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Quantum Bandit With Amplitude Amplification
Exploration in an Adversarial Environment
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Abstract—The rapid proliferation of learning systems in an
arbitrarily changing environment mandates the need to manage
tensions between exploration and exploitation. This work proposes
a quantum-inspired bandit learning approach for the learning-and-
adapting-based offloading problem where a client observes and
learns the costs of each task offloaded to the candidate resource
providers, e.g., fog nodes. In this approach, a new action update
strategy and novel probabilistic action selection are adopted, pro-
voked by the amplitude amplification and collapse postulate in
quantum computation theory. We devise a locally linear map-
ping between a quantum-mechanical phase in a quantum domain,
e.g., Grover-type search algorithm, and a distilled probability-
magnitude in a value-based decision-making domain, e.g., adver-
sarial multi-armed bandit algorithm. The proposed algorithm is
generalized, via the devised mapping, for better learning weight
adjustments on favorable/unfavorable actions, and its effectiveness
is verified via simulation.

Index Terms—Multi-armed bandit, quantum amplitude ampli-
fication.

I. INTRODUCTION

FOG computing domains, such as vehicular networks, have
been rapidly proliferated [1]. Enabling such emerging ap-

plications to work in a pervasive uncertain environment man-
dates the need for intelligent decision-making (DM) to choose a
suited computing server guaranteeing the quality of service, e.g.,
offloaded to nodes geared with powerful computing capability.
To solve the provider identification problem, sequential DM has
been leveraged for its ability to learn in a trial/error fashion with-
out explicit knowledge of the environment, while facing the ex-
ploration/exploitation (ExR/ExT) dilemma [2]. The exploration
strategy is known as a crucial ingredient for learning-based DM:
under-ExR makes the decision stick at a sub-optimal strategy,
while over-ExR may incur an ExR cost.
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Various exploration strategies have been introduced to ad-
dress the balancing issue, which can be categorized into three
main methods of selecting an action, e.g., a service provider:
i) An upper-confidence bound (UCB)-type strategy, referred to
as interval-estimation method [3], selects an action that has
the highest estimated action-value plus the UCB exploration
term, making it possible to play an action that was not ex-
plored sufficiently; ii) A greedy-type strategy, referred to as the
semi-uniform (SU) method [4], consists of choosing a random
action with ε-frequency or choosing the action with the highest
estimated mean otherwise. For the latter, the estimation is based
on the costs observed so far; iii) A softmax-type strategy, referred
to as the probability-matching (PM) method [5], chooses actions
according to a Gibbs-type probability distribution reflecting
how likely the actions would be optimal, with a free parameter
corresponding to inverse temperature β. With careful tuning,
such a UCB-type rule is asymptotically optimal for specific
cost distributions but may occur after a long period of time
particularly in an adversarial environment. Using SU and PM
methods requires tuning the ExR parameter, ε or β, vital in
a varying environment but non-trivial to set in a systematic
way due to lack of generality in how to adjust the factors on
favourable/unfavorable actions.

As a promising direction to overcome the difficulties of
controlling the ExR factors, adopting a quantum mechanism
in the field of learning algorithms has been considered. Exist-
ing works in [6], [7] show that quantum learning algorithms
can achieve a better ExR/ExT trade-off compared with classi-
cal learning, and learning efficiency improvement. Such quan-
tum enhancement arises from the use of quantum subroutines
such as quantum amplitude amplification (QAA) and quantum
measurement (QM). QM envisions natural ExR based on the
collapse postulate of quantum mechanics, which can be used
for the importance-weighted Gibbs sampling without specific
exploration parameters. QAA, a core in Grover’s algorithm [8],
updates the probability amplitudes of actions with a certain
degree of importance, performed by multiple iterations, where
each can be generalized to adjust weights on favorable actions.

Existing probability amplitude updating strategies [7], [9],
[10], [11] suffer from arbitrary phase variation and probability
amplitude jumping issues. Such uncertainty attributes may bring
out severe eventuality in an arbitrarily varying environment
with incomplete feedback, since the probability amplitude of
a sub-optimal action could be amplified by an arbitrary degree.
The concerns have not been resolved due to challenges associ-
ated with i) nonexistence of one-to-one mapping between phase
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and probability amplitudes and ii) nonsmoothness of arbitrary
cost estimates, shed lighted in this work. To the best of our
knowledge, this is the first work aiming at devising a quantum-
inspired learning process in an adversarial environment with
limited feedback. The features of this work can be summarized
as follows.
� This work proposes a quantum exploration-based decision-

making algorithm, where a novel probabilistic action selec-
tion is adopted for enhancing an adversarial multi-armed
bandit (MAB) learning strategy [4], provoked by the ampli-
tude amplification and collapse phenomenon in quantum
computation theory.

� This work extends non-classical learning algorithms using
a fixed phase with flexible iterations [7] to their counter-
parts, flexible phases with an iteration, in a resembling way
to existing works [9], [10], [11]. Our work differs from pre-
vious works in the ways the phases are tuned, overcoming
the hardness of justifying to set a free parameter.

� This work generalizes the MAB algorithm through in-
creasing the probability amplitude of a dominant action
as well as decreasing the ones of the others. This is re-
alized by adjusting importance weights via the devised
one-to-one mapping between a quantum-mechanical phase
and a learning-based decision probability, which otherwise
conventionally requires an extra normalization [10].

� This work alleviates an undesirable situation, where a
suboptimal action is amplified due to uncertainty of the
empirical cost estimates in an adversarial bandit setting.
This is enabled by using an implicit exploration estimate
process, which renders the reduction of variance and bias
simultaneously and thus achieves a better ExR/ExT bal-
ance [2]. Simulation results verify its effectiveness.

II. RELATED WORKS

This section presents related works in the area of quantum-
enhanced exploration strategy, in terms of quantum bandit prob-
lems and amplitude amplification methods.

Quantum algorithms for bandit problems have been proposed
recently [12], [13], [14], [15]. The work in [12] initiated the
study of quantum algorithms for best-arm identification of
MAB, the research in [13] proved optimal results for best-arm
identification of MAB with Bernoulli’s arms, and the authors
in [14] proposed quantum algorithms to find an optimal policy
for a Markov decision process with quantum speedup. These
algorithms investigate potential improvements in the respective
multi-armed stochastic bandit problems. The stochastic model
may be unrealistic in many applications: data collected in a
sequence rarely satisfy the i.i.d assumption, and it would be
naive to think that corruptions never occur. The work in [15]
studied a quantum version of the Hedging algorithm, related to
the adversarial model considered pessimistic in contexts where
we expect learning to be reasonably possible. However, it is
limited to a bandit setting.

Quantum algorithms with probability amplitude updating are
in general supported by two different approaches [7], [9], [10],
[11]. One is to make use of a fixed phase with multiple Grover

iterations, which however suffers from an amplitude jumping
issue [7] due to discrete operations. The other is to consider a
varied phase with a single iteration, which however suffers from
the effects of arbitrary phase variations on the amplitudes due to
nonexistence of one-to-one mapping between phase rotation and
probability amplitudes [9], [10], [11]. The work in [9] considered
an empirical function mapping, e.g., setting relevant free param-
eters manually. However, such a manual strategy is only valid
when sufficient data are available, causing unreliability. The
work in [10] considered a parametric mapping that is not reliant
on empirical data. However, a substantial number of function
forms remain largely unexplored, and thus such parametric strat-
egy cannot be generalized, causing incompatibility. The work
in [11] relaxed the limitations of both empirical and parametric
approaches. However, their approach suffers from inflexibility
due to non-monotonic mapping, which fails to simultaneously
amplify the dominant action and attenuate others. Additionally,
none of these works considers the uncertainty of the empirical
costs generated in an adversarial fashion under an information-
limited environment, which could increase the probability am-
plitude of a sub-optimal action, leading to fatal outcomes. This
work addresses the aforementioned limitations by introducing
a novel action updating strategy. This strategy utilizes a local
one-to-one mapping between available phase rotation and rela-
tive disparity learning scores for both dominant and dominated
actions. This approach allows for the simultaneous amplification
and attenuation of probabilities. In addition, cumulative learning
scores are used in conjunction with an implicit exploration-based
biased cost estimation. This technique effectively mitigates the
uncertainty associated with importance-weighted estimators in
adversarial environments.

III. SYSTEM MODEL AND LEARNING STRATEGY

This section demonstrates the system model and learning-
based decision-making, applicable to offloading services.

A. System Model

A service client (SC) generates tasks, while a set of ser-
vice providers (SPs) k ∈ K = {1, . . .,K} execute the requested
tasks with their own available resources. An SC can send a task,
e.g., offloading a computational task [2], t to any SP k among the
set. Each task, t, is considered as a basic unit for offloading. The
demand for resources from each SC may vary depending on the
nature of performed applications, expressed as the multiplication
of the input size qt (bits/task) and the computational complexity
(cycles/bit). The service capability of an SP k depends on its
resource availability (cycles/sec). The achievable up/down-link
transmission rates between an SC and an SP are determined by
the wireless medium characteristics. The cost for offloading a
task, Dt

k, includes the cost for uploading the input to an SP k,
and the execution cost at the SP, downloading the result to the
SC.

This work defines the unit service cost reflecting the service
capability of each candidate SP k, e.g., the cost of process-
ing one bit of input data for task t on SP k, as ltk = Dt

k/q
t.

One aim of this work is to minimize the average unit cost
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Fig. 1. Quantum learning-based decision making.

by optimizing the SP selection for each task in each round,
kt. We design a learning-based task offloading (TO) algorithm
minimizing the expectation of the unit cost, formulated as
P : mink1,k2,...,kT

E[
∑T

t=1 l
t
kt
], where E[·] is the expectation,

ltkt
is a sequence of unit cost for the t-th task in the task set T , and

T = |T | is the number of tasks. The significance of a learning
algorithm depends on the adopted benchmark policy which the
algorithm is measured against. The learning regret measuring
how much the SC regrets choosing its pulled action-sequence
over the one with the optimal policy, is expressed as L̄T

k′ − L̄T
k∗ ,

where L̄T
k′ = E[

∑T
t=1 l

t
k′ ] and L̄T

k∗ = E[
∑T

t=1 l
t
k∗ ] correspond to

the expected cumulative costs incurred by an algorithm and the
optimal solution k∗ = argmink

∑T
t=1 l

t
k/T .

B. Online Learning Decision-Making in Bandit Setting

Consider a framework of online learning where an SC se-
lects one SP, k ∈ K based on an unknown cost function. There
exists a trade-off between exploiting the experiential best SP
for instantaneous costs and exploring the other SPs for poten-
tial benefits. The trade-off is formulated as a MAB problem
specified by K and ltk, t ∈ T . In an adversarial MAB, random-
ized policy is used such that an SC draws an arm according
to a probability distribution, k′ ∼ pt = [ptk]k∈K. One may em-
ploy weighted-average randomized strategy with potentials to
achieve a cumulative cost as small as that of the best action [19].
An arm k is assigned with the selected probability for task t, ptk
proportional to weighted accumulated cost caused by that arm

in the past, ptk=
Wt

k∑
kWt

k
whereWt

k is a weight of each arm k. A
score-based learning process is considered as follows: service
capability of an SP can be represented by a score, cumulative
per-bit cost up to t− 1, L̂t−1

k =
∑t−1

t′=1 ηt′ l̂
t′
k , where l̂t

′
k is the

cost estimate from the arm k for task t and ηt′ ∈(0, 1] is the
learning rate. Considering exponential potential with the score,
Wt

k=e−L̂
t−1
k , the importance-weighted mechanism assigns ex-

ponentially higher probability to strategy with lower cumulative
scores up to t−1 due to ∂pt

∂Lk
<0 where Lk= L̂t−1

k . The scores
reinforce the success of each strategy measured by the estimated
TO cost, so an SC would rely on the strategy with the lowest
one.

IV. QUANTUM AMPLIFICATION EXPLORATION STRATEGY

We develop a quantum learning-based TO algorithm, enabling
an SC to learn the TO costs of candidate SPs and to choose an
SP in aid of quantum subroutines, see Fig 1.

A. Learning System With Quantum Concepts

An action in a learning system is represented with a quan-
tum state, inspired by the advantages of quantum computation.
Prior to the action selection carried out by observing the state
according to collapse postulate of QM, the state specified by
probability amplitude is updated by a QAA process.

1) Quantum Basics: The fundamental information unit in
quantum computation is the quantum bit (qubit). A qubit de-
noted as |0〉 and |1〉 corresponds to the states 0 and 1 for a
classical bit. Also, a qubit can lie in both |0〉 and |1〉 at the
same time, a linear combination of |0〉 and |1〉, expressed as
|Ψ〉 = g0|0〉+ g1|1〉 where g0 and g1 are complex coefficients.
This quantum phenomenon is called state superposition princi-
ple. When we measure a qubit in superposition |Ψ〉, the qubit
system would collapse into one of its basic states |0〉 with
probability |g0|2 or |1〉with probability |g1|2. Thus, g0 and g1 are
in general called probability amplitudes whose magnitude and
argument represent amplitude and phase, respectively, satisfying
|g0|2 + |g1|2 = 1. According to quantum computation theory,
a fundamental operation in the quantum computing process
is a unitary transformation U on the qubits. If one applies a
transformation U to a superposition state, the transformation
will act on all basis vectors of this state and the output will be a
new superposition state obtained by superposing the results of all
basis vectors. The transformation can simultaneously evaluate
the different values of a function for a certain input and it is
called quantum parallelism.

2) Collapsing Action Selection: A quantum state |Ψ〉 can
describe the state of a quantum system. The work in [7] proposed
a formal representation for the quantum system with multiple
actions. Let K be the number of actions, K = 2n where n
qubits are used to represent eigenactions.1 For ann-qubit system,
its quantum state can be represented with tensor product of n
independent qubits |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |Ψn〉 where ⊗
means tensor product and |Ψv〉 represents the v-th (v∈ [1, n])
qubit in the superposition state of |0〉 and |1〉. According to [7,
Prop.1], for an n-qubit learning system, its quantum state at t
can be expressed as |Ψt〉 =

∑
a∈At gta|a〉 whereAt is the set of

2n eigenactions, each of which with n length of a binary string,
and gta is the complex coefficient, the probability amplitude2 of
eigenaction |a〉 subject to

∑
a∈At |gta|2 = 1. The index t is omit-

ted below for ease of description. The quantum representation
establishes a bridge between the eigenactions A and the arms
K, shown by |Ψ〉=

∑
a∈A ga|a〉→

∑
k∈K gk|k〉. The actions can

be represented by log2K qubits, denoted by |1〉,. . .,|K〉. An
SP selected by an SC before any QM is implemented on a
superposition state |Ψ〉 which would collapse to one of its
eigenactions with probability pk = |gk|2, |Ψ〉→|k〉 when an
agent measures the quantum state according to the collapse
postulate of quantum mechanics [7]. Such quantum collapse

1The actions in the classical system are denoted as the corresponding orthog-
onal bases and are called the eigenactions in a quantum system.

2Amplitudes correspond quantum probabilities representing the chance that
a quantum state will be collapsed to when being observed.
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phenomenon can be considered as creating information on action
selection strategy, e.g., k′ ∼ p where p = [p1, . . . , pK ].

3) Amplifying Probability Amplitude: Before the collapse,
the probability amplitudes of eigenactions can be reshaped
via a QAA subroutine, e.g., Grover iterations, each of which
gradually modifies the collapsing probabilities. The evolution
of a system is described by a unitary transformation performed
on the superposition states of its possible eigenactions to amend
the probability amplitudes updated after n-Grover iterations on
|Ψ0〉, a state before amplification, viewed as

|Ψ〉 = Gn · |Ψ0〉, (1)

where |Ψ0〉 =
∑

k∈K gk|k〉 andG is a Grover iteration which has
two substeps, an oracle query and a diffusion operation, built in
a form of the unitary as follows:

G = −U(φ2,Ψ0) · U(φ1,m), (2)

where U(φ1,m) is an operation based on an oracle query, shifting
the phase of the target action3 |m〉 with φ1, and U(φ2,Ψ0) is a
diffusion operation, rearranging the phases of all actions withφ2.
The two unitary operators, employed for the targeted action |m〉
before amplification, |Ψ0〉 = gm|m〉+ gm̆|m̆〉where |m̆〉 is the
vector orthogonal to |m〉, are expressed as U(φ1,m) = I − (1−
ejφ1)|m〉〈m| and U(φ2,Ψ0) = I − (1− ejφ2)|Ψ0〉〈Ψ0| where I
is the identity matrix, 〈m| and 〈Ψ0| are Hermitian transposes of
|m〉 and |Ψ0〉. While two operators have no effect on m̆ except
normalization, they amend the target action’s amplitude.

B. Quantum Amplitude Amplification Based Exploration

The effect of the Grover iterations on |Ψ0〉, due to its probabil-
ity updating nature, can be used as a quantum learning strategy.
A natural question is how to amplify/attenuate the amplitudes
appropriately, yielding a better exploration strategy.

1) Controlling Probability Amplitude: Note that the param-
eters, φ1, φ2, and n in (1) and (2) determine how the proba-
bility amplitudes are updated. The transformation can be ex-
ecuted with proper values of the parameters corresponding to
importance weights for the eigenactions. Different amplitude
updating approaches have been considered in [7], [9], [10], [11].
Generally, one is to fix n=1 with varied values of φ1 and φ2 as
learning-related factors, and another is to use a feasible value of
n with fixed values of φ1 and φ2. Since the latter suffers from
intermittent update in the amplitudes, the former is adopted in
this work, i.e., n=1 with varied φ1 and φ2.

Lemma 1: (Impact of G) The updated coefficients in amplifi-
cation/attenuation, defined as the ratio between the amplitudes
of targeted/untargeted actions, after being acted by an operator
G and before that, can be expressed as � and ς where

� = |(1− ejφ1 − ejφ2)− (1− ejφ1)(1− ejφ2)pm|2 and

ς = | − ejφ2 − (1− ejφ1)(1− ejφ2)pm|2.

Proof: After applying one operator G on |Ψ0〉, the ampli-
tude vector in the next iteration becomes |Ψ〉 = G|Ψ0〉 shown

3Classically, m = argmaxk pk , while non-classically done by [18].

as G|Ψ0〉 = (P − ejφ1)gm|m〉+ (P − 1)gm̆|m̆〉, where P =
(1− ejφ2)[1− (1− ejφ1)pm]. The updated probabilities of the
selected and unselected actions, |m〉 and |m̆〉, can be obtained
by � · pm and ς · pm̆ where the ratios of the amplitudes between
after and beforeG are

√
� = 1− ejφ1 − ejφ2 − (1− ejφ1)(1−

ejφ2)pm and
√
ς = −ejφ2 − (1− ejφ1)(1− ejφ2)pm [11]. �

2) Mapping phase/probability Amplitudes: Note that the
overall effect of G on |Ψ0〉 is a two-substep phase rotation
amplitude enabling to update probability amplitude, i.e., by
selecting feasible φ1 and φ2, it is possible to manipulate the
values of � and ς . While existing works in [9], [10], [11] focused
on updating the probability amplitude of a target action only,
e.g., amplifying/attenuating the amplitude for a good/bad action,
they have limited capability of generalizability and complexity:
requiring i) a free parameter selection indicating an ampli-
fied/attenuated degree but varying for different situations and ii)
a re-normalization updating probability amplitudes of untarget
actions, both of which are due to lack of one-to-one mapping
between quantum probability and phase rotation amplitudes.
This work proposes a pipeline to support the mapping operation
by designing a local monotone function.

Lemma 2: (Impact of φ) Setting φ = φ1 = φ2 allows for
updating the values of � and ς simultaneously but oppositely.

Proof: Note that two functions, (1− �) and (1− ς) have
opposite signs due to the facts that i) 0 < pm < 1, ii) 1−
� = (pm − 1)κ and iii) 1− ς = pmκ where κ = 4(2pm −
1) sin2(φ1/2)(cosφ2 − 1) + 2 sinφ1 sinφ2. It is straightfor-
ward to conclude that � and ς are designed to be larger or
smaller than 1, respectively but conversely, irrespective ofφ1 and
φ2. Based on the phase matching condition [17], φ = φ1 = φ2,
their second derivatives w.r.t φ also have signs opposite each
other due to ∂2(1−�)

∂φ2 = (pm − 1)κ′ and ∂2(1−ς)
∂φ2 = pmκ′ where

κ′ = (4− 8pm) cosφ+ 8pm cos 2φ. Such a converse relation
between � and ς allows focusing on updating one of them.�

An action is rewarded/punished with higher/lower unit effort.
To determine an updating degree, e.g., establishing how much
it would be amplified/attenuated, the differences in learning
scores between the optimal arm and sub-optimal ones can be
considered, D =W/‖W‖∞ = [e−(Lk−min(L))]k∈K where L =
[L1, . . . , LK ] andLk = L̂t−1

k , representing the relative disparity
between targeted and untarget actions. Due to the fact that the
values are lower than or equal to 1 for all actions, we map
the average obtained relative disparity D̄ to the ratio ς via an
appropriate adjustment of φ. To diminish the probabilities of
untarget actions proportional to D̄, one may find a range where
probability amplitudes vary monotonically.

Next, we show how to establish φ for the amplitude ampli-
fication, by identifying local monotonic function of ς on φ and
specifying a one-to-one mapping between D̄ to ς .

Proposition 1: (Finding of φ) The ratios � and ς can be
controlled via a phase φ = − arccos(W(1−ςmin)D̄+ςmin

) where

Wx = 1− ( 1−
√
x

2pm
) and ςmin = max[(1− 4pm)2, 0].

Proof: Note that a ratio of ς is monotonically increas-
ing within a specified range. The ratio ς has local maxi-
mum/minimum points at φ = {0, π, arccos(1− 1

2pm
)}, each of

which satisfying ∂ς
∂φ = 0. And it increases in φ, ∂ς

∂φ > 0, when
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Fig. 2. Profiles of φ and ς w.r.t pm. One example of ς · pm̆ where pm̆ = pm.

case i) sinφ < 0 and cosφ > 1− 1
2pm

, or case ii) sinφ > 0 and

cosφ < 1− 1
2pm

is satisfied, fulfilled with−Re[arccos(W0)] <

φ < −Re[arccos(W1)] for case i), or Re[arccos(W0)] < φ <
Re[arccos(W−1)] for case ii), respectively, where Wx = 1−
( 1−

√
x

2pm
). While for case i) a phase value of φ may have different

maximum values of ς for different pm in its increasing range, for
case ii), a ratio value of ς monotonically increases in φ ranged
from

φmin ≤ φ < 0, (3)

where φmin = −min[arccos(W0), π], for ςmin ≤ ς < 1 with
ςmin = max[(1− 4pm)2, 0], and reaches the maximum equal
to 1 only at φ = 0 irrespective of pm, which allows us to focus
on case i), see Fig. 2. Note that a ratio value of ς = 1− pmκ
in Lemma 2 increases w.r.t a phase value of φ = − arccos(Wς)
satisfying (3). The feasible φ is set to be proportional to the
average obtained relative disparity D̄which could be one-to-one
mapped to the range of ς given pm. Thus, the ratios, � and ς , can
be controlled via φ=− arccos(W(1−ςmin)D̄+ςmin

). �
Remark 1: (Profiles of φ and ς) Note that ς decreases in pm

due to ∂ς
∂pm

< 0 in Prop. 1, and thus attenuated probabilities are
achieved, see Fig. 2. For a high pm, the impact ofφ on ς becomes
large, and thus φ can be tuned within a small variation range for
the updating. Contrarily, for a relatively small pm, a much larger
degree of freedom on φ adjustment is configured, a natural way
to avoid local maxima with a relatively small pm. Settingφ tunes
� and ς , simultaneously.

3) Processing Implicit Cost Estimation: An SC selects an
arm for a task and receives the cost from the selected arm,
not from the others. The cost from an arm k �= k′ could not
be observed due to incomplete feedback in the bandit problem.

One may use an unbiased estimate, l̂tk =
ltk ·1k=k′

pt
k

, but it could
cause large fluctuation in the cost due to inverse-proportion
to ptk. Instead, this work considers Exp3 algorithm endowed
with implicit exploration (IX)-style cost estimates [16], which
controls the variance at the price of extra bias. After each

action, the cost estimate is calculated as l̂tk =
ltk ·1t

k=k′
pt
k+γt

, a biased

estimator due to E[l̂tk] =
∑

k p
t
k l̂

t
k ≤ ltk, where γt ∈ (0, 1] is the

implicit learning rate. While actions with large costs are set
to be negligible probabilities by the classical recipe [19], such

Algorithm 1. Quantum Amplification Exploration Strategy:

1: Input: ηt > 0, γt > 0, K = ∅,W ← �1 ∈ RK

2: for t ∈ T do
3: Set p←W/‖W‖1
4: Set |Ψ0〉 ← preparing

∑
k gk|k〉 where |gk|2 = pk

5: Set |Ψ〉 ← updating (�, ς) with φ set by Prop. 1
6: Set k′ ← measuring |Ψ〉 and play the strategy k′

7: Get lk′ and updateW with ηt, γt by Prop. 2
8: end for
9: Output: sequences

∑
t∈T l

t
k′ > 0

an implicit price allows them to have low but non-negligible
ones and to be chosen occasionally. Thus, the estimator could
guarantee performance with high probability.

C. Proposed Algorithm

The workflow of the proposed algorithm (Algorithm 1) can
be divided into three parts: i) interaction, ii) estimation and iii)
selection. While the first part is about a typical interaction as
an external learning process, the last two parts correspond to a
classical and quantum-inspired operation as an internal learning
process. An iterative method is used to link the conventional
outer and inner processes such that the classical information is
conveyed from a step t to the next t+ 1 via interaction between
an agent and the adversary, including: strategy playing, feedback
getting, and cost suffering. The internal learning process is
characterized by the score updating rule, and the local selection
rule defined by what action is output given the score (selection).
The algorithm is designed in a modular way so that its quantum-
inspired part can be treated as a separate building block where
the quantum enhancement is exhibited, whose source lies in the
use of quantum subroutines to perform each internal selection
process. The probability distributions pt ∈ RK are passed to
the quantum subroutines where, instead of sampling one action
in a classical manner, in a quantum setting, one sample can
be obtained by preparing the state |Ψ0〉 =

∑
k∈K g

t
k|k〉 where

|gtk| =
√

ptk, updating it with the proposed amplification, see
Prop. 1, and measuring the updated |Ψ〉, e.g., collapsing action
selection.

Proposition 2: The quantum strategy with φ �=0 can achieve
better regret than the one with φ = 0, when ηt>

1
t and γt>

1
2t .

Proof: Assume that a dominant arm’s index is m, Lm ≤
Lk, ∀k ∈ K, one non-dominant arm selection k ∈ K\m for t
yields ptk > ptk|φ �=0, while a dominiant one yields ptm < ptm|φ �=0.
Further proof is omitted, being analogous to the proof of [2,
Props. 2 and 6]. �

Remark 2: Note that the collapse of a quantum state is not
real selection, but just a fundamental phenomenon when the
state is measured, resulting in i) a good ExR/ExT balance and
ii) a natural action selection without setting parameters unlike
conventional approaches. The agent can explore its strategies
in superposition in a way that guarantees a provable regret
improvement in its learning time over its classical analogue.
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Fig. 3. (a) Regret w.r.t t for K = 5, (b) Regret at T with Fk=Fmod(k,5), ∀k ∈K = {1,. . . ,K} for different K, and (c) their selected ς and φ w.r.t pm.

V. PERFORMANCE EVALUATION

This section conducts numerical studies to assess the learning
performance of the proposed algorithm.

Consider an SC, requesting the computational resource from
candidate SPs. The distance between the SC and each SP is
to follow a uniform distribution, d ∼ U [0, dr] where dr is the
communication range equal to 400 m. The transmission power
of the SC is 24 dBm, the channel bandwidth is 10 MHz, and
noise power is −174 dBm/Hz, and large/small-scale fading
gains follow 128.1 + 37.6 log10(d) and Rayleigh distributed
with unit variance, respectively. The interference effects on the
co/adjacent channel are assumed to be ignored [2]. Consider 5
SPs with maximum CPU frequency, Fk ∈ {6, 6, 5, 4, 3.5} GHz
for T = 3e3. For an SP, the allocated CPU frequency to the SC
is a fraction of the maximum distributed from 20% to 50%, but
arbitrarily constrained [2]. The computational complexity and
task size are set to 1e3 cycles/bit and 1e6 bits/task.

The proposed quantum algorithm is compared to the con-
ventional counterparts in terms of the learning regret. Those
counterparts include choosing arms based on i) upper confi-
dence bound such as UCB [20], ii) current knowledge with a
probability 1− ε such as ε-Greedy [19] when ε = 0.1, and iii)
probability matching such as Exp3 [19, Sec 3.1] guaranteeing
an expected regret bound, Exp3P [19, Sec 3.2] and Exp3IX [16]
guaranteeing a high probability regret bound with explicit and
implicit cost estimations when β = 1. For the simulation, base
learning rate parameters are set as in [19, Theorems 3.1 and 3.3]
for Exp3 and Exp3P and in [16, Theorems 1] for Exp3IX and
this work.

Fig. 3(a) shows that the proposed algorithm, a quantum ban-
dit (QB), learns much faster and achieves better balancing of
ExR/ExT searches without exploring the sub-optimal actions in
an adversarial environment, compared to the counterparts. This
is because QAA process associated with implicit exploration-
style cost estimates allows to simultaneously amplify/attenuate
the probabilities smoothly yielded from the learning scores,
thus reducing the average regret by 50% and 40% from those
of Exp3IX and QB with a sole ratio tune case (� > 1, ς = 1)
requiring re-normalization [11]. Fig. 3(b) demonstrates that the
superior performance of the proposed algorithm is valid for
different numbers of SPs K. A fine-grained implicit exploration

approach could achieve higher and more robust performance,
obtaining lower empirical mean and standard deviation of the
regret than others.

Fig. 3(c) depicts the corresponding solution behaviors of ς
and φ w.r.t pm. i) The probability of a dominant action increases
alongside the learning progress. A larger gap of probabilities
between the dominant action and overall dominated actions,

ptm and
∑

k∈K\m pt
k

K−1 guides us to set a lower φ (Prop. 1). ii)
As K increases, the selected action m with a given ptm has
higher dominance than the others, ptm �

1−pt
m

K−1 , and thus the
chosen φ becomes lower, resulting in larger variability of φ.
iii) Meanwhile, the minimum limit of φ increases starting from
ptm equal to 1

4 by (3) and the probability gap proportionally
relative to the reduced range of φ yields the larger φ. Choosing
an appropriate value of φ �= 0 allows for simultaneously am-
plifying the amplitude of a dominant action while attenuating
the ones of the others, thereby leading to better performance
(Prop. 2).

The proposed algorithm has the potential for powerful com-
putation in complex unknown environments, leveraging re-
lated quantum apparatuses. The quantum-inspired bandit al-
gorithm is designed for quantum computers and motivated by
quantum mechanics, but it is effective on traditional comput-
ers as well. This is due to two key aspects: (i) the collapse
action selection strategy uses quantum measurement postu-
lates to balance ExR-ExT trade-offs, without relying on em-
pirical exploration parameter settings, and (ii) the probabil-
ity magnitude updating strategy leverages quantum-mechanical
phase control to simultaneously boost/suppress learning strate-
gies based on the learning score, following the quan-
tum superposition principle and without requiring additional
normalization.

VI. CONCLUSION

This work proposed a quantum-inspired bandit learning al-
gorithm to reduce the service cost under an adversarial en-
vironment. The proposed QAA approach allows for the new
action update strategy and novel probabilistic action selec-
tion, provoked by the amplitude amplification and collapse
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postulate in quantum computation theory, respectively, to-
gether with a devised mapping between a quantum-mechanical
phase in a quantum domain, and a distilled probability-
magnitude in a value-based decision-making domain. This
method effectively balances convergence speed and learning
quality, outperforming traditional exploration approaches. Nu-
merical results demonstrate its superiority over conventional
methods.
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