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Matching Knowledge Graphs in Entity Embedding
Spaces: An Experimental Study

Weixin Zeng , Xiang Zhao , Zhen Tan , Jiuyang Tang, and Xueqi Cheng , Senior Member, IEEE

Abstract—Entity alignment (EA) identifies equivalent entities
that locate in different knowledge graphs (KGs), and has attracted
growing research interests over the last few years with the advance-
ment of KG embedding techniques. Although a pile of embedding-
based EA frameworks have been developed, they mainly focus on
improving the performance of entity representation learning, while
largely overlook the subsequent stage that matches KGs in entity
embedding spaces. Nevertheless, accurately matching entities based
on learned entity representations is crucial to the overall alignment
performance, as it coordinates individual alignment decisions and
determines the global matching result. Hence, it is essential to
understand how well existing solutions for matching KGs in entity
embedding spaces perform on present benchmarks, as well as their
strengths and weaknesses. To this end, in this article we provide a
comprehensive survey and evaluation of matching algorithms for
KGs in entity embedding spaces in terms of effectiveness and effi-
ciency on both classic settings and new scenarios that better mirror
real-life challenges. Based on in-depth analysis, we provide useful
insights into the design trade-offs and good paradigms of existing
works, and suggest promising directions for future development.

Index Terms—Entity alignment, entity matching, knowledge
graph, knowledge graph alignment.

I. INTRODUCTION

MATCHING data instances that refer to the same real-
world entity is a long-standing problem. It establishes

the connections among multiple data sources, and is critical to
data integration and cleaning [39]. Therefore, the task has been
actively studied; for instance, in the database community, vari-
ous entity matching (EM) (and entity resolution (ER)) strategies
are proposed to train a (supervised) classifier to predict whether
a pair of data records match [10], [39].
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Recently, due to the emergence and proliferation of knowl-
edge graphs (KGs), matching entities in KGs draws much atten-
tion from both academia and industries. Distinct from traditional
data matching, it brings its own challenges. Particularly, it un-
derlines the use of KGs’ structures for matching, and manifests
unique characteristics of data, e.g., imbalanced class distribu-
tion, few attributive textual information, etc. In consequence,
although viable, following traditional EM pipeline, it is hard to
train an effective classifier that can infer the equivalence between
entities. Thus, much effort has been dedicated to specifically
addressing the matching of entities in KGs, which is also referred
to as entity alignment (EA).

Nevertheless, early solutions to EA are mainly unsuper-
vised [25], [48], i.e., no labeled data is assumed. They utilize dis-
criminative features of entities (e.g., entity descriptions and re-
lational structures) to infer the equivalent entity pair, which are,
however, embarrassed by the heterogeneity of independently-
constructed KGs [50].

To mitigate this issue, recent solutions to EA employ a few
labeled pairs as seeds to guide the learning and prediction [9],
[16], [31], [43], [54]. In short, they embed the symbolic repre-
sentations of KGs as low-dimensional vectors in a way such
that the semantic relatedness of entities is captured by the
geometrical structures of embedding spaces [4], where the seed
pairs are leveraged to produce unified entity representations. In
the testing stage, they match entities based on the unified entity
embeddings. They are coined as embedding-based EA methods,
which have exhibited state-of-the-art performance on existing
benchmarks.

To be more specific, the embedding-based EA1 pipeline can be
roughly divided into two major stages, i.e., representation learn-
ing and matching KGs in entity embedding spaces (or embedding
matching for short). While the former encodes the KG struc-
tures into low-dimensional vectors and establishes connections
between independent KGs via the calibration or transformation
of (seed) entity embeddings [50], the latter computes pairwise
scores between source and target entities based on such em-
beddings and then makes alignment decisions according to the
pairwise scores. Although this field has been actively explored,
existing efforts are mainly devoted to the representation learning
stage [19], [30], [70], while embedding matching has not raised
many attentions until very recently [35], [62]. The majority of
existing EA solutions adopt a simple algorithm to realize this

1In the rest of the paper, we use EA to refer to embedding-based EA solutions,
and use conventional EA for the early solutions.
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Fig. 1. Three cases of EA. Dashes lines between KGs denote the seed entity
pairs. Entities with the same subscripts are equivalent. In the embedding space,
the circles with two colors represent that the corresponding entities in the two
KGs have the same embeddings.

stage, i.e.,DInf, which first leverages common similarity metrics
such as cosine similarity to calculate the pairwise similarity
scores between entity embeddings, and then matches a source
entity to its most similar target entity according to the pairwise
scores [54]. Nevertheless, it is evident that such an intuitive
strategy can merely reach local optimums for individual entities
and completely overlooks the (global) interdependence among
the matching decisions for different entities [64].

To address the shortcomings of DInf, advanced strategies are
devised [13], [50], [57], [62], [64], [65]. While some of them
inject the modeling of global interdependence into the compu-
tation of pairwise scores [13], [50], [62], some directly improve
the alignment decision-making process by imposing collective
matching constraints [57], [64], [65]. These efforts demonstrate
the significance of matching KGs in entity embedding spaces
from at least three major aspects: 1) It is an indispensable step of
EA, which takes as input the entity embeddings (generated by
the representation learning stage), and outputs matched entity
pairs; 2) Its performance is crucial to the overall EA results,
e.g., an effective algorithm can improve the alignment results
by up to 88% [62]; and 3) It empowers EA with explainability,
as it unveils the decision-making process of alignment. We use
Example 1 to further illustrate the significance of the embedding
matching process.

Example 1: Fig. 1 presents three representative cases of EA.
The KG pairs to be aligned are first encoded into embeddings
via the representation learning models. Next, the embedding
matching algorithms produce the matched entity pairs based
on the embeddings. In the most ideal case where two KGs are
identical, e.g., case (a), with an ideal representation learning
model, equivalent entities would be embedded into exactly the
same place in the low-dimensional space, and using the simple
DInf algorithm would attain perfect results. Nevertheless, in
the majority of practical scenarios, e.g., case (b) and (c), the
two KGs have high structure heterogeneity. As thus, even an
ideal representation learning model might generate different
embeddings for equivalent entities. In this case, adopting the
simple DInf strategy is likely to produce false entity pairs, such
as (u5, v3) in case (b).

Worse still, as pointed out in previous works [50], [68],
existing representation learning methods for EA cannot fully
capture the structural information (possibly due to their inner
design mechanisms, or their incapability of dealing with scarce
supervision signals). Under these settings, e.g., case (c), the
distribution of entity embeddings in the low-dimensional space
would become irregular, where the simple embedding matching
algorithm DInf would fall short, i.e., producing incorrect entity
pairs (u3, v1) and (u5, v1). As thus, in these practical cases, an
effective embedding matching algorithm is crucial to inferring
the correct matches. For instance, by exploiting the collective
embedding matching algorithm that imposes the 1-to-1 align-
ment constraint, the correct matches, i.e., (u3, v3) and (u5, v5),
are likely to be restored.

While the study on matching KGs in entity embedding spaces
is rapidly progressing, there is no systematic survey or compar-
ison of these solutions [50]. We do notice that there are several
survey papers covering embedding-based EA frameworks [50],
[61], [66], [67], [68], whereas they all briefly introduce the
embedding matching module (mostly only mentioning the DInf
algorithm). In this article, we aim to fill in this gap by surveying
current solutions for matching KGs in entity embedding spaces
and providing a comprehensive evaluation of these methods with
the following features:

1) Systematic survey and fair comparison: Albeit essential
to the alignment performance, existing embedding matching
strategies have yet not been compared directly. Instead, they
are integrated with representation learning models, and then
evaluated and compared with each other (as a whole). This,
however, cannot provide a fair comparison of the embedding
matching strategies themselves, since the difference among them
can be offset by other influential factors, such as the choices
of representation learning models or input features. Therefore,
in this work, we exclude irrelevant factors and provide a fair
comparison of current matching algorithms for KGs in entity
embedding spaces at both theoretical and empirical levels.

2) Comprehensive evaluation and detailed discussion: To
fully appreciate the effectiveness of embedding matching strate-
gies, we conduct extensive experiments on a wide range of EA
settings, i.e., with different representation learning models, with
various input features, and on datasets at different scales. We also
analyze the complexity of these algorithms and evaluate their
efficiency/scalability under each experimental setting. Based
on the empirical results, we discuss to reveal strengths and
weaknesses.

3) New experimental settings and insights: Through empirical
evaluation and analysis, we discover that the current mainstream
evaluation setting, i.e., 1-to-1 constrained EA, oversimplifies the
real-life alignment scenarios. As thus, we identify two experi-
mental settings that better reflect the challenges in practice, i.e.,
alignment with unmatchable entities, as well as a new setting
of non 1-to-1 alignment. We compare the embedding matching
algorithms under these challenging settings to provide further
insights.

Contributions: We make the following contributions:
� We systematically and comprehensively survey and com-

pare state-of-the-art algorithms for matching KGs in entity
embedding spaces (Section III).
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Fig. 2. The pipeline of embedding-based EA. Dashed lines denote the pre-
annotated alignment links.

Algorithm 1: General Algorithm of Embedding-Based EA.
Input: Source and target KGs: Gs, Gt; Seed pairs: S
Output: Aligned entity pairs:M
1: E ← Representation_Learning(Gs,Gt,S)
2:M← Embedding_Matching(Es, Et, E)
3: returnM;

� We evaluate and compare the state-of-the-art embedding
matching algorithms on a wide range of EA datasets and
settings, as well as reveal their strengths and weaknesses.
The codes of these algorithms are organized and integrated
into an open-source library, EntMatcher, publicly
available at https://github.com/DexterZeng/EntMatcher
(Section IV).

� We identify experiment settings that better mirror real-life
challenges and construct a new benchmark dataset, where
deeper insights into the algorithms are obtained via empir-
ical evaluations (Section V).

� Based on our evaluation and analysis, we provide useful
insights into the design trade-offs of existing works, and
suggest promising directions for the future development of
matching KGs in entity embedding spaces (Section VI).

II. PRELIMINARIES

In this section, we first present the task formulation of EA and
its general framework. Next, we introduce the studies related
to the topic of this article—matching KGs in entity embedding
spaces, and clarify the scope of this study. Finally, we present
the key assumptions of embedding-based EA.

A. Task Formulation and Framework

Task formulation: A KG G is composed of triples {(s, p, o)},
where s, o ∈ E represent entities, p ∈ P denotes the predicate
(relation). Given a source KG Gs, a target KG Gt, the task of EA
is formulated as discovering new (equivalent) entity pairsM =
{(u, v)|u ∈ Es, v ∈ Et, u⇔ v} by using pre-annotated (seed)
entity pairs S as anchors, where⇔ represents the equivalence
between entities, Es and Et denote the entity sets in Gs and Gt,
respectively.

General framework: The pipeline of state-of-the-art
embedding-based EA solutions can be divided into two
stages, i.e., representation learning and embedding matching,
as shown in Fig. 2. The general algorithm can be found in
Algorithm 1.

Algorithm 2: Greedy (Es, Et,S).

The majority of studies on EA are devoted to the representa-
tion learning stage. They first utilize KG embedding techniques
such as TransE [4] and GCN [23] to capture the KG structure
information and generate entity structural representations. Next,
based on the assumption that equivalent entities from different
KGs possess similar neighboring KG structures (and in turn
similar embeddings), they leverage the seed entity pairs as an-
chors and progressively project individual KG embeddings into
a unified space through training, resulting in the unified entity
representations E2. There have already been several survey
papers concentrating on representation learning approaches for
EA, and we refer the interested readers to these works [2], [50],
[66], [68].

Next, we introduce the embedding matching process—the
focus of this article, as well as its related works.

B. Related Work and Scope

Matching KGs in entity embedding spaces: After obtaining
the unified entity representations E where equivalent entities
from different KGs are assumed to have similar embeddings,
the embedding matching stage (also frequently referred to as
alignment inference stage [50]) produces alignment results by
comparing the embeddings of entities from different KGs. Con-
cretely, it first calculates the pairwise scores between source and
target entity embeddings according to a specific metric.3 The
pairwise scores are then organized into matrix form as S. Next,
according to the pairwise scores, various matching algorithms
are put forward to align entities. The most common algorithm is
Greedy, described in Algorithm 2. It directly matches a source
entity to the target entity that possesses the highest pairwise score
according toS. Over the last few years, advanced solutions [13],
[17], [34], [35], [40], [50], [57], [60], [62], [64], [65], [69]
are devised to improve the embedding matching performance,
and in this work, we focus on surveying and comparing these
algorithms for matching KGs in entity embedding spaces.

Matching KGs in Symbolic Spaces: Before the emergence
of embedding-based EA, there have already been many conven-
tional frameworks that match KGs in symbolic spaces [20], [47],

2Indeed there are a few exceptions, which instead learn a mapping function
between individual embedding spaces [50]. However, the subsequent steps still
require mapping between spaces and operate on a “unified” one, e.g., target
entity embeddings.

3Under certain metrics such as cosine similarity (resp., euclidean distance),
the larger (resp., smaller) the pairwise scores, the higher the probability that two
entities are equivalent. In this work, w.l.o.g., we adopt the former expression
and consider that higher pairwise scores are preferred.

https://github.com/DexterZeng/EntMatcher
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[48]. While some are based on equivalence reasoning mandated
by OWL semantics [20], some leverage similarity computation
to compare the symbolic features of entities [48]. However, these
solutions are not comparable to algorithms for matching KGs in
entity embedding spaces, as 1) they cover both the representation
learning and embedding matching stages in embedding-based
EA; and 2) the inputs are different from those of embedding
matching algorithms. Thus, we do not include them in our
experimental evaluation, while they have already been compared
in the survey papers covering the overall embedding-based EA
frameworks [50], [68].

The matching of relations (or ontology) between KGs has also
been studied by prior symbolic works [47], [48]. Nevertheless,
compared with entities, they are usually in smaller amounts, of
various granularities [42], and under-explored in embedding-
based approaches [59]. Hence, in this work, we exclude relevant
studies on this topic and focus on the matching of entities.

The task of entity resolution (ER) [10], [18], [41], also known
as entity matching, deduplication or record linkage, can be
regarded as the general case of EA [68]. It assumes that the
input is relational data, and each data object usually has a large
amount of textual information described in multiple attributes.
Nevertheless, in this article, we focus on EA approaches, which
strive to align KGs and mainly rely on graph representation
learning techniques to model the KG structure and generate
entity structural embeddings for alignment. Therefore, the dis-
cussion and comparison with ER solutions is beyond the scope
of this work.

Matching Data Instances Via Deep Learning: Entity matching
(EM) between databases have also been greatly advanced by
utilizing pre-trained language models for expressive contextual-
ization of database records [11], [39]. These deep learning (DL)
based EM solutions devise end-to-end neural models to learn
to classify an entity pair into matching or non-matching, and
then feed the test entity pairs into the trained models to obtain
classification results [5], [29], [39]. Nevertheless, this procedure
is different from the focus of our study, as both of its training
and testing stage involve representation learning and matching.
Besides, these solutions are not suitable for matching KGs in
entity embedding space, since (1) they require adequate labeled
data to train the neural classification models, but the training
data in EA is much less than the testing ones, which could result
in the overfitting issue; (2) they would suffer from severe class
imbalance in EA, where an entity and all of its nonequivalent
entities in another KG would constitute many negative samples,
while there is usually one positive sample for this entity; (3) they
depend on the attributive text information between data records
for training, while EA underlines the use of KG structure, which
could provide much less useful features for model training. In
the experiment, we adapt DL-based EM models to tackle EA,
and the results are not promising. This will be further discussed
in Section IV-C.

Existing Surveys on EA: There are several survey papers
covering EA frameworks [50], [61], [66], [67], [68], which
are summarized in Table I. Some articles provide high-level
discussion of embedding-based EA frameworks, experimentally
evaluate and compare these works, and offer guidelines for

TABLE I
COMPARISON WITH EXISTING SURVEYS ON EA. THE FOCUS OF EACH WORK IS

DENOTED WITH �

potential practitioners [50], [67], [68]. Specifically, Zhao et
al. propose a general EA framework to encompass existing
works, and then evaluate them under a wide range of settings.
Nevertheless, they only briefly mention DInf and SMat in the
embedding matching stage [68]. Sun et al. survey EA approaches
and develop an open-source library to evaluate existing works.
However, they merely introduce DInf, SMat and CSLS, and
overlook the comparison among these algorithms. Besides, they
point out that current approaches put in their main efforts
in learning expressive embeddings to capture entity features
while ignore the alignment inference (i.e., embedding matching)
stage [50]. Zhang et al. empirically evaluate state-of-the-art
embedding-based EA methods in an industrial context, and
particularly investigate the influence of the sizes and biases in
seed mappings. They evaluate each method as a whole and do
not mention the embedding matching process [67].

Two recent survey papers include the latest efforts on
embedding-based EA and give more self-contained explanation
on each technique. Zhang et al. provide a tutorial-type survey,
while for embedding matching, they merely introduce the near-
est neighbor search strategy, i.e., DInf [66]. Zeng et al. mainly
introduce representation learning methods and their applications
on EA, while neglect the embedding matching stage [61].

In all, existing EA survey articles focus on the representation
learning process and briefly introduce the embedding matching
module (mostly only mentioning the DInf algorithm), while in
this work we systematically survey and empirically evaluate
the algorithms designed for the embedding matching process in
KG alignment, and present comprehensive results and insightful
discussions.

Scope of this Work: This study aims to survey and
empirically compare the algorithms for matching KGs in
entity embedding spaces, i.e., various implementations of
Embedding_Matching() in Algorithm 1, on a wide range of
EA experimental settings.

C. Key Assumptions

Notably, existing embedding-based EA solutions have a fun-
damental assumption; that is, the equivalent entities in dif-
ferent KGs possess similar (ideally, isomorphic) neighboring
structures. Under such an assumption, effective representation
learning models would transform the structures of equivalent
entities into similar entity embeddings. As thus, based on the
entity embeddings, the embedding matching stage would assign
higher (resp., lower) pairwise similarity scores to the equivalent
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TABLE II
OVERVIEW AND COMPARISON OF STATE-OF-THE-ART ALGORITHMS FOR MATCHING KGS IN ENTITY EMBEDDING SPACES. NOTE THAT WE ESTIMATE THE ORDER

OF MAGNITUDE OF THE TIME AND SPACE COMPLEXITY

(resp., nonequivalent) entity pairs, and finally make accurate
alignment decisions via the coordination according to pairwise
scores.

Besides, current EA evaluation settings assume that the enti-
ties in different KGs conform to the 1-to-1 constraint. That is,
each u ∈ Es has one and only one equivalent entity v ∈ Et, and
vice versa. However, we contend that this assumption is in fact
impractical and provide detailed experiments and discussions in
Section V-B.

III. ALGORITHMS FOR MATCHING KGS IN ENTITY

EMBEDDING SPACES

In this section, we introduce the algorithms for matching
KGs in entity embedding spaces, i.e., Embedding_Matching()
in Algorithm 1.

A. Overview

We first provide the overview and comparison of matching
algorithms for KGs in entity embedding spaces in Table II.
As mentioned in Section II, embedding matching comprises
two stages— pairwise score computation and matching. The
baseline approach DInf adopts existing similarity metrics to
calculate the similarity between entity embeddings and generate
the pairwise scores in the first stage, and then it leverages
Greedy for matching. In pursuit of better alignment performance,
more advanced embedding matching strategies are put forward.
While some (i.e., CSLS, RInf and Sink.) optimize the pairwise
score computation process and produce more accurate pairwise
scores, some (i.e., Hun., SMat and RL) take into account the
global alignment dynamics, rather than greedily pursue the
local optimum for each entity, during the matching process,
where more correct matches could be generated according to
the coordination under the global constraint.

We further identify two notable characteristics of matching
KGs in entity embedding spaces, i.e., whether the matching
leverages the 1-to-1 constraint, and the direction of the match-
ing. Regarding the former, Hun. and SMat explicitly exert the
1-to-1 constraint on the matching process. RL relaxes the strict
1-to-1 constraint by allowing non 1-to-1 matches. The greedy
strategies, however, normally do not take into consideration this
constraint, except for Sink., which implicitly implements the
1-to-1 constraint in a progressive manner when calculating the
pairwise scores. As for the direction of matching, Greedy only
considers a single direction at a time and overlooks the influence
from the reverse direction. As thus, the resultant source-to-target

Algorithm 3: DInf(Es, Et,E).

Input: Source and target entity sets: Es, Et; Unified entity
embeddings: E

Output: Matched entity pairs:M
1: Derive similarity matrix S based on E;
2:M← Greedy (Es, Et,S);
3: returnM;

alignment results are not necessarily equal to the target-to-source
ones. By improving the pairwise score computation,CSLS,RInf
and Sink. are actually modeling and integrating the bidirectional
alignments, whereas they still adopt Greedy to produce final
results. For non-greedy methods, Hun. and SMat fully consider
the bidirectional alignments and produce a matching agreed by
both directions, while RL is unidirectional.

Next, we describe these methods in detail4.

B. Simple Embedding Matching

DInf is the most common implementation of
Embedding_Matching(), described in Algorithm 3. Assume
both KGs contain n entities. The time and space complexity of
DInf is O(n2).

C. CSLS Algorithm

The cross-domain similarity local scaling (CSLS) algo-
rithm [26] is introduced to mitigate the hubness and isolation
issues of entity embeddings in EA [50]. The hubness issue
refers to the phenomenon where some entities (known as hubs)
frequently appear as the top-1 most similar entities of other
entities in the vector space, while the isolation issue means
that there exist some outliers isolated from any point clusters.
As thus, CSLS increases the similarity associated with isolated
entity embeddings, and conversely decreases the ones of vectors
lying in dense areas [26]. Formally, the CSLS pairwise score
between source entity u and target entity v is:

CSLS(u, v) = 2S(u, v)− φ(u)− φ(v)�, (1)

where S is the similarity matrix derived from E using similarity
metrics, φ(u) = 1

k

∑
v′∈Nu

S(u, v′) is the mean similarity score
between the source entityu and its top-k most similar entitiesNu

4We omit the algorithmic description of the classical algorithms (e.g., Hun-
garian [24] and Gale-Shapley [46]) and the neural model (i.e., RL [38]) in the
interest of space.
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Algorithm 4: CSLS (Es, Et,E, k).

Input: Source and target entity sets: Es, Et; Unified entity
embeddings: E; Hyper-parameter: k

Output: Matched entity pairs:M
1: Derive similarity matrix S based on E;
2: Calculate the mean values of top-k similarity scores of

entities in Es and Et, resulting in φs and φt, respectively;
3: SCSLS = 2S − φs − φ�t
4:M← Greedy (Es, Et,SCSLS);
5: returnM;

in the target KG, and φ(v) is defined similarly. The mean simi-
larity scores of all source and target entities are denoted in vector
form as φs and φt, respectively. To generate the matched entity
pairs, it further applies Greedy on theCSLSmatrix (i.e.,SCSLS).
Algorithm 4 describes the detailed procedure of CSLS. Notably,
Li et al. put forward Graph Interactive Divergence (GID) to
compute the similarity score, which in essence works in the
same way as CSLS according to its code implementation [28].

Complexity. The time and space complexity are O(n2). Prac-
tically, it requires more time and space than DInf, as it needs to
generate the additional CSLS matrix.

D. Reciprocal Embedding Matching

Zeng et al. [62] formulate EA task as the reciprocal rec-
ommendation process [44] and offer a reciprocal embedding
matching strategy RInf to model and integrate the bidirectional
preferences of entities when inferring the matching results.
Formally, it defines the pairwise score of source entity u towards
target entity v as:

pu,v = S(u, v)−max
u′∈Es

S(v, u′) + 1, (2)

where S is the similarity matrix derived from E, 0 ≤ pu,v ≤ 1,
and a larger pu,v denotes a higher degree of preference. As such,
the matrix forms of the source-to-target and target-to-source
preference scores are denoted as P s,t and P t,s, respectively.
Next, it converts the preference matrixP into the ranking matrix
R, and then averages the two ranking matrices, resulting in the
reciprocal preference matrixP s↔t that encodes the bidirectional
alignment information. Finally, it adopts Greedy to generate the
matched entity pairs.

Complexity. Algorithm 5 describes the detailed procedure
of RInf. The time complexity is O(n2 lg n) [62]. The space
complexity is O(n2). Practically, it requires more space than
DInf andCSLS, due to the computation of similarity, preference,
and ranking matrices. Noteworthily, two variant methods, i.e.,
RInf-wr and RInf-pb, are proposed to reduce the memory and
time consumption brought by the reciprocal modeling. More
details can be found in [62].

E. Embedding Matching as Assignment

Some very recent studies [35], [57] propose to model the
embedding matching process as the linear assignment prob-
lem. They first use similarity metrics to calculate pairwise

Algorithm 5: RInf(Es, Et,E).

Algorithm 6: Sink. (Es, Et,E, l).

Input: Source and target entity sets: Es, Et; Unified entity
embeddings: E; Hyper-parameter: l

Output: Matched entity pairs:M
1: Derive similarity matrix S based on E;
2: Ssinkhorn = Sinkhornl(S) (cf. (3));
3:M← Greedy (Es, Et,Ssinkhorn);
4: returnM;

similarity scores based on E. Then they adopt the Hungarian
algorithm [24] to solve the task of assigning source entities to
target entities according to the pairwise scores. The objective
is to maximize the sum of the pairwise similarity scores of the
final matched entity pairs while observing the 1-to-1 assignment
constraint. In this work, we use the Hungarian algorithm imple-
mented by Jonker and Volgenant [21] and denote it as Hun.
(Es, Et,E).

Besides, theSinkhorn operation [37] (orSink. for short) is also
adopted to solve the assignment problem [13], [17], [35], which
converts the similarity matrix S into a doubly stochastic matrix
Ssinkhorn that encodes the entity correspondence information.
Specifically,

Sinkhornl(S) = Γc(Γr(Sinkhorn
l−1(S)));

Ssinkhorn = lim
l→∞

Sinkhornl(S), (3)

where Sinkhorn0(S) = exp(S), Γc and Γr refer to the col-
umn and row-wise normalization operators of a matrix. Since
the number of iterations l is limited, the Sinkhorn operation
can only obtain an approximate 1-to-1 assignment solution in
practice [35]. Then Ssinkhorn is forwarded to Greedy to obtain
the alignment results.

Complexity. For Hun., the time complexity is O(n3), and the
space complexity isO(n2). Algorithm 5 describes the procedure
of Sink.. The time complexity of Sink. is O(ln2) [35], and the
space complexity is O(n2). In practice, both algorithms require
more space than DInf, since they need to store the intermediate
results.



12776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

F. Stable Embedding Matching

In order to consider the interdependence among alignment
decisions, the embedding matching process is formulated as
the stable matching problem [14] by [64], [69]. It is proved
that for any two sets of members with the same size, each of
whom provides a ranking of the members in the opposing set,
there exists a bijection of the two sets such that no pair of two
members from the opposite side would prefer to be matched to
each other rather than their assigned partners [12]. Specifically,
these works first produce the similarity matrix S based on E
using similarity metrics. Next, they generate the rankings of
members in the opposing set according to the pairwise similarity
scores. Finally, they use the Gale-Shapley algorithm [46] to solve
the stable matching problem. This procedure is denoted as SMat
(Es, Et,E).

Complexity. SMat has time complexity of O(n2 lg n) (since
for each entity, the ranking of entities in the opposite side needs
to be computed) and space complexity of O(n2).

G. RL-Based Embedding Matching

The embedding matching process is cast to the classic se-
quence decision problem by [65]. Given a sequence of source
entities (and their embeddings), the goal of the sequence decision
problem is to decide to which target entity each source entity
aligns. It devises a reinforcement learning (RL)–based frame-
work to learn to optimize the decision-making for all entities,
rather than optimize every single decision separately. Under the
RL-based framework, a new coordination strategy that involves
the coherence and exclusiveness constraints is implemented.
While coherence aims to keep the EA decisions coherent for
closely-related entities, exclusiveness aims to avoid assigning
the same target entity to multiple source entities, which requires
that, if an entity is already matched, it is less likely to be matched
to other entities. The general procedure is shown in algorithmic
form in Appendix A, available online due to the limit of space,
and more details can be found in the original paper [65].

Complexity. It is difficult to deduce the time complexity for
this neural RL model. Instead, we provide the empirical time
costs in experiments. The space complexity is O(n2).

IV. MAIN EXPERIMENTS

In this section, we compare the algorithms for matching KGs
in entity embedding spaces on the mainstream EA evaluation
setting (1-to-1 alignment).

A. EntMatcher: An Open-Source Library

To ensure comparability, we re-implemented all compared
algorithms using Python under a unified framework and estab-
lished an open-source library,EntMatcher 5. The architecture
of EntMatcher library is presented in the blue block of
Fig. 3, which takes as input unified entity embeddings E and

5The codes are publicly available at https://github.com/DexterZeng/
EntMatcher

Fig. 3. Architecture of the EntMatcher library and additional modules
required by the experimental evaluation.

produces the matched entity pairs. It has the following three
major features:

Loosely-Coupled Design. There are three independent mod-
ules in EntMatcher, and we have implemented the repre-
sentative methods in each module. Users are free to combine
the techniques in each module to develop new approaches, or
to implement their new designs by following the templates in
modules.

Reproduction of Existing Approaches. To support our exper-
imental study, we tried our best to re-implement all existing
algorithms by using EntMatcher. For instance, the combi-
nation of cosine similarity, CSLS, and Greedy reproduces the
CSLS algorithm in Section III-C; and the combination of cosine
similarity, None, and Hun. reproduces the Hun. algorithm in
Section III-E. The specific hyper-parameter settings are elabo-
rated in Section IV-B.

Flexible Integration With Other Modules in EA. Ent-
Matcher is highly flexible, which can be directly called during
the development of standalone EA approaches. Besides, users
may also useEntMatcher as the backbone and call other mod-
ules. For instance, to conduct the experimental evaluations in this
work, we implemented the representation learning and auxiliary
information modules to generate the unified entity embeddings
E, as shown in the white blocks of Fig. 3. More details are
elaborated in the next subsection. Finally, EntMatcher is also
compatible with existing open-source EA libraries (that mainly
focus on representation learning) such as OpenEA6 and EAkit.7

B. Experimental Settings

Current EA evaluation setting assumes that the entities in
source and target KGs are 1-to-1 matched (cf. Section II-C).
Although this assumption simplifies the real-word scenarios
where some entities are unmatchable or some might be aligned
to multiple entities on the other side, it indeed reflects the core
challenge of EA. Therefore, following existing literature, we
mainly compare the embedding matching algorithms under this
setting, and postpone the evaluation on the challenging real-life
scenarios to Section V.

Datasets. We used popular EA benchmarks for evaluation:
(1) DBP15K, which comprises three multilingual KG pairs

6[Online]. Available: https://github.com/nju-websoft/OpenEA
7[Online]. Available: https://github.com/THU-KEG/EAkit

https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/nju-websoft/OpenEA
https://github.com/THU-KEG/EAkit
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TABLE III
DATASET STATISTICS

TABLE IV
THE F1 SCORES OF ONLY USING STRUCTURAL INFORMATION

extracted from DBpedia [1]: English to Chinese (D-Z), English
to Japanese (D-J), and English to French (D-F); and (2)SRPRS,
which is a sparser dataset that follows real-life entity distribution,
including two multilingual KG pairs extracted from DBpedia:
English to French (S-F) and English to German (S-D), and
two mono-lingual KG pairs: DBpedia to Wikidata [53] (S-W)
and DBpedia to YAGO [49] (S-Y); and (3) DWY100K, a larger
dataset consisting of two mono-lingual KG pairs: DBpedia to
Wikidata (D-W) and DBpedia to YAGO (D-Y). The detailed
statistics can be found in Table III, where the numbers of entities,
relations, triples, gold links, and the average entity degree are
reported. Regarding the gold alignment links, we adopted 70%
as test set, 20% for training, and 10% for validation.

Evaluation metric. We utilized F1 score as the evaluation
metric, which is the harmonic mean between precision and
recall, where the precision value is computed as the number
of correct matches divided by the number of matches found by
a method, and the recall value is computed as the number of
correct matches found by a method divided by the number of
gold matches. Note that recall is equivalent to the Hits@1 metric
used in some previous works.

Similarity Metric. After obtaining the unified entity represen-
tations E, a similarity metric is required to produce pairwise
scores and generate the similarity matrix S. Frequent choices
include the cosine similarity [7], [36], [52], the euclidean dis-
tance [8], [27] and the Manhattan distance [55], [58]. In this
work, we followed mainstream works and adopted the cosine
similarity.

Notably, we omit more detailed experimental settings in the
interest of space, which can be found in Appendix B, available
online.

C. Main Results and Comparison

We first evaluate with only structural information and report
the results in Table IV, where R- and G- refer to using RREA

and GCN to generate the structural embeddings, respectively,
DBP and SRP denote DBP15K and SRPRS, respectively. Next,
we supplement with name embeddings, and report the results
in Table V, where N- and NR- refer to only using the name
embeddings and fusing name embeddings withRREA structural
representations, respectively. Note that, on existing datasets, all
the entities in the test set can be matched, and all the algorithms
are devised to find a target entity for each test source entity.
Hence, the number of matches found by a method equals to the
number of gold matches, and consequently the precision value
is equal to the recall value and the F1 score [65].

Overall Performance. First, we do not delve into the em-
bedding matching algorithms and directly analyze the general
results. Specifically, using RREA to learn structural representa-
tions can bring better performance compared with using GCN,
showcasing that representation learning strategies are crucial to
the overall alignment performance. When introducing the entity
name information, it observes that this auxiliary signal alone
can already provide very accurate signal for alignment. This
is because the equivalent entities in different KGs of current
datasets share very similar or even identical names. After fusing
the semantic and structural information, the alignment perfor-
mance is further lifted, with most of the approaches hitting over
0.9 in terms of the F1 score.

Effectiveness Comparison of Embedding Matching Algo-
rithms. From the tables, it is evident that:

(1) Overall, Hun. and Sink. attain much better results than
the other strategies. Specifically, Hun. takes full account of
the global matching constraints and strives to reach a globally
optimal matching given the objective of maximizing the sum
of pairwise similarity scores. Moreover, the 1-to-1 constraint it
exerts aligns with present evaluation setting where the source and
target entities are 1-to-1 matched. Sink., on the other hand, im-
plicitly implements the 1-to-1 constraint during pairwise score
computation and still adopts Greedy to produce final results,
where there might exist non 1-to-1 matches; (2) DInf attains
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TABLE V
THE F1 SCORES OF USING AUXILIARY INFORMATION

Fig. 4. The statistic of pairwise similarity scores (i.e., Top-5 STD), where the
name of the setting is abbreviated, e.g., R-D stands for R-DBP.

the worst performance. This is because it directly adopts the
similarity scores that suffer from the hubness and isolation
issues [50]. Besides, it leverages Greedy, which merely reaches
the local optimum for each entity. (3) The performance of RInf,
CSLS, SMat and RL are well matched. RInf and CSLS improve
upon DInf by mitigating the hubness issue and enhancing the
quality of pairwise scores. SMat and RL, on the other hand, im-
prove upon DInf by modeling the interactions among matching
decisions for different entities.

Furthermore, we conduct a deeper analysis of these ap-
proaches, and identify the following patterns:

Pattern 1. If for source entities, their highest pairwise simi-
larity scores are close, RInf and CSLS (resp., SMat and
RL ) would attain relatively better (resp., worse) performance.
Specifically, in Table IV where RInf consistently (CSLS some-
times) attains superior results than SMat and RL, the average
standard deviation (STD) values of the top-5 pairwise similarity
scores of source entities (cf. Fig. 4) are very small, unveiling that
the top scores are close and difficult to differentiate. In contrast,
in Table V where SMat and RL outperform RInf and CSLS, the
corresponding STD values are relatively large. This is because
RInf andCSLS aim to make the scores more distinguishable, and
hence they are more effective in cases where the top similarity
scores are very close (i.e., low STD values). On the contrary,
when the top similarity scores are already discriminating (e.g.,
Table V), RInf and CSLS become less useful, while SMat and
RL can still make improvements by using the global constraints
to enforce the deviation from local optimums.

Pattern 2. On sparser datasets, the superiority of Sink. and
Hun. over the rest of the methods becomes less significant.
This is based on the observation that on SRPRS, other matching
algorithms (RInf in particular) attain much closer performance to
Sink. andHun.. Such a pattern could be attributed to the fact that,
on sparser datasets, entities normally have fewer connections
with others, i.e., lower average entity degree (in Table III), where
representation learning strategies might fail to fully capture
the structural signals for alignment and the resultant pairwise

Fig. 5. Efficiency comparison. Shapes in blue denote methods that improve
pairwise scores, while shapes in black denote those exerting global constraints
(except for DInf).

scores become less accurate. These inaccurate scores could
mislead the matching process and hence limit the effectiveness
of the top-performing methods, i.e., Sink. and Hun.. In other
words, sparser KG structures are more likely to (partially)
break the fundamental assumption on KG structure similarity
(cf. Section II-C).

Efficiency Analysis. We compare the time and space efficiency
of these methods on the medium-sized datasets in Fig. 5. Since
the costs on KG pairs from the same dataset are very similar,
we report the average time and space costs under each setting
in the interest of space.

Specifically, it observes that: (1) The simple algorithm DInf
is the most efficient approach; (2) Among the advanced ap-
proaches,CSLS is the most efficient one, closely followingDInf;
(3) The efficiency of RInf and Hun. are equally matched. While
Hun. consumes relatively less memory space than RInf, its time
efficiency is less stable and tends to run slower on datasets with
less accurate pairwise scores; (4) The space efficiency of Sink. is
close to RInf and Hun., whereas it has much higher time costs,
which largely depends on the value of l; (5) RL is the least
time-efficient approach, while SMat is the least space-efficient
algorithm. RL requires more time on datasets with less accurate
pairwise scores where its pre-processing module fails to produce
promising results [65]. The memory space consumption ofSMat
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TABLE VI
THE F1 SCORES ON DWY100K USING GCN

is high, as it needs to store a large amount of intermediate match-
ing results. In all, we can conclude that generally, advanced
embedding matching algorithms require more time and memory
space, among which the methods incorporating global matching
constraints tend to be less efficient.

Comparison With DL-Based EM Approaches. We utilize the
deepmatcher python package [39], which provides built-in neu-
ral networks and utilities that can train and apply state-of-the-art
deep learning models for entity matching, to address EA. Specif-
ically, we use the structural and name embeddings to replace the
attributive text inputs in deepmatcher, respectively, and then
train the neural model with labeled data. For each positive entity
pair, we randomly sample 10 negative ones. In the testing stage,
for each source entity, we feed the entity pairs constituting it
and all the target entities into the trained classifier, and regard
the entity pair with the highest predicted score as the result.

In the final results, only several entities are correctly aligned,
showing that DL-based EM approaches cannot handle EA well,
which can be ascribed to the insufficient labeled data, imbal-
anced class distribution and the lack of attributive text informa-
tion, as discussed in Section II-B.

D. Results on Large-Scale Datasets

Next, we provide the results on the relatively larger dataset,
i.e., DWY100K, which can also reflect the scalability of these
algorithms. The results are presented in Table VI8. The gen-
eral pattern is similar to that on G-DBP (i.e., using GCN on
DBP15K), where Sink. and Hun. obtain the best results, fol-
lowed by RInf. The performance of CSLS and RL are close,
outperforming DInf by over 20%.

We compare the efficiency of these algorithms in Table VI,
where T̄ refers to the average time cost and Mem. denotes
whether the memory space required by the model can be covered
by our experimental environment.9 It observes that, given larger
datasets, most of the performant algorithms have poor efficiency
and scalability (e.g., RInf, Sink. and Hun.). Note that in [62],
two variants of RInf, i.e., RInf-wr and RInf-pb, are proposed to
improve its scalability at the cost of a small performance drop,
which is empirically validated in Table VI. This also reveals that

8We cannot provide the results ofSMat, as it requires extremely large memory
space and cannot work under our experimental environment.

9Note that for algorithms with memory space costs exceeding our experi-
mental environment (except for SMat), there is additional swap area in the hard
drive for them to finish the program (which usually takes much longer time).

more scalable matching algorithms for KGs in entity embedding
spaces should be devised.

E. Analysis and Insights

We provide further experiments and discussions in this sub-
section. Due to the limitation of space, more experiments and
the case study can be found in Appendix C and D, available
online.

On efficiency and scalability. The simple algorithmDInf is the
most efficient and scalable one, as it merely involves the most
basic computation and matching operations. CSLS is slightly
less efficient than DInf due to the update of pairwise similarity
scores. It also has good scalability. Although RInf adopts a simi-
lar idea toCSLS, it involves an additional ranking process, which
brings much more time and memory consumption, making it less
scalable. Sink. repeatedly conducts the normalization operation,
and thus its time efficiency is mainly up to the l value. Its scala-
bility is also limited by the memory space consumption since it
needs to store intermediate results, as revealed in Table VI.

Regarding the methods that exert global constraints, Hun. is
efficient on medium-sized datasets, while it is not scalable due to
the high time complexity and memory space consumption.SMat
is space-inefficient even on the medium-sized datasets, making
it not scalable. In comparison,RL has more stable time and space
costs and can scale to large datasets, and the main influencing
factor is the accuracy of pairwise scores. This is because RL has
a pre-processing step that filters out confident matched entity
pairs and excludes them from the time-consuming RL learning
process [65]. More confident matched entity pairs would be
filtered out if the pairwise scores are more accurate.

On Effectiveness of Improving Pairwise Score Computation.
We compare and discuss the strategies for improving the pair-
wise score computation, i.e., CSLS, RInf and Sink..

BothCSLS andRInf aim to mitigate the hubness and isolation
issues in the raw pairwise scores (from different starting points).
Particularly, we observe that, by setting k (in Equation 1) of
CSLS to 1, the difference between RInf and CSLS is reduced to
the extra ranking process of RInf, and the results in Tables IV
and V validate that this ranking process can consistently bring
better performance. This is because the ranking operation can
amplify the difference among the scores and prevent such infor-
mation from being lost after the bidirectional aggregation [62].
However, it is noteworthy that the ranking process brings much
more time and memory consumption, as can be observed from
the empirical results.

Then we analyze the influence of k value in CSLS. As shown
in Fig. 6, a larger k leads to worse performance. This is because a
larger k implies a smaller φ value in Equation 1 (where the top-k
highest scores are considered and averaged), and the resultant
pairwise scores become less distinctive. This also validates the
effectiveness of the design in RInf (cf. Equation 2), where only
the maximum value is considered to compute the preference
score. Nevertheless, in Section V-B, we reveal that setting k
to 1 is only useful in the 1-to-1 alignment setting.

As for Sink., it adopts an extreme approach to optimize the
pairwise scores, which encourages each source (resp., target)
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Fig. 6. F1 scores of CSLS with varying k value.

Fig. 7. F1 scores of Sink. with varying l value.

entity to have only one positive pairwise score with a target
(resp., source) entity and 0’s with the rest of the target (resp.,
source) entities. Thus, it is in fact progressively and implicitly
implementing the 1-to-1 alignment constraint during the pair-
wise score computation process with the increase of l, and is
particularly useful in present 1-to-1 evaluation settings of EA.
In Fig. 7, we further examine the influence of l in Equation 3 on
the alignment results of Sink., which meets our expectation that
the larger the l value, the better the distribution of the resultant
pairwise scores fits the 1-to-1 constraint, and thus the higher
the alignment performance. Nevertheless, a larger l also implies
longer processing time. Therefore, by tuning on the validation
set, we set l to 100 to reach the balance between effectiveness
and efficiency.

On Effectiveness of Exerting Global Constraints. Next, we
compare and discuss the methods that exert global constraints
on the embedding matching process, i.e., Hun., SMat and RL.

It is evident that Hun. is the most performant approach,
as it fits well with the present EA setting and can secure
an optimal solution towards maximizing the sum of pairwise
scores. Specifically, the current EA setting has two notable
assumptions (cf. Section II-C). With these two assumptions,
EA can be transformed into the linear assignment problem,
which aims to maximize the sum of pairwise scores under the
1-to-1 constraint [35]. As thus, the algorithms for solving the
linear assignment problem, e.g., Hun., can attain remarkably
high performance on EA. However, these two assumptions do
not necessarily hold on all occasions, which could influence
the effectiveness of Hun.. For instance, as revealed in Pattern
2, on sparse datasets (e.g., SRPRS), the neighboring structures
of some equivalent entities are likely to be different, where the
effectiveness ofHun. is limited. In addition, the 1-to-1 alignment
constraint is not necessarily true in practice, which will be
discussed in Section V.

In comparison, SMat merely aims to attain a stable matching,
where the resultant entity pairing could be sub-optimal under
present evaluation setting. RL, on the other hand, relaxes the

TABLE VII
F1 SCORES ON DBP15K+

1-to-1 constraint and only deviates slightly from the greedy
matching, and hence the results are not very promising.

Overall Comparison and Conclusion. Finally, we compare
the algorithms all together and draw the following conclusions
under the 1-to-1 alignment setting: (1) The best performing
methods are Hun. and Sink.. Nevertheless, they have low scal-
ability; (2) CSLS and RInf achieve the best balance between
effectiveness and efficiency. While CSLS is more efficient, RInf
is more effective; (3) SMat and RL tend to attain better results
when the accuracy of the pairwise scores is high. Nevertheless,
they require relatively more time.

V. NEW EVALUATION SETTINGS

In this section, we conduct experiments on settings that can
better reflect real-life challenges.

A. Unmatchable Entities

Current EA literature largely overlooks the unmatchable is-
sue, where a KG contains entities that the other KG does not
contain. For instance, when aligning YAGO 4 and IMDB, only
1% of entities in YAGO 4 are film-related and possibly have
equivalent entities in IMDB, while the other 99% of entities in
YAGO 4 necessarily have no match in IMDB [68]. Hence, we
aim to evaluate the embedding matching algorithms in terms of
dealing with unmatchable entities.

Datasets and Evaluation Settings. Following [63], we adapt
the KG pairs in DBP15K to include unmatchable entities, re-
sulting in DBP15K+. More specific construction procedure can
be found in [63]. As for the evaluation metric, we follow the
main experimental setting and adopt the F1 score. Unlike 1-
to-1 alignment, there exist unmatchable entities in this adapted
dataset, and the precision and recall values are not necessarily
equivalent, since some methods would also align unmatchable
entities. Noteworthily, the original setting of SMat and Hun.
requires that the numbers of entities on the two sides are equal.
Thus, we add the dummy nodes on the side with fewer entities
to restore such a setting, and then apply SMat and Hun.. The
corresponding results are reported in Table VII.

Alignment Results. It reads that Hun. attains the best results,
followed by SMat. The superior results are partially due to the
addition of dummy nodes, which could mitigate the unmatchable
issue to a certain degree. The results of RInf and Sink. are
close, outperforming CSLS and RL. DInf still achieves the worst
performance.
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Besides, by comparing the results on DBP15K+ and those on
the original dataset DBP15K (cf. Table IV), we observe that:
(1) After including the unmatchable entities, for all methods,
the F1 scores drop. This is because most of current embedding
matching algorithms are greedy, i.e., retrieving a target entity
for each source entity (including the unmatchable ones), which
leads to a very low precision. For the rest of the methods,
e.g., Hun. and SMat, the unmatchable entities also mislead the
matching process and thus affect the final results; (2) Unlike on
DBP15K where the performance of Sink. and Hun. are close,
on DBP15K+, Hun. largely outperforms Sink., as Hun. does not
necessarily align a target entity to each source entity and has a
higher precision; (3) Overall, existing algorithms for matching
KGs in entity embedding spaces lack the capability of dealing
with unmatchable entities.

B. Non 1-to-1 Alignment

Next, we study the setting where the source and target entities
do not strictly conform to the 1-to-1 constraint, so as to better ap-
preciate these matching algorithms for KGs in entity embedding
spaces. Non 1-to-1 alignment is common in practice, especially
when two KGs contain entities in different granularity, or one
KG is noisy and involves duplicate entities. To the best of our
knowledge, we are among the first attempts to Identify and
Investigate This Issue.

Dataset Construction. Present EA benchmarks are con-
structed according to the 1-to-1 constraint. Thus, in this work,
we establish a new dataset that involves non 1-to-1 alignment
relationships. Specifically, we obtain the pre-annotated links10

between Freebase [3] and DBpedia [1], and preserve the entities
that are involved in 1-to-many, many-to-1, and many-to-many
alignment relationships. Then, we retrieve the relational triples
that contain these entities from respective KGs, which also
introduces new entities. Next, we detect the links among the
newly added entities, and add them into the alignment links.
Finally, the resultant dataset, FB_DBP_MUL, contains 44,716
entities, 164,882 triples, 22,117 gold links, among which 20,353
are non 1-to-1 links and 1,764 are 1-to-1 links11. The specific
statistics are also presented in Table III.

Evaluation Settings. To keep the integrity of the links among
entities, we sample the training, validation and test sets from the
gold links according to the principle that the links involving the
same entity should not be distributed among different sets. The
size of the final training, validation and test sets is approximately
7:1:2. We compare the entity pairs produced by embedding
matching algorithms against the gold test links, and report the
precision (P), recall (R) and F1 values.

Alignment Results. It is evident from Table VIII that, com-
pared with 1-to-1 alignment, the results change significantly on
the new dataset. Specifically: (1) RInf and CSLS attain the best
F1 scores, whereas the results are not very promising (e.g., with
F1 score lower than 0.1 when using GCN); (2) Sink. and Hun.

10[Online]. Available: https://www.dbpedia.org/blog/dbpedia-is-now-
interlinked-with-freebase-links-to-opencyc-updated/

11FB_DBP_MUL is publicly available at https://github.com/DexterZeng/
EntMatcher.

TABLE VIII
THE RESULTS ON NON 1-TO-1 ALIGNMENT DATASET

achieve much worse results compared with the performance
on 1-to-1 alignment datasets; (3) The results of SMat and RL
are even inferior to those of the simple baseline DInf. The
main reason accounting for these changes is that the non 1-to-1
alignment links pose great challenges to existing embedding
matching algorithms. Specifically, for DInf, CSLS, RInf, Sink.
and RL, they only align one target entity (that possesses the
highest score) to a given source entity, but fail to discover other
alignment links that also involve this source entity. ForSMat and
Hun., they impose the 1-to-1 constraint during matching, which
falls short on the non 1-to-1 setting, thus leading to inferior
results. Therefore, it calls for the study on embedding matching
algorithms targeted at non 1-to-1 alignment. We also discuss the
k value in CSLS and RInf under the non 1-to-1 setting, which
can be found in Appendix C, available online.

VI. SUMMARY AND FUTURE DIRECTION

In this section, we summarize the observations and insights
made from our evaluation, and provide possible future research
directions.

(1) The investigation into matching KGs in embedding spaces
has not yet made substantial progress. Although there are a few
algorithms tailored for matching KGs in embedding spaces, e.g.,
CSLS, RInf and RL, under the most popular EA evaluation set-
ting (with 1-to-1 alignment constraint), they are outperformed by
the classic general matching algorithms, i.e., Hun.. Hence, there
is still much room for improving matching KGs in embedding
spaces.

(2) No existing embedding matching algorithm prevails under
all experimental settings. The strategies designed to solve the
linear assignment problem attain the best performance under
the 1-to-1 setting, while they fall short on more practical and
challenging scenarios since the new settings (e.g., non 1-to-1
alignment) no longer align with the conditions of these optimiza-
tion algorithms. Similarly, although the methods for improving
the computation of pairwise scores achieve superior results in
the non 1-to-1 alignment scenario, they are outperformed by
other solutions under the unmatchable setting. Therefore, each
evaluation setting poses its own challenge to the embedding
matching process, and currently there is no consistent winner.

(3) The adaptation from general matching algorithms requires
careful design. Among the embedding matching algorithms,
Hun. and SMat are general matching algorithms that have been
applied to many other related tasks. Although directly adopting
these general strategies to tackle EA is simple and effective, they

https://www.dbpedia.org/blog/dbpedia-is-now-interlinked-with-freebase-links-to-opencyc-updated/
https://www.dbpedia.org/blog/dbpedia-is-now-interlinked-with-freebase-links-to-opencyc-updated/
https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
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might well fall short in some scenarios, as the alignment on KGs
possesses it own challenges, e.g., the matching is not necessarily
1-to-1 constrained, or the pairwise scores are inaccurate. Thus,
it is suggested to take full account of the characteristics of
the alignment settings when adapting other general matching
algorithms to cope with matching KGs in entity embedding
spaces.

(4) The scalability and efficiency should be brought to the
attention. Existing advanced embedding matching algorithms
have poor scalability, due to the additional resource-consuming
operations that contribute to the alignment performance, such as
the ranking process in RInf and the 1-to-1 constraint exerted by
Hun. and SMat. Besides, the space efficiency is also a critical
issue. As shown in Section IV-D, most of the approaches have
rather high memory costs given large-scale datasets. Therefore,
considering that in practice there are much more entities, the
scalability and efficiency issues should be considered during the
algorithm design. A preliminary exploration has been conducted
by [15].

(5) The practical evaluation settings are worth further inves-
tigation. Under the unmatchable and non 1-to-1 alignment set-
tings, the performance of existing algorithms is not promising. A
possible future direction is to introduce the notion of probability
and leverage the probabilistic reasoning frameworks [22], [45],
which have higher flexibility, to produce the alignment results.

(6) Integrating the relation embedding might help. Two lat-
est studies propose to use relation embeddings to help induce
aligned entity pairs [33], [56]. Different from existing methods
that regard EA as a matrix (second-order tensor) isomorphism
problem, they express the isomorphism of KGs in the form of
third-order tensors to better describe the structural information
of KGs [33]. Thus, it might be interesting to study the matching
between KGs in the joint entity and relation embedding space.

We also provide some actionable insights:
1) In 1-to-1 constrained scenarios, it is preferable to use Hun-

garian algorithm or the Sinkhorn operation to conduct the
matching, as they explicitly or implicitly implement the
1-to-1 constraint during execution, and take full account
of the global matching constraints and strive to reach a
globally optimal matching given the objective of maxi-
mizing the sum of pairwise similarity scores. Given large-
scale datasets, using Hungarian algorithm would be more
time-efficient, as Sinkhorn operation needs to operate for
multiple rounds to achieve convergence. Besides, while
Hungarian algorithm depends mainly on CPU, Sinkhorn
operation relies on GPU.

2) Given datasets with unmatchable entities, it is suggested
to add dummy nodes to make the number of entities in
both sides equal, and then use the Hungarian algorithm.
In this scenario, there is still much room for improvement.

3) Non 1-to-1 alignment is a realistic and frequently observed
scenario that has not received much research attention.
Among existing algorithms, RInf and CSLS are preferred,
since they take into account the global influence on the
local matching and meanwhile do not strictly enforce the
1-to-1 constraint. More practical solutions are to be put
forward to effectively address non 1-to-1 alignment.

4) Currently, the most performant embedding matching algo-
rithms are not scalable. Among them, the Hungarian algo-
rithm requires approximately one hour on the DWY100K
dataset. Hence, in this case, it might be better to utilize
the RInf and its variant algorithms, which save 2/3 of time
cost at the expense of < 10% performance drop compared
with the Hungarian algorithm.

VII. CONCLUSION

This paper conducts a comprehensive survey and evaluation
of matching algorithms for KGs in entity embedding spaces.
We evaluate seven state-of-the-art strategies in terms of effec-
tiveness and efficiency on a wide range of datasets, including
two experimental settings that better mirror real-life challenges.
We identify the strengths and weaknesses of these algorithms
under different settings. We hope the experimental results would
be valuable for researchers to put forward more effective and
scalable embedding matching algorithms.
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