
2774 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

A Generic Schema Evolution Approach for NoSQL
and Relational Databases

Alberto Hernández Chillón , Meike Klettke , Diego Sevilla Ruiz , and Jesús García Molina

Abstract—In the same way as with relational systems, schema
evolution is a crucial aspect of NoSQL systems. But providing
approaches and tools to support NoSQL schema evolution is more
challenging than for relational databases. Not only are most NoSQL
systems schemaless, but different data models exist without a stan-
dard specification for them. Moreover, recent proposals fail to ad-
dress some key aspects related to the kinds of relationships between
entities, the definition of relationship types, and the support of
structural variation. In this article, we present a generic schema
evolution approach able to support the most popular NoSQL data
models (columnar, document, key-value, and graph) and the re-
lational model. The proposal is based on the Orion language that
implements a schema change operation taxonomy defined for the
U-Schema unified data model that integrates NoSQL and relational
abstractions. The consistency of the taxonomy operations is for-
mally evaluated with Alloy, and the Orion semantics is expressed by
translating operations into native code to update data and schema.
Several database systems are supported, and the engine built for
each of them has been validated by testing each individual SCO
and refactoring study cases. A study of relative execution time of
operations is also shown.

Index Terms—NoSQL databases, schema evolution, Evolution
management, taxonomy of changes, schema change operations.

I. INTRODUCTION

S CHEMA evolution is a classical problem in database re-
search. Database schemas have to be modified during the

lifetime of databases due to situations such as the appearance
of new functional or non-functional requirements, or database
refactoring. When this happens, stored data and code of database
applications must be updated to conform to the new schema,
as illustrated in Fig. 1. The desirable goal is to automate the
co-evolution of data and code for schema changes in order to
save effort and to avoid data and application errors.

For relational databases, such automation has formally been
addressed in several works that contributed with languages
and tools, among which PRISM++ [1] and DB-Main [2] are
remarkable. More recently, sophisticated commercial tools are

Manuscript received 3 May 2023; revised 9 January 2024; accepted 23 January
2024. Date of publication 5 February 2024; date of current version 10 June 2024.
This work was supported by MCIN/AEI/10.13039/501100011033 under Grant
PID2020-117391GB-I00. Recommended for acceptance by Semih Salihoglu.
(Corresponding author: Jesús García Molina.)

Alberto Hernández Chillón, Diego Sevilla Ruiz, and Jesús García Molina are
with the Faculty of Computer Science, University of Murcia, 30100 Murcia,
Spain (e-mail: alberto.hernandez1@um.es; dsevilla@um.es; jmolina@um.es).

Meike Klettke is with the Faculty of Computer Science and Data
Science, University of Regensburg, 93053 Regensburg, Germany (e-mail:
meike.klettke@ur.de).

Digital Object Identifier 10.1109/TKDE.2024.3362273

Fig. 1. Data and code must be adapted when the schema changes.

available to support relational schema evolution when agile
development is applied by using continuous integration and
deployment (CI/DC) [3], for example, Liquibase1 and Flyway.2

With the advent of NoSQL stores, automating the schema
evolution of such stores is also attracting great interest [4], [5],
[6], [7]. To provide flexibility, most NoSQL systems do not
require developers to specify a schema declaration, but they are
schema-on-read: no checking against a schema is performed
when data is stored. The “schemaless” term is commonly used
to refer to this characteristic of NoSQL stores. However, not
having to declare a schema does not imply the absence of one.
Instead, it is implicit in data and code, but not specified explicitly.
Data is always stored according to the structure of a schema that
can be formally declared, or live implicit in code and data, with
developers having to write code that manipulates data by having
in mind that schema. Therefore, schema changes also occur for
NoSQL stores, and data and code co-evolution is required.

Schemas are needed to implement the functionality offered
by most database tools, such as database design, schema visu-
alization, or code generation. This is also the case for tools that
automate schema evolution, which require the initial schema
and a language to express schema modifications scripts. In
schemaless NoSQL systems, the initial schema could either be
provided by developers in the format required or automatically
inferred from data or code. Several approaches for inferring
schemas have been published, such as [8], [9], [10].

There are four primary types of NoSQL stores: columnar,
document, key-value, and graph; and there is no existing

1[Online]. Available: https://www.liquibase.com/.
2[Online]. Available: https://flywaydb.org/.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1154-9192
https://orcid.org/0000-0003-0551-8389
https://orcid.org/0000-0001-9313-008X
https://orcid.org/0000-0003-4685-6659
mailto:alberto.hernandez1@um.es
mailto:dsevilla@um.es
mailto:jmolina@um.es
mailto:meike.klettke@ur.de
https://www.liquibase.com/
https://flywaydb.org/

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2775

specification, standard, or theory that formally establishes the
data model for each of them. For property graph stores, an
initiative is currently underway to define a standard, known as
the GQL language.3 According to the DB-engines ranking,4 the
most popular NoSQL stores in each category are: MongoDB
(document) which ranks 5th, Redis (key-value) 6th, Cassandra
(columnar) 12th, and Neo4j (graph) 22nd.

When several data models are widely used, unified or generic
data models are commonly proposed to ease the work of tool
builders and application developers [2], [11], [12]. In a previous
work [9], we presented the U-Schema unified data model to
integrate NoSQL and relational data models. Mappings were
established between U-Schema and each individual data model,
and extractors were developed for the most used NoSQL sys-
tems. U-Schema differs from existing generic data models such
as ER [13] and ER extensions [2] because it allows representing
the particularities of NoSQL data models, such as nested entities,
or the existence of structural variation in schemaless systems
(i.e., data of the same type can be stored having a different
structure).

Using U-Schema, a generic approach to automate schema
evolution in both NoSQL and relational databases can be es-
tablished. We did that by defining a unified schema change
taxonomy based on the U-Schema metamodel, and implement-
ing it via a generic language and engine, Orion. In this way,
developers would only need to familiarize themselves with a
single schema modification language. Additionally, tool builders
can leverage this language to reduce the effort required to create
schema evolution automation tools. With Orion, developers can
specify schema change operations (SCOs) in scripts written in a
system-agnostic manner. That is, these operations are expressed
at logical data model level, and they are independent of a
particular system or data model. Orion proves especially bene-
ficial in a polyglot persistence setting where schema evolution
impacts multiple databases with varying data models. Without a
universal language, developers would have to deal with distinct
languages or environments tailored to each data model. An
Orion engine has been developed for three of the most used
NoSQL stores: MongoDB (document), Cassandra (columnar),
and Neo4j (graph). As for the validation of our work, we for-
mally verified the schema change semantics of each SCO in our
taxonomy using Alloy. Additionally, we tested the three engines
by applying every SCO to test scenarios defined by schema
examples. We also employed Orion in various refactoring cases
for thorough assessment.

Our work contributes to the state of the art as follows:
� We propose a taxonomy for both NoSQL and relational

logical schemas. To the best of our knowledge, the hetero-
geneity of NoSQL data models has been addressed only
by Jérôme Fink et al. and Irena Holubová et al. in their
approaches defined, respectively, for hybrid polystores [5]
and multi-model databases [14]. No unified approaches en-
compassing both relational and NoSQL data models have
been documented. Furthermore, proposed taxonomies in

3[Online]. Available: https://www.gqlstandards.org/.
4[Online]. Available: https://db-engines.com/en/ranking.

these works lack specific operations related to relevant
aspects of NoSQL, such as structural variation for entity
types, and the existence of relationship types in graph
stores.

� The proposed taxonomy includes a richer set of operations
than those previously published [5], [14]. Being based on
U-Schema, we have considered changes on relationships,
distinguishing between aggregates and references. These
changes are frequent in operations such as converting a par-
ticular reference into an aggregate or vice versa [15]. Also,
we have included changes related to structural variations,
which could be very useful, e.g., joining all the variations
of a type in a single variation to remove outliers [8].

� Orion is a novel language to express the operations of the
proposed taxonomy. Orion schema and data updaters have
been built for three popular NoSQL database systems, and
a study of the data updating cost for each operation has
been performed.

� Non-trivial case studies of schema evolution have been
carried out by using real datasets.

Preliminary work on our proposal was presented by Hernán-
dez Chillón et al. [16], subsequent to the development of the
first version of the Orion language and engine, which supported
MongoDB and Cassandra. This work has since been extended
in several ways. An Orion engine for a graph store (Neo4j) was
developed to encompass the two main categories of NoSQL sys-
tems: those based on the prevalence of aggregations (document
and columnar) and reference-based systems (graph) [17]. We
have conducted a new case study of a refactoring to validate the
Orion engine for Neo4j, and offer a relative performance study
for the three supported systems.

From a more theoretical perspective, we utilized the Alloy for-
mal language to check the consistency of the SCO specifications.
Additionally, our study of related work has been broadened, and
the approaches have been distributed in two categories: generics
and specific to a database system. Moreover, we have considered
two influential works on relational and object-oriented schema
evolution.

This paper has been organized in the following sections: The
next Section is used to introduce our data model. In Section III
we define our abstract taxonomy of changes. Section IV shows
a formal validation for the taxonomy. In Section V the Orion
Language is described as a concrete implementation of the
taxonomy. In Section VI, we describe how the Orion engines
have been tested, and we measure the relative performance of
the different SCOs. Next, in Section VII two case studies are
discussed. Section VIII is used to discuss related work, tools
and research, and to compare the most promising approaches.
Finally, conclusions and future work are drawn in Section IX.

II. U-SCHEMA : A UNIFIED DATA MODEL

U-Schema is a generic metamodel that integrates the rela-
tional model and data models from the four most common
NoSQL paradigms: columnar, document, key-value, and graph.
A detailed description of U-Schema is presented in Fernández
Candel et al. [9], where some of its applications are also outlined.

https://www.gqlstandards.org/
https://db-engines.com/en/ranking

2776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

The use of different data models for different needs of persis-
tence is a trend, and U-Schema was devised to build generic
database solutions. Here, U-Schema is used to define a generic
schema evolution approach.

In this section, we will introduce U-Schema through the
Athena language [18], which has been built to provide a generic
schema definition language with high expressive power. Al-
though most NoSQL systems are schemaless, this language
is useful, for example, when designing schemas from scratch,
generating data for testing purposes, or schema manipulation
when there is no database whose schema can be inferred.

NoSQL data models can be classified into two categories, as
noted by Pramod J. Sadalage and Martin Fowler [17]: aggregate-
oriented systems (columnar, document, and key-value) where
data nesting prevails over references in order to structure data,
and graph systems, which are based on graph theory, with the
“property graph” being the most popular graph model [19].
In graph systems, schemas are formed by entity types (their
instances are nodes) related through relationship types (their
instances are references or arcs), and both types can have at-
tributes. In aggregate-based systems, a schema is formed by a
set of entity types which can describe root or nested objects,
and attributes can act as references. While reference is the only
relationship in graph schemas, both aggregates and references
are present in schemas of aggregate systems.

We will first describe the elements of a schema, and then
introduce a running example to illustrate the involved concepts.
In U-Schema, a schema is formed by a set of schemas types that
can be entity types or relationship types. The former represents
domain entities and the latter relationships between domain
entities. In the individual data models integrated in U-Schema,
relationship types are only part of graph models. Both schema
types are formed by a set of structural variations which contain
a set of features. There are four kinds of features: attributes hold
a value of a primitive type (e.g., Number or String); aggregates
hold an object or a collection of objects, keys are strings or num-
bers used to uniquely identify objects of a type; and references
hold an identifier (i.e., a key) to another object. In U-Schema,
keys and references are classified as logical features, those that
hold values that play the role of objects identifiers, and attributes
and aggregates are classified as structural features. Given an
entity type e, it is a root entity type if the other entity types
in the schema do not include an aggregate feature whose type
is e. Besides, features of a schema type can be common to all
variations, or specific to one or more variations.

Fig. 2 shows the Sales_department schema, utilized as
a running example throughout. This schema includes five entity
types, but does not incorporate relationship types. Salesper-
son,Sale, andSeasonExercise are declared as root entity
types, whereas PersonalData and SaleSummary are non-
root entity types, with instances embedded intoSalesperson
objects. An entity type declaration can include variations by
specifying both the features common to all variations and the
additional features of each variation, as shown by the Sales-
person type, which has two variations: Variation 1 does
not have additional features while Variation 2 has the
sales and profits features. An entity type can also be

Fig. 2. Sales_department schema defined using Athena.

declared as a list of features, with some marked as optional
to indicate that they are specific to one or more variations, while
the rest are considered common features.

Regarding the syntax of features, a feature is specified by
its name and type. Features may also have modifiers such as
“+” (for keys) or “?” (for optionals). For attributes, the type
can be either scalar (e.g., Number, String, and TimeStamp) or
structured (e.g., List, Map, and Tuple). In the case of aggregates,
the type is a non-root entity type (e.g., PersonalData for the
Salesperson.personalData feature).

Keys and references are formed by one or more at-
tributes. For example, Salesperson.id is a key, and
Sale.exercises specifies that Sale objects reference
SeasonExercise objects whose key is the id attribute. A
cardinality needs to be specified for references and aggregations,

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2777

TABLE I
SCHEMA CHANGE OPERATIONS OF THE TAXONOMY

such as one to one (symbol “&”), zero to one (“?”), one to many
(“+”), or zero to many (“*”).

Finally, in the running example a FSet named timeData
is used to factor out a set of features appearing in several type
declarations. In this case, timeData is added to the Sale and
SeasonExercice entity types.

III. A TAXONOMY OF CHANGES FOR U-SCHEMA

In schema evolution approaches, the set of changes that can
be applied on a particular data model is usually organized in
form of a taxonomy [6], [20]. Several categories are established
depending on the kind of schema element affected by a change.
Here, we present a taxonomy for the U-Schema data model in-
troduced in the previous section, which includes schema change
operations for all of its elements. In this way, our taxonomy
includes all the operations proposed in the studied taxonomies,
and adds new operations, such as those related to aggregates,
references, relationship types, and variations, as shown later.

Next, the terminology used to define the semantics of opera-
tions in our taxonomy is introduced. Let T be the set of schema
types, and let E be the set of entity types E = {Ei}, i = 1 . . . n,
T = E in the case of aggregate-based NoSQL stores and rela-
tional databases, while T = E ∪R in the case of graph stores,
where R = {Ri}, i = 1 . . .m denotes the set of relationship
types. Each schema type t ∈ T includes a set of structural
variations V t = {vt1, vt2, . . . , vtn}, with vti .features denoting
the set of features of a variation vti . Then, the set of features of
a schema type t is F t =

⋃n
i=1 v

t
i .features, which will include

attributes, aggregates, and references, and Ct ⊂ F t denotes the
set of common features of a type t. We will use dot notation to
refer to parts of a schema element, e.g., given an entity type e,
e.name and e.features refer to the name and set of features
(F e), respectively, of the entity type.

The proposed taxonomy is shown in Table I. In a similar
manner to that presented by Carlo Curino et al. [1], we added
SCOs taking into account a compromise between atomicity,
usability, and reversibility. In the case of changes affecting

2778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

variations, usefulness and atomicity have prevailed over re-
versibility. Each SCO is defined by an identifying name, together
with information regarding the gaining or loss of information
the operation causes on the schema, denoted by a cσ notation as
follows:
� c+ if an operation carries an additive change, e.g., Add

Schema Type.
� c− if a subtractive change occurs, e.g., Delete Feature.
� c+,− denotes an operation in which there is a gain and a

loss of information, e.g., Move Feature.
� c= means no change in information, e.g., Rename Schema

Type.
� c+|− adds or subtracts information, depending on the op-

eration parameters, e.g., casting a feature to boolean.
As noted by Carlo Curino et al. [1], a SCO can be considered

as a function whose input is a schema S and a database D
conforming to it, and produces as output a modified schema S ′

and the database D′ that results of updating D to conform to S ′.
As a matter of fact, the code of applications using the schema
S should also be updated, but this is not considered here. In
this paper, the SCO semantics are defined in form of pre and
postconditions, which appear in the second and third column of
Table I. Note that the postconditions only specify the changes to
the schema but not to the database, because these depend on the
concrete data model. Therefore, the database update semantics
are not included here. However, we added a comment to the
Adapt postcondition to show that its effect on the database is
different from that of the Delvar operation: Both operations
share the same schema updating semantics (a specific variation
is deleted), but they hold different database update semantics.

As Table I shows, taxonomy operations are classified in 6
categories that correspond to U-Schema elements: schema types,
variations, features, attributes, references, and aggregates.

The Schema type category groups operations that can be
applied to both entity and relationship types. In addition to
the Add, Delete, and Rename atomic operations, three complex
operations are added to create new schema types from existing
ones. The Extract operation creates a new schema type by
copying some of the features of an existing schema type, and
leaving the original schema type unmodified. The Split operation
divides an existing schema type into two new schema types by
separating its features into two subsets, and the original schema
type ceases to exist. The Merge operation can be understood
as the inverse of the previous operation: a new schema type is
created as the union of two existing ones, which are removed
afterwards.

The Structural Variations category groups three operations:
Delvar which deletes a given variation, Union which merges
all the variations of a schema type into a single one, and Adapt
which migrates data from a variation to another one. Given two
variations v1 and v2 of a schema type, Adapt creates a new
instance of v2 for each instance of v1 by: (i) copying the features
present in both variations from the migrated instance of v1 to the
new instance of v2, (ii) the features only present in v2 are added
to the instances created and they are initialized to default values,
and (iii) the features only present in v1 are ignored. Delvar
and Adapt could be useful, for example, to remove outliers

(i.e., variations with a small number of elements) [8], while
Union would be interesting when a union type is desired instead
of maintaining variations.

The Feature category groups operations with identical se-
mantics for attributes, aggregates, and references. It includes
operations to (i) copy a feature from one schema type to another,
either maintaining (Copy) or not (Move) the feature copied in
the original schema type; and (ii) move a feature from/to an
aggregate: Nest and Unnest. The taxonomy also incorporates a
category for each kind of feature, each containing operations
with semantics that differ between categories. The Attribute
category includes operations to Add a new attribute, change its
type (Cast), and add/remove an attribute to/from a key: Pro-
mote and Demote. Both the Reference and Aggregate categories
include the Add operation, along with two operations specific
to relationships: Mult to change the multiplicity, and Morph
to transform a reference to an aggregate or vice versa. The
Reference category also has the Cast operation. It is worth noting
the absence of a Key category because keys are logical features in
U-Schema, and a Key is always bound to one or more Attributes
(a structural feature). Therefore, keys can be created and deleted
by means of the attribute operations Add, Promote, and Demote.

All the listed SCOs, except for Split and Move, are atomic
operations: they cannot be implemented as a combination of
two or more other SCOs. Instead, Move results from applying
the Copy and Delete feature SCOs, in that order, and Split can be
defined by combining two Extract SCOs and a Delete schema
type SCO.

IV. VALIDATION OF THE TAXONOMY

Alloy 55 was used to validate each schema change operation
based on its pre and postconditions. This has been achieved by
applying a three step process in which (i) U-Schema concepts
and their restrictions have been modeled, (ii) operations imple-
menting the taxonomy have been defined, and then (iii) checks
for contradictions have been declared for each operation. Each
step will be detailed below.

The U-Schema metamodel has been modeled in Alloy using
signatures. It is divided into two parts: (i) entities and rela-
tionships field declarations, which are a set of Entity types and
Relationship types, and (ii) A set of facts that express constraints
a U-Schema model must fulfill, such as: A schema must have
at least one entity type or one relationship type; No two distinct
entity types can have the same name; and each reference to a
schema type must belong to the same schema as that schema
type.

The next step is to model the change operations in the taxon-
omy as Alloy operations, using predicates that may be applied
on instances of U-Schema elements. Each operation shows the
same structure: (i) it checks that input parameters do meet the
preconditions, and then (ii) it matches the changes to be reflected
on the output parameters.

In Fig. 3, the definition of the Rename Entity opera-
tion is shown. Its precondition is declared in the same

5[Online]. Available: https://alloytools.org/.

https://alloytools.org/

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2779

Fig. 3. Alloy definition for the Rename Entity operation.

Fig. 4. Postcondition checking of the Rename Entity operation.

way as it was specified in Table I, newName not in
schemaI.entities.name, and then several statements are
defined to be fulfilled by the output schema. When this operation
is invoked in Alloy, the engine looks for scenarios in which the
supplied preconditions remains true, showing the feasibility of
the operation.

We have defined Alloy Check operations to find contradic-
tions. For instance, the check operation for the Rename Entity
operation is shown in Fig. 4. When executing each Check
operation, no scenarios were found in which the implications
(i.e., postconditions) of the operation are not true (counterex-
ample).

We therefore concluded that preconditions were consistent
and postconditions were valid. The usage of Alloy showed the
importance of declaring invariant expressions in the metamodel,
and also helped us refining with additional preconditions certain
operations. For example, we initially defined the Split operation
and its complementary Merge Entity operation. However, upon
modeling their pre and postconditions, Alloy found scenarios in
which an entity type was split into two entity types that shared
the same name and feature set. This led us to adding a restriction
to assure name uniqueness for the new entity types created by the
Split operation. Furthermore, we realized that it could be useful
to perform Split only providing a single set of features and getting
a single entity type instead of two. Ultimately, this modified

Fig. 5. EBNF excerpt of the Orion language.

version of the Split operation was realized by introducing the
Extract operation.

V. IMPLEMENTING THE TAXONOMY IN ORION

Orion is the language created to implement the taxonomy
defined on U-Schema. With Orion, developers and database
administrators can specify and execute SCOs independently of
the data model and the database system. For example, the same
operation ADD is applied to add a new column to an existing
table in a relational database, a new collection in a document
database, or a new relationship type between nodes in a graph
database. In this section, we will first introduce the syntax of the
language by presenting an Orion script for the running example,
followed by a description of the structure and behavior of the
Orion engine developed for MongoDB, Cassandra, and Neo4j.

A. Concrete Syntax

The ordered nature of SCOs can mimic the set of commands of
a command-line interface (CLI) language. Therefore, the syntax
of Orion is simple, as illustrated in Fig. 5, in which an excerpt
of its EBNF grammar is shown. Note that the general format
for the majority of operations is a keyword denoting the change
operation (e.g., Add or Delete) followed by another keyword
to indicate the kind of schema element it affects (e.g., Entity
or Relationship, Aggregate or Reference), and finally a list of
arguments. The Orion syntax has been defined to let operations
to be written as concise as possible, e.g., it is possible to
apply certain operations over all schema types by using the
“*” wildcard, as in DELETE *::name, and operations can
accept a list of parameters as in DELETE Sales::types,
isActive, description. Operations can also be applied
to specific variations of a schema type. For example, the

2780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Fig. 6. Refactoring of the Sales_department schema using Orion.

RENAME Task(v1,v3)::duration TO period oper-
ation would only affect variations v1 and v3 of the Task
entity type. It is worth noting that the parameters required for
the ADD REF SCO depend on the type of target database: an
aggregate-based system requires defining the primitive type of
the reference value, while a graph system may permit inclusion
of a set of attributes to be embedded in the reference. In both
instances, the operation allows for the indication of a target entity
type and a join condition.

Fig. 6 shows an Orion script that applies changes on the
Sales_department schema of the running example in
Fig. 2. As observed in Fig. 6, an Orion script starts with aUsing
statement that indicates the schema on which the changes are
applied, and each SCO is validated on the current schema as
explained in Section V-B.

The script shows modifications on various entity types within
the schema, illustrating most of the changes in the taxon-
omy: (i) adding new entity types: Company (root type), Media
(aggregated to Company), and Address (aggregated to Per-
sonalData), (ii) attribute casting, the type of *::profits
and PersonalData::postCode are changed, (iii) attribute
deletion,Sale::isActive is removed, (iv) nesting attributes
into an aggregate (Salesperson::email into Per-
sonalData and PersonalData::city, postcode,
street into Address, (v) morphing an aggregate into a
reference (Salesperson::personalData), (vi) renam-
ing entity types (Salesperson) and features (SaleSum-
mary::completedAt), and (vii) adapting the variation
Salesperson::v1 to Salesperson::v2). In this case,

Fig. 7. Orion engine: Components and interpretation process.

the adaptation migrates all the objects that only have the common
properties to v2.

B. Semantics: Schema and Data Update

The Orion semantics are shaped by the modifications each
SCO imposes on the existing schema and stored data. For
each SCO, the preconditions and postconditions specified in the
taxonomy (refer to Table I) convey the schema change semantics.
We employ translational semantics [21] to define the data change
semantics. Specifically, SCOs are converted into native code,
enabling the modification of stored data in accordance with the
respective schema changes. Although space limitations prevent
an exhaustive discussion of the impact for each SCO, insights
can be gathered from the explanation regarding the purpose
of each SCO provided in Section III. Next, we explain how
the Orion engine implements the semantics, pointing out some
specific details for each supported system, and we will also
comment the code generated for two representative SCOs.

The Orion engine has been organized in two components:
Schema Updater and Data Updater, as illustrated in Fig. 7.
As shown in the figure, a three-step sequential process is ap-
plied on each SCO in the input script. The input schema is a
U-Schema model obtained in one of three ways: (i) if a schema
is present, a format conversion produces the Athena schema, as
with Cassandra, (ii) in the case of schemaless stores like Neo4j or
MongoDB, a schema extraction process is required, as detailed
by Fernández Candel et al. [9], (iii) alternatively, developers can
manually draft the schema in Athena. Both the input Athena
schema and the Orion script are converted into models, as Orion
uses a model-driven engineering (MDE) approach [21].

The Data Updater sequentially traverses SCOs in the script.
For each SCO, it sends (step 1) a request to the Schema Up-
dater to check whether the SCO is safely applicable. This

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2781

validation process first determines if the specific database
supports the SCO. It permits not only SCOs for natively
supported abstractions, but also those simulated by applying
the patterns used in the development of the extractors for
U-Schema [9]. This includes naming conventions of fields
and columns for references (i.e., foreign Keys) in MongoDB
and Cassandra, as well as the usage of User Defined Types
(UDT) to handle aggregations in Cassandra. Subsequently, it
checks that the schema is consistent with the SCO. For ex-
ample, for NEST PersonalData::city, postcode,
street TO address, three conditions must hold: (i) the
PersonalData entity type is present in the schema, (ii) it
includes the fields city, postcode, and street, and (iii) it
also contains the address aggregate feature. If the validation
fails, an error is issued and the whole generation process is
aborted. If the SCO is safely applicable, the Schema Updater
modifies the current U-Schema model according to the se-
mantics of the SCO (step 2), and the Data Updater produces
database-specific code to update the stored data in the order
given in the script (step 3). The result of the Orion interpretation
of each script is the generated code that implements the changes
in the database, which is enclosed in a transaction to achieve
atomicity. The Data Updater also produces code to update
explicitly declared schemas, as is the case of Cassandra.

The Schema Updater is therefore a system-independent com-
ponent because it works at a logical level by using a U-Schema
model. In contrast, the Data Updater depends on a specific
system, as the generated code is specific for each system. For
example, this component is responsible for mapping U-Schema
data types to the types in each system. This means that while
there exists a single implementation of the Schema Updater,
each supported system requires its own Data Updater. We
have developed data updaters for MongoDB, Cassandra, and
Neo4j. This selection ensures coverage of both aggregate-based
(document and columnar) and reference-based (graph) systems,
supporting three of the most used NoSQL stores.

It is worth noting that some SCOs do not modify the data.
For example, creating a new schema type does not affect data.
Others do not even generate code for some systems. Again,
creating a new schema type does not generate code for Neo4j,
as the schema type is reified when new nodes or arcs of that
schema type are created. When features are added (as in Adding
attributes), they are initialized to default values: 0 for numbers,
false for boolean, and null for strings and references.

Next, we will contrast how the data update process is imple-
mented for each of the three supported systems.

MongoDB: The Data Updater generates native MongoDB
commands in Javascript code. As MongoDB is a schemaless
system, the documents targeted for updates are selected based
on their structure, described by the variation specified in the
SCO. During the interpretation process, operations set to be
sequentially applied on the same entity type are identified and
grouped together into a single bulk write to improve perfor-
mance. However, some complex operations, such as MORPH, do
not allow that optimization, and must be executed in their own
aggregation pipeline. Fig. 8 shows an example of bulk write for
the operations RENAME and CAST.

Fig. 8. Example of two operations stacked together in MongoDB.

Cassandra: This system requires to declare an explicit
schema, so schema changes are limited to addition and removal
of tables (entity types) and columns (attributes), changes of
the type of a column, and the creation of user defined types
(they allow the declaration of complex objects, which the Data
Updater component uses to represent aggregates For the rest
of SCOs supported by Cassandra, it is necessary to export the
data to an external file, change the schema, and import the data
back. Although Cassandra provides a BATCH statement that
can be used to group several operations, similar to a stacking
mechanism in MongoDB, it does not assure that the operations
will be executed in the order they appear in the Orion script. This
may compromise the consistency between SCOs and the schema
(e.g., a SCO applied on a renamed attribute is executed incon-
sistently before the renaming is actually carried out). Therefore,
we have not used the BATCH statement for Cassandra. Data
updating is performed by generating CQL (Cassandra Query
Language) statements.

Neo4j: Being a graph system, Neo4j includes relationship
types, thus enabling the implementation of the full set of schema
type operations. Given that schema declarations are absent, data
to be updated are filtered in the same way as in MongoDB. In
this case, both instances of entity types and relationship types
can be updated. The Data updater generates Cypher statements
to perform the update. Stacking is also possible by grouping
together several SCOs applied over the same entity type and
getting the affected nodes with a single MATCH operation.
Then, one or more update statements are applied on those
nodes.

Table II sums up how each data updater handles each op-
eration. For each specific database, the keywords give insights
on how each operation is implemented. We also indicate which
operations do not have impact on existing data (for example,
creating a new collection in MongoDB), and also which opera-
tions cannot be executed in a particular database. To illustrate the
notation used in Table II to express how SCOs are implemented,
we will detail two operations for each database, one for entity
types and another one for references. The EXTRACT operation
for entity types is implemented as:
� MongoDB ($project,$out): An aggregation pipeline is

used to project only the selected features into a new col-
lection ($out command).

2782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

TABLE II
IMPLEMENTATION AND RELATIVE EXECUTION TIME OF OPERATIONS

� Cassandra (2x COPY table, CREATE table): First, the
selected features are exported to an external file by using
COPY, then a new table is created and the exported data
are imported back to the new table.

� Neo4j (MATCH, CREATE node): A single MATCH condi-
tion allows to filter nodes of the specific entity type, and
CREATE a new node for each one of them copying only
the selected features.

Then, the ADD reference operation is implemented as:
� MongoDB ($lookup,$addFields,$out): Implemented with

an aggregation pipeline whose first operation is a lookup
to match documents from the referencing collection to
the referenced one. Then an $addFields operation sets the
value of the reference on the affected documents, and write
the new field ($out).

� Cassandra (ADD column, 2x COPY table): A new column
that will store the references is created, then for each row
on the referenced table, its identifiers and column to be
referenced are exported to an external file and imported
into the referencing table.

� Neo4j (2x MATCH, CREATE rel): Two MATCH statements
are used to relate nodes of the referencing entity type and
nodes of the referenced entity type and match them with a
join condition. Then a CREATE is used to add a relationship

between each node pair. This operation can also create
initial features of the relationship, if they are provided on
the script.

VI. VALIDATION OF THE ORION ENGINE

We validated the Orion engine through two types of testing.
First, we ensured each SCO functioned correctly, and then we
addressed two refactoring cases. In this section, we will focus
on explaining the first testing approach.

We adopted a unit testing-like approach to validate each SCO.
For each SCO, we devised a simple schema to serve as data
test, created using the Athena language. Each test was isolated
from the rest, and the same context was established for all the
tests performed on a specific database (hardware, dataset, and
cache). The pre and postconditions of each SCO provide a basis
for designing test cases to check data updates. Assertions were
employed to automatically check the data updates. The test data
were customized based on the specific SCO and the database
being targeted. For example, to evaluate operations such as
attribute renaming, deletion, or casting, we created a single entity
type with attributes of common primitive types (e.g., Integer,
String, Boolean, Double). For morph operations, we defined and
entity type that references another and includes an aggregate

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2783

Fig. 9. opmod operation applied to each database.

feature. Additionally, to test the SCOs that involve variations
in MongoDB and Neo4j, we generated several variations of a
single entity type.

For each SCO test execution, a dataset comprising approxi-
mately 150,000 synthetic instances per entity type present in the
schema was created for MongoDB, Cassandra, and Neo4j. We
utilized the tool presented by Hernández Chillón et al. [22] to
generate these datasets. The test were conducted on an Intel(R)
Core(TM) i7-6700 CPU @3.4 GHz with 48 GB of RAM and
using SSD storage.

During the SCO tests, we measured execution times to es-
tablish a relative benchmark for each operation. This provides
developers with a point of reference for the duration of specified
operations, compared to a well-known predefined operation
executed on the database.

To achieve this, we used a modification operation, denoted
as opmod, as a normalization factor for the obtained times, as
shown in Fig. 9. This opmod operation changes the value of
a non-indexed field, so the database is not optimized for it.
Prior to measuring, we warmed up the database with a series
of non-returning operations, such as looking for non-existent
values in non-indexed fields. Then, opmod was executed across
all instances of a single entity type. It’s important to note that an
update operation was chosen over a simple query because our
focus is on measuring database-modifying operations. Given the
different nature of each database system considered, the opmod

operation is slightly different for each one of them.
Finally, we executed each operation independently, and orga-

nized the test execution in three blocks: (i) Entity type opera-
tions, (ii) feature, attribute, reference, and aggregate operations,
and (iii) relationship type operations, if applicable. We do not
consider bulk groupings, so the times show an upper bound for
each operation. We reproduced the experiment five times to get
a reliable mean time.

Table II introduced in previous section also shows the differ-
ent execution times of each taxonomy operation for the three
considered systems, The table includes a row for each SCO
and two columns for each system: implementation insights and
execution time. The execution times are expressed as a factor
of the execution time for the opmod operation on MongoDB,
Cassandra, and Neo4j, which are denoted as tM , tC , and tN ,
respectively. The factors on the table can be used to calculate
approximate script execution time by summing the factor of each
of the operations involved multiplied by the calculated opmod

for a specific database.

MongoDB operations performed as expected because the
majority of them scan over a single entity type (Delete, Unnest,
Cast), so their ratio is close to 1× tM and only a couple of
operations such as Copy or Morph require additional scans (or an
explicit join) and therefore are more costly. As was explained in
Section III, although Delvar and Adapt are semantically equal,
they are implemented differently because the former removes
instances belonging to a variation and the latter transforms those
instances to a new variation by adding and/or deleting fields.

Cassandra operations do not show huge performance differ-
ences among them, although the ones with the COPY command
are the most costly. As explained in Section V, these operations
are the ones that were implemented by means of an export/import
to an external file. These tables were of only five fields, but it is
foreseeable that their performance would drop if tables had more
fields. It is also important to note that CSV manipulation on the
most costly operations was not included in the measurement.

Finally, Neo4j operations behaved in a similar way as in Mon-
goDB, although certain relationship operations (Split, Merge,
Union) performed worse than other relationship operations be-
cause they not only affect a single relationship, but also involve
creating new relationships between nodes and filling their fields.

VII. CASE STUDIES OF ORION APPLICATIONS

In this section, we will present two of the case studies used
to validate Orion. Specifically, we demonstrate how Orion can
be employed to refactor two real datasets stored in Neo4j and
MongoDB. These schema evolution examples help illustrate the
utility of Orion. Database refactoring is the process of applying
changes to a database schema in order to improve its design,
while retaining its semantics [23]. This is done to adapt the
schema to new requirements, improve its performance, or to
make it more maintainable, without disrupting the associated
applications. A refactoring is a small change on the schema, and
several refactorings can be incrementally applied to achieve a
given improvement.

A. Case Study 1: A StackOverflow Refactoring in Neo4j

Orion was used to apply a refactoring to a Neo4j database
holding the StackOverflow dataset.6 We imported the dataset
into Neo4j, changing it slightly during the process to take
advantage of relationship types. In StackOverflow, a Comment
references both a User and a Post in a one-to-one relation.
During the loading process, we transformed theComment entity
type into a relationship type named Rel_Comments, which
establishes links between Users and Posts. The database
comprises about 20 million User nodes, 55 million Post
nodes, and 75 million Rel_Comments relationships connect-
ing them.

After loading the data, we applied the schema inference
strategy from Fernández Candel et al. [9]. An excerpt from the
inferred schema is shown in Fig. 10, with two of the seven discov-
ered entity types along with the introduced relationship type. The
schema is visualized using the notation introduced by Hernández

6[Online]. Available: https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange

2784 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Fig. 10. Excerpt of the StackOverflow schema in Neo4j.

Fig. 11. Operations to be applied to the StackOverflow schema and data.

Chillón et al. [24]. In the schema, both Posts and Users are
presented as union entity types. Both their required attributes
(common across all variations) and optional attributes (those that
might not appear in every variation) are listed. TheUser objects
reference Post objects via rel_comment references, which
are instances of the Rel_Comments relationship type. This
relationship type has four required attributes (ContentLi-
cense, CreationDate, PostId, and Score), and five
structural variations, each with a different set of additional
features.

In the database, we conducted a refactoring to enhance query
performance. In particular, for the Rel_Comments relation-
ship type, several changes were made, as shown in the Orion
script in Fig. 11.

Firstly, some Cast operations convert certain string fields to
timestamps. These casts are performed against every schema
type containing the CreationDate and LastAccessDate
(all three schema types shown). Then a Mult operation to allow

Fig. 12. Comments entity type from the Reddit schema.

the possibility for a post to hold more than one tag, and two
Copy operations to move a couple of attributes from User and
Post to each Comment between them, in order to get quick
access to those fields. Operations regarding Rel_Comments
include (i) a Union in order to maintain only a single variation
and make all the features mandatory, (ii) two Add Attribute
operations to create new features, which are initialized to default
values as no initialization value is specified, (iii) a Cast over
a feature that should be of double type, and (iv) two Delete
operations over the two PostId and UserId carried from the
loading that now are useless since the relationship stores that
information. Finally, we performed a Rename Relationship to
change the Rel_Comments name to a more suitable Com-
ments name for a relationship. Given this script and the ex-
tracted schema, the Orion engine generates the updated schema
and the Neo4j Cypher script to execute the changes on the
database.

B. Case Study 2: Outlier Migration of Reddit Data in
MongoDB

A structural variation of an entity type can be considered
an outlier if it has a very small number of objects [8]. In a
second case study, we looked for outlier variations in the Reddit
dataset,7 and the documents that belong to these variations were
either deleted or migrated to non-outlier or regular variations.
This task was performed by applying the following approach.
We first loaded the Reddit dataset into MongoDB, and inferred
its schema by applying the process described in Fernández
Candel et al. [9]. In the inferred schema, structural variations
of a schema type register the number of their instances (count
attribute). Fig. 12 shows the inferred Comment entity type, with
more than 860 million comments distributed in 20 structural
variations.

In Fig. 13, a bar chart with logarithmic axes shows the count
attribute for each variation. In a second step, we determine which

7[Online]. Available: https://files.pushshift.io/reddit/comments/.

https://files.pushshift.io/reddit/comments/

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2785

Fig. 13. Comments variations represented by their count property.

Fig. 14. Orion script used to migrate variations on Reddit Comments.

variations are outliers. In the case of Comment, few variations
hold the majority of documents, and we decide to classify the
top five most populated variations as regular, and the other
fifteen variations as outliers. These five regular variations cover
more than 99% of the comments of the entire dataset, while the
remaining outlier variations only cover 1% of the comments.

Once the outlier variations were selected, we decided which
ones to migrate and which ones to remove. For those variations to
be migrated, we had to determine the target variation. Finally, we
write the outlier migration script, by using the Delvar and Adapt
operations as is shown in Fig. 14. Here, adapting variation 11
(an outlier) to variation 5 (a regular variation) means that all
instances matching variation 11 will be modified accordingly to
fit variation 5, reducing the number of resulting variations. On
the other hand, the variations 1 to 4 are deleted which means
that their instances are removed from the database; this could be
appropriate if, for example, they are obsolete data.

Each of these Delvar and Adapt operations are translated
into Javascript code and remove or migrate instances from a
certain variation. An example of the code generated from one
of the Adapt operations is shown in Fig. 15, where a match that
captures only instances of variation 11 is applied and then fields
are removed and added with default values as needed. Once
the script is executed against the database, data is migrated,

Fig. 15. Orion script migrating Comments variation 11 to 5.

variations are removed and the complexity of the schema is
reduced.

VIII. RELATED WORK

Schema evolution has consistently been a central topic in
database research, with various approaches proposed for dif-
ferent data models that have emerged over the years [25],
[26]. Recently, the advent of NoSQL systems has increased the
interest in studying schema evolution in these systems, while
simultaneously new tools and approaches for the agile evolution
of relational systems have been introduced. In this section,
we will compare our proposal with research work centered
on NoSQL systems and also consider some influential works
published for relational and object-oriented (OO) databases. We
will be separating generic approaches from those defined for a
particular system.

Generic approaches
At the end of the nineties, when object databases arose as an

alternative to relational systems for some kinds of applications,
Jean-Luc Hainaut et al. developed DB-Main, a generic approach
aimed to support database engineering tasks for the existing
data models, such as database design, reverse engineering, and
evolution [2], [27]. With the definition of U-Schema, we are
pursuing the same objectives as DB-Main but addressing both
the NoSQL and relational data models.

DB-Main was based on two main elements: (i) The Generic
Entity/Relationship (GER) metamodel to achieve platform-
independence; and (ii) a transformational approach to implement
processes such as reverse and forward engineering, and schema
mappings. Our proposal is also based on a generic metamodel
and a transformational approach, but differs in two significant
aspects. Firstly, GER did not integrate data models supported
by NoSQL systems. Instead, we used the U-Schema meta-
model, which was specially designed to support NoSQL and
relational schemas. Secondly, we took advantage of MDE tech-
nology incorporated in the EMF/Eclipse framework, as the U-
Schema data model is implemented as an Ecore metamodel [28].
Fernández Candel et al. provides a detailed comparison between
the GER and U-Schema data models in the article that presents
U-Schema [9]. With regard to schema evolution, the taxonomy
proposed by John F. Roddick et al. [29] was adopted in DB-
Main. This taxonomy was defined for the Entity-Relationship
data model. It includes operations to modify entities, attributes

2786 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

and relationships, which are mapped to operations on the rela-
tional model. In addition to the add/remove/rename operations
for each element, the taxonomy includes operations to convert
attributes into entities (and vice versa), to convert weak entities
into regular entities (and vice versa), to change the cardinality
of relationships, and to promote/demote attribute into/from key.
Our taxonomy covers all the operations of the taxonomy of
Roddick et al. either with a direct mapping or through the
execution of several operations. Additionally, our taxonomy
includes specific operations for NoSQL data models, which are
not considered in Roddick’s work.

As noted by Sudha Ram [30], heterogeneous database systems
are commonly implemented through either a unified schema
approach or a multi-database approach. Holubová et al. explored
schema evolution for multi-database systems by proposing a
taxonomy of 10 operations for a layered architecture which
consists of a model-independent layer and a model-specific
layer [6], [31]. The former layer delegates to the correspond-
ing model-specific components by examining the prefix of the
affected stored objects, thus providing a way to support both
intra-model and inter-model operations. The operations of the
taxonomy include five for entity types (kinds) and five for
properties. The former five— add, drop, rename, split, and
merge — have the same meaning as in our taxonomy, and
the latter five correspond to those defined by Meike Klettke
et al. that are discussed below [32]. The impact of opera-
tions is analyzed by classifying them as either intra-model or
inter-model, based on the number of models affected by the
changes. Additionally, operations are categorized as global or
local, depending on whether they may be specified over the
global union schema, or only over a specific model. Addressing
issues on heterogeneous systems is beyond the scope of what
we have tackled with the Orion approach. We are focused on
providing a unified solution to automate the schema evolution
for systems based on a single data model. Nonetheless, it is
noteworthy that Orion is particularly well-suited for polyglot
persistence scenarios, where schema evolution extends across
diverse data models, compelling developers to manage multiple
languages and environments. Moreover, our taxonomy includes
operations that involve relationships and variations. Lastly, we
provide a comprehensive language designed for the definition
and execution of schema change operations.

As part of an approach aimed to rewrite queries for poly-
store evolution, Jérôme Fink et al. proposed a taxonomy that
includes six operations applicable to entity types, four to at-
tributes, and four to relations [5]. A generic language, called
TyphonML, is used to define relational and NoSQL schemas,
physical mapping, and schema evolution operations. Like our
approach, TyphonML also relies on a generic metamodel, which
is similarly crafted using the Ecore metamodeling language.
However, U-Schema offers a richer data model as discussed in
the paper that presents it [9]. This enables us to define operations
for abstractions as structural variations and relationship types (in
graph stores), and to consider two kinds of relationships: aggre-
gates and references (in aggregate-oriented stores).

Meike Klettke et al. proposed a 5-operation taxonomy in a
work focused on efficient data migration for aggregate-oriented

NoSQL systems [32]. This taxonomy is based on a very simple
data model: a schema is composed of a set of entity types, each
formed by attributes whose type can be a primitive, collection,
or another entity type, but relationships between entities are not
considered. This data model is intended to serve as an abstraction
layer on top of different NoSQL databases, thereby defining
additional constraints. The schema evolution operations defined
include adding, deleting, renaming properties, and copying or
moving a set of properties from one entity type to another. This
taxonomy was implemented in Darwin [7], [33], a data platform
for schema evolution management and data migration, and also
on Google Cloud platform whith the Cleager tool [34], which
maps operations of the taxonomy to MapReduce functions. Our
U-Schema-based taxonomy is clearly more comprehensive in
terms of defined operations and the supported data models.
Orion includes operations on abstractions such as relationships,
variations, and relationship types, and the taxonomy unifies
operations for relational and NoSQL systems (aggregate and
graph systems).

Approaches for specific NoSQL stores
Neo4j (Graph): Angela Bonifati et al. recently proposed a

mathematical framework designed for the validation and evo-
lution of schemas for property graph (PG) stores [4]. Schemas
are also represented as PG, and a schema DDL based on Open-
Cypher is introduced with the purpose of supporting the algorith-
mic contributions of their work. The paper formalizes the notion
of PG schema and shows how schema validation can be applied
by using homomorphisms. The proposed taxonomy includes
operations applicable to both entity types and relationship types:
add, drop and rename, split and join, and also adding, removing
and renaming attributes. All these operations are included in our
taxonomy with the same semantics. The authors applied rewrite
rules to formalize schema and data updates, and they have used
theReGraph library to implement a prototype. This implemen-
tation aims to prove the conceptual and technical feasibility of
the proposal. We have not tackled code updating in this work,
but we provide a universal schema evolution language, which
has been tested for three popular databases, and a reference
execution time has been obtained for each operation. Also, we
have formally validated the taxonomy operations with Alloy.
Interestingly, the approach of Bonifati et al. aims to support
prescriptive and descriptive schemas, i.e., an application could
simultaneously use DDL schemas and schemas implicit in data
and code, in order satisfy the requirements of applications both
in production and in development. Instead, we have considered
that schemas can come from schema-on-read and schema-on-
write systems, but evolution is applied on prescriptive schema
represented in U-Schema.

Cassandra (columnar): Suárez-Otero et al. [35] recently pub-
lished a work addressing the schema evolution in Cassandra,
focusing on maintaining consistency between conceptual and
logical schemas. To achieve this, they have developed an MDE
solution, CoDEvo, using model transformations to implement
inter-schema consistency. They defined a simple conceptual
schema metamodel, which represents a schema as a set of
Entities, which can have Attributes (reference a column of a
logical schema model), a set of Relationships between two

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2787

entities, and a Weak Entity that inherit from Entity. Another
simple metamodel represents Cassandra schemas. By analyz-
ing changes in conceptual schemas from some real projects, a
taxonomy was defined which includes operations on the four
kinds of elements above mentioned. All these operations are
present in the Orion taxonomy except for Add Weak entity
and Split attribute, which suggest that U-Schema can serve to
represent both conceptual and logical schemas. No language
was developed for the proposed taxonomy by Suárez-Otero et
al, and changes are not propagated to the database. CoDEvo was
empirically evaluated by comparing the generated schemas with
the schemas declared by developers in nine projects of public
repositories.

Redis (Key-Value): KVolve [36] is a library that allows schema
evolution in the Redis8 key-value store. It is restricted to key and
value changes for entries sharing a common prefix, and accepts
a previously-defined user function written in C with the actions
to be performed. Key changes must be done by unambiguous
bijections, and value changes can only access the value to update
it. This library operates on standalone Redis instances. A lazy
strategy is applied to update entries as they are accessed. This
solution is limited to Redis, while our approach is generic and we
defined a taxonomy of changes expressed at the logical level. In
our approach, key-value stores can store aggregate and reference
values as described by Fernández Candel et al. [9], where a
mapping of Redis to U-Schema is presented. However, we have
not built an Orion engine for Redis yet.

Two influential approaches for relational and OO databases:
PRISM/PRISM++ [1] is an approach and tool intended to auto-
mate data migration tasks and rewrite legacy queries. It defines
an evolution language based on Schema Modification Operators
(SMOs), which preserve information and can be are revertible,
and Integrity Constraint Modification Operators (ICMO). Given
a schema, a new schema, and a set of mappings expressed
through SMOs and ICMOs, queries are rewritten and stored
data are updated. An assessment of the performance associated
with rewriting queries is presented. Although much more mature
and evolved than our work, this approach does not address the
NoSQL database evolution.

In OO systems, schema evolution is a more complicated
problem than in relational systems. This is because OO schemas
are composed of classes, hierarchies of inheritance, and aggre-
gation, while relational schemas are sets of tables. In addition,
classes have structure (attributes) and behavior (methods). OO
schema evolution aroused great interest until the mid-1990 s,
when OO systems evidenced limitations to become an alterna-
tive to relational systems. A survey on that topic was presented
by John F. Roddick [25]. Banerjee et al. [20] published a seminal
paper proposing a schema change taxonomy, and discussing the
operations whose semantic impact was analyzed. Our proposal
is inspired by that work: we have defined a taxonomy for NoSQL
databases, the change operations are rigorously specified and its
performance is measured.

To conclude this section, it is important to note that schema
versioning is intimately related to schema evolution. Schema

8[Online]. Available: https://redis.io.

version management systems enable the creation of a new
schema version when schema evolves, track the version history,
and keep a database instance for each version. Kai Herrmann et
at. have recently conducted notable work on schema versioning
by developing the InVerDa tool, which extends relational sys-
tems with schema version management [37]. InVerDa includes
BiDel, a schema evolution language based on a change taxon-
omy. However, schema versioning is beyond the scope of our
work with Orion.

In short, the differences between our work and the existing
ones can be summarized as follows. We start with a NoSQL
schema represented as a U-Schema model, which has been either
extracted from a existing store, or written using Athena. This
schema can then be changed by writing a Orion script, and
the schema and data updates are automatically performed in
the database. Orion is a system-independent operation language
because U-Schema is a unified data model that includes all
the typical elements of logical NoSQL and relational schemas,
even structural variations are considered, which allows a more
complete taxonomy to be defined.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the NoSQL schema evolution
by offering a generic solution: a unified data model with which
we defined a taxonomy of schema changes. We presented the
Orion schema operation language implementing this taxonomy.
Thanks to the richness of the unified metamodel abstractions, we
were able to define changes that affect aggregates, references,
and variations. The operations have been implemented for three
widely used NoSQL stores, one based in documents and schema-
less, other column-based that requires schema declarations, and
a third one based in graphs. The usefulness of our proposal
has been validated through a refactoring of the StackOverflow
dataset and an outlier migration on the Reddit dataset. This work
also presents an application of the unified metamodel presented
by Fernández Candel et al. [9]. An implementation of Athena
and Orion are publicly available on a GitHub repository.9

Although the main purpose of the Orion language is to support
schema changes in a platform-independent way, it can be used
in other cases. For example, if no initial schema is provided,
an Orion script can bootstrap a schema by itself through the
use of the Add, Nest, and Promote SCOs. These SCOs will
create the required collections and schema definition (in case
of having an explicit schema). Once the database is provided
with the defined schema, it can be populated. In addition to this,
differences between Athena schemas may be expressed as Orion
specifications; and Orion specifications may be obtained from
specifications of existing tools such as the PRISM/PRISM++
operation language [1].

The future work considered includes: (i) Updating appli-
cation code that makes use of the retrieved data as well as
handling query rewriting. Some preliminary work has been
done by Hernández Chillón et al. [38], where code analysis
is used to detect expressions that need to be updated, and by

9[Online]. Available: https://github.com/modelum/uschema-engineering.

https://redis.io
https://github.com/modelum/uschema-engineering

2788 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Fernández Candel et al. [39], where code analysis is proposed
to extract schemas, apply refactorings and provide suggestions
of code modifications; (ii) Investigating new operations to be
added to the taxonomy, such as operations regarding schema
inheritance and type hierarchies, and refining existing ones as
needed; (iii) Extending Orion to generate code for specific pro-
gramming languages, which will allow to implement operations
on databases that are not supported natively; (iv) Applying a
dependency study on Orion scripts to check the feasibility of
reordering SCOs on the same schema type. This way, related
SCOs could be stacked together and issued as a single operation
to achieve better performance gain; (v) Finally, integrating Orion
into a tool for agile migration.

REFERENCES

[1] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the
database schema evolution process,” VLDB J., vol. 22, pp. 73–98, 2013.

[2] J.-M. Hick and J.-L. Hainaut, “Strategy for database application evolution:
The DB-MAIN approach,” in Proc. Int. Conf. Conceptual Model., 2003,
pp. 291–306.

[3] P. Sadalage and M. Fowler, “Evolutionary database design,” 2016. [On-
line]. Available: https://martinfowler.com/articles/evodb.html

[4] A. Bonifati, P. Furniss, A. Green, R. Harmer, E. Oshurko, and H. Voigt,
“Schema validation and evolution for graph databases,” in Proc. 38th Int.
Conf. Conceptual Model., Salvador, Brazil, 2019, pp. 448–456.

[5] J. Fink, M. Gobert, and A. Cleve, “Adapting queries to database schema
changes in hybrid polystores,” in Proc. 20th IEEE Int. Work. Conf.
Source Code Anal. Manipulation, Adelaide, Australia, 2020, pp. 127–131,
doi: 10.1109/SCAM51674.2020.00019.

[6] I. Holubová, M. Vavrek, and S. Scherzinger, “Evolution manage-
ment in multi-model databases,” Data Knowl. Eng., vol. 136, 2021,
Art. no. 101932.

[7] U. Störl and M. Klettke, “Darwin: A data platform for schema evolution
management and data migration,” in Proc. Workshops EDBT/ICDT Joint
Conf., M. Ramanath, Themis Palpanas, Eds., Edinburgh, UK, Mar. 29,
2022, vol. 3135.

[8] M. Klettke, U. Störl, and S. Scherzinger, “Schema extraction and structural
outlier detection for JSON-based NoSQL data stores,” in Proc. Conf.
Database Syst. Bus. Technol., Web, 2015, pp. 425–444.

[9] C. J. F. Candel, D. S. Ruiz, and J. J. G. Molina, “A unified meta-
model for NoSQL and relational databases,” Inf. Syst., vol. 104, 2022,
Art. no. 101898.

[10] L. Wang et al., “Schema management for document stores,” in Proc. VLDB
Endow., vol. 8, no. 9, pp. 922–933, 2015.

[11] A. Wang, “Unified data modeling for relational and NoSQL databases,”
infoq, 2016. [Online]. Available: https://www.infoq.com/articles/unified-
data-modeling-for-relational-and-nosql-databases/

[12] “Polyglot data modeling. hackolade web,” Accessed: Sep. 2023. [Online].
Available: https://hackolade.com/polyglot-data-modeling.html

[13] P. P.-S. Chen, “The entity-relationship model: Toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, 1976.

[14] I. Holubová, M. Klettke, and U. Störl, “Evolution management of multi-
model data,” in Heterogeneous Data Management, Polystores, and Ana-
lytics for Healthcare. Berlin, Germany: Springer, 2019, pp. 139–153.

[15] D. Coupal and K. W. Alger, “Building with patterns: The attribute pat-
tern,” 2019. [Online]. Available: https://www.mongodb.com/blog/post/
building-with-patterns-the-attribute-pattern

[16] A. Hernández Chillón, D. Sevilla Ruiz, and J. Garcia-Molina, “Towards a
taxonomy of schema changes for NoSQL databases: The orion language,”
in Proc. 40th Int. Conf. Conceptual Model., St.John’s, NL, Canada, 2021,
pp. 176–185.

[17] P. Sadalage and M. Fowler, NoSQL Distilled. A Brief Guide to the Emerg-
ing World of Polyglot Persistence. Boston, MA, USA: Addison-Wesley,
2012.

[18] A. Hernández Chillón, D. Sevilla Ruiz, and J. Garcia-Molina, “Athena: A
database-independent schema definition language,” in Proc. Adv. Concep-
tual Model., St.John’s, NL, Canada, 2021, pp. 33–42.

[19] R. Angles et al., “PG-schema: Schemas for property graphs,” in Proc. ACM
Manage. Data, vol. 1, no. 2, pp. 1–25, 2023.

[20] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth, “Semantics and imple-
mentation of schema evolution in object-oriented databases,” SIGMOD
Rec., vol. 16, no. 3, p. 311–322, 1987.

[21] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engi-
neering in Practice. San Rafael, CA, USA: Morgan & Claypool Publishers,
2012.

[22] A. Hernández Chillón, D. Sevilla Ruiz, and J. García-Molina, “Deimos: A
model-based NoSQL data generation language,” in Proc. Adv. Conceptual
Model., Viena, Austria, 2020, pp. 151–161.

[23] S. W. Ambler and P. J. Sadalage, Refactoring Databases: Evolutionary
Database Design, Boston, MA, USA: Addison-Wesley Professional, 2006.

[24] A. Hernández Chillón, S. Feliciano Morales, D. Sevilla Ruiz, and J. García
Molina, “Exploring the visualization of schemas for aggregate-oriented
NoSQL databases,” in Proc. 36th Int. Conf. Conceptual Model., Valencia,
Spain, 2017, pp. 72–85.

[25] J. F. Roddick, “Schema evolution in database systems - an annotated
bibliography,” SIGMOD Rec., vol. 21, no. 4, pp. 35–40, 1992.

[26] E. Rahm and P. A. Bernstein, “An online bibliography on schema evolu-
tion,” ACM Sigmod Rec., vol. 35, no. 4, pp. 30–31, 2006.

[27] J. Hainaut, “The transformational approach to database engineering,” in
Generative and Transformational Techniques in Software Engineering,
Braga, Portugal: Springer, 2005, pp. 95–143. [Online]. Available: https:
//doi.org/10.1007/11877028_4

[28] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, Boston, MA, USA: Addison-Wesley Profes-
sional, 2009.

[29] J. F. Roddick, N. G. Craske, and T. J. Richards, “A taxonomy for schema
versioning based on the relational and entity relationship models,” in
Entity-Relationship Approach — ER ’93, R. A. Elmasri, V. Kouramajian,
and B. Thalheim, Eds., Berlin, Germany: Springer, 1994, pp. 137–148.

[30] S. Ram, “Heterogeneous distributed database systems - guest editor’s
introduction,” Computer, vol. 24, no. 12, pp. 7–10, 1991.

[31] M. Vavrek, I. Holubová, and S. Scherzinger, “MM-evolver: A multi-model
evolution management tool,” in Proc. Int. Conf. Extending Database
Technol., 2019, pp. 586–589.

[32] M. Klettke, U. Störl, M. Shenavai, and S. Scherzinger, “NoSQL schema
evolution and Big Data migration at scale,” in Proc. IEEE Int. Conf. Big
Data, 2016, pp. 2764–2774.

[33] U. Störl et al., “Curating variational data in application development,” in
Proc. IEEE 34th Int. Conf. Data Eng., 2018, pp. 1605–1608.

[34] S. Scherzinger, M. Klettke, and U. Störl, “Cleager: Eager schema evolution
in NoSQL document stores,” in Datenbanksysteme Für Bus., Technolo-
gie und Web (BTW 2015), Bonn: Gesellschaft für Informatik, 2015,
pp. 659–662.

[35] P. Suárez-Otero, M. J. Mior, M. J. S. Cabal, and J. Tuya, “Codevo: Column
family database evolution using model transformations,” J. Syst. Softw.,
vol. 203, 2023, Art. no. 111743. [Online]. Available: https://doi.org/10.
1016/j.jss.2023.111743

[36] K. Saur, T. Dumitraş, and M. Hicks, “Evolving NoSQL databases without
downtime,” in Proc. IEEE Int. Conf. Soft. Maintenance Evol., Raleigh,
NC, USA, 2016, pp. 166–176, doi: 10.1109/ICSME.2016.47.

[37] K. Herrmann, H. Voigt, T. B. Pedersen, and W. Lehner, “Multi-
schema-version data management: Data independence in the twenty-
first century,” VLDB J., vol. 27, no. 4, pp. 547–571, 2018,
doi: 10.1007/s00778-018-0508-7.

[38] A. Hernández Chillón, J. García Molina, J. R. Hoyos, and M. J. Ortín,
“Propagating schema changes to code: An approach based on a unified data
model,” in Proc. Workshops EDBT/ICDT 2023 Joint Conf. 3rd Workshop
Conceptual Model. NoSQL Data Stores, Ioannina, Greece, 2023, vol. 3379.

[39] C. J. F. Candel, “A unified data metamodel for relational and NoSQL
databases: Schema extraction and query,” Ph.D. dissertation, Faculty of
Informatics, Univ. Murcia, Murcia, Spain, 2022.

Alberto Hernández Chillón received the PhD degree
in computer science from the University of Murcia, in
2022. During his research, he developed a set of tools
based on the U-Schema metamodel to define inde-
pendent schemas, handle schema and data evolution
and generate volumes of random data. Before that, he
was a member of the Cátedra SAES team from 2014
to 2019, where he worked on topics related to Model-
Driven Engineering, automatic code generation and
NoSQL technologies.

https://martinfowler.com/articles/evodb.html
https://dx.doi.org/10.1109/SCAM51674.2020.00019
https://www.infoq.com/articles/unified-data-modeling-for-relational-and-nosql-databases/
https://www.infoq.com/articles/unified-data-modeling-for-relational-and-nosql-databases/
https://hackolade.com/polyglot-data-modeling.html
https://www.mongodb.com/blog/post/building-with-patterns-the-attribute-pattern
https://www.mongodb.com/blog/post/building-with-patterns-the-attribute-pattern
https://doi.org/10.1007/11877028_4
https://doi.org/10.1007/11877028_4
https://doi.org/10.1016/j.jss.2023.111743
https://doi.org/10.1016/j.jss.2023.111743
https://dx.doi.org/10.1109/ICSME.2016.47
https://dx.doi.org/10.1007/s00778-018-0508-7

CHILLÓN et al.: GENERIC SCHEMA EVOLUTION APPROACH FOR NOSQL AND RELATIONAL DATABASES 2789

Meike Klettke professor for data engineering with
the University of Regensburg. She studied computer
science with the University of Rostock, received her
doctorate with the University of Rostock, in 1997 with
the topic “Acquisition of integration constraints in
databases” and habilitated in 2007 with a thesis on
“Modeling, evaluation and evolution of XML doc-
ument collections.” Since 2022, she has headed the
data engineering working group with the Faculty of
Informatics and Data Science in Regensburg, Ger-
many.

Diego Sevilla Ruiz received the MSc and PhD de-
grees in computer science from the University of
Murcia. He Associate Professor with the Department
of Computer Engineering (DITEC), University of
Murcia, Spain. His research interests include NoSQL
databases, Distributed Systems, Functional Program-
ming and Model-Driven Engineering and Testing. He
has published several journal articles and conference
papers on these topics.

Jesús García Molina received the PhD degree from
the University of Murcia, in 1987. He is a full profes-
sor with the Department of Informatics and Systems,
University of Murcia, Spain, where he leads the Mod-
elum group, an R&D group focused on Model-Driven
Engineering with a close partnership with industry.
His research interests include model-driven develop-
ment, domain-specific languages, and model-driven
modernization.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

