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Abstract—Federated learning (FL) has attracted increasing at-
tention in recent years due to its data privacy preservation and great
applicability to large-scale user scenarios. However, when FL faces
numerous clients, it is inevitable to emerge the non-independent
and identically distributed (non-iid) data between clients, which
brings an enormous challenge for model training and performance
analysis like convergence. Besides, due to the non-iid data, the
participating clients of FL tend to be extremely heterogeneous so
the number of samplings among clients causes a sampling variance
problem, which induces a huge variation in convergence. More
importantly, although FL can foster privacy security via locally
retaining the training data, if local data is secret and sensitive,
FL should have more powerful privacy protection to resist the
cloud server or third party to infer private information from
shared models or intermediate gradients. Facing the non-iid and
privacy challenges, we propose a differential privacy (DP) based
non-iid FL algorithm called DPNFL to jointly tackle these two
issues. Specifically, motivated by the DP and its variants, we are
the first to adopt the truncated concentrated differential privacy
technique under the FL scenario to more tightly track end-to-end
privacy loss, while requiring less noise injection for the same level
of DP. To avoid the sampling variance problem, we enable the
server to sample the partial clients uniformly without replacement,
which also guarantees unbiased sampling. To further improve the
algorithm performance, we also propose an adaptive version of
DPNFL named AdDPNFL, which adopts the adaptive optimization
on the server-side to simultaneously alleviate the impact of non-iid
data and DP noise on model utility. Finally, we perform extensive
experiments to validate the effectiveness and superiority of our
algorithms.
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I. INTRODUCTION

F EDERATED learning (FL) has been an emerging dis-
tributed learning prototype that empowers numerous

clients to cooperatively learn the joint model with the coordi-
nation of the cloud server, free of sharing the local data [1].
By ensuring the localized data, FL has superiority over the
conventional centralized learning framework on privacy and
communication efficiency. Moreover, different from general dis-
tributed learning, federated learning is eminently suitable for the
large-scale user scenario, where the number of user equipment
like mobile phones and IoT devices is huge. Meanwhile, rather
than adopting one-step local update in various distributed learn-
ing settings, FL has a unique feature that enables all the clients
to execute many local updates and then the server periodically
aggregates these updates to reduce the communication cost. In
view of these merits, FL has increasingly become a hot topic in
the academic community and has been applied to many realistic
areas including next-word prediction, financial data mining, and
medical record analysis [2], [3].

However, when FL faces numerous clients, it is inevitable to
emerge the non-independent and identically distributed (non-iid)
data among clients. Specifically, since FL collects the local
training data from various sorts of clients, the data size of
the participating clients is notably differing and the probability
distribution of data labels in the different clients is dissimilar.
Then, the local dataset chosen at random might not express the
true data distribution from the global perspective, which possibly
brings biases to the update of the global model and causes
the difference among the local models learned from non-iid
data. Therefore, using these diverging models to aggregate will
degrade convergence speed and model utility. On the whole, the
performance reduction and communication burden of FL could
turn unacceptable when the data distribution is non-iid.

Considering that the widely-recognized statistical theories are
mostly on the premise of the iid data, there merely exists a
handful of theoretical analyses of convergence on the non-iid
scene, though the non-iid issue is challengeable for FL. Except
for the theoretical value, studying the non-iid problem of FL
is also vital for practical applications since non-iid data is
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ubiquitous in realistic FL environments. As an example, in the
next word prediction task on a smartphone keyboard, the diverse
typing habit of various users can generate non-iid data during
the cross-client training. Besides, the cross-silo medical data
sets are inherently non-iid, because of the characteristics like
dissimilar data collection rules and diverse local demographic
data. Based on the above requirements, we aim to investigate
the convergence problem of FL on non-iid data.

Due to the non-iid data, the participating client devices of
FL tend to be extremely heterogeneous, which brings a new
challenge to the client sampling problem in FL. Since it is
unrealistic for the full client sampling to select all clients per
communication round, most FL algorithms adopt the partial
client sampling where the server simultaneously samples partial
clients and uses the present global model to replace the local
model in unsampled clients. However, some studies [4], [5] have
demonstrated that such a method is biased and converges to a
sub-optimal minimum. Besides, this method typically has a slow
convergence speed because of the abrasion brought from the
unsampled clients. To handle these deficiencies, some works [6],
[7], [8] allow the server to select clients in a multinomial dis-
tribution (MD) with replacement, which is usually called MD
sampling, to achieve unbiased sampling. However, since the
server selects clients with replacement, the number of samplings
in the different clients causes a variance, which likely produces a
huge variation in convergence performance, specifically for the
non-iid FL. Furthermore, when the number of sampled clients
is large, the MD sampling scheme has a high time complexity
which results in complicated computation or even intractability.
To avoid these issues in the MD sampling, we adopt the uniform
sampling without replacement, where the server collects the first
r updated models from the clients and then creates the new
global model via these models. Without replacement procedure,
uniform sampling has the advantage over time complexity and
can sample the client with an equal number of times to avoid the
variance problem.

On the other hand, although FL can foster the privacy security
via locally retaining the training data, if local data includes
susceptible or private information, FL should possess powerful
privacy protection to guarantee that the cloud (or malicious
third party) can not precisely restore such information based
on the model update sharing among the clients. But existing
adversary models [9], [10] have shown that privacy implications
appear during sharing respective model updates among clients.
Moreover, due to the open computation network structure and
intensive cooperation between clients, it also unavoidably gives
chances to semi-honest servers or clients for inferring the
confidential information from inner gradient or shared model
in other benignant clients. To eliminate these concerns, some
works propose several privacy-preserving frameworks like se-
cure multi-party computation, homomorphic encryption and
shuffle with anonymity to preserve the privacy in FL, but these
methods largely cost communication resources. Differential pri-
vacy (DP) [11] has been regarded as a de-facto standard because
it exhibits rigorously privacy-preserving capability and highly
effective flexibility while performing data analysis. Common
DP techniques including Gaussian and Laplacian mechanisms

cautiously inject the well-tuned noise into the algorithm output
to obtain DP. However, since the model scale of the deep neural
network in FL is usually large and positively related to the scale
of auxiliary noise, it is hard to avoid adding overmuch noise
to the output, which leads to the severe deterioration in model
performance and brings unprecedented challenges for DP-based
FL to balance the privacy-utility trade-off.

Facing the above two significant challenges, most research
individually considers the non-iid-ness and DP, since the con-
joint analysis of these two issues seems intractable. Concretely,
non-iid data requires more communication rounds to achieve the
desired performance but more rounds mean more noise addition
which degrades the utility. To our best knowledge, only a few
papers [12], [13], [14] simultaneously investigate the non-iid and
DP problem. These works either utilize the full client sampling or
MD client sampling that ignores the impact of the heterogeneous
client due to non-iid data. Moreover, to achieve DP, they either
adopt the conventional moments accountant technique or Renyi
differential privacy, which are both less tight than the truncated
concentrated differential privacy (tCDP) used in our work.

To sum up, in this paper, we focus on the performance analysis
of FL on non-iid data while preserving DP. To be more practi-
cal, our work only requires the server to be trust-but-curious
rather than fully trusted. In this situation, the central server can
potentially observe all client updates and the third-party server
can silently observe the local model. For such a FL scenario,
we propose a differentially private algorithm named DPNFL to
protect the user privacy, where we inject the Gaussian noise into
the local gradient and exploit the post-processing property of
DP to simultaneously achieve the DP of the intermediate model
update and final local model. To cope with non-iid data, we adopt
the partial client sampling without replacement under the non-iid
FL setting to mitigate the impact of the heterogeneous client.
To further improve the algorithm performance, we propose an
adaptive version of DPNFL named AdDPNFL which adopts
the adaptive optimization on the server-side to simultaneously
alleviate the impact of non-iid data and DP noise on model utility.
For privacy analysis, we adopt the advanced tCDP to tightly
record the end-to-end privacy loss and thus achieve less noise
injection under the same DP guarantees. For the convergence
analysis, we utilize two kinds of metrics to measure the non-iid
degree regarding the strongly convex and non-convex objective
functions and give the corresponding convergence bounds. We
summarize the main contributions as follows:

1) We propose a novel algorithm called DPNFL to jointly
tackle the DP and non-iid-ness in FL. Compared to the
few existing works, our method mainly differs in the DP
analytical technique and client sampling method. Specifi-
cally, our work is the first to adopt tCDP technique under
the FL scenario. Different from the traditional DP and
more recent RDP, tCDP technique is tighter to bound
end-to-end privacy loss so requiring less noise injection for
the same level of DP. Besides, unlike the widely adopted
full client and MD sampling, our partial client sampling
without replacement is both more practical than full client
sampling and avoids the sampling variance problem in MD
that disadvantages the convergence of non-iid FL. Except
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TABLE I
SUMMARY OF MAIN NOTATIONS

for the above methodological innovations, in theoretical
analysis, we utilize two kinds of metrics to respectively
measure the non-iid degree when the objective function
in the FL problem is strongly convex or non-convex and
provide the rigorous convergence bounds.

2) To further improve the algorithm performance, we propose
an adaptive version of DPNFL named AdDPNFL which
adopts the adaptive optimization on the server-side to
not only alleviate the impact of non-iid data but also
contribute to improving the model accuracy subject to
the DP noise. By theoretical analysis, we provide the
rigorous convergence bounds when the objective function
is strongly convex or non-convex.

3) We perform extensive experiments to validate the effec-
tiveness of our algorithms and demonstrate their superior-
ity over state-of-the-art algorithms.

We arrange the rest of this paper as below. We provide related
work and preliminaries in Sections II and III, respectively. We
present DPNFL and AdDPNFL algorithms and the correspond-
ing theoretical results in Sections IV and V. We conduct the pri-
vacy analysis in Section VI. We perform extensive experiments
to showcase the effectiveness and superiority of our algorithms
in Section VII. We conclude our work in Section VIII. We give
the main notations in Table I.

II. RELATED WORK

Federated Learning on non-iid Data: In the context of FL,
for the seminal work and the proposed algorithm FedAvg [1],
though the authors claim that FedAvg can cope with non-iid
data to a certain degree, a lot of research has indicated that
the accuracy decline of FL is almost inevitable on non-iid
data [15], [16]. The exceedingly straight strategy to handle such
an issue is sharing a public data set among client devices for
obtaining approximately iid data. Nevertheless, data sharing
possibly induces extra communication costs and even privacy
leakage. On the other hand, Karimireddy et al. [17] find that the
non-iid data introduces the drift in every client’s update, which
slows or destabilizes the convergence. Therefore, they correct
so-called client drift to tackle the challenge from the non-iid data.
Inspired by client drift correction, some works resort to inserting
regularization terms into the objective function [18] or bringing

additional variate for controlling the clients’ local training [19]
to tackle the non-iid problem of FL. Nonetheless, the correction
term typically utilizes fairly stale control variables, which causes
slow convergence. Besides, client-drift correction requires si-
multaneously communicating the model and gradient of the local
client, which doubly consumes communication resources. To
avoid the above shortcomings, some researchers attempt to adopt
adaptive optimization to handle the non-iid-ness of FL since
there exist studies proving that on the non-iid data, this scheme
contributes to the training in the circumstance subject to the
heavy tailed noises within stochastic gradients [20]. Moreover,
some literature proves that an adaptively cooperative update
helps better converge in FL [21]. As a dominant case, Reddi
et al. [22] are the first to study the adaptive optimization method
and show that by mitigating the local learning rate, the adaptive
optimization on the server-side can significantly improve the
model performance of FL under non-iid data. Therefore, in this
paper, we also adopt server-side adaptive optimization to allevi-
ate the impact of the non-iid data on algorithm performance.

Federated Learning With Client Sampling: In general, there
are two kinds of client sampling strategies in FL, i.e., full client
sampling and partial client sampling. Some early works [23],
[24] adopt the full client sampling strategy and require all
devices to engage in every communication period, which con-
sumes too many communication resources. In view of this,
most works including the seminal FedAvg adopt the partial
client sampling to aggregate the client. But existing studies
prove that the eventual model of FedAvg is in expectation
differing with the determinate aggregations from each client,
which implies that the client sampling scheme of FedAvg is
biased and thus converges to a sub-optimal minimum [4], [5].
Although some follow-up works [25], [26] make improvements
to the sampling strategy of FedAvg, they still encounter bias.
To escape from this dilemma, [18] proposes to sample partial
clients with replacement from a multinomial distribution, where
the sampling probability rests with its own data proportion. The
unbiased MD sampling ensures optimality for FL and minimizes
the amount of participating clients in each period, so it has
been a prevalent sampling strategy in many studies [6], [7],
[8]. But since the sample in the MD method is drawn with
replacement, each client has a different number of being sampled
times, which brings into the sampling variance and thus induces
a huge variation in the convergence performance under the
non-iid data. To avoid the sampling variance problem, some
works [16], [27] choose another unbiased sampling strategy
named uniform sampling to sample partial clients uniformly
without replacement. Besides, [27] shows that when the number
of sampled clients is large, the uniform sampling has a lower time
complexity compared to the MD sampling, which is beneficial
for computation and analysis. Therefore, in this paper, we choose
uniform sampling as the client sampling strategy.

Federated Learning With Differential Privacy: There are
many works utilizing DP to secure FL [13], [14], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37]. Multiple papers [30],
[31], [32], [33], [34] consider the fully-trusted server so it merely
requires resisting the third-party server that eavesdrops on the
final model. In this case, the works [30] and [31] enable the
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cloud server to inject Gaussian noise into the synchronized local
model for preserving DP of FedAvg. However, similar to the
privacy scenario in our work, numerous studies [13], [14], [35],
[36], [37] consider the more practical scenes where the server is
honest-but-curious and each client should locally perturb respec-
tive update and then send it to the server. This brings more strict
privacy surroundings and can not only avert privacy leakage
among clients but also between clients and servers. On the other
hand, since the first work [38] about the differentially private
deep learning emerges where moments accountant technique
is designed to analyze the privacy loss, there have been many
improved relaxations of classical DP, which mainly include the
CDP [39], zCDP [40], RDP [41] and tCDP [42]. As the latest
variant, tCDP has been widely adopted as the privacy analysis
technique to tightly track the cumulative privacy loss [35], [43].
To our best knowledge, this work is the first to utilize the tCDP
to analyze DP in FL.

III. PRELIMINARIES

A. Federate Learning

A general FL framework contains one server and n clients.
Each client i ∈ [n] collectively learns a global optimal model
w ∈ R

d via solving:minw∈Rd f(w) =
∑n

i=1 pifi(w), wherein
fi(w) expresses i-th client’s objective function and pi is the
weight proportion satisfying

∑n
i=1 pi = 1. For realizing global

optimality, FL performs one T -round procedure. The server
first sets the initial global parameter w0. At round t, the server
selects r clients at random out of [n] according to sampling
rate r/n and shares the global parameter wt−1 with selected
client devices. Every selected client locally executes τ iterative
SGD steps over respective data set and then calculates the
difference between local optimum wi

t and global parameter
wt−1 : Δi

t = wi
t −wt−1, and eventually sendsΔi

t to the server.
The server averages these difference values and updates the
global modelwt = wt−1 +

∑r
i=1 piΔ

i
t. The subsequent rounds

repeat the identical process.

B. Differential Privacy

Definition 1. ((ε, δ)-DP [11]): For the randomized mecha-
nism M : X→ Y with domain X and range Y, if under ar-
bitrary pairs from the adjacent datasets X,X ′ ∈ X and arbi-
trary output subset Y ⊆ Y, the following condition is satisfied:
Pr[M(X) ∈ Y ] ≤ eε Pr[M(X ′) ∈ Y ] + δ, M is regarded as
(ε, δ)-DP mechanism.

Based on the conventional (ε, δ)-DP, Bun et al. [42] proposed
truncated concentrated differential privacy (tCDP) to improve
the composition analysis, where some valuable definitions and
properties are provided.

Definition 2: Given real number ρ > 0, ω > 1, arbi-
trary neighboring pairs X,X ′ ∈ X and η-order Rényi diver-
gence [41] Dη(·‖·), if the following condition is satisfied: ∀η ∈

(1, ω), Dη(M(X)‖M(X ′)) ≤ ρη, the randomised mecha-
nism M : X→ Y guarantees ω-truncated ρ-concentrated DP
(abbreviated as (ρ, ω)-tCDP).

Lemma 1. (Gaussian Mechanism for Achieving tCDP):
For mechanism M, the Gaussian mechanism injecting
N (0, σ2) noise into each coordinate of M’s output en-
sures (ρ,∞)-tCDP, wherein σ ≥ S2(M)/

√
2ρ, S2(M) =

supX∼X ′ ‖M(X)−M(X ′)‖2 is l2-sensitivity evaluating the
largest output change ofM when only one entry changes.

Lemma 2. (tCDP–(ε, δ)-DP Conversion):(ρ, ω)-tCDP can be
converted into (ρ+ 2

√
ρ log(1/δ), δ)-DP when δ ≥ e−(ω−1)2ρ.

Lemma 3. (Composition): Given (ρ1, ω1)-tCDP mecha-
nism M1 : X→ Y1 and (ρ2, ω2)-tCDP mechanism M2 :
X× Y1 → Y2 where M2(·, y1) satisfies y1 ∈ Y1, then for
mechanism M3 : X→ Y2 with the definition M3(X) =
M2(X,M1(X)), it obtains (ρ1 + ρ2,min(ω1, ω2))-tCDP.

Lemma 4. (Privacy Amplification by Subsampling): Sup-
pose real number ρ, q ∈ (0, 0.1] and a,A ∈ N with q = a/A
and log(1/q) ≥ 3ρ(2 + log2(1/ρ)). Given (ρ, ω′)-tCDP mech-
anism M : Xa → Y with ω′ ≥ 1

2ρ log(1/q) ≥ 3, then for the

mechanism MS : XA → Y with the definition MS(x) =
M(xS)wherexS ∈ X

a is the restriction ofx ∈ X
A to the entries

specified by a uniformly random subset S ⊆ [A] with |S| = a,
MS obtains (13q2ρ, ω)-tCDP under ω = log(1/q)

4ρ .

C. Threat Model

Similar to other privacy issues, before presenting a specific
mechanism, a clear formulation should be given about what
threat model is being discussed. The attacker in our context
is considered as the honest-but-curious cloud server or clients
in the FL setting. The cloud side is deemed to reliably obey
the predetermined training rule but has a great curiosity to-
wards inferring clients’ secret information during model sharing.
Moreover, certain clients are able to conspire with the cloud
side or each other for inferring the personal data of a particular
innocent client. Additionally, the attacker might even be the
passive outside adversaries who are capable of eavesdropping
on any shared messages while executing training protocol. But
they do not spontaneously add fake information to information
transference or disturb it.

IV. DIFFERENTIALLY PRIVATE FEDERATED LEARNING ON

NON-IID DATA

A. Problem Formulation

We study a non-iid FL framework includingn clients, wherein
each client i respectively owns local data setBi = {ζ1i , . . . , ζni

i }
containing ni data examples. The clients linked by a center
server are aimed at collaboratively seeking the global model
w to minimize the optimization goal:

f(w) =

n∑
i=1

pifi(w)

where pi represents the proportion of the updates executed by
i-th client and it is affected by the data size and distribution
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among different clients. For iid FL, pi = 1
n but for the non-iid

FL, pi is different among clients and also satisfy
∑n

i=1 pi = 1.
fi(w) = 1

|Bi|
∑

ζi∈Bi l(w, ζi) indicates client i’s local objective
function wherein l(w, ζi) expresses the compound cost func-
tion regarding example ζi and model parameter w. Note that
for non-iid FL, each dataset Bi is supposed to have differ-
ent data distributions, i.e., Eζi∈Bi [l(w, ζi)] 
= Eζi∈Bi′ [l(w, ζi)]
for any i 
= i′. In the context of FL, the parameters w∗ and
w∗i , i ∈ [n] respectively minimizing f(w) and fi(w) could be
mutually different. We denote f ∗ = minw f(w) = f(w∗) and
f ∗i = minw fi(w) = fi(w

∗
i ).

B. Proposed DPNFL Algorithm

In this section, we propose our differential privacy based non-
iid federated learning algorithm called DPNFL including three
essential ingredients: periodic averaging, partial client sampling
and local gradient perturbation.

Periodic Averaging: To alleviate the communication pressure,
we adopt the periodic averaging method, i.e., enable the partici-
pating clients to perform multiple local updates and then a cloud
server executes the periodical aggregation on these updates.
More specifically, after the cloud side updates the model and
subsequently sends it to the clients, the clients run τ SGD
iterative steps to achieve localized model updating and later
upload appropriate messages into the cloud side to update the
aggregate model. When performing total T SGD iterative steps
on every client, it merely requires T = T/τ communication
rounds between clients and the server, thus decreasing the overall
communication overhead by 1/τ compared to the conventional
method that aggregates the local model per training step. As a
result, the total communication cost of training the model also
decreases.

Partial Client Sampling: As we illustrate in related work,
the full client sampling wt =

∑n
i=1 piw

t
i suffers from some

shortcomings such as straggler effect and considerably high
communication cost. A common remedy is a kind of partial
client sampling method named MD sampling where the server
samples a client subset Ct(|Ct| = r) with replacement in a
Multinomial Distribution, i.e., the server selects each client i
depending on respective weight pi. Then the server performs
the aggregation wt =

1
r

∑
i∈Ct w

t
i. The unbiasedness of MD

sampling improves the optimization performance and commu-
nication efficiency, but the with-replacement process degrades
the convergence and results in the high time complexity. There-
fore, we adopt another kind of partial client sampling method
guaranteeing unbiasedness while avoiding the above issues.
Specifically, we define a threshold r(1 ≤ r < n) and allow the
cloud server to gather the output set Ct composed by the first
r reacted clients. Once accumulating r outputs, the cloud side
does not wait for the remnant clients anymore and regards the
r + 1-th to n-th clients to be stragglers at the current iterative
step. Then, the aggregate update executes a weighted model
average: wt ←− n

r

∑
i∈Ct piw

t
i.

The above sampling process can be generalized as sampling
r clients uniformly without replacement and executing the
weighted averaging with each client i’s weight n

r pi. Thus, we

call this sampling method as uniform sampling and the below
lemma proves its unbiasedness property.

Lemma 5. (Unbiasedness of Uniform Sampling): For any
aggregation time step t ∈ {τ, 2τ, . . .}, it has:

ECt

[
n

r

∑
i∈Ct

piw
t
i

]
=

n∑
i=1

piw
t
i

Proof: The left side can be expanded as:∑
C⊆[n]
|C|=r

Pr[Ct = C]n
r

∑
i∈Ct

piw
t
i =

1

Cr
n

n

r
Cr−1

n−1
∑
i∈[n]

piw
t
i,

which can be simplified as the right side. �
Therefore, in expectation, uniform sampling is identical to

full client sampling and it achieves convergence performance
parallel to the local-update SGD approach [44], [45].

Local Gradient Perturbation: From the threat model stated in
Section III, the clients and the cloud server in our FL are honest-
but-curious and outside adversaries have the capability to sneak-
ingly observe the transferred information. Such adversaries can
acquire the most recent global parameter wt transmitted from
the cloud side towards clients and the local model parameters
{wt,τ

i }i∈Ct transmitted from clients towards the cloud, both of
which include the secret information in clients’ local samples.
We hope to utilize DP methods for avoiding privacy exposure
within the above two kinds of information. For this aim, we
exploit the gradient perturbation based on Gaussian noise [38]
for guaranteeing DP and thus the adversary can not infer much
privacy regarding a single training example of Bi according to
the shared information. Concretely, for s-th local iterative step
in t-th round, client i ∈ Ct can update its local model from
wt,s+1

i = wt,s
i − αl(g

t,s
i + γt,s

i ), wherein γt,s
i expresses the

Gaussian noise drawn from distribution N (0, σ2Id). Complet-
ing τ local iterative steps, the aggregated local parameter wt,τ

i

would achieve DP on client i to some extent, which varies in
proportion to noise scaleσ. Based on the post-processing feature
in DP [11], after summing the local models, the globally shared
model wt+1 would also achieve the same degree of DP on client
i.

Algorithm Update: Next, we utilize the above three essen-
tial modules to specifically describe DPNFL. Our presented
approach contains T rounds and in each round, all the clients
perform τ local updates. At every round t, the cloud server se-
lects r ≤ n clients uniformly without replacement which makes
up the sampling set Ct. Subsequently, the cloud side transmits
its present parameter wt into each client in Ct and every client
i ∈ Ct exploits respective local data set to locally execute τ SGD
updates. More specifically, using wt,s

i to express the model of
i-th client on s-th iteration at round t, at every local iterative step
s ∈ [0, τ − 1], client i performs the local model update based on

wt,s+1
i = wt,s

i − αl(g
t,s
i + γt,s

i )

wherein gt,s
i = 1

B

∑
ζt,s
i ∈Bt,si

∇l(wt,s
i , ζt,si ) expresses the

stochastic gradient computed over a mini-batch Bt,si containing
B samples and gt,s

i unbiasedly estimates ∇fi(wt,s
i ). γt,s

i

indicates the noise following Gaussian distributionN (0, σ2Id).
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Algorithm 1: DPNFL.

Notably, each client starts with the same initial parameter
wt,0

i = wt. Once updating τ local iterations, the cloud server
will aggregate the r collected local model differences and
update the next model based on

wt+1 = wt
n

r

∑
i∈Ct

piΔ
t
i

Finally, the process repeats for T rounds. The presented ap-
proach is completely described in Algorithm 1.

C. Convergence Analysis

In this part, we give the rigorous convergence analysis of
DPNFL. Due to space limitations, we present all the proofs
of convergence analysis in supplementary material, available
online. Before starting our results, we make the following as-
sumptions:

Assumption 1. (Basic assumption):
a) f1, . . . , fi all satisfy L-smoothness: for any a1 and

a2, fi(a1) ≤ fi(a2) + (a1 − a2)
T∇fi(a2) +

L
2 ‖a1 −

a2‖22.
b) Suppose gi is the stochastic gradient on the mini-batch

sampled out of Bi. fi satisfies the bounded local variance,
that is, E‖gt,s

i −∇fi(wt,s
i )‖2 ≤ φ2i , i ∈ [n].

c) Any stochastic gradient is uniformly bounded, that is,
E‖∇l(w, ζ)‖2 ≤ G2, for arbitrary data sample ζ in Bi
and ∀w ∈ R

d, i ∈ [n], t ∈ [0, T − 1].
d) For any data sample ζ in Bi, the local gradient es-

timator satisfies unbiasedness, that is, E[∇fi(w, ζ)] =
E[∇fi(w)], ∀w ∈ R

d and i ∈ [n].
When the objective function fi is strongly convex, we have

the following assumption.
Assumption 2. (Strongly Convex Assumption):f1, . . . , fn

all satisfy λ-strongly convex, that is for arbitrary a1 and
a2, fi(a1) ≥ fi(a2) + (a1 − a2)

T∇fi(a2) +
λ
2‖a1 − a2‖22.

To evaluate the non-iid degree, we adopt the following two
definitions which reflect the non-iid degree for strongly convex
and non-convex objective functions, respectively.

Definition 3. (Local-Global Objective Gap [16], [25]). Sup-
posing that the objective function fi satisfies strong convexity,
given the global optimal solution w∗ = argminw f(w) and
local optimal solution w∗i = argminw fi(w), the local-global
objective gap is defined according to:

Γs � f ∗ −
n∑

i=1

pif
∗
i =

n∑
i=1

pi(fi(w
∗)− fi(w∗i )) ≥ 0

Notably,Γs reflects the intrinsic characteristic of the local and
global objective functions and it has no relation with the client
sampling method. When the non-iid degree is higher, the value
of Γs becomes larger. When Γs = 0, it means that the local and
global optimum are consistent.

Definition 4. (Bounded Gradient Variance): Supposing that
the objective function is non-convex, the bounded gradient vari-
ance can be used to evaluate the non-iid degree:

n∑
i=1

piE‖∇fi(w)−∇f(w)‖2 ≤ Γ2
n

Note thatE‖∇fi(w)−∇f(w)‖2 denoted asΓ2
0 is a common

measure to quantify the non-iid degree when the objective
function is non-convex [46], [47]. But in our definition, we
also consider the impact of the weight coefficient pi on the
non-iid-ness, which has never been involved by other works.

The following lemma is the key for our analysis, which
simplifies our derivation process.

Lemma 6: The gap between the global and local model has
the upper bound: for s = [0, . . . , τ − 1]
� Strongly convex case:

E‖wt,s
i −wt‖2 ≤ 5τα2

l (G
2 + dσ2 + 4τG2)

� Non-convex case:

E‖wt,s
i −wt‖2

≤ 5τα2
l (G

2 + dσ2 + 6τΓ2
0) + 30τ2α2

l E‖∇f(wt)‖2

Now, we give the convergence results for DPNFL w.r.t.
strongly convex and non-convex cases.

Theorem 1. (Strongly Convex Case): When Assumptions 1,
2 hold and learning rate αl =

4
λτt+16Lτ , then Algorithm 1 sat-

isfies:

E[f(wT )]− f ∗ ≤ 1

ξ + T

(
2L
λ2
H+

8L2

λ
‖w1 −w∗‖2

)

where ξ = 16L
λ

, H = 40(G2 + dσ2 + 4τG2) + (8Ln
r +

16L)Γs + 4n
r dσ

2 + λ
L (G

2 + dσ2) + 4n
r

∑n
i=1 piφ

2
i and

L, λ, φi, G are defined in Assumptions and Γs defined in
Definition 3 is the non-iid degree.

Theorem 2. (Non-Convex Case): When Assumption 1 holds
and learning rate guarantees αl <

1
200τL , then Algorithm 1

satisfies:

1

T

T−1∑
t=0

E‖∇f(wt)‖2 ≤ 1

TΥ
(f(w0)− f ∗) + Q

Υ
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where Υ = αlτ
2 − 15α3

l τ
3 L2 − 90n

r α
4
l τ

4 L3 − n
r α

2
l τ

2 L and
Q = (1 + n

r τ +
n
r )αl(G

2 + dσ2) + ( 2nr + 1)αlτΓ
2
n. L,G are

defined in Assumption 1 and Γn given in Definition 4 is the
measure of the non-iid-ness.

Remark 1: When the other parameters are fixed, as the
non-iid-ness (Γs or Γn) increases, the convergence bounds of
strongly convex and non-convex cases both grow larger, which
implies that non-iid-ness has a negative impact on the conver-
gence performance. Similarly, the noise scale σ also has a neg-
ative effect on the convergence performance. In terms of client
scheme, different from the convergence result of MD sampling
in work [16]’s Theorem 2, which has a weak relation to the
amount of sampled clients, our uniform sampling can improve
the convergence performance when more clients participate (i.e.,
increase the client sampling ratio), which is consistent with the
findings in [48]. It means that by using uniform sampling, we
can in practice increase the participation rate r/n to accelerate
the training speed and improve the model utility.

Remark 2: For the strongly convex case, our convergence
bound O( 1

T ) matches the best result of the non-iid FL with
uniform sampling [16]. For the non-convex case, our conver-
gence result includes a vanishing term with increasing T and a
constant term Q/Υ unconnected with T , the size of which rests
with the specific problem variables. Our vanishing term has a
convergence speed O( 1

T ) matching that in classical SGD. Our
constant term Q/Υ has a large relation to the non-iid degree.
Concretely, when τ is sufficiently big and the sampling ratio has
the linear amplification relation to Γ2

n, for making Q/Υ small,
it needs adequately small αl to counterbalance the difference
between two consecutive communications. Thus, to achieve a
small Q/Υ, the local learning rate is required to negatively
correlate with local steps, which conforms to the findings in
strongly convex FL [16], i.e., FL needs to decay the learning
rate to ensure convergence on non-iid data.

V. ADAPTIVE ALGORITHM

The DP technique unavoidably degrades the convergence and
deteriorates the model performance since based on the compo-
sition characteristic of DP, the privacy loss in each client propor-
tionally boosts as the iteration number grows. As a common rem-
edy, adaptive optimization like Adam can accelerate the training
speed and reduce the iteration numbers required for an expected
algorithm accuracy, which contributes to the improved conver-
gence speed and model utility. In view of this, an intuitive idea is
to use adaptive optimization to replace client-side SGD training.
Nevertheless, under FL scenarios, applying adaptive optimiza-
tion to every client generally exists two specific limitations. First,
within the overall training procedure, in general, every client
merely participates one time or sporadically participates a few
times. Thus, the stale historical contents like the momenta inside
Adam bring to the poor algorithm performance if using adaptive
optimization to replace SGD on every client in the local update
phase. Second, sustaining the historical data on resource-limited
clients such as mobile phones commonly costs huge resources
used for computing and storing. Given the above, in our adaptive
algorithm, the server instead of the clients prepares to perform

Algorithm 2: AdDPNFL.

the adaptive updating, free of extra communication overhead.
More appealingly, adaptive server optimization has shown the
effectiveness to mitigate the negative impact of non-iid data on
FL performance [22], [49]. Therefore, based on the adaptive
server optimization, we can effectively tackle the non-iid-ness,
privacy-utility trade-off and convergence.

Overall, we proposed an adaptive algorithm named AdDP-
NFL based on DPNFL. In this algorithm, the server-side keeps
two vector-valued momentums μ,ν ∈ R

d and updates them
every round. For any round t, once completing τ local iterative
steps, all the clients i ∈ Ct transmit their own model updates
Δt

i = wt,τ
i −wt into the server for improving the global pa-

rameter according to the following rules:

⎧⎨
⎩
μt = β1μt−1 + (1− β1)nr

∑
i∈Ct piΔ

t
i

νt = β2νt−1 + (1− β2)μ2
t

wt+1 = wt + αgμt/(
√
νt + π)

wherein β1, β2 ∈ [0, 1) express momentum hyperparameters,
αg is the global step size and π determines adaptivity degree.
The complete algorithm is given in Algorithm 2.

A. Convergence Analysis

Theorem 3. (Strongly Convex Case): With Assumptions 1,
2 and Definition 3, L,G, φi, λ,Γs are defined there. Suppos-

ing that the learning rate guarantees αg ∈ [
3
√
LG(G

L+π)

2λ
, 2β2 G

dτλ
],

αl ∈ [
√

d
β2LG ,

1
4Lτ ] and αgαl ≤ rβ2π

2

2nτ(G+L) , then Algorithm 2

satisfies:

E[f(wT )]− f ∗ ≤ L

2T
E‖w0 −w∗‖2 + 3L

2
K
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where f ∗ is the optimal objective value and K =

20G2+dσ2+4τG2

L2 + (
4nτ2

rL +4 τ
L

β2π2 + 4d
β2 G )Γs +

2τλd(G2+dσ2)
β2 L2 G +

nτ2

rL2 (2dσ2+2
∑n

i=1 piφ
2
i+G2+dσ2)

β2π2 .
Theorem 4. (Non-Convex Case): With Assumption 1 and

Definition 4, L,G,Γn are given therein. Supposing that the
local learning rate guarantees αl ≤ 1

8τ min{ 1
L ,

πr
10n(G+αgL)},

then Algorithm 2 satisfies:

1

T

T−1∑
t=0

E‖∇f(wt)‖2 = O
(
(
√
β2αlτG/

√
d+ π)(Θ + Θ′)

)

where f ∗ is the optimal objective value and

Θ =
f(w0)− f ∗
αlαgτT

+
G2 + dσ2 + 6τΓ2

n

τπ
, Θ′ = (G+ αgL)·

n

r

[
6ταl

π2
(G2 + dσ2) +

αl

π2
(G2 + dσ2 + 6τΓ2

n) +
6ταlΓ

2
n

π2

]

Remark 3: Except for satisfying similar analyses in Remark
1, the convergence bounds of the strongly convex and non-
convex cases for Algorithm 2 are also affected by the adaptivity
degree π that has a positive impact on the convergence bounds.
More importantly, by carefully choosing the local and global
learning rates, we can mitigate the impact of the non-iid-ness but
cannot totally eliminate it. Under exceedingly non-iid scenarios,
we might need the other methods like client-drift correction [17].
Nevertheless, our experimental analyses show that for modest,
spontaneous non-iid-ness, adaptive optimization is fairly effec-
tual, specifically under the cross-device environment. Besides,
we can easily combine our algorithms with those methods.

Remark 4: For the strongly convex case, some previous works
like [50] also study the convergence bound over the non-iid
data and partial client participation. Whereas, they adopt a
stricter bounded gradient diversity assumption different from our
bounded gradient norm assumption. Specifically, their assump-
tion implies that the global minimizer w∗ also minimizes each
local loss function, which is unrealistic under non-iid FL scenar-
ios. For the non-convex case, when T � τ , we can choose the
suitable αl =

1
Lτ
√
T

and αg =
√
rτ to obtain the convergence

bound O( 1√
rτT

), which matches the best existing result under
the non-convex setting of our interest [22]. Therefore, compared
to the general convergence bounds like O( 1√

T
) of [46], our

bound of non-convex case achieves the linear speedup with the
help of partial client sampling and local SGD.

Remark 5: To obtain the convergence results of our algo-
rithms, we have made abundant theoretical analyses. To better
illustrate our technical contribution, we summarize the crucial
points as follows. First, our adopted uniform client sampling
without replacement brings technical difficulty compared with
the widely-used full or partial client sampling. Specifically, in
Proposition 1 of the supplementary material, available online,
we meticulously study the squared norm of the adopted sam-
pling method, which is essential for calculating the aggregated
model difference Δt

i. However, this quantity is very easy to
analyze under full/partial client sampling via Jensen’s inequality.
Besides, unlike some existing works [25], [51] only suitable

for the balanced FL setting with pi = 1/n, our convergence
analysis applies to any pi ∈ [0, 1], which makes our analytical
techniques more general. Finally, compared to some works [52],
[53] only providing the relationship for the learning rate, finding
the explicit learning rate condition is technically challenging due
to the element-wise operations in our adaptive algorithm.

VI. PRIVACY ANALYSIS

As discussed in our threat model, we aim to exploit DP
mechanisms to resist outside adversaries or the semi-honest
cloud server and clients to infer private details from certain
clients’ local samples. Rather than utilizing the routine (ε, δ)-DP
method, we first employ tCDP to record the tighter end-to-end
privacy loss for our algorithms across multiple iterations and
then convert it into (ε, δ)-DP. In what follows, under the premise
of Assumption 1-c), we first give the sensitivity analysis about
gradient gt,s

i in Lemma 7 and thus obtain the tCDP guaran-
tee under one iteration in Algorithms 1 and 2. Significantly,
Assumption 1-c) is general under DP-FL settings and could
be satisfied via gradient calibration methods [38]. Lastly, in
Theorem 5, we prove Algorithms 1 and 2 satisfy (ε, δ)-DP in
client i across T rounds.

Lemma 7: The sensitivity of the stochastic gradient gt,s
i on

client i in every local update has the upper bound 2G/B.
Proof: On client i, for arbitrary adjacent data sets Xi and X ′i

which are merely different on data example j and both containB
data samples, then in every local update, the stochastic gradient
has the following sensitivity:

‖g(wt,s
i , Xi)− g(wt,s

i , X ′i)‖2 =
1

B
‖∇l(wt,s

i , ζj)

−∇l(wt,s
i , ζ ′j)‖2

According to Assumption 1-c), we can estimate the sensitivity
of gt,s

i to be Δ2(g
t,s
i )) ≤ 2G/B. �

Theorem 5: For the mini-batch Bt,si selected at random with-
out replacement from Bi according to the sampling ratio B/ni
and the Gaussian noise γt,s

i following N (0, σ2Id). Assume Ki

as the amount of participating rounds for client i over the entire
training procedure and then our algorithms achieve (ε, δ)-DP on
client i, wherein

ε =
26KiτG

2

n2iσ
2

(
B2σ2 log ni

B

4G2
− 1

)

δ = exp

(
−26KiτG

2

n2iσ
2

(
B2σ2 log ni

B

8G2
− 1

)2
)

Proof: From Lemmas 1 and 7, every local update in our algo-
rithms guarantees ( 2G2

B2σ2 ,∞)-tCDP over client i’s sub-sampled
mini-batch Bt,si . Because of client selection, not each client
would send its model to the server across t-th round. Supposing
that a certain client does not send the model, it will not expose its
privacy at the current round. According to the sub-sampling am-
plification characteristic of tCDP in Lemma 3 and satisfying the
conditions therein, every local update in our algorithms obtains

( 26G2

n2
iσ

2 ,
B2σ2log

ni
B

8G2 )-tCDP. Assuming that undergoes T rounds of
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communication, client i performsKiτ SGD iterative step. From

Lemma 4, client i achieves a total ( 26KiτG
2

n2
iσ

2 ,
B2σ2log

ni
B

8G2 )-tCDP
after T communication rounds. Finally, we can convert tCDP
into (ε, δ)-DP via Lemma 2. Significantly, any client in every
round participates in the communication according to sampling
ratio r/n and hence the expected value ofKi is the same as that
of Tr/n. �

Remark 6: Although existing works like [54], [55] can also
achieve tight privacy accountant via RDP, our adopted tCDP
possesses some distinct advantages. Specifically, the adjacent
datasets of RDP are separately based on the addition/removal
relation [55] and replacement relation [54]. Since the work [56]
has implied that the replacement relation is approximately twice
as strong as the removal/addition relation, our adopted tCDP
with the replacement relation under adjacent datasets has a
better privacy definition compared to [55]. Moreover, although
our adopted tCDP and the RDP in [54] have the same type of
the adjacent dataset, the subsampling method in [54] consid-
ers the sampling without replacement and our adopted tCDP
considers the Poisson sampling method which is leveraged in
the widely-used DPSGD algorithm. Finally, although the RPD
and our adopted tCDP can both provide a better privacy bound
after subsampling, the analytical result of privacy amplification
from subsampling in RDP [54] is rather complex and only
can be efficiently used by numerical computation. However,
in Lemma 4, our adopted tCDP provides simple subsampling
results, which can be easily obtained by manual calculation.

VII. EXPERIMENTS

Model Setting. 1) Strongly convex case: We inspect the
previously theoretic analyses regarding a strongly convex
case (Theorems 1 and 3) via a multinomial logistic regres-
sion model. Concretely, if l(w, zi) expresses the predictive
model containing the parameter w = (W , b) and the rela-
tion l(w, zi) = softmax(Wzi + b), we can describe the loss
function as: f(w) = 1

n

∑n
i=1 CrossEntropy (f(w, zi),yi) +

h‖w‖22, which forms a convex optimization problem. We can
choose the regularization hyperparameter as h = 10−3.

2) Non-convex case: For exhibiting the superiority of the
proposed algorithms subject to non-convex objective functions
(corresponding to Theorems 2 and 4), we carry out experiments
over different datasets on a deep neural network model, whose
structure is similar to that in [38] about DPSGD. We utilize
one feed-forward neural network including ReLU units and
softmax of 10 categories having cross-entropy loss. The network
unites one PCA projection layer with dimension 60 and one
hidden layer including 1200 hidden units. From Theorems 2
and 4, the convergence bounds grow as the model parameter
dimensionality increases and therefore we need the PCA layer
for avoiding the dimension defects affected by the artificial
noise. Likewise, the deeper neural networks also undergo this
issue. The PCA implementation can be used to preprocess entire
non-private samples under our frame.

Dataset. 1) Logistic regression (w.r.t. strongly convex case):
We conduct the performance evaluation of the previous theoretic
analyses regarding strongly convex functions (Theorems 1 and

3) over MNIST1 and FMNIST2 dataset. We use the MNIST
dataset since it is prevalent in academia. For achieving non-iid
data distribution, we distribute the data amongst all the clients
guaranteeing that every client includes examples with seven
digits/fashions. For investigating the impact of data unbalanced-
ness, we further change the sample size amongst clients. Con-
cretely, under the unbalanced scenarios, the sample size between
clients obeys a power law, but under the balanced setting, we
enforce an equal number of examples on each client. Similarly,
we execute these operations for the FMNIST dataset to validate
the generality of our algorithms. (2) DNN (w.r.t. non-convex
case): We adopt SVHN3 and CIFAR104 datasets to examine
the theoretic findings subject to non-convex objective functions
(Theorems 2 and 4). According to the above description, we
likewise perform the data allocation on these two datasets for
acquiring non-iid data distribution.

To clarify the impact of the non-iid-ness on the algorithm per-
formance in more depth, we also run our algorithms on the fol-
lowing synthetic dataset (w.r.t. the Logistic Regression model)
and variant CIFAR10 dataset (w.r.t. the DNN model). Synthetic
data helps us control non-iid-ness more exactly. Herein, we
adopt the same setting as the work [16]. We use Synthetic(u, v)
to represent the synthetic dataset with hyperparameters u and
v, where u determines the degree of difference between local
models and v determines the degree of difference between the
local data on every client and those on other clients. The sample
size ni on every client obeys a power law, namely, we distribute
data according to an unbalanced fashion.

For the DNN model, to further investigate the impact of the
non-iid-ness on our algorithms, we exert the Dirichlet distribu-
tion used in [49] for generating disjointly non-iid client training
data and denote it as Dir(ψ). The value of ψ determines the
degree of non-iid-ness: ψ = 100 mimics identical local data
distributions and a lower ψ means that clients have a high
probability to possess examples from merely one class.

Parameter Setting: The overall number of clients n is set to
100. Privacy level and failure probability are respectively set as
ε = 0.3 and δ = 10−2. The default sampling ratio of clients is
set as 0.1. We adjust the hyperparameters via grid search and
give the optimal values as follows: over MNIST and FMNIST,
we choose batch size B = 10, local iteration numbers τ = 300
and local learning rate αl = 0.01; over SVHN and CIFAR10,
the corresponding values are B = 50, τ = 50 and αl = 0.1,
respectively. For Algorithm 2, we choose β1 = 0.9, β2 = 0.99
and π = 10−3. We choose the global learning rate over MNIST
and FMNIST as αg = 0.01 and over SVHN and CIFAR10, this
value is 0.005. Furthermore, we enable local and global learning
rates to have the decaying rate 1/

√
t.

Over the above datasets, we utilize the aforementioned set-
tings about parameters, models and loss functions. Without
considering the noise injection, for the logistic regression model,
we can achieve 93.48% testing accuracy on MNIST dataset

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3http://ufldl.stanford.edu/housenumbers/
4https://www.cs.toronto.edu/ kriz/cifar.html

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/protect unhbox voidb@x penalty @M  {}kriz/cifar.html
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Fig. 1. Comparison of our DPNFL and AdDPNFL algorithms with other differentially private algorithms on Logistic Regression (first row) and DNN (second
row).

and 83.44% testing accuracy on FMINST dataset. These results
are parallel to those reached under a vanilla neural network.
Similarly, the best testing accuracy of non-private version on
SVHN and CIFAR10 is 87.74% and 80.35% under our DNN
architecture.

Comparative Algorithms:
� DPSCAFFOLD [13] is the state-of-the-art differentially

private federated learning algorithm on non-iid data, which
is based on the SCAFFOLD federated learning algorithm
and combines the control variable with RDP to simultane-
ously tackle heterogeneity and DP.

� DPFedAvg [31] is the first differentially private federated
learning algorithm, which adopts the moments accountant
method to achieve the DP for FedAvg algorithm.

A. Experimental Result

Balanced versus Unbalanced Data: For the strongly convex
case, we first perform the experiment on logistic regression
model over the balanced and unbalanced MNIST datasets. From
Fig. 1(a), we can see that on the balanced data, the non-private
version of our AdDPNFL algorithm (denoted as Nonprivate)
can achieve up to 93.48% testing accuracy which is parallel to
the state-of-the-art accuracy of the FL algorithm on MNIST
dataset. It implies the advantage of our adaptive algorithm
in model utility. Moreover, comparing with four differentially
private algorithms, our AdDPNFL achieves the highest accuracy
(84.45%) and DPSCAFFOLD achieves the lowest accuracy
(76.45%). It means that for the balanced data, our adaptive server
aggregation method is helpful for convergence and contribute to

less noise addition which results in higher accuracy. Besides,
comparing the testing accuracies of two baseline algorithms,
i.e., DPSCAFFOLD (76.44%) and DPFedAvg (78.79%), we
can find that in the balanced case, the testing accuracy on
DPSCAFFOLD improves insignificantly and might degrade,
and its model convergence rate decreases. The major reason is
that during early model training, the global variate after random
initialization misguides the model’s optimization direction. For
the testing accuracies of two proposed algorithms, namely, Ad-
DPNFL (84.45%) and DPNFL (80.59%), it can be seen that the
adaptive version achieves better accuracy, which means that the
adaptive optimization is beneficial for the training result under
the DP noise. Comparing the proposed algorithms with two
baseline algorithms, we can see that they are both superior to the
baselines. The reason is that different from the ordinary server
aggregation, our DPNFL and AdDPNFL are both based on
the partial client selection without replacement strategy which
can avoid the negative straggler effect in DPSCAFFOLD and
DPFedAvg. Furthermore, in the client-side sampling case, the
local control variate in DPSCAFFOLD seldom gets updated and
thus exploiting the control variates for estimating the updating
direction could be considerably imprecise. As a result, even for
the balanced scenario, our algorithms are better than the baseline
algorithms.

For the non-iid and unbalanced scenario, from Fig 1(b), we
have also observed similar results, but some differences exist.
First, we can see that on the unbalanced data, all the algorithms
achieve relatively unstable training procedures since the non-iid
and unbalanced data will make the direction of the gradient
more fluctuated. Second, we can see that under the unbalanced
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environment, our non-private algorithm changes a little but the
other three differentially private algorithms including AdDP-
NFL, DPNFL and DPSCAFFOLD achieve better accuracies
compared with the corresponding accuracies in the balanced
case. It means that these algorithms specific for heterogeneous
data including the non-iid and unbalanced data make improve-
ments on the model utility. However, for DPFedAvg, the testing
accuracy in unbalanced cases declines, which validates the lim-
itation of DPFedAvg under the heterogeneous dataset. Besides,
we can see that our proposed algorithms are still better than
DPSCAFFOLD. Except for the better client sampling strategy,
it should be noted that our DPNFL uses the more suitable non-iid
measure which simultaneously includes the heterogeneity of
data size and data distribution. More importantly, our improved
version of AdDPNFL further adopts the adaptive optimization,
as has been illustrated in the remark, the adaptive optimiza-
tion foster the convergence rate on the non-iid data with the
accelerated gradients. Therefore, our algorithms are better than
the baseline algorithms in the heterogeneous setting. Last but
not least, to generalize the observations on MNIST, we also
perform the corresponding experiment on the FMNIST dataset
and Fig. 1(c)–(d) demonstrates the similar results to validate the
effectiveness of our algorithms.

For the non-convex case, we perform the experiments on the
DNN model over the balanced SVHN and unbalanced SVHN
datasets. From Fig. 1(e) and (f), we can see that the tendencies
of all the algorithms are similar to the results in Fig. 1(a)
and (b). Likewise, 86.74% testing accuracy of our non-private
AdDPNFL on the SVHN dataset showcases the superiority of
the adaptive server aggregation methods. It is easy to find that the
observations in Fig. 1(a) and (b) are nearly suitable for the case of
the SVHN dataset. But since the format of training data in SVHN
is more complex than that in MNIST, we can see that when the
data is balanced, the variation in SVHN is more unstable than
that in MNIST. Also for this reason, the curves in unbalanced
SVHN are considerably fluctuated compared to the curves in
balanced SVHN. Additionally, it is deserved to illustrate that on
the large model structure and the complex dataset, our proposed
algorithms still achieve better algorithm performance than that
of DPSCAFFOLD. DPSCAFFOLD usually deteriorates during
carrying on large scale deep learning since it merely achieves
approximate reduction on gradient drift across every round but
cannot remove it. This kind of residual error could cumulatively
grow as training proceeds, which has been discussed in [15]
and it induces slower convergence and worse performance. But
for DPNFL, we do not introduce extra control variables to cope
with non-iid-ness and therefore algorithm performance has little
reaction from the model and dataset. Finally, we also execute
the corresponding experiment on the CIFAR10 dataset, which
further validates the reasonability of experimental observations
(see Fig. 1(g) and (h)).

To intuitively exhibit the effectiveness of our algorithms, we
depict the testing accuracy of different algorithms on various
unbalanced datasets in Fig. 2, where the testing accuracies are
the average accuracy by running five times. From Fig. 2, we
first observe that the non-private AdDPNFL achieves the highest
testing accuracy, which is in line with the fact that DP noise

Fig. 2. Testing accuracy of different algorithms under various unbalanced
datasets.

degrades the model utility. Second, it is apparent that AdDPNFL
excels in all the other differentially private algorithms over
all the unbalanced datasets. It means that the adaptive server
aggregation and client sampling without replacement in our
algorithm design, as well as our measurement of non-iid-ness,
can effectively handle the non-iid data distribution. Besides, for
the complex datasets, all the testing accuracies decline since the
classification task is harder for the more complex dataset.

Synthetic and Dirichlet Distribution Dataset: To investigate
the impact of non-iid-ness on the algorithm performance in
more depth, we perform our algorithms on the logistic regres-
sion model over the synthetic dataset and split the CIFAR10
dataset according to the Dirichlet distribution as the training
dataset for DNN model. We choose three levels of non-iid-
ness for synthetic data, that is, Synthetic-IID corresponding to
iid-ness, Synthetic(1, 1) corresponding to middle non-iid-ness
and Synthetic(5, 5) corresponding to high non-iid-ness. For
CIFAR10, we also choose three levels for non-iid-ness where
Dir(100), Dir(5) and Dir(0.1) respectively represent the low,
middle and high non-iid-ness. The details of how the parameters
control the non-iid-ness have been stated in part of parameter
settings.

From Figs. 3 and 4, we can easily see that whether in the
high or low non-iid datasets, our algorithms can outperform the
other baseline algorithms. The observations in synthetic dataset
and variant CIFAR10 are partially similar to that in Fig. 1(a) and
(b). Herein, we only give the unique observations for these more
fine-grained non-iid experiments. First, we can see that as the
non-iid-ness increases, the training procedures become much
more fluctuated. The reason is that the non-iid data severely
influences the update direction of the gradient. When the dataset
is highly non-iid, the gradient update becomes quite unstable,
which results in unstable training curves. Second, it is evident
that under the low or high non-iid-ness, the DPSCAFFOLD
algorithm achieves worse testing accuracy than that in the middle
non-iid case. The limitation of DPSCAFFOLD in the low non-iid
case is that for iid or low non-iid data distribution, the local
control variate in DPSCAFFOLD seldom gets updated and
thus exploiting the control variates for estimating the updating
direction could be considerably imprecise. In a high non-iid case,
considering that not all the users update respective local control
variates across each round, the high non-iid data distribution
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Fig. 3. Comparison of our DPNFL and AdDPNFL algorithms with other differentially private algorithms on Logistic Regression over the synthetic dataset.

Fig. 4. Comparison of our DPNFL and AdDPNFL algorithms with other differentially private algorithms on DNN over the CIFAR10 dataset.

TABLE II
TESTING ACCURACY FOR DIFFERENT DEGREES OF NON-IID-NESS ON SYNTHETIC AND CIFAR10 DATASETS

might result in an unacceptable difference between local control
variate and latest global control variate, which finally leads to
the control-lag problem so the model accuracy gets worse when
the non-iid-ness is too high. But our algorithm is relatively less
affected by the non-iid-ness. More specifically, as the non-iid-
ness increases, the testing accuracies of our algorithms achieve
slightly better performance.

Except for depicting the training process in Figs. 3 and 4,
we also present the final testing accuracies of different cases in
synthetic and CIFAR10 datasets in Table II . From this table,
we can easily see that due to the noise addition, the non-private
AdDPNFL is at least 4.85% better than all the other differentially
private algorithms. Among the differentially private algorithms,
AdDPNFL expectedly acquires the best testing result and is
at least 3.77% better than DPSCAFFOLD, which validates the
superiority of our algorithms.

Fig. 5. Comparative results of our sampling method with the existing ap-
proaches.
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Fig. 6. Impacts of the privacy level ((a) and (b)) and non-iid degree ((c) and (d)) on the testing accuracy under the strongly convex and non-convex settings.

On the other aspect, to validate the effectiveness of our uni-
form client sampling without replacement, we want to compare it
with the existing sampling methods including the widely-used
MD sampling [16], [17], [18] and the conventional FedAvg’s
sampling [1] that separately consider the sampled and unsam-
pled client. For a fair comparison, we choose the non-private
Algorithm 1 as our basic algorithm since it does not consider
the adaptive optimization and DP, which is a pure client sam-
pling algorithm. Meanwhile, we choose the original algorithms
in [16] and [1] as the comparative algorithms since their works
only consider client sampling problems in FL. We chose the
previous unbalanced MNIST as the training dataset since we
want to study the performance of sampling methods under
the non-iid/heterogeneous setting. The experimental results are
shown in the Fig. 5. From this figure, we can see that our
sampling method achieves the best testing accuracy compared
with other existing approaches and the training process is more
stable. Besides, the convergence speed of our algorithms is the
fastest, which validates the superiority of our sampling method
analyzed in the introduction part. Specifically, FedAvg’s client
sampling is biased and can only converge to a sub-optimal
minimum so it achieves the lowest accuracy among these three
algorithms. Besides, due to the abrasion brought by the unsam-
pled clients, FedAvg’s sampling method typically leads to a
slow convergence speed. For MD sampling, since the server
selects clients with replacement, the number of samplings in
the different clients causes a variance, which likely produces a
huge variation in convergence performance, specifically for the
non-iid FL.

Finally, we adjust three important hyperparameters: privacy
budget ε, non-iid-ness level (u, v) or ψ, and adaptivity degree
π to observe the impact of the hyperparameter on the algo-
rithm performance. Herein, without loss of generality, we only
maintain one parameter u in the synthetic dataset setting for
brevity. That is, we denote the different levels of non-iid-ness as
Synthetic(u, u) on the synthetic dataset.

Impact of the Privacy Budget: In Fig. 6(a), we plot the testing
accuracies of different algorithms with various privacy budgets
ε on the logistic regression model over the MNIST dataset.
Unsurprisingly, the non-private AdDPNFL keeps unchangeable
when the privacy budget varies. Additionally, it is not hard to find
that when the privacy budget increases, the testing accuracies of

all the differentially private algorithms go up. This is because
the big privacy budget means a low privacy level, which adds
less noise to the algorithms. Therefore, the model utility will
improve. More importantly, we observe that whether in a small
or big privacy budget, the testing accuracies of our algorithms
are higher than those of the baseline algorithms. Especially, the
advantage in the case of a high privacy level (small privacy
budget ε) is more distinct. This means that our algorithm is
feasible to simultaneously achieve high performance and strong
privacy guarantees. For completeness, we also conduct the
experiments on the DNN model with the SVHN dataset and
exhibit the experimental results in Fig. 6(b), where the results
are similar to those in MNIST. But it should be noted that on
the more complex dataset SVHN, all the model accuracies will
decrease and DPFedAvg has the inadequate capability to tackle
the non-iid data.

Impact of the non-iid degree: To elaborate the impact of the
non-iid-ness, we execute the previous experiments on synthetic
and variant CIFAR10 datasets with more different non-iid-ness
parameters. Specifically, for the logistic regression on the syn-
thetic dataset, we vary Synthetic(u, u) from Synthetic(0, 0) to
Synthetic(18, 18). It is required to point out that Synthetic(0, 0) is
a low non-iid setting rather than an iid setting and Synthetic(18,
18) corresponds to a high non-iid setting. For the DNN model on
the CIFAR10 dataset, we vary the non-iid degree from ψ = 0.1
to ψ = 100 where ψ = 100 can be seen as the iid setting. From
Fig. 6(c) and (d), we can find that the testing accuracies of our
algorithms including non-private AdDPNFL, AdDPNFL and
DPNFL, change a little or become slightly higher when the non-
iid-ness varies. It demonstrates the robustness of our algorithms
for the non-iid FL. Besides, we can see that DPSCAFFOLD
has the best testing accuracy at the moderate non-iid degree. It
means that too low or high non-iid degrees will be harmful to
DPSCAFFOLD for achieving satisfactory model utility. Finally,
comparing Fig. 6(c) with (d), we can find that the tendency of
the testing accuracies regarding DPFedAvg is the opposite. But
it should be noted that for Fig. 6(c), from left to right, the non-iid
degree increases and for Fig. 6(d), the non-iid degree is getting
lower. Therefore, in Fig. 6(c) and (d), the variations of the testing
accuracies on DPFedAvg are still consistent with the previous
observation, i.e., when the non-iid degree increases, the model
accuracy of DPFedAvg tends to decrease.
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Fig. 7. Impact of adaptivityπ on the testing accuracy over unbalanced MNIST
and SVHN.

Impact of the Adaptivity Level: For the proposed algorithms,
we want to observe the impact of the adaptivity parameter π on
the algorithm performance. Fixing the other parameters like ε,
we run DPNFL and AdDPNFL on the logistic regression model
over the unbalanced MNIST dataset and for completeness, we
also run these two algorithms on the DNN model over the
unbalanced SVHN dataset. We vary the adaptivity parameter
from π = 10−5 to π = 10−1 and regard DPNFL as the baseline
algorithm. From Fig. 7, we can see that our performance is
comparatively resilient to π as it varies. Specifically, under dif-
ferent adaptivity parameters, the testing accuracy of AdDPNFL
changes a little and keeps around 90% and 81.5% in the MNIST
and SVHN dataset, respectively. Without any doubt, the testing
accuracies of DPNFL are always constant, which is respectively
85% and 76% in MNIST and SVHN datasets. Over any dataset,
π = 10−3 makes a similar effect compared to other values. It
conforms to the analysis in [22], which shows that suitably big
π produces the finer results for federated adaptive optimizers.
Therefore, using the default value π = 10−3 in the previous
experiments is reasonable.

VIII. CONCLUSION

In this work, we investigate the differentially private feder-
ated learning on non-iid data. To improve the communication
efficiency and avoid the sampling variance, we adopt the partial
client sampling without replacement method to achieve the ag-
gregation in the non-iid federated learning setting. To better an-
alyze the end-to-end privacy loss, we utilize the latest truncated
concentrated DP technique and obtain the tighter privacy loss
bounds. Moreover, to further improve the model performance
and mitigate the negative effect of the non-iid-ness, we also
propose an adaptive algorithm based on server-side adaptive
optimization. We provide the rigorous analysis of convergence
and privacy for all the algorithms and the extensive experimental
results validate their effectiveness.
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