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Using Methods From Dimensionality Reduction for
Active Learning With Low Query Budget

Alaa Tharwat and Wolfram Schenck

Abstract—Recently, it has been challenging to generate enough
labeled data for supervised learning models from a large amount
of free unlabeled data due to the high cost of the labeling process.
Here, the active learning technique provides a solution by anno-
tating a small but highly informative set of unlabeled data. This
ensures high generalizability in space and improves classification
performance with test data. The task is more challenging when the
query budget is small, the data is imbalanced, multiple classes are
present, and no predefined knowledge is available. To address these
challenges, we present a novel active learner geometrically based
on principal component analysis (PCA) and linear discriminant
analysis (LDA). The proposed active learner consists of two phases:
The PCA-inspired exploration phase, in which regions with high
variances are explored, and the LDA-inspired exploitation phase, in
which boundary points between classes are selected. The proposed
geometric strategy improves the search capabilities of the active
learner, allowing it to explore the space of minority classes even
with multiple minority classes and a small query budget. Exper-
iments on synthetic and real binary and multi-class imbalanced
data show that the proposed algorithm has significant advantages
over multiple known active learners.

Index Terms—Active learning, dimensionality reduction, imbal-
anced data, LDA, PCA.

I. INTRODUCTION

R ECENTLY, the huge increase in the number of IoT de-
vices and Internet data has increased the amount of free

unlabeled data. Due to the cost and time involved in labeling,
annotating all data or even a portion of it to create sufficient
training data for developing machine learning applications has
become a new challenge for data scientists. The active learning
(AL) technique offers a solution by annotating only the most
representative and informative points to obtain small but high-
quality training data [1].

In the active learning technique, given a set of unlabeled
data, the query strategy task is to query one or more points
in order to label them and add them to the labeled/training
data. Increasing the number of query points (i.e., the query
budget) increases the cost and time of labeling, but may
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improve the overall classification performance [2]. However,
due to the high labeling cost in many applications, one
of the main goals of active learners, including ours, is to
cover the most informative parts of the instance space with
only a few labeled points (i.e., with a small query budget)
[3], [4].

The main difference between active learners is the query strat-
egy (i.e., the way a new point is queried). Some active learners
search only for the most informative points; these points are
expected to be around the decision boundaries between classes
and they are informative but not necessary representative [5].
On the other hand, some active learners attempt to explore the
instance space by covering large portions of it; these points are
representative but may not adequately cover critical regions [6].
Few studies have combined both strategies to find the most
informative and representative points [7].

Anyhow, most active learners need initial knowledge, such
as some labeled points from each class for initial training data
of the learning algorithms. In addition, many of the active
learners handle data in limited scenarios, such as only binary
classes or balanced data. Besides, some active learners only
search for informative or representative points. Further, sev-
eral active learners have not addressed the problem of imbal-
anced data. Another major problem is that most active learners
mainly rely on machine learning (ML) algorithms, which i) need
some initial knowledge, ii) may extrapolate incorrectly if the
initial training data is not sufficient for the training process,
leading to inaccurate or unreliable results, and iii) have some
parameters that should be tuned. To fill some of these gaps,
and inspired by the geometry of two of the most well-known
dimensionality reduction methods: principal component anal-
ysis (PCA) and linear discriminant analysis (LDA), the pro-
posed dimensionality reduction-based active learner (DimAL)
geometrically searches for the most informative and represen-
tative points with a small query budget, without predefined
knowledge, without relying on the use of ML models, using
a parameter-free model to select high-quality training data even
in the presence of imbalanced data to cover all/most minority
classes.

Our model consists of two main phases (exploration and
exploitation) and a short transition phase in between. The goal
of the exploration phase is to explore the search space. For this
purpose, many active learners query points from regions with
high density. For example, in one of the clustering techniques,
the nearest neighbours of cluster centers are selected [8]. To
avoid selecting the same points over and over again, some active
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learners try to increase the diversity between the selected points
as in [9]. This might result of outliers being queried. However,
inspired by the dimensionality reduction method of PCA, the
exploration phase in our model identifies the directions with
the largest variances by searching for the maximum variance in
multiple directions. To avoid selecting outliers, our model then
tries to query only representative points in these directions. This
increases the probability of covering all classes including the
minority ones when the data are imbalanced.

In the exploitation phase, the goal is to explore criti-
cal/disagreement/uncertain regions between classes. For exam-
ple, in state-of-the-art active learners with probabilistic learning
models and binary classes, the least confident method queries the
point where the posterior probability of being positive/negative
is close to 0.5 [10]. Moreover, the margin sampling method
queries the point that has a small margin between the first and the
second most likely class labels [10]. Additionally, the entropy
method was employed for measuring the uncertainty, and the
points with high entropy will be queried [10]. In the query-
by-committee (QBC) approach [11], the uncertain region was
defined as the region where the maximum disagreement exists
between a committee of learning models [11]. However, all
these methods and many others depend mainly on ML learning
algorithms that have some parameters that need to be tuned.
Moreover, these learning algorithms require a sufficient amount
of initial training data, which is practically not always available,
and the performance of these ML algorithms is strongly influ-
enced by the initial training data and its size. Further, some of the
above methods may select similar (or identical) points, leading
to redundancy in the selected labeled set. Furthermore, focusing
on selecting borderline points might lead the active learner to
select some outliers near the decision boundaries. Instead of
this, inspired by the idea of the LDA dimensionality reduction
method, the proposed active learner searches only geometrically
(i.e., without ML models) for the borderline points between
classes. This is an advantage of our model because it does not
require any predefined knowledge or parameter tuning. This
increases the adaptability of our model with new data, even with
real-world challenges such as the imbalanced data problem with
multi-class scenarios, which is one of the goals of our proposed
active learner.

The transition phase in our model tries to combine the advan-
tages of the exploration and the exploitation phases by iteratively
decreasing the exploration power slightly while increasing the
exploitation power. This strategy helps our model to select
representative borderline points that are relatively far from the
currently labeled points, which increases the covered area be-
tween classes.

Our pure geometrical strategy increases the adaptability of our
model when dealing with different variations of the received
data, such as balanced or imbalanced data, binary classes, or
multi-class datasets without predefined knowledge. Moreover,
our search strategy, which geometrically tracks the variations in
the data, helps to find the minority classes when there are many
of them. This is one of the goals of our model, since the number
of studies that used multiple classes is small compared to those
that used binary classes.

To evaluate the proposed model, we conducted a series of
experiments using imbalanced datasets. In the first experiment,
different synthetic datasets were used. Further, the performance
of the proposed active learner was also tested on real imbal-
anced datasets with binary and multiple classes with different
imbalance ratios to test how our model covers minority classes
in multi-class scenarios.

The rest of the article is organized as follows: Section II ex-
plains the theoretical background of active learning techniques,
including some studies related to the active learning technique.
The detailed steps of the proposed model are explained in
Section III. Section IV presents a set of experiments comparing
the proposed active learner with different state-of-the-art ac-
tive learners using different datasets and different experimental
scenarios. Finally, concluding remarks and future work are
presented in Section V.

II. THEORETICAL BACKGROUND

A. Supervised, Unsupervised, and Semi-Supervised Learning

In machine learning, there are two main types of algorithms:
supervised and unsupervised. In supervised learning algorithms,
training data is used for learning algorithms, and this training
data consists of a set of labeled data points as follows, DL =
{(xi, yi)|xi ∈ X, yi ∈ Y }nl

i=1, where DL is the labeled/training
data, nl represents the number of labeled data points, xi ∈
Rm is one point, m is the number of attributes/features, the
label for each instance is denoted by yi ∈ Y , where Y =
{ωi, ω2, . . . , ωC}, ωi represents the ith class, and C indicates
the number of classes. The data in unsupervised algorithms have
no labels and are structured as follows, DU = {xi|xi ∈ X}nu

i=1,
where nu is the number of unlabeled instances and DU repre-
sents the unlabeled data.

As mentioned earlier, the labeling process is expensive and
time-consuming; therefore, learning supervised learning models
with fully-labeled data is challenging. A good alternative is
the partially-supervised machine learning approach, which uses
both the labeled and unlabeled data. In this approach, there are
two main techniques. The first is the semi-supervised technique,
which uses the unlabeled data for improving supervised learning
models that are trained on the labeled data [7]. The second is
the active learning technique, which includes an additional query
strategy component that selects the most informative data points
from the current unlabeled data for annotating them [10].

Fig. 1 illustrates the steps of the active learning technique. As
shown, given a set of unlabeled data points (DU ) and based on
a specific query strategy, an unlabeled point (〈x∗, ?〉) is selected
to be queried by an expert; the selected unlabeled point is
surrounded by a red circle. This newly selected and labeled data
point is then added to the labeled data (DL = DL

⋃ 〈x∗, y∗〉).
Iteratively, the current labeled points are used to re-train the
learning model to improve it.

B. AL With Imbalanced Data: State-of-The-Art

One of the biggest challenges in real-world environments
is the presence of imbalanced data. This deteriorates the
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Fig. 1. Visualization of how active learners work.

performance of active and even passive learners because the
model cannot learn sufficiently from the minority class, espe-
cially when the imbalance ratio is high (the imbalance ratio
(IR) is the ratio between the number of majority class instances
and the number of minority class instances). Therefore, with
imbalanced data, the chance of querying a minority point with
active learners is small compared to selecting a majority class
instance. However, many active learners did not consider this
problem (e.g., [12]). Some studies used classical resampling
techniques to obtain balanced data. For example, in [13], only
the minority data points from earlier batches were propagated,
which increases the number of minority points. In [14], only
the minority data points that are similar to the current batch are
oversampled. The synthetic minority over-sampling technique
(SMOTE) algorithm was also employed in the Learn++.CDS
algorithm for balancing the data [15]. In another study, the
active learning model prioritized the labeling of minority class
observations for improving the balance of the learning pro-
cess [16]. In addition, in [7], a new strategy was introduced
to find the most informative and representative points with
the aim of increasing the chance of finding and covering the
minority class. Recently, new active learners were presented
for handling imbalanced data with binary and multi-classes
datasets [17].

In general, the number of studies that used multiple classes
is small compared to those using binary classes. Further, most
active learners designed for the imbalanced data problem should
i) first be informed which class is the minority class, and
ii) be initialized with some labeled points from the minority
class. For example, in [18], in the case of binary classes, the
active learner should first be initialized with a pair of op-
posites: one point from each class. This initial knowledge is
challenging and may be impractical to collect in many envi-
ronments. This is because, for example, in some real indus-
trial scenarios, new classes of faults may appear unexpect-
edly. This has led us to present a novel geometry-based active
learner that can handle imbalanced data with multiple classes
and adapt to the newly received data without any predefined
knowledge.

III. THE PROPOSED MODEL

In our model, we first assume that all the available data
are unlabeled, and this unlabeled data is denoted by DU =

Algorithm 1: Annotate a Set of Unlabeled Points.
DL=DimAL (DU , Q.)

Input: Unlabeled data (DU = {x1, . . . ,xnu}) and Q
Output: Labeled points (DL = {(x1, y1), . . . , (xnl

, ynl
)})

1: Set DL ← [ ], nl = 0, nS = 0.05nu

2: μ← mean(DU ); D ← DU − μ; Σ← DDT

3: Calculate λ = {λ1, . . . , λm} and V = {V1, . . . ,Vm} of Σ (V
is sorted according to λ)

4: MaxV ar = λ1 and Id = 1 (index of the component or
interval that has the maximum variance)

5: for i = 1 to m do
6: DX ← DUVi

7: Lb(i)← min(DX); Ub(i)← max(DX)
8: Υ = MaxV ar � original variance
9: for i = 1 to Q do

10: DX = DUVId

11: DX2
= Ub(Id) ≥ DX ≥ Lb(Id)

12: DX3
= DX2

\Ol(DX2
), � Ol(DX2

): outliers of DX2

13: D̄ ← median(DX3
)

14: if DL = [] then, � Exploration phase (φR(A))
15: x∗ = nnSearch(D̄,DX3

, 1)
16: else
17: if C = 1 then , � Exploration phase (φR(B))
18: DS = nnSearch(D̄,DX3

, nS)
19: MD = nnSearch(DL,DS , 1)
20: x∗ = DS(max(MD))
21: else � Exploitation or transition phase
22: if nl ≤ 	0.8Q
 & max(λ) > 0.1Υ then � φT

23: η = nl
Q

24: else � φL

25: η = 1
26: DS = nnSearch(D̄,DX3

, nS)
27: L← CalculateADSumsEigValues(DL,DS)
28: L = L−min(L)

max(L)−min(L)
, � scaled L

29: MD = nnSearch(DL,DS , 1)

30: D = MD−min(MD)
max(MD)−min(MD)

� scaled MD

31: Idx = min (ηL+ (1− η)D)
32: x∗ ← DS(Idx)
33: y∗ ← Query(x∗); DL = DL

⋃
(x∗, y∗); DU ← DU \ x∗

34: Split the interval of the projected data (DX ) into two smaller
intervals ([Lb(Id), Ub(Id)] into [Lb(Id), D̄]and(D̄,
Ub(Id)])

35: Replace the current interval of the projected data with the
new ones

36: Calculate the weighted variance of the new intervals
37: Update MaxV ar and Id with the maximum variance

{x1,x2, . . . ,xnu
}, where xi ∈ DU is one of the unlabeled

points,nu is the number of unlabeled points, and the labeled data
set DL is empty. Hence, there are neither initial labeled points
nor information about the number of classes or the presence of
imbalanced data. As with many active learners, there are two
distinct phases in our model. The first is the exploration phase
(φR), which attempts to cover the entire distribution by effi-
ciently exploring the search space and finding the representative
points by tracking the dimensions with the highest variances
that represent the distribution of the data. While the aim of the
second phase (exploitation phase (φL)) is to explore the regions
between classes; these regions are called critical or uncertain
regions. Table I lists the notations and their descriptions used in
this article.
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TABLE I
NOTATIONS AND DESCRIPTIONS USED IN THIS ARTICLE

A. PCA-Inspired Exploration Phase (φR)

1) Tracing the Directions of the Greatest Variances: The
proposed model explores the instance space by continuously ex-
ploring the data in the directions of maximum/largest variances
in the given unlabeled data. Inspired by PCA [19], the most well-
known unsupervised dimensionality reduction method, these
directions could be found by calculating the eigenvalues and
eigenvectors of the covariance matrix of the unlabeled data. The
direction of the eigenvector with the maximum variance (i.e.,
maximum eigenvalue) represents the direction of the largest
variance.

However, our PCA-inspired exploration phase consists of two
different strategies φR(A) and φR(B) as shown in Fig. 3(a) and
(b). More details are in the next sections.

2) Theoretical Background of PCA: Mathematically, the co-
variance matrix (Σ ∈ Rm×m) of the current unlabeled data
(DU ∈ Rnu×m) is calculated as follows, Σ = DDT , where
D = {d1, d2, . . . , dnu

} is the data that is centred around the
zero point by subtracting the mean value from each data point
as follows, di = xi − μ, xi ∈ R1×m is the ith unlabeled point,
and μ ∈ R1×m is the mean of DU . The eigenvalues and eigen-
vectors of Σ are calculated as follows, VΣ = λV , where λ =
{λ1, λ2, . . . , λm} represents the eigenvalues (magnitude) of the
eigenvectors (V = {V1,V2, . . . ,Vm}), the eigenvectors are
sorted according to the corresponding eigenvalues, and the first
eigenvector (V1) has the maximum eigenvalue (i.e., it has the
maximum variance). Since λi is the amount of variance of Vi,
we also denote it as σ2

i (see Fig. 2).
3) Searching for the First Point (φR(A)): Instead of ran-

domly selecting the first point(s) as in [7], after finding the
dimension that has the maximum variance (the first principal
component) using PCA, the first exploration strategy of our
model begins by exploring this dimension by first projecting the
data (unlabeled data) onto this component/dimension (i.e., V1)
as follows, DX = DUV1, where DX ∈ Rnu×1 is the projected
data (see Fig. 2). Since the data points in many datasets are
mostly concentrated near the mean or median of the whole data,
after projecting the data onto V1, our model will annotate the
closest point to the median of the projected data after ignoring
(but not removing) the outliers (see Fig. 3 (φR(A))). In our

Fig. 2. Illustrative example of how our model explores the instance space by
tracking variations within the data. Left: The original data is in two-dimensional
space, and the PCA method is then used to find the principal components V1

and V2, where the variance (eigenvalue) of V1 is higher than V2; therefore,
V1 is the selected dimension to be explored. Right: the original data is projected
onto the selected dimension V1, after ignoring outliers, and the point closest to
the median of the projected data is annotated. The full interval of the original
dimension (V1) is denoted by [a, b] and it will be divided into two new non-
overlapping intervals ([a, z] and (z, b]), both of which lie in the same direction
as the original dimension (V1), but each has a different range.

model, the outlier points should have more than 1.5 interquartile
ranges above/below the upper/lower quartile. The maximum
eigenvalue, which represents the variance of the first principal
component is called the original variance and it is denoted by
Υ. Depending on the value of Υ, the model may use one of the
two phases (this point will be discussed later).

In the exploration phase of our model, since the annotation
of a point means that the part of the space containing that point
has already been scanned or explored, and to avoid exploring
the same region repeatedly, this part of the space will be divided
into smaller parts/regions. This could be done as follows: i) after
projecting the data onto the vector with the maximum variance,
ii) finding the median of the projected data; this median repre-
sents the splitting point, iii) split the interval (or full interval) or
the entire range of projected data into two smaller intervals, and
iv) replace the old interval with the new smaller ones. As shown
in Fig. 2, there are two principal components (V1 and V2), and
surely, V1 (first principal component) has more variance than
V2 (σ2

1 > σ2
2); therefore, V1 will be selected. The full interval

of the projected data onto V1 is [a, b], and the median of the
projected data (as shown in Fig. 2) will be used for splitting the
full-interval into two non-overlapping intervals: the first is [a, z]
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Fig. 3. Subsequent phases of the proposed active learner which differ in the
way point x∗ is determined to be labeled next.

and the second is (z, b]. Hence, we still have the same number
of vectors (or principal components), but instead of having the
full interval of the projected data onto V1, this full interval is
divided into two half intervals (see Fig. 2). Since the splitting
point is the median, it is expected that the two new half-intervals
will have approximately similar amounts of data.

Splitting the dimension into smaller intervals gives our model
the opportunity to improve its exploration strategy by visiting
new regions instead of exploring the same region multiple times.
This strategy is approximately similar to the one in [7], where the
model divides the space into cells and searches for the most un-
certain regions/cells (with a high density of unlabeled data) that
are less explored (with a small number of labeled points), without
taking the variations in the data into consideration. For example,
the model in [7] might recommend exploring a cell with more
points and less variations than a cell with less data but with high
variance, which reduces the representativeness of the selected
points. To avoid this, our active learner evaluates data variance
and point density. It does this by first calculating the variance (or
weighted variance) of the projected data onto each dimension
(or interval) within the space. The weighted variance is only
calculated for the intervals, not for the principal components.
This is because the principal components have full intervals, so
all the data could be projected onto the principal components,
while each interval has a range; therefore, it could have some
of the projected data, but not always all of it. Mathematically,
the projected unlabeled data onto V1 that lie within the interval
[a, z] is defined as follows, DX = {x ∈ DU |a ≤ x V1

|V1| ≤ z}.
The weighted variance of this interval ([a, z]) is calculated by
multiplying the varianceDX by the ratio of the number of points
in that interval to the total number of points. Fig. 2 shows that
the new intervals [a, z] and (z, b] have the variance σ2

3 and σ2
4 ,

respectively.
In summary, during the iteration of our exploration phase,

in all available directions, the full intervals and the half (or

Algorithm 2: Calculate the Absolute Differences Be-
tween the Sums of the Eigenvalues. L=CalculateADSums
EigValues (DL, DS).

Input: DL = {(x1, y1) . . . , (xnl
, ynl

)} and
DS = {x1,x2, . . . ,xnS

}
Output: L absolute differences between the sums of
eigenvalues of all points in DS

1: C ← Unique classes in DL

2: for i = 1 : nS do
3: NewData← DL

⋃
DS(i)

4: for j = 1 : C do
5: NewLabels← Y

⋃
j

6: Calculate μj , SWj
and SBj

for each class
7: W = (SW )−1SB

8: Calculate λ and V of W
9: S(j) =

∑m
o=1 λo � This only for two classes

10: li ← |S(1)− S(2)|

smaller) intervals compete with each other in terms of variance
(or weighted variance), and the interval with the maximum
variance is explored by annotating a new point there, and then
that interval will be further subdivided into smaller intervals.
It is worth mentioning that our active learner iteratively splits
only the dimension or interval that has the maximum variance
not the whole space as in [20]. This reduces the search space,
which reduces the required computational time of our active
learner.

4) Annotating Next Points (φR(B)): After annotating the
first point using φR(A), the second exploration strategy
(φR(B)) will be used to annotate new points (see Fig. 3). This
strategy aims to track the variability in the data and increase the
representativeness of the labeled data, if the labeled data has only
one class. In this strategy, our model selects thenS points closest
to the median of the projected data onto the interval that has the
maximum weighted variance (we call it simply the projected
data), where nS is the number of selected points (in our model,
nS = 0.05nu), and the selected points are denoted byDS . These
selected points are expected to be highly representative because
they are close to the median of the projected data. For each point
in DS , the minimum distance to the current labeled data will
be calculated and denoted by MD = {md1,md2, . . . ,mdnS

},
where mdi is the minimum distance between the point xi ∈ DS

and all points in DL. The point with the maximum of these
minimum distances will be annotated as follows:

x∗ ← arg max
xi∈DS

mdi = arg max︸ ︷︷ ︸
xi∈DS

⎧⎨
⎩ min︸︷︷︸

xj∈DL

(‖xi − xj‖)
⎫⎬
⎭ (1)

Fig. 4 shows an example to explain how a new point is selected
among the selected points based on the distance to the labeled
data. As shown, for each selected point (xi ∈ DS), the minimum
distance to the labeled data is calculated (mdi = min︸︷︷︸

xj∈DL

(‖xi −

xj‖)). For all points in DS , the point with the largest of these
minimum distances will be annotated (i.e.,x∗ ← arg max

xi∈DS

mdi).
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Fig. 4. Illustrative example to explain how our active learner selects, among
the selected points, the point that has the maximum of the minimum distances
to all labeled data. The selected point is surrounded by a green circle.

This exploration strategy (φR(B)) enables our active learner
to i) visit new regions that are far from DL, thus covering a large
area, and ii) explore and track variations in the data. Further, this
strategy increases the chance of discovering parts of the minority
classes (if any). However, this process continues until points
from other classes are annotated, at which our active learner
switches to one of the transition or exploitation phases. If i) the
maximum variance of the current intervals is greater than 10% of
the original variance1 (10% of Υ) and ii) the number of labeled
data is less than 80% of the query budget, our model switches
to the transition phase; otherwise, it switches to the exploitation
phase (more details are in the next section).

Finally, it is worth mentioning that in both strategies of our
exploration phase in Fig. 3, i) the selected point should be one
of the closest points to the median of the data after ignoring the
outliers, which increases the robustness of our model against
selecting an outlier, and ii) after exploring the dimension or
interval with the largest variance by labeling a point in that
dimension or interval, this dimension or interval is then divided
into smaller intervals as mentioned before. More details about
our exploration phase are in Algorithms 1 and 2.

B. LDA-Inspired Exploitation Phase (φL)

After finding points from different classes during the ex-
ploration phase, our model starts to focus on exploring the
area between different classes by searching for points within
uncertain regions (i.e., borderline points). For state-of-the-art
active learners, this uncertain region was determined by finding
the disagreement region(s) between different trained models [7],
[20]. In our model, instead of using black-box ML models, our
idea of finding the borderline points is inspired by the geometry
underlying Linear discriminant analysis (LDA), one of the
best-known supervised dimensionality reduction methods [21].

1) Theoretical Background of LDA: Mathematically, the
goal of LDA is to reduce the dimensions of the data by projecting
the original data onto a lower dimensional space so that the

1After some initial experimentation, we found that 10% of Υ is a limit after
which our active learner can proceed to the next step (i.e., the transition phase).
This limit provides some guarantee that our active learner has acquired the most
representative points within the space before starting the transition phase (φT )
and then the exploitation phase.

different classes in the data are well separated in the lower-
dimensional space. To do this, first the separability between
different classes (this is called also the between-class variance or
the spread between the classes) should be calculated as follows,
SB =

∑C
i=1 niSBi

, where ni is the number of instances in the
ith class and SBi

is the between-class variance of the ith class
and it is calculated as follows, SBi

= ni(μi − μ)T (μi − μ),
where μi is the mean of the ith class and μ is the total mean
of all data. The second step is to calculate the within-class
variance (this represents the distance between the mean and
the samples of each class or the spread of data within each
class), and it is calculated as follows, SW =

∑C
i=1 SWi

, where
SWi

=
∑

xj∈ωi
(xj − μi)(xj − μi)

T . For increasing the sepa-
ration between different classes, LDA simply searches for a
low-dimensional subspace that i) increases the between-class
variance (SB) that keeps the data points from different classes far
apart, and ii) reduces the within-class variance (SW ) to keep the
data points from the same class as close as possible. This could
be done by projecting the data onto the line (or the subspace)
having direction V which maximizes the ratio of SB to SW ;
hence, the objective function of LDA will be J(V) = VTSBV

VTSW V .
This objective function is optimized by solving the generalized
eigenvalue problem as follows, ((SW )−1SB)V = λV , where the
eigenvalues represent the discriminative power of each linear
discriminant and V is the eigenvectors that have the top k
eigenvalues, where k is the number of desired discriminants
(usually, k is less than or equal to the number of classes minus
one, as a rule of thumb) [21]. In PCA, eigenvectors or principal
components are new axes in the feature space that capture the
directions of maximum variance in the data, while in LDA,
eigenvectors are used to compute linear discriminants (i.e.,
linear combinations of the original features) that maximize the
separation between different classes in the data and minimize
the distances between the instances of the same class. The
geometry behind the LDA technique will be used for finding the
disagreement regions between different classes by calculating
the uncertainty of unlabeled data points.

2) Exploitation Phase Vs. Transition Phase: In our active
learner, there is only a small portion of labeled data that was
annotated in the exploration phase, and the rest of the data is
still unlabeled. Using this small amount of labeled data, LDA is
applied to each unlabeled point to check the differences in the
assignment of that point to the currently explored classes. These
calculated differences are intended to represent the uncertainty
of these unlabeled points. In this step, our strategy does not check
all unlabeled data, which is very computationally expensive, but
follows the same exploration strategy that tracks the variance
of the data. Therefore, in our exploitation phase, we will check
each unlabeled point in DS , where DS , as mentioned before,
represents the closest nS data points to the median of the
projected data onto the interval with the maximum variance.
After each annotation in the exploitation phase, the selected
interval will be divided as in the exploration phase.

Assuming that we have two classes from the exploration phase
(ω1 and ω2), for each unlabeled data point x ∈ DS , the model
assumes that the point belongs to
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1) the first class (i.e. x ∈ ω1), and then calculates ((SW )−1

SB)V(1) = λ(1)V(1), and
2) the second class (i.e., x ∈ ω2), and similarly calculates

λ(2) and V(2),
where λ(i) andV(i) are the eigenvalues and eigenvectors when

x ∈ ωi.
The borderline points are expected to have a small absolute

difference between the sums of the eigenvalues in the two cases
(i.e., whether the point belongs to i) the first class, or ii) the
second class), and for the point xi, this is defined as follows:

li =

∣∣∣∣∣∣
m∑
j=1

λ
(1)
j −

m∑
j=1

λ
(2)
j

∣∣∣∣∣∣ (2)

This pure exploitation phase may select points that are close
to the currently labeled points. This reduces the area covered by
our model, which reduces the representativeness of the selected
points. To address this issue, our model introduces a smooth
transition phase (φT ) between the two phases (i.e., the explo-
ration phase and the exploitation phase). In this transition phase,
our model combines the scaled MD (i.e., scaled minimum
distances to DL) and the scaled L = {l1, l2, . . . , lnS

} into a
single objective function as follows:

x∗ ← arg min
xi∈DS

ηL+ (1− η)D

subject to: 0 ≤ η ≤ 1 (3)

where
� D is the normalized/scaled MD, D = MD−min(MD)

max(MD)−min(MD) ,
MD = {md1,md2, . . .}, where mdi is the minimum dis-
tance between the point xi ∈ DS , and all points in DL.

� L is the scaled L and it is calculated as follows, L =
L−min(L)

max(L)−min(L) , where L = {l1, l2, . . .} and li is calculated
as in (2).

� η is the weight of L, and it is calculated as follows:

η =

{nl

Q if nl ≤ 	0.8Q

1 otherwise

(4)

where Q is the query budget and 	x
 is the ceiling function
of x.

The objective function in (3) forms a smooth transition be-
tween the two phases of our active learner. As illustrated in (4),
when nl ≤ 	0.8Q
, the value of η will be nl

Q . This means that
when the number of annotated points is less than or equal to
80% of the query budget, the model will consider the distances
between the selected unlabeled points and the current labeled
points, and the selected point should be relatively far from the
current labeled points (see Fig. 3). While whennl > 	0.8Q
, the
model uses only the exploitation phase for selecting a new point
to be queried without considering the distance to the current
labeled points (see Fig. 3). In our initial experiments, especially
with imbalanced datasets, we tested our active learner with dif-
ferent datasets to determine the limit of the query budget above
which we can only use the exploitation phase, and we found
that this limit is approximately 	0.8Q
, as illustrated in (4). This
means that 80% of the query budget is used for the exploration

TABLE II
ABSOLUTE DIFFERENCE BETWEEN THE TWO SUMS OF THE EIGENVALUES

OF THE POINTS IN FIG. 5

Fig. 5. Illustrative example of how our model searches for highly informative
points by finding the points that have a small absolute difference between the
sums of the eigenvalues (i.e., a small li) (see Table II). The point C has the
minimum li; hence, it is the most uncertain and it will be selected by our model
to be queried.

of the space and the transition phase, which gives our active
learner the opportunity to collect enough data, especially from
minority classes, before moving to the exploitation phase. It is
expected that this will improve the efficiency of the exploitation
phase, since with enough and representative labeled data, the
uncertain regions to be explored can be accurately determined
with a reasonable level of certainty.

Fig. 4 shows an example to explain how the borderline points
are detected. As shown, there are six unlabeled points (A, B,
C, D, E, and F), two classes with two labeled points each. For
each unlabeled point, we calculate the sum of the eigenvalues
of (SW )−1SB) when the points belong to the first or second
class, and the absolute differences between them; these values
are illustrated in Table II. For example, as illustrated, the sum
of the eigenvalues (

∑m
i=1 λi) when the point A belongs to i) the

first class (A∈ ω1) is 20.0 or ii) the second class (A ∈ ω2) is
0.313. Hence, we will have two different sums. Mathematically,
and as illustrated in Fig. 5 and Table II, the absolute difference
between the two sums for the borderline points between the
two classes (the points B, C, and D) is small, and the smallest
difference is for the point C, which is exactly in the middle
between the two classes. For the points that are significantly
closer to one class than the other(s), such as the points A, F, and
E, the absolute difference between the two sums is large, and
as shown, the class with the lowest sum is the farthest one from
the point. For example, for the point A, the value of

∑m
i=1 λi is
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Fig. 6. Required computational time of the proposed active learner in terms
of CPU time (secs) using (left) different dimensions and (right) different sizes
of unlabeled data.

higher when assigning the point to the first class (closest class)
than if it is assigned to the second class (farthest class). Another
clear example is the point E, the first assumption is that the
point E belongs to ω1. This assumption decreases SB because
the two classes will be very close to each other and increases
SW1

(because this increases the covered area of ω1). As a result,
this assumption decreases the ratio between SB and SW and
consequently decreases the sum of the eigenvalues (as shown in
the table). The other assumption is that the point E belongs to
ω2. This keepsSB with a large value and slightly increasesSW2

;
which makes the ratio betweenSB andSW higher; consequently,
increases the sum of the eigenvalues as illustrated in Table II.

C. Model Complexity

Our model depends mainly on the idea of the PCA and
LDA methods, therefore the complexity of our model is highly
affected by the steps of these methods. As illustrated in
Algorithm 1, the proposed model starts by calculating the covari-
ance matrix and the eigenvalue calculations. The complexity of
each of these two steps are O(m2nu) and O(m3), respectively.
The complexity of the next steps is very simple (e.g., sorting
the eigenvalues, data projection, and calculating the median of
the data); therefore, these steps won’t considerably affect the
complexity of our active learner. However, for calculating the
absolute difference between the sums of the eigenvalues, our
model should calculate S−1W , and the eigenvalues and eigenvec-
tors of S−1W SB ; and the complexity of each step will be O(m3)
(more details are in [21]). Therefore, our model is highly affected
by the number of the dimensions of the unlabeled data and
the number of unlabeled points. Using synthetic data, Fig. 6
shows the required computational time of our active learner
using different numbers of dimensions and different sizes of
unlabeled data. As shown, increasing the dimensions of the
data or the number of unlabeled points increases the required
computational time, which agrees with our analysis.

D. Some Practical considerations
� One of the main problems of LDA is that it fails to

find a suitable subspace when the classes are not linearly
separable. In other words, this method fails when the
discriminatory information is not in the mean values of
the classes, but in the variance of the data. Let us assume
mathematically that in our model the mean values of two
classes are approximately equal, so that the value of SB

will be zero; therefore, we could not calculate L that is
used to find the most informative points in the exploitation

phase. This problem could be solved by the transformation
concept using one of the kernel methods that transforms
the original data into a higher-dimensional space, and the
data can be easily and linearly separated [22].

� The small sample size (SSS) problem may occur in LDA
when the number of data points is small compared to the
number of dimensions of the data. This leads to a singular
SW . As reported in [23], there are many solutions to solve
this problem. In our model, we solved this problem using
the regularization method by adding the identity matrix (I)
that is scaled by a regularization parameter (α) to SW as
follows, SW = SW + αI [21].

� In our active learner, if the new annotated point has some
identical points inDU , we remove all these identical points
from DU to avoid wasting the query budget for annotating
the same position in the space many times. This is also
important because it reduces the number of unlabeled
points in the explored positions in space.

� In some real-world scenarios, the low query budget may
not be sufficient to find all minority classes, especially if
there are many minority classes with small sizes. This was
clear in our experiments where some minority classes in
the multi-class datasets were not covered (i.e., some classes
were missed). Consequently, the trained model with the
annotated data using the active learner will assign some
test data to wrong (but near) classes. A clear example
here is with the streaming data, where new classes may
appear (e.g., a new type of faulty data) and the training data
does not contain any data from these new classes. Thus, in
practice, the training data may not cover all classes [24].
Therefore, in our experiments, we tested all active learners
with the worst-case scenario: when the query budget is
low. However, increasing the query budget (if possible)
increases the guarantee of better coverage of the space and
finding most classes, including the minority classes. This
was clear in our experiment when we increased the query
budget from 5% to 10% of the total unlabeled data; as a
result, more minority points were annotated and the number
of minority classes detected increased.

� Although the median of the data is less affected by outliers
than other measures of central tendency, our model ignores
the outliers when calculating the median to avoid any
influence of the outliers on the calculated median that might
deviate our active learner from selecting representative
points.

� Based on the unlabeled data, our model may use all or
some of the previously mentioned phases. For example, in
some cases, our model may only find data points from one
class; therefore, it may only use the exploration phase and
repeatedly iterating in the exploration phase may reduce
the likelihood of using the transition phase; instead, our
model jumps directly from the exploration phase to the
exploitation phase.

� Since no machine learning is involved in the active learner’s
query strategy, we do not need mini-batches at all. Instead,
our active learner queries one point at a time; this increases
the required computation time since the learning models
need to be re-trained after each newly annotated point.
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However, if there is a need for mini-batches, we can simply
run the active learner for a couple of iterations (each with
single data points) until the next mini-batch is full.

IV. EXPERIMENTAL RESULTS

In this section, we conducted a set of experiments to demon-
strate the performance of the proposed active learner on syn-
thetic/artificial and real datasets with different sizes, different
numbers of classes, and different imbalance ratios. The scenario
of all experiments is as follows:

1) For each dataset, we assume that all instances are unla-
beled data (DU ) and DL is empty.

2) To evaluate any active learner, iteratively this active learner
will annotate a point from DU and add it to DL.

3) The annotated/labeled points (DL) represent the training
data used to train AdaBoost learning algorithm [25], while
the remaining data (i.e., DU \DL) represents the test data
used for evaluating the trained model.

4) In most of our experiments, a query budget of 5% of the
total number of unlabeled points was annotated.

5) For evaluating the performance of different active learn-
ers, we used the accuracy (Acc) metric [26]. Since
the imbalanced datasets are dominated by either nega-
tive or positive instances, the measurement of sensitiv-
ity (Sen) and specificity (Spec) is of great importance.
Therefore, a part of our results will be in the form of
Acc(rnk)/Sen(rnk)/Spec(rnk), where rnk is the rank
of the model (i.e., the active learner) among all the other
models. Further, in our datasets, the minority class is the
positive one; therefore, the sensitivity results are expected
to be lower than the specificity results. In some experi-
ments, especially, with multi-class datasets and high IR,
not all minority classes are covered, so the classification
performance metrics in these experiments may not be very
representative and fair. Therefore, in these experiments
we will count the number of runs in which the model
was unable to annotate points from all classes; we call
this the number of failures (NoF ) and used it as an
evaluation method. In addition, because finding minority
points is especially challenging when the query budget
is small, we used the number of annotated points from
the minority class (Nmin) as an evaluation metric; this
measure reflects how the active learner covers the minority
class. For imbalanced data with multiple classes, we also
counted the number of annotated points in each class to
show how many classes are covered by each active learner.
Further, we will calculate i) the total number of minority
points (TMPs), which is the total number of annotated
points from all minority classes by each active learner,
and ii) the number of missed minority classes (NMMCs),
which is the number of minority classes not covered by
the active learner. In our experiments, we assume that the
class covered by less than one point is not covered.

6) To reduce the effect of randomness in some algorithms,
each experiment was repeated 51 times.

In all experiments, we compared

� the random sampling method, which iteratively selects and
annotates an instance from DU at random. This simple
point selection approach is suitable for most scenarios (e.g.,
with or without initial data, with balanced or imbalanced
data) and is therefore most commonly used to assess the
performance of new active learners,

� the LLR algorithm, which tries to select the most repre-
sentative instances from DU without using initial knowl-
edge [27]. Therefore, it fits our experimental scenarios and
is expected to be suitable for problems with imbalanced
data as well as for binary and multi-class scenarios,

� the A-optimal design (AOD) algorithm, which was de-
scribed in [28]. AOD is one of the design of experiments
(DOE) methods. Both active learning and DOE involve
strategic data selection; however, DOE is broader in scope
and is used in a variety of scientific and engineering
disciplines. DOE methods, however, are designed to sys-
tematically explore the input space, optimize the amount
of information obtained from each experiment, provide
a structured and well-defined approach to data point se-
lection, and reduce the number of experiments required
without losing essential information. In addition, AOD and
many other DOE methods are also suitable for different
experimental scenarios that we will use in our experiments.
All these advantages have led us to use one of the DOE
methods in our experiments,

� the cluster-based (CB) algorithm, which was introduced
in [29], where the cluster structure in the data will be
exploited. By capturing the cluster structure, the active
learner is guided to find highly representative points, which
improves the coverage of the entire space. This makes
CB ideal for dealing with imbalanced data in multi-class
scenarios,

� the LHCE algorithm (it is the LHCE-III in [7]), which
achieved good results with the imbalanced data. In our
experiments, we used the default parameters given in [7]:
100 multilayer perceptron classifiers in each iteration that
uses the exploitation phase, and for the particle swarm
optimization (PSO) optimization algorithm, we used only
five particles per dimension,

� The first variant of the LQBAL algorithm in [20] (LQBAL-
I), which obtained promising results with imbalanced data
with binary and multi-class scenarios,

� The proposed DimAL algorithm.
It is worth noting that we chose these active learners because

they all i) do not require predefined knowledge, such as initial
labeled points, ii) can handle problems with binary or multiple
classes, iii) can obtain good results with low query budget, and
iv) achieve promising covering for the whole space as mentioned
before; as a result, they can handle the imbalanced data to some
extent.

A. Synthetic Dataset

In this experiment, we used a set of synthetic datasets ran-
domly distributed in two-dimensional space, where each dataset
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Fig. 7. Visualization of a sample of the synthetic datasets that we used in our experiments. (Left) F1 and IR = 1 : 1, (Center) F2 and IR = 9 : 1, and (Right)
F3 and IR = 19 : 1.

TABLE III
COMPARISON BETWEEN THE PROPOSED MODEL (DIMAL) AND THE RANDOM, LLR, AOD, CB, LHCE, AND LQBAL MODELS USING SYNTHETIC DATA IN TERMS

OF ACCURACY, SENSITIVITY, AND SPECIFICITY (IN THE FORM OF Acc(rnk)/Sen(rnk)/Spec(rnk))

TABLE IV
COMPARISON BETWEEN THE PROPOSED MODEL (DIMAL) AND THE RANDOM,
LLR, AOD, CB, LHCE, AND LQBAL MODELS USING SYNTHETIC DATA IN

TERMS OF NoF AND NUMBER OF MINORITY POINTS (Nmin) (IN THE FORM

OF NOF/Nmin)

consists of two classes of 100 data points each. In our exper-
iments, to compare the robustness of different active learners
against imbalanced data, we used four imbalance ratios for each
dataset, IR= 1:1, 2.33:1, 9:1, and 19:1; thus, the numbers of
points for each class are 100:100, 140:60, 180:20, and 190:10,
respectively. Fig. 7 shows examples of the generated data for
each dataset. As shown, the data have different shapes to test the
behavior of each active learner with respect to these shapes. For
example, in Fig. 7 (left and right), the data are linearly separable,
while the data in Fig. 7 (middle) are non-linearly separable.

Tables III and IV show the results of this experiment. From
these tables, it is clear that
� For the balanced data (the first three rows in both tables),

there is a strong competition between all active learners,
with all active learners except AOD finding points from

both classes (i.e., NoF = 0). In addition, the number of
annotated points from both classes is balanced; therefore,
among all active learners, there is not much difference
between the results for accuracy, sensitivity, and specificity,
except for AOD, which scored the worst. However, in terms
of accuracy results, our active learner and the LQBAL
model obtained the best results.

� With the imbalanced data (rows 4:12), the proposed algo-
rithm achieved the best results in terms of NoF ; this is
also evident from the average ranks, where our algorithm
outperformed all the other active learners and achieved the
best NoF results with LQBAL. In terms of the number of
minority points (Nmin), as shown in the table, the proposed
active learner clearly obtained the best results in most cases.
For example, with IR 9:1 and 19:1 (i.e., high imbalance
ratios) and for most of the datasets, the proposed algorithm
annotated more minority points than the other algorithms.
On the other hand, some active learners such as the random,
CB and AOD models failed in many runs to find minority
points; this is clear from the NoF and Nmin results. For
example, with IR 19:1, CB failed in most runs (approx-
imately more than 40 out of 51 runs) to find minority
points in all datasets. In terms of accuracy, sensitivity, and
specificity, the average ranks show that the proposed active
learner achieved the best results, while LQBAL achieved
the second-best results in terms of sensitivity and accuracy.

In terms of required computational time, as shown in Table V,
the proposed active learner is much faster than the other two
active learners LHCE and LQBAL. Nevertheless, our active
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TABLE V
COMPARISON BETWEEN THE PROPOSED MODEL AND THE RANDOM, LLR,

AOD, CB, LHCE, AND LQBAL MODELS USING SYNTHETIC DATA IN TERMS

OF COMPUTATION TIME IN SECS

TABLE VI
DESCRIPTION OF THE REAL DATASETS

learner still requires more time than LLR, AOD, and CB, but
it could be applicable in many real-world scenarios.

From the results, our model can annotate points from both
classes in most cases when the data is balanced or imbalanced,
even at high imbalance ratios, whereas some active learners such
as AOD and CB are severely affected when the data is imbal-
anced and could not find minority points in many runs. Further,
our model annotated significantly more minority points than the
other active learners in most cases, especially at high imbalance
ratios. This was challenging because the query budget is small
(we used only 0.05nu). This good coverage of the minority
class by the proposed active learner increases the accuracy and
sensitivity results without affecting the specificity results. These
results reflect the high exploration capabilities of the proposed
active learner, even with imbalanced data.

B. Real Imbalanced Datasets

In this experiment, we used real imbalanced datasets consist-
ing of two-class (or binary-class) and multi-class datasets [30].
As shown in Table VI, the datasets have different sizes, dif-
ferent numbers of classes, different dimensions, and different
imbalance ratios. The binary-class datasets (BD) consist of nine
datasets, each containing only two classes, while the multi-class
datasets (MD) have different numbers of classes and some
datasets have many minority classes.2

In our initial experiments, after some investigations, we found
that some features are approximately constant in some datasets,

2All real datasets that we used in our experiments are found here: https:
//sci2s.ugr.es/keel/imbalanced.php.

TABLE VII
COMPARISON BETWEEN THE PROPOSED MODEL (DIMAL) AND THE RANDOM,
LLR, CB, LHCE, AND LQBAL MODELS IN TERMS OF NoF AND Nmin (IN

THE FORM OF NOF/Nmin) WITH REAL BINARY CLASS DATASETS

which increases the required computational time and may de-
viate the active learning models from querying high-quality
labeled data. Therefore, we used the PCA dimensionality re-
duction method [19] to reduce the dimensions and keep only
the features that have 95% of the total variance. Due to the poor
results of the AOD algorithm with synthetic data, we excluded
it from our next experiments.

1) Binary Classes Datasets: In this experiment, we used only
the datasets that have two classes (the first nine datasets in
Table VI). As shown, the IRs ranged from 1.38:1 to 39.14:1,
and in some datasets, the minority classes have a small num-
ber of minority instances (e.g., HD5 and HD6 have only nine
and seven minority points, respectively, while the majority
class has 205 and 274 data points, respectively). This de-
creases the probability of finding a minority point with a query
budget of only 5%. Therefore, we set the query budget to
	max(0.05× nu, IR)
. This means that the query budget will
be increased with high IR. For example, with BD9, 5% of the
total number of unlabeled points is 0.05× 281 ≈ 14.05 and IR=
39.14; thus, the query budget will be 	max(0.05× 281, IR)
 =
	max(14.05, 39.14)
 ≈ 40. The results of this experiment are
reported in Tables VII and VIII. From these tables, we can
conclude that:
� In terms of NoF s, the proposed DimAL algorithm and

the LQBAL algorithm obtained the best results, as both
algorithms could find minority points in all datasets. On
the other hand, out of 51 runs, the LHCE algorithm failed
to find minority points in 42 and 22 runs with BD3 and
BD5, respectively. Similarly, all active learners failed to
find minority classes in some runs. This reflects the good
search strategies of the DimAL and LQBAL algorithms,
which help them to always find minority points with all
datasets.

� In terms of Nmin, from the average ranks, the proposed
active learner significantly obtained the best results. As
shown in Table VII, in terms of the total number of minority
points in all datasets (TMPs), DimAL annotated about 32.7
minority points, while the second-best algorithm (LLR)
annotated only 24 minority points and the worst algorithm
(LHCE) annotated only 17.4 points. This large gap between
the results of our active learner and the others shows the

https://sci2s.ugr.es/keel/imbalanced.php
https://sci2s.ugr.es/keel/imbalanced.php
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TABLE VIII
COMPARISON BETWEEN THE DIMAL MODEL AND THE RANDOM, LLR, CB, LHCE, AND LQBAL MODELS IN TERMS OF ACCURACY, SENSITIVITY, AND

SPECIFICITY RESULTS (IN THE FORM OF Acc(rk)/Sen(rk)/Spec(rk)) WITH REAL BINARY-CLASS DATASETS

high ability of our model to cover a large part of the space
and find more minority points.

� As for the sensitivity results, the proposed active learner
achieved the best results. As shown in Table VIII, DimAL
achieved the best results in seven out of nine datasets
and the second-best results once. This is also evident
from the average ranks, where DimAL significantly out-
performed the other algorithms. Further, as the imbalance
ratio increases, the probability of finding minority points
decreases; consequently, the sensitivity results decrease.
As shown, the results of the other active learners were
strongly negatively affected at high IR, while the proposed
active learner achieved the best sensitivity results. This
is because our active learner always successfully finds
minority points even at high IR and low query budget, while
the others failed to find the minority class in many cases.

� In terms of specificity results, as shown, the results of
all active learners are close to each other. For example,
with BD8, DimAL and LLR achieved the best results with
100%, and the random model achieved the worst results
with 95.7%. These high specificity results were obtained
because it is easy for all active learners to find points from
the majority class, which increases the specificity results.
However, from the average ranks, LHCE achieved the best
results, while DimAL was the fifth-best model without a
considerable difference.

2) Multi-Class Datasets: The goal of this experiment is
to compare the performance of different active learners with
imbalanced multi-class datasets. We used five multi-class im-
balanced datasets with different numbers of classes and with
IR ranging from 1.5 to 71.5. Table VI shows more details
about these datasets, and as shown, in some cases the minor-
ity classes have a small number of data points. As shown in
Table VI,
� with MD1, each of the first, second, and the third classes

has about 33%, 40%, and 27% of the total number of data
points, respectively. Hence, the third class is the minority
one.

� with MD2, each of the first and the second classes has
approximately 14% and 16%, respectively, and the third
class has about 70% of the total number of points; therefore,
the first two classes are considered as minority classes and
the third class is the majority one.

� with MD3, the first class is the minority one and it has only
7.8% of the total number of points.

� with MD4, there are six classes, each of the first two
classes has 32.7% and 35.5% of the total number of points,
and each of the other classes has approximately, 8%, 6%,
4%, and 13.5%. This means that the last four classes are
considered in our experiments as minority classes.

� with MD5, there are eight classes, each of the first, second,
and fourth classes represents 42.6%, 23%, and 15.5%
respectively, while the total of the other five classes rep-
resents only 19% of the total number of points. There-
fore, these five classes are considered as minority classes.
Among these minority classes, each of the last two classes
has only 2 points (0.6%).

This big gap between the majority and minority classes in
some datasets increases the challenge of finding points from
minority classes, especially when the query budget is small as in
our experiment. Here, we used a query budget of 5% and 10%
in two separate sub-experiments. For evaluating the different
active learners, we will use three different assessment metrics:
i) the number of annotated points in each class, ii) TMPs, and iii)
NMMCs (see the explanation of TMPs and NMMCs in the initial
part of Section 4). The results of this experiment are summarized
in Tables IX and X. From these tables, we can conclude the
following:
� with a query budget of only 5% (see Table IX), the proposed

active learner clearly achieved the best results, since it
covered almost all classes, including the minority ones,
while the other active learners failed in some cases to
find at least one point from the minority classes. For
example, with MD1, LLR surprisingly failed to find even
one of the majority classes, and only points from one
class were annotated, while our active learner covered all
classes including the minority class. With MD4 that has
four minority classes, only our active learner managed to
find points from all minority classes, and it covered the
minority classes much better than the other algorithms.
With the MD5 dataset, the most challenging dataset with
five minority classes and with high IR, DimAL clearly
annotated more minority points than the other algorithms;
as a result, DimAL covered minority classes better than
the other active learners. It is also clear from the NMMCs
results that DimAL performed the best, where DimAL only
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TABLE IX
COMPARISON BETWEEN THE PROPOSED MODEL (DIMAL) AND THE RANDOM, LLR, CB, LHCE, AND LQBAL MODELS WITH IMBALANCED MULTI-CLASS REAL

DATASETS, QUERY BUDGET 5%, AND IN TERMS OF THE NUMBER OF ANNOTATED POINTS FROM EACH CLASS

TABLE X
COMPARISON BETWEEN THE PROPOSED MODEL (DIMAL) AND THE RANDOM, LLR, CB, LHCE, AND LQBAL MODELS WITH IMBALANCED MULTI-CLASS REAL

DATASETS, QUERY BUDGET 10%, AND IN TERMS OF THE NUMBER OF ANNOTATED POINTS FROM EACH CLASS

missed two classes with all datasets, while LLR that ob-
tained the second-best results missed five classes. Finally,
the proposed active learner also obtained the best TMPs
results.

� increasing the query budget to 10% of the total number
of the unlabeled points increases the chance of finding
more minority points, which is evident from the TMPs
results. Therefore, as shown in Table X, the NMMCs results
decrease (i.e., more minority classes are covered). For
example, with MD4 and LLR, there are three minority
classes that were not covered with a query budget of
5%, but increasing the query budget to 10% increases the
covered minority classes; and thus decreases the NMMCs.
This means that increasing the query budget increases the
chance of finding and covering more minority classes,
which might increase the classification performance. How-
ever, with TMPs=38.1 and NMMCs=2, DimAL signifi-
cantly obtained the best results among all the other active
learners.

In summary, due to our special search strategy, the proposed
algorithm achieved promising results on imbalanced binary and
multi-class datasets and was more successful in finding minor-
ity points than other active learning methods in most cases.
This reflects the good query strategy of our algorithm, which
helps to find minority points better than some state-of-the-art
active learning algorithms. Consequently, the proposed model
achieved the best sensitivity results, especially for large IR.

V. CONCLUSIONS AND FUTURE WORK

In this article, a novel dimensionality reduction-based active
learning algorithm (DimAL) is presented to select the most
informative and representative data points. The proposed active
learner balances the selection of informative and representa-
tive points through two phases. The first is the PCA-inspired

exploration phase, in which our active learner searches for the
regions with high variances to explore. The second phase is the
LDA-inspired exploitation phase, in which our active learner
selects borderline points between classes. This strategy, based
mainly on the geometric basis of two of the most popular
dimensionality reduction methods (PCA and LDA), improves
the ability of our model to cover large parts of the space and to
scan a large part of the subspace of the minority classes when
the data is imbalanced and with multi-class scenario. This purely
geometric strategy, which does not depend on a machine learning
model, increases the flexibility of our model to handle different
variations of the received unlabeled data. Another advantage of
our model is that it could obtain good results even with a low
query budget. Further, our active learner does not require any
predefined knowledge (e.g., the number of classes or the initial
training data), which allows our model to work with different
applications that have different initial knowledge. Furthermore,
our active learner is parameter-free, i.e., no parameter tuning
steps are required. Experimental results on synthetic and real
imbalanced and balanced datasets with different numbers of
classes, different imbalance ratios, and different numbers of
minority classes demonstrate the effectiveness of our approach.

However, using a purely geometric strategy might still pose
some problems (see some of the practical considerations in
Section III-D) to increase the applicability of our active learner
in different real-world settings. One of these practical consid-
erations that we have not mentioned is high-dimensional data.
From the complexity analysis in Section III-C, our active learner
requires high computational power compared to other active
learners (this is also evident in our experiments (see Table V)),
and this required computational power is likely to be higher with
high-dimensional data; this would be a fruitful area for future
work to increase the applicability of not only our active learner,
but also other active learners who have a similar strategy and
suffer in high-dimensional spaces. One of the solutions is to
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process the data not in their original spaces, but in low-
dimensional spaces, without losing important information that
could degrade the performance of active learners.
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