-
eral Research Fund of RGC under Grant 12201321, Grant 12202622, and Grant
12201323, and in part by RGC Senior Research Fellow Scheme under Grant
SRFS2324-2S02. Recommended for acceptance by Y. Shen. (Corresponding
authors: Yiu-ming Cheung; Xin Yao.)

Shuxian Li is with the Research Institute of Trustworthy Autonomous Sys-
tems, Southern University of Science and Technology, Shenzhen, Guangdong
518055, China, also with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and Engi-
neering, Southern University of Science and Technology, Shenzhen, Guangdong
518055, China, and also with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, SAR, China (e-mail: lisx@mail.sustech.edu.cn).

Liyan Song was with the Research Institute of Trustworthy Autonomous Sys-
tems, Southern University of Science and Technology, Shenzhen, Guangdong
518055, China, also with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and Engi-
neering, Southern University of Science and Technology, Shenzhen, Guangdong
518055, China. She is now with the Faculty of Computing, Harbin Institute of
Technology, Harbin, Heilongjiang 150001, China (e-mail: songly@hit.edu.cn).

Xiaoyu Wu and Zheng Hu are with the RAMS Reliability Technology Lab,
Huawei Technologies Company Ltd, Shenzhen, Guangdong 518129, China (e-
mail: wuxiaoyu7@huawei.com; hu.zheng@huawei.com).

Yiu-ming Cheung is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, SAR, China (e-mail: ymc@comp.hkbu.edu.hk).

Xin Yao is with the Department of Computing and Decision Sciences,
Lingnan University, Hong Kong, SAR, China, and also with the School of
Computer Science, University of Birmingham, B15 2TT Birmingham, U.K.
(e-mail: xinyao@ln.edu.hk).

Digital Object Identifier 10.1109/TKDE.2024.3384961

of the proposed approach and each of the three components in
dealing with multi-class imbalance classification problem.

Index Terms—Multi-class imbalance classification, ensembles,
AdaBoost, adaptive weight, data density.

I. INTRODUCTION

C LASS imbalance for which some are highly under-
represented (over-represented) as minority (majority)

classes compared to others is common in real-world appli-
cations of multi-class classifications such as human behavior
recognition [1], video classification [2], and medical decision
making [3], which has posed significant challenges to the man-
agement and use of the data sets. Unprocessed class imbalance in
data often leads to misclassification, misleading, and even false
results, especially on the minority classes. This issue becomes
more obvious in applications such as medical decision making,
when the predictive performance on the minority classes (e.g.,
rare diseases) is more important than that on the majority classes
(normal). In particular, class imbalance with multiple classes in
a data set poses even bigger challenges, which remain unsolved.
Lately, the class imbalance problem has drawn increasing at-
tention from both academia and industry in an effort to retain
predictive performance [4].

Data sampling, cost-sensitive, and ensemble learning are
three common strategies for dealing with the multi-class im-
balance [4], [5], [6]. Sampling approaches encompass over-
sampling the minority class(es) or undersampling the majority
class(es) to achieve a balanced distribution of samples [7], [8],
[9]. They operate at the data-level and can enhance the pre-
dictive performance of various machine learning methods [7],
[8], [9], while under some challenges such as overfitting for
oversampling [7], the loss of important information for under-
sampling [7], [10], and the substantial computational costs [10],
[11]. Cost-sensitive approaches involve assigning distinct mis-
classification costs or sample weights to various classes [7],
[12]. These approaches are easy to implement and can be
combined with various machine learning algorithms [4], [7].
However, deciding the cost matrix or sample weights in the
training process is nontrivial. This challenge becomes even
more pronounced when multiple classes are involved [4]; their
values are determined in advance and as such remain static
throughout the training process. Ensemble learning approaches
involves combining multiple classifiers to enhance model accu-
racy, which have exhibited efficacy and flexibility [5], [13], [14],

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1047-4141
https://orcid.org/0000-0003-1172-8825
https://orcid.org/0000-0002-3903-7834
https://orcid.org/0000-0002-3526-0297
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0001-8837-4442
mailto:lisx@mail.sustech.edu.cn
mailto:songly@hit.edu.cn
mailto:wuxiaoyu7@huawei.com
mailto:hu.zheng@huawei.com
mailto:ymc@comp.hkbu.edu.hk
mailto:xinyao@ln.edu.hk

5266 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024

[15]. Given that ensembles have demonstrated effectiveness in
addressing multi-class imbalance problem [5], [15], [16], and
within which AdaBoost possesses a solid theoretical founda-
tion and is extensively employed in ensemble learning [5],
[15], [16], [17], our approach follows this comparable research
trajectory.

We note that existing strategies normally depend on the
information of class sizes to deal with class imbalance. In addi-
tion to this specific knowledge of class imbalance, we consider
obtaining other information to better reflect class imbalance that
can be applied throughout the training epochs of the AdaBoost
ensemble learning. Adopting class imbalance ratio will assign
each individual training sample of the same class with the same
weight value, failing to reflect the differences among training
samples of the same class. In other words, the class imbalance
ratio can only differentiate “between-class” training samples that
belong to different classes. We propose the density related vari-
able to capture the distribution of training samples of the same
class to distinguish such training samples. Then, we incorporate
this density information with the class imbalance ratio to further
enhance the capability of learning approaches in dealing with
class imbalance. In this way, training samples of the same class
would gain different weights, potentially improving predictive
performance of learning methods with class imbalance.

Since the imbalance and density factors are calculated based
on the entire training set in advance, their values remain static
across the entire training process. As a result, the weight of a
training sample resulting from the two factors cannot be adapted
to the most current training status, potentially hindering the class
imbalance mechanism from better dealing with multi-class im-
balance. More specifically, non-adapted weights cannot reflect
the up-to-date training status of constructed base learners for this
training sample, of which sample weight values that are suitable
at early training epochs would be obsolete at latter epochs
of the ensemble learning process. In this sense, assigning an
“adaptive” sample weight by making use of up-to-date training
status would further alleviate the multi-class imbalance issue.
For this, we propose to quantify the up-to-date training status
via the probability difference that training samples have been
correctly and most incorrectly classified across training epochs
so far, leading to the design of the adaptive margin.

We can then unify the between-class imbalance, the within-
class density, and the adaptive margin into a single factor to
determine the weights of training samples at each training
epoch. In this way, the proposed sample weight would be able
to both differentiate the between-class training samples and
the within-class training samples of the same class adaptively
throughout training epochs. Ultimately, the weights of training
samples can be encoded into the AdaBoost ensemble framework,
leading to a novel multi-class classification approach to tackle
the multi-class imbalance problem. We name the approach as
AdaBoost Ensemble with Adaptive Distribution based Sample
Weight (AdaBoost.AD). We will provide theoretical deduction to
demonstrate why the proposed AdaBoost.AD learning algorithm
would be valid.

Experimental studies on 12 multi-class and 8 binary-class
imbalanced data sets are conducted to investigate to what extent

the proposed AdaBoost.AD can address the multi-class im-
balance issue by comparing against state-of-the-art multi-class
imbalance approaches. The effectiveness of each of the proposed
three components is analyzed experimentally, demonstrating
their impact on the performance of the proposed algorithm.

This paper contributes to the management of multi-class
imbalance data sets when they are used for classification. The
main contribution is summarized as follows.

1) We propose the adaptive distribution based sample weight
that can incorporate the between-class imbalance ratio,
the within-class density variable, and the adaptive margin
altogether to deal with multi-class imbalance.

2) We integrate the proposed adaptive sample weight with the
learning framework of AdaBoost ensembles, contribut-
ing to the proposed AdaBoost.AD. We further provide
the theoretical support on the learning algorithm of Ad-
aBoost.AD.

3) We demonstrate the effectiveness of the proposed Ad-
aBoost.AD for dealing with multi-class imbalance; we
also analyse each of the three components of the adaptive
sample weight.

The remainder of this paper is organized as follows. Section II
discusses related work of multi-class imbalance problem. How
the within-class data distribution is defined and how it is in-
corporated with between-class data distribution are presented in
Section III. Section IV presents the way to define the adaptive
sample weights based on the training status throughout training
epochs. How to incorporate the proposed sample weights with
the AdaBoost ensemble framework and why the learning algo-
rithm is valid are discussed in Section V. Experimental design
and analysis of results are reported in Section VI. The paper is
concluded in Section VII.

II. RELATED WORK

Methods dealing with the multi-class imbalance problem can
generally be cast into three categories [4], [5], [6]: data sampling
approaches [7], [8], [9], cost sensitive approaches [18], and
ensemble approaches [5], [13], [14].

A. Data Sampling Methods for Multi-Class Imbalance

Methods of this category are data-level. The core idea is to in-
crease samples of the minority classes or to reduce samples of the
majority classes, thereby alleviating the imbalance issue among
different classes. Then, learning models can be constructed to
make prediction without alternations [7], [8], [9].

ROS (Random Over-Sampling) that randomly replicates mi-
nority samples and RUS (Random Under-Sampling) that ran-
domly deletes majority samples are the most popular data
sampling methods. They were originally designed to deal with
binary-class imbalance problem yet can be easily extended to
dealing with the multi-class imbalance problem [5], [7]. Later
in 2013, Lin et al. proposed a more sophisticated over-sampling
technique for dealing with multi-class imbalance that takes
classification difficulty of each training sample into account [6].

LI et al.: MULTI-CLASS IMBALANCE CLASSIFICATION BASED ON DATA DISTRIBUTION AND ADAPTIVE WEIGHTS 5267

Moreover, SMOTE (Synthetic Minority Over-sampling Tech-
nique) [8] is another popular over-sampling method that gener-
ates synthetic minority data. There have been many variants of
SMOTE [9], [19], [20], [21]. ADASYN (Adaptive Synthetic
Sampling Approach) is one of the most popular variant of
SMOTE, which is better able to generates synthetic data around
the minority samples that are more isolated from their class label
in the neighborhood [9]. However, most sampling based methods
cater for class imbalance by manipulating the between-class
imbalance ratio which typically remain static throughout the
iterative training process (if any).

Sampling methods normally need to compute the pair-wise
distance, and euclidean distance is popularly adopted for the
computation [8], [9], [19], [20], [21]. More recently, there are
studies that employed other distance metrics to try to capture
additional characteristics of the data space, and subsequently
gained good ability in dealing with multi-class imbalance. These
include the Mahalanobis distance based over-sampling [22],
Helliger distance based over-sampling [23], adaptive Maha-
lanobis distance-based over-sampling [24], and entropy-based
sample distance [10], [11].

There are also some synthetic image generation methods in
the community of deep learning that can be potentially used to
alleviate multi-class imbalance [11]. Yet, those approaches are
image data specific and time-consuming.

Sampling methods are straightforward and uncomplicated
to implement. They operate at the data-level and can enhance
the predictive performance of various machine learning meth-
ods by mitigating the bias towards the majority classes. There
are also some cons. Oversampling can induce overfitting by
duplicating existing data [7], while undersampling may re-
sult in the loss of important information within the majority
class, resulting in reduced model performance [7], [10]. Addi-
tionally, applying sampling approaches can be challenging in
scenarios with multiple classes and substantial computational
costs [10], [11].

B. Cost-Sensitive Methods for Multi-Class Imbalance

Methods of this category are algorithm-level, which normally
deal with class imbalance inside the classification methods
themselves by assigning distinct misclassification costs or sam-
ple weights to various classes. These approaches are easy to
implement and can be combined with various machine learning
algorithms once costs or sample weights are properly defined,
dealing with multi-class imbalance directly [4], [7]. Usually, the
sample weights of a minority class is usually larger than that of
a majority class [7], [12].

Designing good strategies to set sample weights is essential
for cost-sensitive methods to deal with multi-class imbalance.
A simple way is to set up sample weights according to class
sizes, so that learning algorithms would emphasize samples of
higher weights [18]. Whereas this technique may fail to achieve
good performance when the information of class sizes is too
limited to depict informative data distribution. More advanced
cost-sensitive techniques also exist in the literature, yet they

are either time-consuming [25] or designed for binary classi-
fiers [26], [27].

So far, it is still a difficult issue to design good sample weights,
which might necessitate domain expertise for appropriate setup,
and this challenge becomes even more pronounced when mul-
tiple classes are involved [4].

In this paper, we will propose an advanced strategy to derive
sample weights based on the between-class and within-class
data distribution, and experimentally justify its effectiveness in
dealing with multi-class imbalance.

C. Ensemble Methods for Multi-Class Imbalance

Ensemble approaches involve combining multiple classifiers
to enhance model accuracy, which have shown to perform gen-
erally well in the multi-class classification problem, and thus
are popularly chosen as the benchmark learning approach in
dealing with multi-class imbalance [5], [16]. Although conven-
tional ensemble methods were not deliberately designed to deal
with class imbalance, they can be equipped easily with other
techniques that cater for class imbalance such as sampling or
cost-sensitive techniques [25], [28], [29], offering their flexibil-
ity. JanEnsemble [30] is a state-of-the-art ensemble approach
specifically crafted for addressing multi-class imbalance prob-
lem. This method employs adaptive optimization techniques to
combine a variety of base learners, leading to a more potent
classifier. To mitigate the class imbalance issue, each individual
base learner is trained using a synthesized balanced data set that
contains samples from different classes.

AdaBoost is a popular ensemble learning framework that
was originally designed for binary classification [31] and then
generalized to multi-class classification [17]. Wang et al. further
boosted AdaBoost to AdaBoost.NC by encouraging the diversity
of training samples so that those with larger error and lower
diversity were more likely to be retained for training next base
learners [5], [16], [32].

AdaBoost-based methods are extensively employed in multi-
class imbalance, which have demonstrated the effectiveness
and robustness with a solid theoretical foundation, including
such as SMOTEBoost [13], RUSBoost [14], AdaBoost.NC [5],
LexiBoost and Dual-LexiBoost [15]. Among them, LexiBoost
and Dual-LexiBoost are state-of-the-art and thus are chosen as
our competing methods. They were designed as a two-stage lex-
icographic linear programming framework. Specifically, Lex-
iBoost dealt with multi-class imbalance via solving a linear
programming problem, whereas Dual-LexiBoost embedded the
solver of linear programming into the learning process of the
AdaBoost ensemble. Both LexiBoost and Dual-LexiBoost are
capable of dealing with binary and multi-class imbalance prob-
lems. Although ensemble methods can entail a computational
burden due to the involvement of multiple base learners, this
concern is not so significant compared with their effectiveness
in dealing with multi-class imbalance [5], [15], [16].

In this paper, we will propose an adaptive distribution based
AdaBoost ensemble to deal with multi-class imbalance, which
can also be used in the binary class scenario. Sections III, IV,

5268 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024

and V will discuss our sample weight based AdaBoost approach
into detail.

III. DATA DISTRIBUTION BASED SAMPLE WEIGHT

As explained previously, we adopt the AdaBoost [17] as the
multi-class learning framework. Suppose that we have a data
set consisting of n training samples {(Xi, yi)} to build a set of
base learners for dealing with a c-class classification problem,
where Xi ∈ Rd denotes a d-dimensional input features of the
i-th training sample, yi ∈ {1, . . . , c} denotes the true label of
the i-th training sample, and i = 1, . . . , n. Assuming there are
m training epochs in total for the AdaBoost ensemble, there will
be m base learners {ht(·)} with t ∈ {1, . . . ,m}, each of which
is associated to a model weight βt and is constructed at the t-th
training epoch [17].

Using the above notations, this section will first specify the
way to depict multi-class imbalance based on between-class
sizes and then present a (temporary) sample weight by encoding
the within-class data density into the between-class imbalance
ratio for dealing with multi-class imbalance.

A. Encoding Between-Class Data Distribution

Lety ∈ {1, . . . , c} andN(y)be the non-negative function that
gives the number of training samples with label y. Following the
conventional manner to deal with class imbalance [6], we define
the multi-class imbalance ratio associated to a training sample
(X, y) based on class sizes as

γ(X, y) =
N(y)

miny′ N(y′)
≥ 1, (1)

where miny′ N(y′) denotes the minimal class size, and y′ ∈
{1, . . . , c}. Specifically, the smallest class is used as a “bench-
mark” based on which imbalance ratios of other classes would
be computed. A smaller (larger) class in comparison to the
benchmark class would obtain a smaller (larger) class imbal-
ance value. Taking a three-class classification problem with
the between-class data distribution of 10 : 5 : 2 as an example,
training samples of the second class will have their imbalance
ratio computed as 5/2 = 2.5.

Training samples of larger (smaller) imbalance ratio indicate
relatively adequate (inadequate) data information that can be
provided to model training. Thus, one might need to associate
lower (higher) weights to those training samples, as will be ex-
plained later in Section III-C. In practice, samples with different
class labels would usually have different class imbalance ratios;
whereas samples of the same class would have the same class
imbalance ratio, demonstrating a “between-class” property of
the data distribution.

Although class imbalance ratio could depict the between-class
data distribution based on which one can design an approach to
deal with multi-class imbalance, deriving sample weights only
based on the imbalance ratio would result in the same weight
for training samples of the same class, which does not take
into account the difference among training samples of the same
class. We will introduce a factor to depict the within-class data
distribution of each class in the subsequent section.

Fig. 1. Dense area vs sparse area of samples of class 1.

B. Encoding Within-Class Data Distribution

To specify the differences of data distribution among train-
ing samples of the same class, we will produce the density
for each training sample within this class. Such density of a
training sample would be decided based on the amount samples
of the same class being located within the neighborhood of
this data, being with a unified density scale that is especially
decided for this class. As a result, the associated sample weights
would reflect the information of not only the between-class but
also within-class data distribution, potentially helping with the
multi-class imbalance issue.

Fig. 1 illustrates a data scenario that samples of class 1
(blue dot) overlaps those of class 2 (red triangle) in two areas
with varying within-class distribution properties: a “dense” area
containing more samples of class 1 compared to a “sparse” area
containing much less samples of class 1. Intuitively, incapability
of dealing with samples of class 1 in the dense area would
probably cause more significant drop in predictive performance
of classification models compared to that in the sparse area.
Therefore, training samples of class 1 in the dense (sparse)
area should be over-fitted (under-fitted) while dealing with class
imbalance to gain better overall predictive performance.

Given the i-th training sample (Xi, yi) out of the total n, we
use N (Xi) to denote the k-nearest neighbor set of Xi among
the entire training samples, where k is a predefined parameter.
Supposing that there are ki ≤ k samples in the neighbor set
N (Xi) that are with the same class as yi, we name the subset of
N (Xi) as the within-class neighbor set of (Xi, yi) and denote
it as N (Xi, yi).1 We use N (Xi, yi)j to denote the j-th within-
class neighbor of Xi in the class neighbor set for j = 1, . . . , ki,
based on which the general density of (Xi, yi) is defined as

ρ(Xi, yi) =

{
(1
ki

∑ki

j=1
1

d(Xi,N (Xi,yi)j)
)/T, if ki > 0

0, if ki = 0,

(2)
where d(·, ·) denotes the distance of two training samples and T
is a constant determined based on all training samples (defined
later). We can see that the general density value of a training
sample is determined based on the average distance of this
sample away from its selective within-class neighbors and the
within-class neighbors involved in this computation depends
on how many training samples of this class are within the

1Note the difference of N (Xi, yi) from N (Xi), which needs to query the
true label yi for construction.

LI et al.: MULTI-CLASS IMBALANCE CLASSIFICATION BASED ON DATA DISTRIBUTION AND ADAPTIVE WEIGHTS 5269

k-nearest neighbors. We adopt euclidean distance and set k = 5
throughout the experiments following previous study [10].

The constant T is defined as
∑n

i=1 ρ(Xi, yi)/n, which can be
considered as a normalizer for inducing a unit sample density
across all training samples. It is for this reason that ρ(Xi, yi)
is named as a general density. In this way, training samples
from different data sets would gain a uniformed data scale,
well prepared for the treatment later on. Specifically, training
samples with larger (smaller) general density values than 1 (the
benchmark unit) indicate them to be in a denser (sparser) area
compared to the benchmark density.

General density of training samples is established at the scale
of entire training set in order to unify the density scale of data sets
with varying characteristics. To explicitly quantify the difference
in terms of the within-class data distribution, we define the
inverse within-class density2 of training sample (Xi, yi) as

ρ−1(Xi, yi) =
exp{−ρ(Xi, yi)}

Zi
, (3)

where ρ(Xi, yi) denotes the general density in (2) and Zi repre-
sents the within-class normalizer at the level of each class (i.e.,
within-class), defined as

Zi =
1

||Ci||
∑

Xj∈Ci

exp{−ρ(Xj , yj)}

where subset Ci contains training samples of the same label
as yi and ||Ci|| is the size of the sub-training set. As a result,
within-class density values for each class would have a unit
inverse density.

Specifically, training samples of each class would derive a
unified inverse within-class density, benchmarking around a unit
value, and a smaller (larger) value indicates a desire for having a
larger (smaller) sample weight for dealing with class imbalance.

C. Distribution Based Sample Weight

Training samples with smaller between-class imbalance and
inverse within-class density values would be assigned with
higher weights so that the training process would pay more
attention to them, better dealing with class imbalance. This
information can be incorporated into a single data distribution
factor, being defined as

α(X, y) = exp{−γ(X, y) · ρ−1(X, y)}, (4)

where γ(·) denotes the between-class imbalance ratio in (1) and
ρ−1(·) denotes the inverse within-class density in (3). We can
see that α(·) ranges in (0, 1].

Supposing a new training epoch t+ 1, the weight of training
sample (X, y) in the conventional AdaBoost ensemble can be
reformulated as

ω(t+1)(X, y) = α(X, y) · ω(t)(X, y) · exp{−βt · 1[ht(X)=y]},
(5)

whereα(·)has been formulated in (4),ω(t)(·)denotes the sample
weight that is iteratively decided at the previous training epoch t,

2We opt for the “inverse” density to simplify the way to encode data distribu-
tion information into sample weights, as will be noted later.

βt denotes the weight of the base learner ht(·) that is constructed
at training epoch t, and 1[condition] is the indicator function defined
as

1[condition] :=

{
1 if the condition is true,
0 if otherwise.

In particular, base learnerht(·) and its weight βt are obtained ac-
cording to the conventional AdaBoost ensemble framework [17].

Therefore, we could encode the data distribution based sam-
ple weight directly into the ensemble learning framework of
AdaBoost.

IV. MAKING SAMPLE WEIGHT ADAPTIVE

As the between-class imbalance ratio and the inverse within-
class density of a training sample are calculated based on the en-
tire training set in advance, their values remain static throughout
the training epochs of the AdaBoost ensemble framework. As
a result, the weight of a training sample resulting from the two
factors as in (5) cannot be adapted to the most current training
status, potentially hindering the class imbalance mechanism
from working well.

More specifically, non-adapted weights cannot reflect the
up-to-date training status how well base learners perform on
this training sample, possibly causing sample weights that are
suitable at early training epochs to become obsolete later on.
Thus, assigning adaptive sample weights by making use of
up-to-date training status would potentially further alleviate the
multi-class imbalance problem.

This section will propose to quantify up-to-date training status
via the probability difference that training samples have been
correctly and the most incorrectly classified across training
epochs so far, and then encode the training status into distribution
based sample weights, contributing to the adaptive distribution
based sample weight.

A. Tracing Up-to-Date Training Status

Given a sample (X, y) at training epoch t, we use o(t)(X, y′)
to denote the outputs of t base learners of AdaBoost that vote X
to class y′ ∈ {1, . . . , c}, which can be formulated as

o(t)(X, y′) =
t∑

ν=1

βν · 1[hν(X)=y′], (6)

where 1[·] is the indicator function and hν(·) denotes the base
learner that is constructed earlier at the ν-th training epoch. With
this in mind, the probability that X is predicted to class c can be
quantified as

P (t)(X, y′) =
exp{o(t)(X, y′)}∑c
l=1 exp{o(t)(X, l)} , (7)

based on all the base learners that have been constructed so far
via the softmax function.

Repeating the above calculation across all training samples
for all label classes, we can attain a probability matrix as
demonstrated in Table I, recording the up-to-date probabilities of
each training sample being predicted to each class at the training
epoch t.

5270 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024

TABLE I
PROBABILITY MATRIX AT TRAINING EPOCH t

Given current training epoch t, we propose to quantify the
up-to-date training status to be the difference between the prob-
ability that training samples have been correctly classified and
that they are uppermost incorrectly classified throughout training
epochs so far, for which we define as the adaptive margin.
Specifically, based on the probability matrix of Table I, the
adaptive margin of an arbitrary training sample (X, y) can be
formulated as

σ(t)(X, y) = P (t)(X, y)−max
y′ �=y

P (t)(X, y′) + 1, (8)

wherey andy′ ∈ {1, . . . , c}denote data labels, P (t)(X, y) repre-
sents the probabilityX can be correctly classified as computed in
(7), andmaxy′ �=y P (t)(X, y′) represents the maximal probability
X can be misclassified. We can know that σ(t)(·) ranges from 0
to 2.

The special case of σ(t)(Xi) = 1, corresponding to P (t)

(Xi, yi) = maxy′ �=yi
P (t)(Xi, y

′), showcases the highest uncer-
tainty the up-to-date AdaBoost ensemble would confront for
prediction. Training samples withσ(t)(·) > 1mean that they can
be correctly predicted by the up-to-date classifier; whereas those
with σ(t)(·) < 1 mean that they would be wrongly classified.
In this sense, σ(t)(X) can be used to indicate the difficulty
training sample X would be correctly predicted, and smaller
(larger) σ(t)(X) means a higher (lower) difficulty the AdaBoost
ensemble can perform the prediction.

Altogether, we design the adaptive margin σ(t)(·) to trace
the up-to-date training status of base learners of the AdaBoost
ensemble, based on which we would make sample weights
adaptive in the subsequent section.

B. Adaptive Distribution Based Sample Weight

At a training epoch, samples with smaller adaptive margin
would be assigned with higher weights so that the training
process at this moment would pay more attention to them,
better dealing with the up-to-date class imbalance issue. The
adaptive margin factor can be further incorporated into static
data distribution factor of (4), contributing to an adaptive data
distribution factor as

α(t)(X, y) = exp{−γ(X, y) · ρ−1(X, y) · σ(t)(X, y)} (9)

where γ(·), ρ−1(·), and σ(t)(·) are the between-class imbalance
ratio in (1), the inverse within-class density factor in (3), and the
adaptive margin in (8), respectively. We can know that α(t)(·)
ranges in (0, 1].

Supposing a new training epoch t+ 1, the weight of training
sample (X, y) in the AdaBoost ensemble framework can be

defined as

ω(t+1)(X, y) = α(t)(X, y) · ω(t)(X, y)

· exp{−βt · 1[ht(X)=y]}, (10)

whereα(t)(·) has been defined in (9), andω(t)(X, y) denotes the
adaptive sample weight that is iteratively decided at the previous
training epoch t. Other notations are the same to the static sample
weight in (5). The crucial difference between them isα(t)(·) that
contribute the adaptive nature to the adaptive weight of (10).

Therefore, we can encode the adaptive data distribution based
sample weight into the ensemble learning framework of Ad-
aBoost as will be explained in Section V-A. It is also noteworthy
that the non-adapted sample weights of (5) will not be employed
in practice; rather it is a temporary outcome during the process
of deriving the adaptive sample weight in this section.

V. ADABOOST ENSEMBLE WITH ADAPTIVE DISTRIBUTION

BASED SAMPLE WEIGHT

This section aims to incorporate the adaptive distribution
based sample weights into the AdaBoost ensemble framework
(the backbone of the classification framework), leading to a
novel multi-class imbalance learning approach. We name the
approach as AdaBoost Ensemble with Adaptive Distribution
based Sample Weight (AdaBoost.AD). We will also present the
learning algorithm of the proposed AdaBoost.AD in detail and
provide theoretical support on why this learning algorithm to be
valid.

A. Learning Algorithm of AdaBoost.AD

Algorithm 1 summarizes the learning algorithm of the pro-
posed AdaBoost.AD, which generally follows the learning pro-
cedure of conventional AdaBoost [17]. The major differences
between them are highlighted in blue (gray), among which the
computation of model weights (step 6) and the update of sample
weights (steps 1, 2, 7 and 8) are two important components.

For training epoch t, model weightβt of the newly constructed
base learner ht(·) and sample weights ω(t+1)(·) that are about
to be used at next training epoch are two important learnable
variables in the learning algorithm of AdaBoost.AD. Learning
sample weights has been presented in Section IV-B, so we will
detail how to determine the model weight in this section. Since
the update of the two variables are interlinked, we will reiterate
the formulation of sample weights here for clarification.

Given sample weights ω(t)(·) that were decided at previous
training epoch t, the model weight of the newly constructed base
learner ht(·) is determined as

βt = log

∑n
i=1 ω

(t)(Xi, yi) · 1[ht(Xi)=yi]∑n
i=1 ω

(t)(Xi, yi) · 1[ht(Xi) �=yj]

, (11)

where 1[·] is the indicator function. Similar to the conven-
tional AdaBoost [17], the model weight of base learner of
AdaBoost.AD is computed according to the ratio of the number
of correct prediction over that of incorrect prediction. Nor-
mally, the denominator would be smaller than the numerator

LI et al.: MULTI-CLASS IMBALANCE CLASSIFICATION BASED ON DATA DISTRIBUTION AND ADAPTIVE WEIGHTS 5271

Algorithm 1: Learning Algorithm of AdaBoost.AD. The
Primary Enhancement of AdaBoost.AD in Comparison to
the Conventional AdaBoost Includes Steps 1–2 and 6–8.

Inputs: (1) n training samples {(Xi, yi)} where i = 1,
. . . , n and yi ∈ {1, . . . , c}, and (2) the number of base
learner m.

Outputs: (1) base learners {ht(·)} and (2) the associated
model weights {βt} with t = 1, . . . ,m.

1: Compute between-class imbalance γ(·) as (1).
2: Compute inverse within-class density ρ−1(·) as (3).
3: Initial sample weights ω(1)(Xi, yi) = 1/n.
4: for training epoch t = 1 until m do
5: Construct base learner ht(·) based on training samples

and up-to-date sample weights ω(t)(·) that was
computed at previous training epoch.

6: Compute model weight βt in (11) based on the latest
sample weights ω(t)(·).

7: Compute or update adaptive margin σ(t)(·) as (8).
8: Update sample weights ω(t+1)(·) as (12) by

considering γ(·), ρ−1(·), and σ(t)(·) altogether.
9: end for

Prediction: Given a test sample X , the predicted label ŷ
can be decided by ŷ = argmaxl∈{1,...,c}

∑m
t=1 βt ·

1[ht(X)=l].

so that we would usually have positive model weights, i.e.,
βt > 0.

Next, we will prepare for the learning procedure at next
training epoch with updated sample weights based on the new
base learner ht(·) and its derived model weight βt. As has been
formulated in (10), the weight of training sample (Xi, yi) that
is about to be used at next training epoch t+ 1 is formulated as

ω(t+1)(Xi, yi) = α(t)(Xi, yi) · ω(t)(Xi, yi)

· exp{−βt · 1[ht(Xi)=yi]}. (12)

We can see that the adaptive data distribution factorα(t)(X, y)
in (9) pioneers the advancement of the proposed AdaBoost.AD
over the conventional AdaBoost. With the informative knowl-
edge encoded, training samples associating to larger α(t)(·)
would induce higher sample weights and become more impor-
tant at the next training epoch, being potentially beneficial to al-
leviate the class imbalance issue with time adaptively. Moreover,
the way we propose the learning algorithm of AdaBoost.AD
follows that of the conventional AdaBoost ensemble, so that we
can largely retain the learning framework of AdaBoost with the
minimal yet crucial alterations.

Providing the trained AdaBoost.AD, the prediction of a test
sample X can be performed as

ŷ = arg max
l∈{1,...,c}

m∑
t=1

βt · 1[ht(X)=l], (13)

being similar to the prediction mechanism of the conventional
AdaBoost [17]. The effectiveness of the proposed AdaBoost.AD

TABLE II
ESSENTIAL NOTATIONS

in dealing with multi-class imbalance will be investigated exper-
imentally in Section VI, by competing against state-of-the-art
Boost-based ensembles.

B. Theoretical Analyses on the Learning Algorithm

In this section, we aim to provide theoretical supports on the
validity of the proposed learning algorithm of AdaBoost.AD.
Especially, we will validate our derivation of sample weight
as in (12) and showcase the correct formulation of our model
weight as in (11). We will pursue the theoretical analyses with the
analogy of the learning procedure of the conventional AdaBoost
ensemble for the purpose of simplicity and clarity. Essential
notations can be found in Table II.

With respect to the conventional AdaBoost ensemble, at train-
ing epoch t, the loss of training sample (Xi, yi) with respect to
all base learners constructed so far can be formulated in the
exponential form as

L(t)(Xi, yi) = exp

(
−

t∑
ν=1

βν · gν(Xi, yi)

)
,

where gν(Xi, yi) = 1[hν(Xi)=yi] − 1
2 , and hν(·) represents base

learners of the AdaBoost ensemble that is constructed at training
epoch ν. According to the property of exponential function, this
sample loss can be rephrased as

L(t)(Xi, yi) =

t∏
ν=1

exp(−βν · gν(Xi, yi)),

where exp(−βν · gν(Xi, yi)) can represent the sample loss of
(Xi, yi) with respect to a single base learner hν(·).

On the other hand, the adaptive data distribution factors
{α(ν)(Xi, yi)} in (9) encode the information that are about to
facilitate the construction of base learners and the computation of
associated model weights. Therefore, each α(ν)(Xi, yi) should
be aligned with the sample loss of each base learner, formulated
as

L(t)(Xi, yi) =

t∏
ν=1

α(ν−1)(Xi, yi) · exp(−βν · gν(Xi, yi)),

(14)
contributing to the novel parts of the learning algorithm of
the proposed AdaBoost.AD. For clarity, the advancement of

5272 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024

AdaBoost.AD over the conventional AdaBoost ensemble is
highlighted in blue throughout this subsection.

We further decompose the L(t)(Xi, yi) into the multi-
plication of three components as [

∏t
ν=1 α

(ν−1)(Xi, yi)] ·
[exp(−∑t−1

ν=1 βν · gν(Xi, yi))] · exp(−βt · gt(Xi, yi)).
Assembling to define ω(t)(Xi, yi) to be

ω(t)(Xi, yi) =[
t∏

ν=1

α(ν−1)(Xi, yi)

]
·
[
exp

(
−

t−1∑
ν=1

βν · gν(Xi, yi)

)]
.

(15)

The sample loss in (14) can be rephrased as

L(t)(Xi, yi) = ω(t)(Xi, yi) · exp(−βt · gt(Xi, yi)). (16)

By analogy to (15), the iterative formulation of sample weight
of (Xi, yi) at training epoch t+ 1 can be deduced as

ω(t+1)(Xi, yi)

=

[
t+1∏
ν=1

α(ν−1)(Xi, yi)

]
·
[
exp

(
−

t∑
ν=1

βν · gν(Xi, yi)

)]

= α(t)(Xi, yi) · ω(t)(Xi, yi) · exp
(
− βt · gt(Xi, yi

))
= α(t)(Xi, yi) · ω(t)(Xi, yi) · exp

(
−βt ·

(
1[ht(Xi)=yi]−

1

2

))
= α(t)(Xi, yi) · ω(t)(Xi, yi) · exp(−βt · 1[ht(Xi)=yi]) · ct

(17)
where ct = exp(βt/2) at the last step is a constant with respect
to the training sample (Xi, yi) and thus can be eliminated from
the equation of sample weight in the end.

Therefore, the ultimate sample weight can be simplified,
without loss of generalization, as

ω(t+1)(Xi, yi) =
α(t)(Xi, yi) · ω(t)(Xi, yi) · exp(−βt · 1[ht(Xi)=yi]),

providing theoretical support for our design of iterative sample
weights ω(t+1)(·) based on the adaptive data distribution factor
as in (10) and (12).

Next, we will derive how to compute the model weight of
the newly constructed base learner based on the latest sample
weights. Conventionally, the weight of a base learner should be
deducted by minimizing the optimization function (across all
training samples), formulated as

n∑
i=1

L(t)(Xi, yi) =
n∑

i=1

ω(t)(Xi, yi) · exp(−βt · gt(Xi, yi)).

To minimize the objective, the partial derivatives in terms of
each model weight βt should be set to zero, contributing to the
equations, for t = 1, . . . ,m, that

n∑
i=1

ω(t)(Xi, yi) · (−gt(Xi, yi)) · exp(−βt · gt(Xi, yi)) = 0.

Moreover, the entire training samples can be divided into
two parts: those that can be correctly classified with the con-
dition of “ht(Xi) = yi” and those that are incorrectly clas-
sified with the condition of “ht(Xi) �= yi”. Substituting with
gt(Xi, yi) = 1[ht(Xi)=yi] − 1

2 , the previous equation can be
rephrased as ∑

ht(Xi)=yi

ω(t)(Xi, yi) · exp
(
− βt

2

)

=
∑

ht(Xi) �=yi

ω(t)(Xi, yi) · exp
(
βt

2

)
.

Extracting exp(βt/2), assigning logarithm operator to both sides
of the equation, and reallocating the indexes of summation, we
can derive

βt = log

∑n
i=1 ω

(t)(Xi, yi) · 1[ht(Xi)=yi]∑n
i=1 ω

(t)(Xi, yi) · 1[ht(Xi) �=yj]

,

Therefore, the above deduction provides theoretical support for
our formulation of model weight βt as in (11).

VI. EXPERIMENTAL STUDIES

This section aims to investigate the proposed AdaBoost.AD
from two perspectives: the performance comparison against
state-of-the-art multi-class imbalance approaches and the effect
of the three components of the adaptive distribution based sam-
ple weight.

A. Experimental Setting

Experimental studies will be performed based on 12 open
multi-class imbalanced data sets and 8 open binary-class im-
balanced data sets, which are available from the Keel reposi-
tory [33]. Table III summarizes the basic description of data sets
investigated in this paper. Note that we have deleted the classes
that have less than 10 samples in total. The reason is that we
opt for 5-fold cross-validation (CV) [34] to evaluate predictive
performance of learning approaches, where 4/5 samples are used
for training and the rest 1/5 are used for evaluation. As a result,
classes with less than 10 samples would have at most two test
sample, potentially making performance evaluation on this class
less reliable.

The proposed AdaBoost.AD (“AdaAD”) will be compared
against two groups of multi-class ensemble methods. The first
group consists of three classical AdaBoost ensemble meth-
ods, including AdaBoost.M1 [17], AdaBoost.M2 [17], and
AdaBoost.NC [5]. They are equipped with the oversampling
technique ADASYN [9] for dealing with class imbalance, lead-
ing to AdaBoost.M1 with ADASYN (“AdaM1+ADASYN”),
AdaBoost.M2 with ADASYN (“AdaM2+ADASYN”), and Ad-
aBoost.NC with ADASYN (“AdaNC9+ADASYN” with its
model parameter λ = 9 following prior work [5])), respec-
tively. Our preliminary experiments found general superiority of
ADASYN when combining with the three classical AdaBoost
ensembles in dealing with class imbalance in comparison to

LI et al.: MULTI-CLASS IMBALANCE CLASSIFICATION BASED ON DATA DISTRIBUTION AND ADAPTIVE WEIGHTS 5273

TABLE III
STATISTICAL INFORMATION OF THE INVESTIGATED DATA SETS

other techniques such as random oversampling, random under-
sampling [7], hybrid sampling [35], and SMOTE [8].

The second group of competing methods consists of four
state-of-the-art AdaBoost-based multi-class classifiers that can
deal with class imbalance on their own, including two versions
of LexiBoost[15], Dual-LexiBoost [15], and JanEnsemble [30].
Specifically, LexiBoost framed with AdaBoost.M1 and Ad-
aBoost.M2 lead to “LexiBoostM1” and “LexiBoostM2” in the
experimental studies. Except for JanEnsemble, decision tree is
adopted as the base learner of the ensemble approaches and the
total training epoch is set to 50, following the prior works [5],
[36]. Our experimental configuration of JanEnsemble adheres to
the source code provided by the authors [30], for which the base
learners consisted of a variety of learning machines including
k-Nearest Neighbor (kNN), Discriminant Analysis (DISCR),
Support Vector Machines (SVM), Artificial Neural Networks
(ANN), and Decision Trees (DT). The number of base learners
is decided through automated adaptive optimization within the
method.

Predictive performance is evaluated based on the 10 times 5-
fold cross-validation (CV) [34]. G-mean [25] and Avg-AUC [37]
are chosen as the performance metrics as they are popularly
used and less sensitive to the class imbalance issue. For each
performance metric, we will report the average performance
metric “±” standard deviation. To gain a comprehensive perfor-
mance analysis, we perform Friedman tests [38] for statistical
comparisons of multiple methods across all data sets. The null
hypothesis (H0) states that all models are equivalent in terms of
predictive performance. The alternative hypothesis (H1) states
that at least one pair of the methods differ. If the null hypothesis

is rejected, Holm-Bonferroni correction [39] will be conduced as
the post-hoc test. For pair-wise comparisons on each data set, we
conduct Wilcoxon signed rank tests [40] between the proposed
AdaBoost.AD and each of the competing methods to determine
whether there are significant performance differences. The sec-
ond last rows of Tables IV and V show the results, in which
“win” denotes the number of data sets that our AdaBoost.AD
is significantly better than the corresponding competitor, “tie”
denotes the number of data sets that no significant difference
can be found between AdaBoost.AD and the competitor, and
“lose” denotes the number of data sets that AdaBoost.AD is
significantly worse than the competitor.

The experiments are run in MATLAB R2021a on Dell work-
station with Intel(R) Core(TM) i7-8700 CPU. Experimental
results of LexiBoostM1, LexiBoostM2, Dual-LexiBoost, and
JanEnsemble were produced based on the implementation in
MATLAB provided by the authors.

B. Performance Comparison

In this section, we will demonstrate the superiority of our
proposed AdaBoost.AD against the six competing methods.
Tables IV and V show the predictive performance of investi-
gated methods in terms of G-mean and Avg-AUC, respectively.
The proposed AdaBoost.AD is listed in the last column. Note
that, like LexiBoostM1, LexiBoostM2, Dual-LexiBoost, and
JanEnsemble, the proposed AdaBoost.AD does not need to be
equipped with additional class imbalance technique since it is
designed to tackle the multi-class imbalance problem on its own.

In terms of G-mean, Table IV shows that our AdaBoost.AD
outperformed the other methods on 12 out of 20 data sets, thus
illustrating its superiority of yielding good predictive perfor-
mance. Friedman test at the significance level 0.05 rejects H0
with the p-value 3.885 · 10−12, meaning that some of these
methods perform significantly differently. Next, we conduct
post-hoc tests to facilitate further comparisons, to determine
whether our proposed method exhibits statistically significant
differences from its competitors. AdaBoost.AD is chosen as the
control method for consistently performing the best among all
classifiers. Post-hoc tests show that our method has significant
differences from all competing methods, as highlighted in yel-
low within the second last row of Table IV. Moreover, Friedman
tests also provide rankings of these methods. Let rji denote the
rank of the i-th method on the j-th data set, and N denote the
total number of data sets. The average rank of the i-th method
is calculated as Ri =

1
N

∑
j r

j
i ., providing a reasonable idea of

how well the method performs compared to others. The third
last row of Table IV (“avgRank”) reports the average rank of
each method across all data sets (Ri). The average rank of our
proposed AdaBoost.AD is 1.8, being the best (lowest) value
among the competing methods. This result indicates that our
method consistently outperformed the others across data sets.

The second last row of Table IV reports the win-tie-lose
counts of AdaBoost.AD in comparison to other methods. When
compared against AdaM1+ADASYN, AdaM2+ADASYN,
AdaNC9+ADASYN, LexiBoostM1, LexiBoostM2, Dual-
LexiBoost, and JanEnsemble, our proposed AdaBoost.AD sig-
nificantly outperforms each of them on 12, 13, 10, 19, 18, 15, and

5274 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024

TABLE IV
PREDICTIVE PERFORMANCE IN TERMS OF G-MEAN

TABLE V
PREDICTIVE PERFORMANCE IN TERMS OF AVG-AUC

LI et al.: MULTI-CLASS IMBALANCE CLASSIFICATION BASED ON DATA DISTRIBUTION AND ADAPTIVE WEIGHTS 5275

Fig. 2. Predictive performance in terms of recall on four example data sets. The x-axis represents the class index, and the y-axis represents the performance in
terms of recall. We can refer to Table III for class sizes of each data set. For clear visualization, the scale of the y-axis is not unified.

15 data sets, and is significantly outperformed by each of them
on only 1, 0, 2, 0, 0, 1, and 2 data set(s). Additionally, it achieves
parity with each of them on 7, 7, 8, 1, 2, 4, and 3 data set(s).

In terms of Avg-AUC, Table V shows that our AdaBoost.AD
outperformed the other methods on 11 out of 20 data sets.
Friedman test at the significance level 0.05 rejects H0 with
the p-value 2.580 · 10−11, meaning that some of these methods
perform significantly differently. Next, we conduct post-hoc
tests to facilitate further comparisons, to determine whether
our method exhibits statistically significant differences from its
competitors. AdaBoost.AD is chosen as the control method for
consistently performing the best. Post-hoc tests exhibit that our
method has significant superiority to all the competing methods
except for AdaM2+ADASYN and AdaNC9+ADASYN, where
statistical significance was not observed in terms of ranking de-
spite the win-tie-lose results suggesting our method’s advantage.
Moreover, the average rank of our proposed AdaBoost.AD is 2.2,
being the best (lowest) value among the competing methods.
This result indicates that our method consistently outperformed
the others across data sets.

The second last row of Table V reports the win-tie-lose counts
of AdaBoost.AD in comparison to other methods. A closer
inspection reveals that AdaBoost.AD significantly outperforms
each of the competitors on 10, 12, 10, 17, 18, 14, and 13 data

sets, while being outperformed significantly by each of them on
only 2, 1, 3, 0, 0, 1, and 4 data set(s). Additionally, it achieves
parity with each of them on 8, 7, 7, 3, 2, 5, and 3 data sets.

Therefore, the proposed AdaBoost.AD consistently demon-
strates superior predictive performance in terms of both G-mean
and Avg-AUC across the majority of data sets. Nevertheless,
there are several data sets where AdaBoost.AD is outperformed
by the competitors. For example, AdaBoost.AD is inferior to
AdaNC9 in terms of G-mean in two data sets (i.e., Contraceptive
and Hayesroth).

Fig. 2(a) shows the recall in terms of each individual class
for data set Contraceptive. We can see that the proposed Ad-
aBoost.AD gets the lowest recall on class 1 in comparison to
other methods, while retaining relatively better recall on class 2
and class 3. In consequence, the overall performance in terms of
G-mean becomes relatively low. We can also see from Table III
that class 2 and class 3 of Contraceptive are the minorities, so
that they might be overemphasized in the learning process of
AdaBoost.AD, sacrificing the predictive performance on class
1.

Fig. 2(b) shows the recall in terms of each individual class for
data set Hayesroth. We can see that the proposed AdaBoost.AD
gets the relatively lower recall on class 1, while gaining relatively
better recall on class 2 and class 3. By referring to Table III, we

5276 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024

know that class 3 is the minority in contrast to class 1 and class 2
of having similar class sizes. For this phenomenon, it is conjec-
tured that the proposed AdaBoost.AD tends to overemphasize
the performance on class 3 (the minority) while sacrificing
the performance on class 1 and class 2 altogether. It is also
conjectured that the training samples of class 2 could be more
difficult to gain correct predictions, and AdaBoost.AD would
induce smaller adaptive margin values for them. In this sense,
AdaBoost.AD will put more attention to training samples of
class 2, gaining a relatively high recall on class 2.

In addition, we illustrate two data sets with three class
labels for which AdaBoost.AD can significantly outperform
the competitors in a large magnitude, namely Newthyroid and
Pageblocks in Fig. 2(c) and (d), respectively. We can see that
AdaBoost.AD usually outperform the competitors in terms of
the recall of most classes. By referring to Table III, we know
that class 2 and class 3 are the minorities in contrast to class
1 for Newthyroid and Pageblocks. The proposed AdaBoost.AD
performs well to improve predictive performance on the minori-
ties while having no significant impact on the majority class, as
it is designed.

C. Effect of Each of the Three Components of Adaptive
Distribution Based Sample Weight

In this section, we aim to study the effectiveness of each of
the proposed three components of adaptive distribution based
sample weight, including the between-class imbalance ratio, the
inverse within-class density, and the adaptive margin factor.

To this end, we respectively remove each of the three compo-
nents from the proposed sample weight of AdaBoost.AD, lead-
ing to AdaBoost.AD eliminating the between-class imbalance
ratio (“AdaAD-imb”), AdaBoost.AD eliminating the inverse
within-class density (“AdaAD-den”), and AdaBoost.AD elimi-
nating the adaptive margin (“AdaAD-mrg”). The three variants
would be compared against AdaBoost.AD. If the predictive
performance declined significantly after eliminating the compo-
nent, we can conclude that this eliminated component is crucial
in dealing with multi-class imbalance.

In general, Table VI reports predictive performance in terms
of G-mean. Friedman test at the significance level 0.05 rejects
H0 with p-value 4.526 · 10−5, and thus H1 is taken. Table VII
reports predictive performance in terms of Avg-AUC. Friedman
test at the significance level 0.05 rejects H0 with p-value 0.0012,
and thus H1 is taken. Therefore, there is significant difference
between AdaBoost.AD and the three degraded variants in terms
of both G-mean and Avg-AUC. In the rest of this section, we
will investigate the effect of each of the three components in
more detail.

1) Effect of the Between-Class Imbalance Ratio: The effect
of between-class imbalance ratio with respect to dealing with
class imbalance is analyzed via the performance comparison
between AdaBoost.AD vs AdaAD-imb. Specifically, the update
of sample weights of AdaAD-imb at the training epoch t+ 1 is
formulated as

ω
(t+1)
1 (X, y) = α

(t)
1 (X, y) · ω(t)

1 (X, y)

· exp{−βt · 1[ht(X)=y]},

TABLE VI
PERFORMANCE COMPARISON IN TERMS OF G-MEAN BETWEEN ADABOOST.AD

AND ITS DEGRADED VARIANTS (ADAAD-IMB, ADAAD-DEN, AND

ADAAD-MRG)

where α
(t)
1 (X, y) = exp{−ρ−1(X, y) · σ(t)(X, y)} denotes

adaptive within-class density that is formulated by settingγ(·) =
1 in (9). In this way, any positive impact of the imbalance ratio
in the update of sample weights of AdaBoost.AD on predictive
performance would be inhibited.

Table VI shows that the average rank of AdaAD-imb is 3.35 in
terms of G-mean, being larger (worse) than the average rank of
the proposed AdaBoost.AD. This indicates that after eliminating
the between-class imbalance ratio from the sample weight of
(12), the predictive performance declines significantly, demon-
strating the effectiveness of the between-class imbalance ratio
in dealing with class imbalance. Post-hoc tests of Friedman also
show that AdaBoost.AD significantly outperforms AdaAD-imb
with the p-value of 5.191 · 10−6.

Similarly, we can see from Table VII that the average rank
of AdaAD-imb is 3.15 in terms of Avg-AUC, being larger
(worse) than the average rank of the proposed AdaBoost.AD.
This further indicates that eliminating between-class imbalance
ratio from the sample weight would cause a significant decline
in predictive performance. Post-hoc tests of Friedman show
significant inferiority of AdaAD-imb to AdaBoost.AD with
p-value 1.193 · 10−4.

Therefore, the between-class imbalance ratio of (1) plays an
important role in dealing with class imbalance and should not
be omitted.

2) Effect of the Inverse Within-Class Density: The effect
of inverse within-class density with respect to dealing with
class imbalance is analyzed via the performance comparison
between AdaBoost.AD vs AdaAD-den. Specifically, the update
of sample weights of AdaAD-den at the training epoch t+ 1 is

LI et al.: MULTI-CLASS IMBALANCE CLASSIFICATION BASED ON DATA DISTRIBUTION AND ADAPTIVE WEIGHTS 5277

TABLE VII
PERFORMANCE COMPARISON IN TERMS OF AVG-AUC BETWEEN

ADABOOST.AD AND ITS DEGRADED VARIANTS (ADAAD-IMB, ADAAD-DEN,
AND ADAAD-MRG)

formulated as

ω
(t+1)
2 (X, y) = α

(t)
2 (X, y) · ω(t)

2 (X, y)

· exp{−βt · 1[ht(X)=y]},

where α
(t)
2 (X, y) = exp{−γ(X, y) · σ(t)(X, y)} denotes the

adaptive between-class imbalance ratio that is formulated by
setting ρ−1(·) = 1 in (9). In this way, any positive impact of the
inverse within-class density in the update of sample weights of
AdaBoost.AD on predictive performance would be inhibited.

Table VI shows that the average rank of AdaAD-den is 2.60,
being larger (worse) than the average rank of AdaBoost.AD. This
indicates that after eliminating the inverse within-class density
from the sample weight of (12), the predictive performance
declines significantly, demonstrating the effectiveness of the in-
verse within-class density in dealing with class imbalance. Post-
hoc tests of Friedman also show that AdaBoost.AD significantly
outperforms AdaAD-den with the p-value of 5.056 · 10−3.

Similarly, we can see from Table VII that the average rank of
AdaAD-den is 2.75, being larger (worse) than the average rank of
the proposed AdaBoost.AD. This further indicates that eliminat-
ing inverse within-class density from the sample weight would
cause a significant decline in predictive performance. Post-hoc
tests of Friedman show significant inferiority of AdaAD-den to
the proposed AdaBoost.AD with p-value 3.525 · 10−3.

Therefore, the inverse within-class density factor of (3) plays
an important role in dealing with class imbalance and should not
be omitted.

3) Effect of the Adaptive Margin Factor: The effect of adap-
tive margin factor with respect to dealing with class imbal-
ance is analyzed via the performance comparison between Ad-
aBoost.AD vs AdaAD-mrg. Specifically, the update of sample
weights of AdaAD-mrg at the training epoch t+ 1 is formulated
as

ω
(t+1)
3 (X, y)=α3(X, y) · ω(t)

3 (X, y) · exp{−βt · 1[ht(X)=y]},
where α3(X, y) = exp{−γ(X, y) · ρ−1(X, y)} denotes the
static data distribution that is formulated by setting σ(t)(·) = 1
in (9). In this way, any positive impact of the adaptive margin
in the update of sample weights of AdaBoost.AD on predictive
performance would be inhibited.

Table VI shows that the average rank of AdaAD-mrg is 2.50,
being larger (worse) than the average rank of AdaBoost.AD.
This indicates that after eliminating the adaptive margin from
the sample weight of (12), the predictive performance declines
significantly, demonstrating the effectiveness of the adaptive
margin in dealing with class imbalance. Post-hoc tests of Fried-
man also show that AdaBoost.AD significantly outperforms
AdaAD-mrg with the p-value of 9.982 · 10−3.

Similarly, we can see from Table VII that the average rank
of AdaAD-mrg is 2.45, being larger (worse) than the average
rank of the proposed AdaBoost.AD. This further indicates that
eliminating the adaptive margin from the sample weight would
cause a significant decline in predictive performance. Post-hoc
tests of Friedman show significant inferiority of AdaAD-mrg to
AdaBoost.AD with p-value 2.502 · 10−2.

Therefore, the adaptive margin factor of (8) plays an important
role in dealing with class imbalance and should not be omitted.

D. Impact of Imbalance Ratio on Performance

This section aims to investigate the influence of imbalance
ratios on the performance of the investigated methods, including
our proposed AdaBoost.AD, we employ Spearman’s correla-
tion [41] to establish a connection between the predictive per-
formance of those methods and the imbalance ratios across data
sets. The results of Spearman’s correlation are interpreted as very
weak (0.00 - 0.19), weak (0.20 - 0.39), moderate (0.40 - 0.59),
strong (0.60 - 0.79), and very strong (0.80 - 1.00), following
Evans [42].

The last row of Table IV shows that, in terms of G-mean,
the correlations for AdaM1+ADASYN, AdaM2+ADASYN,
AdaNC9+ADASYN, LexiBoostM1, LexiBoostM2, Dual-Lexi-
Boost, JanEnsemble, and AdaBoost.AD are −0.3069 (weak),
−0.2354 (weak), −0.2775 (weak), −0.3746 (weak), −0.2836
(weak),−0.2016 (weak),−0.167 (very weak), and−0.097 (very
weak), respectively. This implies that both JanEnsemble and our
proposed AdaBoost.AD display minimal (very weak) sensitivity
to the imbalance ratios. This underscores the robustness of our
proposed AdaBoost.AD, along with JanEnsemble, compared
with other methods across a wide range of class imbalance ratios.

Similarly, the last row of Table V shows that, in
terms of Avg-AUC, the correlations for AdaM1+ADASYN,
AdaM2+ADASYN, AdaNC9+ADASYN, LexiBoostM1, Lex-
iBoostM2, Dual-LexiBoost, JanEnsemble, and AdaBoost.AD

5278 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 10, OCTOBER 2024

are −0.2505 (weak), −0.1399 (very weak) −0.252 (weak),
−0.2557 (weak), −0.2339 (weak), −0.2038 (weak), −0.0654
(very weak), and −0.0797 (very weak), respectively. This im-
plies that AdaM2+ADASYN, JanEnsemble, and AdaBoost.AD
displace minimal (very weak) sensitivity to the imbalance ratios.
This underscores the robustness of our AdaBoost.AD, along
with AdaM2+ADASYN, JanEnsemble, compared with other
methods across a wide range of class imbalance ratios.

Therefore, the proposed AdaBoost.AD consistently demon-
strates minimal (very weak) sensitivity to a broad range of
imbalance ratios when considering Spearman’s correlation. This
underscores its robust predictive capability across diverse imbal-
ance ratios.

VII. CONCLUSION

We proposed an adaptive distribution based sample weight
that can incorporate the between-class and the within-class
data distribution into a single variable whilst tracing the up-to-
date training status throughout the entire training process. The
between-class imbalance ratio distinguishes training samples of
different classes, dealing with class imbalance at a higher level
of information describing data classes. The inverse within-class
density further distinguishes the training samples of the same
class based on the local data distribution information. The adap-
tive margin factor traces the up-to-date training status, having
the potential to upgrade the between-class imbalance ratio and
the inverse within-class density evolving with time.

Furthermore, we proposed to encode the adaptive distribution
based sample weights into the AdaBoost ensemble approach,
contributing to AdaBoost Ensemble with Adaptive Distribution
based Sample Weight (AdaBoost.AD). Theoretical support on the
validity of the proposed learning algorithm of AdaBoost.AD is
provided. Specifically, we validated our iterative update of the
adaptive sample weight and demonstrated the correct formula-
tion of the model weight.

Experimental results on 12 multi-class and 8 binary-class
imbalanced data sets showed the superiority of the proposed
AdaBoost.AD against state-of-the-art multi-class imbalance ap-
proaches in dealing with the class imbalance problem and
achieving significantly better predictive performance. By elimi-
nating each of the three components from the proposed adaptive
distribution based sample weights of AdaBoost.AD, we induced
three degraded variants of the proposed AdaBoost.AD, which
are AdaAD-imb, AdaAD-den, and AdaAD-mrg, respectively.
Experimental analyses showed the effectiveness of each of the
components in dealing with class imbalance and showed that
they should not be omitted.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Shounak Datta from Duke
University, USA, for providing us the codes of LexiBoost and
Dual-LexiBoost and helping us to implement them.

REFERENCES

[1] B. A. M’hamed and B. Fergani, “A new multi-class wsvm classifica-
tion to imbalanced human activity dataset,” J. Comput., vol. 9, no. 7,
pp. 1560–1565, 2014.

[2] S. Pouyanfar, S.-C. Chen, and M.-L. Shyu, “Deep spatio-temporal repre-
sentation learning for multi-class imbalanced data classification,” in Proc.
Int. Conf. Inf. Reuse Integration, 2018, pp. 386–393.

[3] L. Liang, T. Jin, and M. Huo, “Feature identification from imbalanced
data sets for diagnosis of cardiac arrhythmia,” in Proc. Int. Symp. Comput.
Intell. Des., 2018, pp. 52–55.

[4] H. Guo, Y. Li, S. Jennifer, M. Gu, Y. Huang, and B. Gong, “Learning from
class-imbalanced data: Review of methods and applications,” Expert Syst.
Appl., vol. 73, pp. 220–239, 2017.

[5] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and
potential solutions,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 42,
no. 4, pp. 1119–1130, Aug. 2012.

[6] M. Lin, K. Tang, and X. Yao, “Dynamic sampling approach to training
neural networks for multiclass imbalance classification,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 647–660, Apr. 2013.

[7] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321–357, 2002.

[9] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in Proc. IEEE Int. Joint Conf.
Neural Netw., 2008, pp. 1322–1328.

[10] L. Li, H. He, and J. Li, “Entropy-based sampling approaches for multi-class
imbalanced problems,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 11,
pp. 2159–2170, Nov. 2020.

[11] S. S. Mullick, S. Datta, and S. Das, “Generative adversarial minority over-
sampling,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 1695–
1704.

[12] C. Elkan, “The foundations of cost-sensitive learning,” in Proc. Int. joint
Conf. Artif. Intell., 2001, pp. 973–978.

[13] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:
Improving prediction of the minority class in boosting,” in Proc. Eur. Conf.
Princ. Data Mining Knowl. Discov., Springer, 2003, pp. 107–119.

[14] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “RUS-
Boost: A hybrid approach to alleviating class imbalance,” IEEE Trans.
Syst., Man, Cybern. - Part A, Syst. Hum., vol. 40, no. 1, pp. 185–197,
Jan. 2010.

[15] S. Datta, S. Nag, and S. Das, “Boosting with lexicographic programming:
Addressing class imbalance without cost tuning,” IEEE Trans. Knowl.
Data Eng., vol. 32, no. 5, pp. 883–897, May 2020.

[16] S. Wang, H. Chen, and X. Yao, “Negative correlation learning for
classification ensembles,” in Proc. Int. Joint Conf. Neural Netw., 2010,
pp. 1–8.

[17] Y. Freund and R. E. Schapire, “Experiments with a new boosting algo-
rithm,” in Proc. Int. Conf. Mach. Learn., 1996, pp. 148–156.

[18] R. Alejo, J. M. Sotoca, R. M. Valdovinos, and G. A. Casañ, “The multi-
class imbalance problem: Cost functions with modular and non-modular
neural networks,” in Proc. Int. Symp. Neural Netw., Springer, 2009,
pp. 421–431.

[19] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: A new over-
sampling method in imbalanced data sets learning,” in Proc. Adv. Intell.
Comput., Springer, 2005, pp. 878–887.

[20] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Safe-level-
smote: Safe-level-synthetic minority over-sampling technique for handling
the class imbalanced problem,” in Advances in Knowledge Discovery and
Data Mining. Berlin Germany: Springer, 2009, pp. 475–482.

[21] S. Barua, M. M. Islam, X. Yao, and K. Murase, “MWMOTE–majority
weighted minority oversampling technique for imbalanced data set learn-
ing,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 2, pp. 405–425,
Feb. 2014.

[22] L. Abdi and S. Hashemi, “To combat multi-class imbalanced problems
by means of over-sampling techniques,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 1, pp. 238–251, Jan. 2016.

[23] A. Kumari and U. Thakar, “Hellinger distance based oversampling method
to solve multi-class imbalance problem,” in Proc. Int. Conf. Commun. Syst.
Netw. Technol., 2017, pp. 137–141.

[24] X. Yang, Q. Kuang, W. Zhang, and G. Zhang, “AMDO: An over-sampling
technique for multi-class imbalanced problems,” IEEE Trans. Knowl. Data
Eng., vol. 30, no. 9, pp. 1672–1685, Sep. 2018.

[25] Y. Sun, M. S. Kamel, and Y. Wang, “Boosting for learning multiple classes
with imbalanced class distribution,” in Proc. IEEE Int. Conf. Data Mining,
2006, pp. 592–602.

[26] B. Krawczyk, “Cost-sensitive one-versus-one ensemble for multi-class
imbalanced data,” in Proc. Int. Joint Conf. Neural Netw., 2016, pp. 2447–
2452.

LI et al.: MULTI-CLASS IMBALANCE CLASSIFICATION BASED ON DATA DISTRIBUTION AND ADAPTIVE WEIGHTS 5279

[27] Z. Liu, D. Tang, J. Li, and R. Wang, “Objective cost-sensitive-boosting-
WELM for handling multi class imbalance problem,” in Proc. Int. Joint
Conf. Neural Netw., 2017, pp. 1975–1982.

[28] X.-Y. Liu and Q.-Q. Li, “Learning from combination of data chunks for
multi-class imbalanced data,” in Proc. Int. Joint Conf. Neural Netw., 2014,
pp. 1680–1687.

[29] T. Alam, C. F. Ahmed, S. A. Zahin, M. A. H. Khan, and M. T. Islam, “An
effective recursive technique for multi-class classification and regression
for imbalanced data,” IEEE Access, vol. 7, pp. 127 615–127 630, 2019.

[30] Z. Jan, J. C. Munos, and A. Ali, “A novel method for creating an optimized
ensemble classifier by introducing cluster size reduction and diversity,”
IEEE Trans. Knowl. Data Eng., vol. 34, no. 7, pp. 3072–3081, Jul. 2022.

[31] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Computational Learning
Theory. Berlin, Germany: Springer, 1995, pp. 23–37.

[32] S. Wang and X. Yao, “Relationships between diversity of classification
ensembles and single-class performance measures,” IEEE Trans. Knowl.
Data Eng., vol. 25, no. 1, pp. 206–219, Jan. 2013.

[33] J. Alcalá-Fdez et al., “Keel data-mining software tool: Data set repository,
integration of algorithms and experimental analysis framework,” J. Mult.-
Valued Log. Soft Comput., vol. 17, no. 2/3, pp. 255–287, 2011.

[34] F. Mosteller and J. W. Tukey, “Data analysis, including statistics,” in Hand-
book of Social Psychology, vol. 2. Reading, MA, USA: Addison-Wesley,
1968, pp. 80–203.

[35] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Hybrid sampling for
imbalanced data,” Integr. Comput.-Aided Eng., vol. 16, no. 3, pp. 193–210,
2009.

[36] P. Sobhani, H. Viktor, and S. Matwin, “Learning from imbalanced data
using ensemble methods and cluster-based undersampling,” in Proc. Int.
Workshop New Front. Mining Complex Patterns, Springer, 2014, pp. 69–
83.

[37] D. J. Hand and R. J. Till, “A simple generalisation of the area under
the ROC curve for multiple class classification problems,” Mach. Learn.,
vol. 45, no. 2, pp. 171–186, 2001.

[38] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[39] S. Holm, “A simple sequentially rejective multiple test procedure,” Scand.
J. Statist., vol. 6, no. 2, pp. 65–70, 1979.

[40] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in Statistics. Berlin, Germany: Springer, 1992, pp. 196–202.

[41] E. C. Fieller, H. O. Hartley, and E. S. Pearson, “Tests for rank correlation
coefficients. I,” Biometrika, vol. 44, no. 3/4, pp. 470–481, 1957.

[42] J. D. Evans, Straightforward Statistics for the Behavioral Sciences. Pacific
Grove, CA, USA: Thomson Brooks/Cole Publishing Co, 1996.

Shuxian Li received the bachelor’s degree in math-
ematics from the Southern University of Science
and Technology, China, in 2017. She is currently
working toward the PhD degree in computer science
with the Hong Kong Baptist University, Hong Kong
SAR, China, under co-supervision with the Southern
University of Science and Technology, China. Her
research interests include machine learning, class
imbalance learning, ensemble learning, and online
learning.

Liyan Song received the bachelor’s and master’s
degrees in mathematics from the Harbin Institute of
Technology (China) and the PhD degree in computer
science from the University of Birmingham (U.K.).
He is an associate professor with the Faculty of Com-
puting, Harbin Institute of Technology (China). Prior
to that, she was a research assistant professor with
the Department of Computer Science and Engineer-
ing, Southern University of Science and Technology
(China). She was a research fellow with the School of
Computer Science, University of Birmingham (U.K.).

Her main research interests are machine learning for predictive modeling in soft-
ware engineering. She also has research interests in machine learning areas such
as online learning, Bayesian learning, class imbalance learning and unsupervised
learning.

Xiaoyu Wu (Member, IEEE) received the PhD degree
in communication engineering from the Beijing Uni-
versity of Posts and Telecommunications in 2018. She
is currently an AI engineer with Huawei Technologies
Company Ltd. Her research interests include Concept
drifts, model adaptive learning, uncertainty Quantifi-
cation, etc.

Zheng Hu received the PhD degree in computer
science from Lyon University in Lyon France. He is
the director of Reliability Technology Lab, HUAWEI,
a leading global provider of information and commu-
nications technology (ICT) infrastructure and smart
devices. He is also currently leading a corporate-level
project, Trustworthy AI, in charge of the research and
innovation of key technologies towards the reliable
and safe AI system. Meanwhile his research also
focuses on the software reliability, reliability theory
and ah-hoc networks, etc. Before joint Huawei, he

was the senior researcher in Orange Labs (France Telecom), working on the
self-configuration network of smart home/smart building.

Yiu-ming Cheung (Fellow, IEEE) received the PhD
degree from the Department of Computer Science
and Engineering, Chinese University of Hong Kong,
Hong Kong. He is currently a chair professor with
the Department of Computer Science, Hong Kong
Baptist University, Hong Kong. His current research
interests include machine learning and visual com-
puting, as well as their applications in data science,
pattern recognition, multi-objective optimization, and
information security. He is the editor-in-chief of IEEE
Transactions on Emerging Topics in Computational

Intelligence. Also, he serves as an associate editor for IEEE Transactions on
Cybernetics, Pattern Recognition, Knowledge and Information Systems, and
Neurocomputing, just to name a few. He is a fellow of AAAS, IET, BCS and
AAIA.

Xin Yao (Fellow, IEEE) received the BSc degree
from USTC in 1982, the MSc degree from the North
China Institute of Computing Technologies in 1985,
and the PhD from the University of Science and
Technology of China (USTC) in 1990. He is the
Tong Tin Sun chair professor of Machine Learning
at Lingnan University, Hong Kong, and a part-time
professor of Computer Science with the University
of Birmingham, U.K. He was a distinguished lec-
turer of the IEEE Computational Intelligence Society
(CIS). He served as the president (2014-15) of IEEE

CIS and the editor-in-chief (2003-08) of IEEE Transactions on Evolutionary
Computation. His major research interests include evolutionary computation,
class imbalance learning, and their real-world applications. His work won the
2001 IEEE Donald G. Fink Prize Paper Award; 2010, 2016 and 2017 IEEE
Transactions on Evolutionary Computation Outstanding Paper Awards; 2011
IEEE Transactions on Neural Networks Outstanding Paper Award; 2010 BT
Gordon Radley Award for Best Author of Innovation (Finalist); and other
best paper awards at conferences. He received a 2012 Royal Society Wolfson
Research Merit Award, the 2013 IEEE CIS Evolutionary Computation Pioneer
Award and the 2020 IEEE Frank Rosenblatt Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

