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No DBA? No Regret! Multi-Armed Bandits for Index
Tuning of Analytical and HTAP Workloads

With Provable Guarantees
R. Malinga Perera , Bastian Oetomo , Benjamin I. P. Rubinstein , and Renata Borovica-Gajic

Abstract—Automating physical database design has remained a
long-term interest in database research due to substantial perfor-
mance gains afforded by optimised structures. Despite significant
progress, a majority of today’s commercial solutions are highly
manual, requiring offline invocation by database administrators
(DBAs). This status quo is untenable: identifying representative
static workloads is no longer realistic; and physical design tools
remain susceptible to the query optimiser’s cost misestimates.
Furthermore, modern application environments like hybrid trans-
actional and analytical processing (HTAP) systems render ana-
lytical modelling next to impossible. We propose a self-driving
approach to online index selection that does not depend on the
DBA and query optimiser, and instead learns the benefits of viable
structures through strategic exploration and direct performance
observation. We view the problem as one of sequential decision
making under uncertainty, specifically within the bandit learning
setting. Multi-armed bandits balance exploration and exploitation
to provably guarantee average performance that converges to poli-
cies that are optimal with perfect hindsight. Our comprehensive
empirical evaluation against a state-of-the-art commercial tuning
tool demonstrates up to 75% speed-up in analytical processing
environments and 59% speed-up in HTAP environments. Lastly,
our bandit framework outperforms a Monte Carlo tree search
(MCTS)-based database optimiser, providing up to 24% speed-up.

Index Terms—HTAP, index tuning, multi-armed bandits,
physical design tuning, reinforcement learning.

I. INTRODUCTION

W ITH the growing complexity and variability of database
applications and their hosting platforms (e.g., multi-

tenant cloud environments), automated physical design tun-
ing, particularly automated index selection, has re-emerged as
a contemporary challenge for database management systems.
Most database vendors offer automated tools for physical design
tuning within their product suites [1], [2], [3]. Such tools form an
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integral part of broader efforts toward fully automated database
management systems which aim to: a) decrease database ad-
ministration costs and thus total costs of ownership [4], [5]; b)
help non-experts use database systems; and c) facilitate hosting
of databases on dynamic environments such as cloud-based
services [6], [7], [8], [9]. Most physical design tools take an
off-line approach, where DBAs must decide when to invoke the
tool and what representative training workload to provide [10].
Where online solutions are provided [8], [11], [12], [13], ques-
tions remain: How can tools generalise beyond queries seen
to dynamic ad-hoc workloads, where queries are unpredictable
and non-stationary? And importantly, is the quality of proposed
designs in any way guaranteed?

Modern analytics workloads are dynamic in nature with ad-
hoc queries common [14], e.g., data exploration workloads adapt
to past query responses [15]. Such ad-hoc workloads hinder
automated tuning since: a) inputting representative information
to design tools is infeasible under time-evolving workloads; and
b) reacting too quickly to changes may result in performance
variability, where indices are continuously dropped and created.
Any robust automated physical design solution must address
such challenges [11].

The situation is further aggravated in HTAP environments,
that consist of online transaction processing (OLTP) and online
analytical processing (OLAP) workloads. While indices provide
(primarily) positive benefits to OLAP queries, they hinder the
OLTP performance due to the additional index maintenance
overhead. Furthermore, in dynamic settings, workload compo-
sition (i.e., analytical to transactional ratio) can vary over time,
making it even more challenging to identify useful indices that
boost overall workload performance.

To compare alternative physical design structures, automated
design tools use a cost model employed by the query optimiser,
typically exposed through a “what-if” interface [16], as the sole
source of truth. However such cost models make inappropriate
assumptions about data characteristics [17], [18]: commercial
DBMSs often assume attribute value independence and uniform
data distributions when sufficient statistics are unavailable [18],
[19], [20]. As a result, estimated benefits of proposed designs
may diverge significantly from actual workload performance [8],
[9], [20], [21], [22]. Even with more complex data distribution
statistics such as single- and multi-column histograms, the issue
remains for complex workloads [20]. Moreover, data additions
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Fig. 1. An abstract view of the proposed bandit learning-based framework for online index selection.

and updates in HTAP environments continuously invalidate
statistics, compounding the effect of the optimiser misestimates.
Keeping statistics up-to-date in such a setting requires extra
effort.

In this paper, we demonstrate that even in ad-hoc environ-
ments where queries are unpredictable, there are opportunities
for index optimisation. We argue that the problem of online index
selection under ad-hoc, analytical and HTAP workloads can
be efficiently formulated within the multi-armed bandit (MAB)
learning setting—a tractable form of Markov decision process.
MABs take arms or actions (selecting indices) to maximise
cumulative rewards, trading off exploration of untried actions
with exploitation of actions that maximise rewards observed so
far (see Fig. 1). MABs permit learning from observations of
actual performance, and need not rely on potentially misspec-
ified cost models. Unlike initial efforts with applying learning
for physical design, e.g., more general forms of reinforcement
learning [23], bandits offer regret bounds that guarantee the
fitness of dynamically-proposed indices [24]. In critical produc-
tion environments, the uncertainties of online learned solutions
can create doubts in a DBA’s mind, making safety guarantees
critical.

The key contributions of the paper can be summarised as:
� We model index tuning as a multi-armed bandit, proposing

design choices that lead to a practical, competitive solution.
� Our proposed design achieves a worst-case safety guar-

antee against any optimal fixed policy, as a conse-
quence of a corrected regret analysis of the C2UCB
bandit.

� We introduce a new bandit flavour that extends the exist-
ing contextual and combinatorial bandit where structured
rewards are observed for each arm, providing additional
feedback for the bandit. This bandit variation enjoys a
superior regret bound compared to the C2UCB bandit.

� Our comprehensive experiments demonstrate MAB’s su-
periority over a state-of-the-art commercial physical de-
sign tool and a deep reinforcement learning agent,
with up to 75% speed-up in the former and 58%
speed-up in the latter case, under dynamic, analytical
workloads.

� We showcase MAB’s ability to perform in complex HTAP
environments, which are notoriously challenging for in-
dex tuning, delivering up to 59% and 24% speed-up over
the state-of-the-art commercial design tool and Monte
Carlo tree search (MCTS)-based database optimiser, re-
spectively.

II. PROBLEM FORMULATION

The goal of the online database index selection problem is
to choose a set of indices (referred to as a configuration) that
minimises the total running time of a workload sequence within
a given memory budget. Neither the workload sequence, nor
system run times, are known in advance.

We adopt the problem definition of [13]. Let the workload
W = (w1, w2, . . . , wT ) be a sequence of mini-workloads (e.g.,
a sequence of individual statements), I the set of secondary
indices, Cmem(s) represent the memory space required to ma-
terialise a configuration s ⊆ I , and S = {s ⊆ I|Cmem(s) ≤
M} ⊆ 2I be the class of index configurations feasible within
our total memory allowance M . Our goal is to propose a con-
figuration sequence S = (s0, s1, . . . , sT ), with st ∈ S as the
configuration in round t and s0 = ∅ as the starting configuration,
which minimises the total workload time Ctot(W,S) defined as

Ctot(W,S) =

T∑
t=1

Crec(t) + Ccre(st−1, st) + Cexc(wt, st).

Here Crec(t) refers to the recommendation time in round t
(defined as running time of the recommendation tool) and
Ccre(st−1, st) refers to the incremental index creation time in
transitioning from configuration st−1 to st. Finally,Cexc(wt, st)
denotes the execution time of mini-workload wt under the
configuration st, namely the sum of response times of individual
statements.

At round t, the system:
1) Chooses a set of indices st ∈ S in preparation for upcom-

ing workload wt, without direct access to wt.
st only depends on observation of historical workloads
(w1, . . . , wt−1), corresponding sets of chosen indices, and
resulting performance;
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2) Materialises the indices in st which do not exist yet, that
is, all indices in the set difference st\st−1; and

3) Receives workloadwt, executes all the statements therein,
and measures elapsed time of each individual statements
and each operator in the corresponding query plan.

III. CONTEXTUAL COMBINATORIAL BANDITS

In this paper, we argue that online index selection can be
successfully addressed using multi-armed bandits (MABs) from
statistical machine learning, where each arm corresponds to
an index. We first present necessary background on MABs,
outlining the essential properties that we exploit in our work (i.e.,
bandit context and combinatorial arms) to converge to highly
performant index configurations.

We use the following notation. We denote non-scalar values
with boldface: lowercase for (by default column) vectors and
uppercase for matrices. We also write [k] = {1, 2, . . . , k} for
k ∈ N, and denote the transpose of a matrix or a vector with a
prime.

The contextual combinatorial bandit setting under semi-
bandit feedback involves repeated selections from k possible
actions, over rounds t = 1, 2, . . ., in which the MAB:

1) Observes a context feature vector (possibly random or ad-
versarially chosen) of each action or arm i ∈ [k], denoted
as Xt = {xt(i)}i∈[k], for xt(i) ∈ Rd, along with their
costs, ci;

2) Selects or pulls a set of arms (referred to as super arm)
st ∈ St, where we restrict the class of possible super arms
St ⊆ S′t = {s ⊆ [k]| ∑i∈s ci ≤M} ⊆ 2[k]; and

3) For each it ∈ st, observes random scores rt(it) drawn
from fixed but unknown arm distribution which depends
solely on the arm it and its context xt(it), whose true
expected values are contained in the unknown variable
r�t = {E[rt(i)]}i∈[k].

Remark 1: The contextual combinatorial bandit setting is a
special case of a Markov decision process, which is solved in
general by reinforcement learning (RL). The key difference is
that in bandits, state transition is not affected by MAB actions,
only rewards are. States (observed via contexts) arrive arbitrarily.
This simplicity admits theoretical guarantees for practical MAB
learners, where state-of-the-art RL agents regularly have none.
When playing in a bandit setting, in practice MAB learners
may converge faster than their (typically over parametrised) RL
cousins.

A MAB’s goal is to maximise the cumulative expected reward∑
t E[Rt(st)] =

∑
t g(st, r

�
t ,Xt) for a known function g. This

function g need not be a simple summation of all the scores,
however is typically assumed to be monotonic and Lipschitz
smooth in the arm scores.

Definition 1: A monotonic function g(s, r,X) is non-
decreasing in r: for all s,X, if r � r′ then g(s, r,X) ≤ g(s,
r′,X).

Definition 2: Function g(s, r,X) is C-Lipschitz (uniformly)
in r, if |g(s, r,X)− g(s, r′,X)| ≤ C · ‖r− r′‖2, for all r, r′,
X, s.

The core challenge in this problem is that the expected scores
for all arms i ∈ [k] are unknown. Refinement of a bandit learner’s

approximation for arm i is generally only possible by including
arm i in the super arm, as the score for arm i is not observable
when i is not played. This suggests solutions that balance ex-
ploration and exploitation. Even though at first glance it may
seem that each arm needs to be explored at least once, placing
practical limits on large numbers of arms, there is a remedy to
this as will be discussed shortly.

The C2UCB algorithm: Used to solve the contextual com-
binatorial bandit problem, the C2UCB Algorithm [24] mod-
els the arms’ scores as linearly dependent on their contexts:
rt(i) = θ′xt(i) + εt(i) for unknown zero-mean (subgaussian)
random variable εt, unknown but fixed parameter θ ∈ Rd, and
known context xt(i). It is crucial to notice the implication that,
all learned knowledge is contained in estimates of θ, which is
shared between all arms, obviating the need to explore each
arm. Estimation of θ can be achieved using ridge regression,
with |st| new data points {(xt(i), rt(i))}i∈st available at round
t, further accelerating the convergence rate of the estimator θ̂,
over observing only one example as might be naïvely assumed.

Point estimates on the expected scores can be made with
r̄t(i) = θ̂

′
txt(i), where θ̂t are trained coefficients of a ridge

regression on observed rewards against contexts. However, this
quantity is oblivious to the variance in the score estimation.
Intuitively, to balance out the exploration and exploitation, it is
desirable to add an exploration boost to the arms whose score
we are less sure of (i.e., greater estimate variance). This suggests
that the upper confidence bound (UCB) should be used, in place
of the expected value, and which can be calculated [25] as

r̂t(i) = θ̂
′
txt(i) + αt

√
xt(i)′V −1t−1xt(i), (1)

where αt > 0 is the exploration boost factor, and V t−1 is the
positive-definite d× d scatter matrix of contexts for the chosen
arms up to and including round t− 1. The first term of r̂t(i)
corresponds to arm i’s immediate reward, whereas its second
term corresponds to its exploration boost, as its value is larger
when the arm is sensitive to the context elements we are less
confident of (i.e., the underexplored context dimension). Hence,
by using r̂t(i) in place of r̄t(i), arms with contexts lying in
the underexplored regions of context space are more likely to
be chosen, as higher scores yield higher g, assuming that g is
monotonic increasing in the arm rewards.

Ideally, the super arm st ∈ St is chosen such that g(st, r̂t,
Xt) is maximised. However, it is sometimes computationally
expensive to find such super arms. In such cases, it is often good
enough to obtain a solution via some approximation algorithm
where g(r̂t,Xt, st) is near maximum. With this criterion in
mind, we now define an α-approximation oracle.

Definition 3. An α-approximation oracle is an algorithm
A that outputs a super arm s = A(r,X) with guaran-
tee g(s, r,X) ≥ α ·maxs g(s, r,X), for some α ∈ [0, 1] and
given input r and X .

Note that knapsack-constrained submodular programs are
efficiently solved by the greedy algorithm (iteratively select a
remaining cost-feasible arm with highest available score) with
α = 1− 1/e. C2UCB is detailed in Algorithm 1.

The performance of a bandit algorithm is usually measured
by its cumulative regret, defined as the total expected difference
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Algorithm 1: The C2UCB Algorithm.
1: Input: λ, α1, . . . , αT

2: Initialize V 0 ← λId, b0 ← 0d

3: for t← 1, . . . , T do
4: Observe St
5: θ̂t ← V −1t−1bt−1 � estimate via ridge regression
6: for i ∈ [k] do
7: Observe context xt(i)

8: r̂t(i)← θ̂
′
txt(i) + αt

√
xt(i)′V −1t−1xt(i)

9: end for
10: st ← A(r̂t,Xt) � using α-approximation oracle
11: Play st and observe rt(i) for all i ∈ st
12: V t ← V t−1 +

∑
i∈st xt(i)xt(i)

′ � regression
update

13: bt ← bt−1 +
∑

i∈st rt(i)xt(i) � regression update
14: end for

between the reward of the chosen super arm E[Rt(st)] and an
optimal super arm maxs∈St E[Rt(s)] over T rounds. Such a
metric is unfair to C2UCB since its performance depends on the
oracle’s performance. This suggests assessing C2UCB’s perfor-
mance with a metric using the oracle’s performance guarantee
as its measuring stick, as follows.

Definition 4: Let s be a super arm returned by an α-
approximation oracle as a part of the bandit algorithm, and r�t
be a vector containing each arms’ true expected scores. Then
cumulative α-regret is the sum of expected instantaneous regret,
Regαt = α ·maxs g(s, r

�
t ,Xt)− g(st, r

�
t ,Xt).

When g is assumed to be monotonic and Lipschitz contin-
uous, [24] claimed that C2UCB enjoys Õ(

√
T ) α-regret. We

have corrected an error in the original proof, as seen in Appendix
(available online), confirming the Õ(

√
T )α-regret. This expres-

sion is sub-linear in T , implying that the per-round average cu-
mulative regret approaches zero after sufficiently many rounds.
Consequently, online index selection based on C2UCB comes
endowed with a safety guarantee on worst-case performance:
selections become at least as good as an α-optimal policy (with
perfect access to true scores); and potentially much better than
any fixed policy.

IV. MAB FOR ONLINE INDEX SELECTION

Performant bandit learning for online index tuning demands
arms covering important actions and no more, rewards that
are observable and for which regret bounds are meaningful,
and contexts and oracle that are efficiently computable and
predictive of rewards. Each workload statement is monitored
for characteristics such as running time, query predicates, pay-
load, etc. (see Fig. 1). These observations feed into genera-
tion of relevant arms and their contexts. The learner selects
a desired configuration which is materialised. For returning
statements, the system identifies benefits of the materialised
indices, which are then shaped into the reward signal for
learning.

Dynamic arms from workload predicates: Instead of enumer-
ating all column combinations, relevant arms (indices) may be
generated based on queries: combinations and permutations of
query predicates (including join predicates), with and without
inclusion of payload attributes from the selection clause. Such
workload-based arm generation drastically reduces the action
space, and exploits natural skewness of real-life workloads
that focus on small subsets of attributes over full tables [15].
Workload-based arm generation is only viable due to dynamic
arm addition (reflecting a dynamic action space) and is allowed
by the bandit setting: we may define the set of feasible arms for
each round at its start.

Context engineering: Effective contexts are predictive of re-
wards, efficiently computable, and promote generalisation to
previously unseen workloads and arms. We form our context
in two parts (see Fig. 1).

Context Part 1: Indexed column prefix: We encode one context
component per column. However unlike a bag-of-words or
one-hot representation appropriate for text, similarity of arms
depends on having similar column prefixes; common index
columns is insufficient. This reflects a novel bandit learning
aspect of the problem. A context component has value m−j

where j is the corresponding column’s position in the index,
provided that the column is included in the index and part of
the workload. We experimented with values 1, 2, 10 and 100
for m, where 1 represents the one-hot encoding. We observe
that smaller values (i.e., 1 and 2) do not provide sufficient
differentiation between arms, while the larger values (i.e., 100)
only differentiate based on the first column (there is insufficient
representation for the rest of the columns). Thus we set m to
10. The value is set to 0 otherwise, including if its presence
only covers the payload. Unlike a simple one hot encoding, this
context enables the bandit to differentiate between arms with
the same set of columns but different ordering, and reward the
columns differently based on their position in the index.

Example 1: Under the simplest workload (single query) in
Fig. 1, our system generates six arms: four using different
combinations and permutations of the predicates, two including
the payload (covering indices). Index IX5 includes column C1,
but the context for C1 is valued as 0, as this column is considered
only due to the query payload.

Context Part 2: Derived statistical information: We represent
statistical and derived information about the arms and work-
load, details available during statement execution, and sufficient
statistics for unbiased estimates. This statistical information
includes: a Boolean indicating a covering index, the estimated
size of the index divided by the database size (if not materialised
already, 0 otherwise), and the number of times the optimiser has
picked this arm in recent rounds. This is shown in Fig. 1 under
D1, D2 and D3, respectively. Results showed very low sensitivity
to the number of rounds considered for the D3 feature, however
making it 0 leads to slight increases in creation times.

Reward shaping: As the goal of physical design tuning tools
is to minimise end-to-end workload time, we incorporate index
creation time and statement execution time into the reward
for a workload. We omit index recommendation time, as it is
independent of arm selection. However, we measure and report
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recommendation time of the MAB algorithm in our experiments.
Recall that MAB depends only on observed execution statis-
tics from implemented configurations and generalisation of the
learned knowledge to unseen arms thereafter. Unlike OLAP
workloads, under HTAP workloads, the statement execution
time can be negatively impacted by the index maintenance
operations, necessitating its inclusion in the reward.

The implementation of the reward for an arm includes the
execution time as a gain Gt(i, wt, st) for a workload wt by each
arm i under configuration st. Indices can impact the execution
time in multiple ways. We split the execution time gain into three
components: a) data scan gains (Gds

t ), b) index maintenance
gains (Gim

t , usually a negative value), and c) other areas of the
query plan which can be difficult to attribute to a single index
(unclaimed gains) (Gun

t )

Gt(i, wt, st)

= Gds
t (i, wt, st) +Gim

t (i, wt, st) +Gun
t (i, wt, st).

Data scan gains: The data scan gain by index i for query q is
defined as

Gds
t (i, {q}, st)
= [Ctab(τ(i), q, ∅)− Ctab(τ(i), q, {i})] 1U(s,q)(i) ,

where U(s, q) denotes the list of indices used by the optimiser in
query q under a given configuration s.Ctab(τ(i), q, ∅) represents
the full table scan time for table τ(i) and query q, where τ(i) is
the table which i belongs to.1

Index maintenance gains: Index maintenance operations can
take different forms based on the number of rows updated. The
optimiser typically opts for row-wise updates for a small number
of rows and index-wise updates otherwise. In the second case, we
can easily capture the maintenance gain of an index as each index
is updated separately. This is however not straightforward in the
case of row-wise updates, where all indices are bulk updated
for each row. On these occasions, we compute the total main-
tenance gain (Gim

t (V(s, q), {q}, st)) for all secondary indices
that require maintenance due to a statement q under a given
configuration s and equally divide it among the updated indices.
V(s, q) represents the set of indices updated under configuration
s by the statement q

Gim
t (V(s, q), {q}, st) = [Cim(q, ∅)− Cim(q, s)] .

whereCim(q, ∅) andCim(q, s) represent the index maintenance
time without secondary indices and index maintenance time
under configuration s, respectively

Gim
t (i, {q}, st)

=
[
Gim

t (V(s, q), {q}, st)/ |V(s, q)|
]

1V(s,q)(i).

Unclaimed gains: Sometimes the impact of the indices can
be indirect. For example, while introducing a new index can

1Due to the reactive nature of multi-armed bandits, we mostly observe a full
table scan time for each table τ(i) and query q. When we do not observe this,
we estimate it with the maximum secondary index scan/seek time.

speed up the data scan, it can require sorting, which can be
costly. Therefore, when the overall gain results in a performance
regression, MAB needs to take corrective actions to trigger a
different query plan. These gains are captured under Gun

t . Gun
t

for a statement is computed by subtracting all the other gains
(data scan and index maintenance) from the total gain (Gto

t ).
The total gain (Gto

t ) can be obtained by using statement running
times before and after index creation

Gto
t ({q}, st) = [Cto(q, ∅)− Cto(q, st)] .

Then we equally divide this cost among participating indices
(U(s, q) ∪ V(s, q)).

The gain for a workload relates to the gain for individual
statement by

Gt(i, wt, st) =
∑
q∈wt

Gt(i, {q}, st) .

By this definition, gain Gt(i, wt, st) will be 0 if i is not used
by the optimiser in the current round t and can be negative if
the index creation leads to a performance regression or if the
index incurs a maintenance cost.2 Creation time of i is taken as
a negative reward, only if i is materialised in round t, and is 0
otherwise

rt(i) = Gt(i, wt, st)− Ccre(st−1, {i}).
Minimising the end-to-end workload time, or rather, maximising
the end-to-end workload time gained, is the goal of the bandit.
As defined earlier, the total workload time Ctot is the sum
of execution, recommendation and creation times accumulated
over rounds. As such, minimising each round’s summand is an
equivalent problem. Modifying the execution time to the time
gain while ignoring the recommendation time yields per-round
super arm reward of

Rt(st) = Cexc(wt, ∅)− [Cexc(wt, st) + Ccre(st−1, st)]

≈
∑
i∈st

Gt(i, wt, st)−
∑
i∈st

Ccre(st−1, {i}) =
∑
i∈st

rt(i).

Selection of the execution plan depends on the query optimiser,
and as noted, the query optimiser may resolve to a sub-optimal
query plan. As we show, the bandit is nonetheless resilient
as it can quickly recover from any such performance regres-
sions. Observed execution times encapsulate real-world effects,
e.g., the interaction between statements, application properties,
run-time parameters, etc. However, concurrent environments
might require modifying the reward design based on specific
performance targets (e.g., removing index creation time, or
considering total workload run times over query run times).
Since the end-to-end workload time includes the index creation
and statement execution times, we are indirectly optimising for
both efficiency and the quality of recommendations.

2The optimiser cost model does not have to agree that MAB choices are
optimal. The recommended indices will still be used if the optimiser estimates
that recommended MAB indices will provide a positive gain over a full table
scan.
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Algorithm 2: MAB Simulation for Index Tuning.

1: QS← QueryStore() � keeps query information
2: C2UCB← InitialiseBandit() � A1, L 1-2
3: while (TRUE) do
4: queries← getLastRoundWorkload()
5: for all queries do
6: if (isNewTemplate) then
7: QS.add(query)
8: else
9: QS.update(query)

10: end if
11: end for
12: QoI← QS.getQoI() � get queries of interest
13: arms← generateArms(QoI)
14: X← generateContext(arms,QoI)
15: st ← C2UCB.recommend(arms,X) � A1, L

4-10
16: Ccre ← materialise(st)
17: Cexc ← executeCurrentWorkload()
18: C2UCB.updateWeights(Ccre, Cexc) � A1, L

12-13
19: end while

A greedy oracle for super-arm selection: Recall that C2UCB
leverages a near-optimal oracle to select a super arm, based on in-
dividual arm scores [24]. As a sum of individual arm rewards, our
super-arm reward has a (sub)modular objective function and (as
easily proven) exhibits monotonicity and Lipschitz continuity.
Approximate solutions to maximise submodular (diminishing
returns) objective functions can be obtained with greedy oracles
that are efficient and near-optimal [26]. Our implementation uses
such an oracle combined with filtering to encourage diversity.

Initially, arms with negative scores are pruned. Then arm
selection and filtering steps alternate, until the memory budget
is reached. In the selection step, an arm is selected greedily
based on individual scores. The filtering step filters out arms
that are no longer viable under the remaining memory budget,
or those that are already covered by the selected arms based
on prefix matching. If a covering index is selected for a query,
all other arms generated for that query will be filtered out. Note
that filtering is a temporary process that only impacts the current
round.

Bandit learning algorithm: Algorithm 2 shows the MAB algo-
rithm, which wraps Algorithm 1 and handles the domain specific
aspects of the implementation. We have divided Algorithm 1 into
three main parts, initialisation (lines 1-2), arm recommendation
(lines 4-10) and weight vector update (lines 12-13). These
segments are utilised in Algorithm 2 as C2UCB function calls.
After initialising the bandit, Algorithm 2 summarises workload
information using templates; these track frequency, average
selectivity, first seen and last seen times of the statements which
help to generate the best set of arms per round (i.e., QoI). The
context is updated after each round based on the workload and
selected set of arms. The bandit then selects the round’s set
of arms, forming a configuration to be materialised within the

Fig. 2. Regular contextual updates versus focused update.

database. The reward will then be calculated based on observed
execution statistics on a new set of statements, and will be used to
update the shared weight. To support shifting workloads, where
users’ interests change over time, the learner may forget learned
knowledge depending on the workload shift intensity (i.e., the
number of newly introduced statement templates).

In our implementation, we perform bandit updates separately
for creation time reward and execution time reward (line 13
of Algorithm 1). At the creation cost update, we temporarily
make all context features 0 except for the context feature that
is responsible for the index size. This can be viewed as an
innovation of independent interest to the bandit community
where we decompose the reward into multiple components and
want to direct each reward component feedback to a subset of
the features. We coin the term focused update in reference to this
approach. This idea invites a new flavour of bandits elaborated
in the next section.

V. CONTEXTUAL COMBINATORIAL BANDIT WITH

STRUCTURED REWARDS

When rewards can be decomposed into component rewards
under two key conditions, we hypothesise that a focused update
can result in faster convergence: (i) when each reward com-
ponent is directly related to a small subset of context features
we create lower dimensional supervised learning problems; and
(ii) when each reward component is directly observed we offer
more opportunities for bandit feedback. Under focused updates
we use each component of the reward to learn a part of the weight
vector (see Fig. 2). Indeed for this structured setting we modify
the proof of C2UCB to arrive at a tighter regret bound by a factor
of 1/

√
nf , where nf is the number of reward components (i.e.,

observed number of examples per round).
Our approach to structured rewards is by a reduction to

C2UCB. We modify the C2UCB’s formulation as if two ex-
amples are observed for pulled arm i in round t with respective
rewards r̄t,1(i) and r̄t,2(i). Throughout both (sub round) ob-
servations, the overall arm reward function is fixed as rt(i) =
r̄t,1(i) + r̄t,2(i). This permits learning at a faster rate, while still
coordinating an overall arm reward estimate.

Example 2: In the bandit setting of this paper, we are moti-
vated by the desire for context part 1 to be completely responsible
for execution cost gains—we can learn the negative weight from
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index creation cost directly into part 2’s index size feature. This
enables us to switch off the creation cost overhead for already
created arms by simply setting the index size context feature
to zero. This ability to use domain knowledge to tailor reward
feedback to a subset of context features is a powerful benefit of
structured rewards.

Let x̄t,f (i) ∈ Rd be the f th context of arm i at round
t, such that rt(i) = θ′�xt(i) + εt = θ′�(x̄t,1(i) + x̄t,2(i)) +
εt,1 + εt,2 for two independent zero-mean (subgaussian) noise
random variables εt,1 and εt,2 with equal variance3. To observe
the benefit of the focused update, we further assume that εt,1 and
εt,2 are each R√

2
-subgaussian, which makes εt R-subgaussian.4

It should be noted that even though we have assumed that
the overall context is the sum of the sub-contexts, (1) from
Section III still holds since the equation is oblivious to how the
overall context is obtained from the sub-contexts. We further as-
sume complementary sparse sub-contexts: overall context xt(i)
is the concatenation of x̃t,1(i) ∈ Rd1 and x̃t,2(i) ∈ Rd2 , where

d = d1 + d2 and x̄t,1(i)
′ =
[
x̃t,1(i)

′ 01×d2

]
and x̄t,2(i)

′ =[
01×d1

x̃t,2(i)
′
]
.

To maintain optimal least squares learning given two obser-
vations per round with equal variances, at the end of round t we
generalise our matrix V t and bt updates to

V t = λI +

t∑
τ=1

2∑
f=1

∑
i∈Sτ

x̄τ,f (i)x̄τ,f (i)
′

bt =

t∑
τ=1

2∑
f=1

∑
i∈Sτ

x̄τ,f (i)r̄τ,f (i).

Notice that this is different from C2UCB’s definition of Vt and
bt, and hence a new regret analysis is warranted.

We exploit the fact that Theorem 4.2 in [24] holds regardless of
the super arm St. Therefore, solely for the purpose of modifying
the aforementioned theorem, we re-index the context and re-
wards such that x̄t,f (i) = x̄t(i+ kf) and r̄t,f (i) = r̄t(i+ kf),
and we construct the effective super arm S ′t = {i′ : i′ = i+
kf, i ∈ St, f ∈ {0, 1}}. As such, our definition of V t and bt
can now be rewritten as

V t = λI +

t∑
τ=1

∑
i∈S′τ

x̄τ (i)x̄τ (i)
′

bt =

t∑
τ=1

∑
i∈S′τ

x̄τ (i)r̄τ (i),

3Equivariance is without loss of generality. If the two variances
were different, the expressions for V t and bt would be differ-
ent. The data with the less variance would be prioritised via larger

weight: V t = λI +
∑t

τ=1

∑2

f=1

∑
i∈Sτ

(σ1σ2
σf

)2x̄τ,f (i)x̄τ,f (i)
′ and

bt =
∑t

τ=1

∑2

f=1

∑
i∈Sτ

(σ1σ2
σf

)2x̄τ,f (i)r̄τ,f (i). The hyperparameter λ

would need different adjustments since λ = σ2
1σ

2
2/γ

2. The value of γ2 stays
the same, serving as the variance for the prior of θ.

4For independent r.v.’s X R1-subgaussian and Y R2-subgaussian, X + Y

must be
√

R2
1 +R2

2-subgaussian.

which is syntactically the same as the definition given in [24].
We need to be more careful in concluding the theorem, however,
since it contains an intermediate step involving det(V t) as
defined in [27]. Assuming that ‖xt(i)‖ ≤ 1, we bound det(V t)
as follows:

det(V t) ≤
(
tr(V t)

d

)d

=

(
tr(λId +

∑t
τ=1

∑
i∈S′τ x̄τ (i)x̄τ (i)

′)

d

)d

=

(
tr(λId) +

∑t
τ=1

∑
i∈S′τ tr(x̄τ (i)x̄τ (i)

′)

d

)d

=

(
λd+

∑t
τ=1

∑
i∈S′τ ‖x̄τ (i)‖22
d

)d

=

(
λd+

∑t
τ=1

∑
i∈Sτ

(‖x̄τ,1(i)‖22+‖x̄τ,2(i)‖22
)

d

)d

=

(
λd+

∑t
τ=1

∑
i∈Sτ

(‖x̃τ,1(i)‖22+‖x̃τ,2(i)‖22
)

d

)d

=

(
λd+

∑t
τ=1

∑
i∈Sτ
‖xτ (i)‖22

d

)d

≤
(

λd+
∑t

τ=1

∑
i∈Sτ

1

d

)d

≤
(

λd+ tk

d

)d

,

where we have used the AM-GM Inequality for the first inequal-

ity and the fact that xτ (i)
′ =
[
x̃τ,1(i)

′ x̃τ,2(i)
′
]

to arrive at

the last equality. Finally, using the fact that V t−1 � V t, that the
noise is R√

2
-subgaussian and Theorem 2 from [27], Theorem 4.2

from [24] becomes

‖θ̂t − θ�‖V t−1 ≤ ‖θ̂t − θ�‖V t

≤ R√
2

√
2 log

(
det(V t)1/2

δ det(λId)1/2

)
+ λ1/2S

≤ R√
2

√
d log

(
1 + tk/λ

δ

)
+ λ1/2S,

with probability at least 1− δ, which is the same as that in [24],
with the exception of the definition of V t.

Conveniently, Lemma 4.1 from [24] is written in terms of
V t−1 and αt, thus the proof follows exactly besides the choice
of αt, rewritten below for convenience:

Lemma 1: If αt =
R√
2

√
d log

(
1+tk/λ

δ

)
+ λ1/2S, then we

have

0 ≤ r̂t(i)− r�t (i) ≤ 2αt‖xt(i)‖V −1
t−1
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holds simultaneously for all t ≥ 0 and i ∈ [k] with probability
at least 1− δ.

We provide the correction of the proof of Lemma 4.2 from [24]
in Appendix, available in the online supplemental material. This
proof can be used by changing the definition of the matrix XT

into

X ′
T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̄′T,1(s(1,T ))
...

x̄′T,1(s(|ST |,T ))

x̄′T,2(s(1,T ))
...

x̄′T,2(s(|ST |,T )).

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then we rewrite

det(V T ) = det

⎛
⎝V +

T∑
t=1

2∑
f=1

∑
i∈st

x̄t,f (i)x̄t,f (i)
′

⎞
⎠

= det

⎛
⎝V +

T−1∑
t=1

2∑
f=1

∑
i∈st

x̄t,f (i)x̄t,f (i)
′

+

2∑
f=1

∑
i∈sT

x̄T,f (i)x̄T,f (i)
′

⎞
⎠

= det (V T−1 +XTX
′
T ) ,

and the rest of the proof follows very similarly, with slight
difference in the dimension of XT , changing from |sT | into
2|sT |. Finally, the third last equality requires us to find the
trace of the matrix of interest, which is tr(X ′

TV
−1
T−1XT) =∑2

f=1

∑
i∈sT xT,f(i)V

−1
T−1xT,f(i), which in turn gives us our

new determinant inequality

det(V T ) ≥ det(VT−1)

⎛
⎝1 +

2∑
f=1

∑
i∈sT
‖xT,f (i)‖2V −1

T−1

⎞
⎠ .

Therefore, we have our modification of Lemma 4.2 of [24]
(Lemma 1 in Appendix, available in the online supplemental
material) as follows

Lemma 2: Let V ∈ Rd×d be a positive definite matrix,
st ⊆ {1, . . . , k} where |st| ≤ � for t = 1, 2, . . ., and
V T = V +

∑T
t=1

∑2
f=1

∑
i∈st x̄t,f (i)x̄t,f (i)

′. Then, if
∀t, i λ ≥ � and ||xt(i)||2 ≤ 1 for concatenated context
xt(i) = x̄t,1(i) + x̄t,2(i) where x̄t,1(i)

′ = [x̃t,1(i)
′ 01×d2

]
and x̄t,2(i)

′ = [01×d1
x̃t,2(i)

′], we have

T∑
t=1

∑
i∈st
‖xt(i)‖2V −1

t−1
=

2∑
f=1

T∑
t=1

∑
i∈st
‖xt,f (i)‖2V −1

t−1

≤ 2 log detV T − 2 log detV

≤ 2d log((tr(V ) + T�)/d)

− 2 log detV .

Since there is no modification to the objective function, and
since all the theorems and lemma required to arrive at the final
regret bound are the same, the regret bound for the modified
C2UCB stays the same, as stated in [24]

T∑
t=1

Regαt ≤ C
R√
2

√
8Td log

(
1 +

Tk

dλ

)

·
(√

d log

(
1 + Tk/λ

δ

)
+
√

λS

)
.

Notice that in cases where there are nf examples per arm in
each round instead of only two, the regret will generalise into

T∑
t=1

Regαt ≤ C
R√
nf

√
8Td log

(
1 +

Tk

dλ

)

·
(√

d log

(
1 + Tk/λ

δ

)
+
√

λS

)
,

which has a factor of 1√
nf

, nf ∈ N compared to the original

C2UCB where nf = 1.

VI. EXPERIMENTAL METHODOLOGY

We evaluate our MAB framework across a range of widely
used analytical and HTAP industrial benchmarks, comparing
it to a state-of-the-art physical design tool shipped with a com-
mercial database product referred to as the Physical Design Tool
(PDTool). This is a mature product, proven to outperform other
physical design tools available on the market [21], [28]. As a
representative of the most recent studies that successfully use
Monte Carlo tree search (MCTS) to tune indices [29], [30],
[31], we test our framework against a database optimiser that can
tune indices using MCTS, called UDO [29]. UDO is originally
designed to work with analytical queries only, which we extend
to work with HTAP workloads (we refer to this baseline as
MCTS hereafter).

Benchmarks: For HTAP performance testing we use CH-
BenCHmark [32], [33], TPC-H benchmark (with uniform dis-
tribution) [34] and TPC-H Skew benchmark [35] with Zipfian
factor 4. CH-BenCHmark provides a complex mixed work-
load, combining TPC-C [36] and TPC-H benchmarks. The CH-
BenCHmark schema comprises an unmodified TPC-C schema
and three tables (Supplier, Region, Nation) from TPC-H. Its
workload is composed of TPC-C transactional workload and
modified 22 TPC-H [34] queries adapted to the CH-BenCHmark
schema.

While CH-BenCHmark provides a uniform dataset, we are
unaware of any HTAP benchmarks with skewed data gener-
ation. While there are some OLTP benchmarks with skewed
datasets [33], they do not provide the required level of OLAP
complexity for the index selection problem to be interesting. Due
to the limitations of existing benchmarks, we decided to extend
the TPC-H skew benchmark to include INSERT, DELETE and
UPDATE statements to mimic a skewed HTAP benchmark [37].
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The TPC-H skew data generation tool already provides the func-
tionality to generate data for inserts and deletes. In our extension,
we additionally perform updates on existing records using the
same generated data. To highlight the impact of skewness on the
overall performance, we also report comparable HTAP results
on the original TPC-H database.

For analytical experiments, we use five publicly available
benchmarks: TPC-DS [38], a complex benchmark resulting in a
large number of candidate configurations; SSB [39] with easily
achievable index benefits; Join Order Benchmark (JOB) with
IMDb dataset (a real-world dataset) [18] (henceforth referred to
as IMDb), a challenging workload for index recommendations
with index overuse leading to performance regressions; and
finally, TPC-H and TPC-H skew benchmarks.

Unless stated otherwise, all experiments use scale factor (SF)
10, resulting in approximately 10 GB of data per workload,
except in the case of the IMDb dataset, which has a fixed size of
6 GB.5 We consider two broad types of workloads, allowing us
to compare different aspects of the recommendation process:

1) Static: The workload sequence is known in advance, and
repeating over time (modelling workloads used for report-
ing purposes). In the absence of dynamic environment
complexities, this simpler setting allows us to single-out
the effectiveness (the ability to find a good configuration)
and the efficiency (the search overhead) of the MAB search
strategy.

2) Dynamic: The region of interest shifts over time from one
group of queries to another (modelling data exploration).
For HTAP experiments, interest shifts through workloads
with different transaction and analytical compositions,
ranging from fully analytical workloads to transaction
heavy workloads. Dynamic workloads are used to evaluate
adoption speed, cost of exploration and memory efficiency
in dynamic environments.

Across experiments, each group of templates is invoked over
rounds, producing different instances. For static experiments, we
invoke the PDTool at the start of the second round giving the first
round workload as the representative workload. For dynamic
workloads, we invoke the PDTool soon after the workload shift
since this workload will become representative of future rounds.
This setting is somewhat unrealistic and favourable for PDTool,
since in real-life the PDTool will seldom truly have knowledge
of the representative workload (i.e., what is yet to arrive in the
future), advantaging the PDTool in our experiments. However,
it presents a viable comparison against the workload-oblivious
MAB. Bandits do not use any workload information ahead
of time, but instead observe a workload sequence and react
accordingly.

Physical design tuning parameters: Both PDTool and MAB
are given a memory budget approximately equal to the size of the
data (1x; 10 GB for SF 10 datasets and 6 GB for IMDb dataset)
for the creation of secondary indices. We have experimented

5CH-BenCHmark does not scale with the SF parameter like most of the other
benchmarks we use. It uses a number of warehouses (similar to the TPC-C
benchmark) as a scaling parameter. For our experiments, we use 137 warehouses
which generates approximately a 10 GB dataset.

with different memory budgets ranging from 0.25x to 2x (since
benefits of additional memory seem to diminish beyond a 2x
limit) under TPC-H and TPC-H skew benchmarks, and observed
the same patterns throughout that range.6 We have naturally
picked the middle of the active region (1x) as our default memory
budget. All these workloads come with original primary and
foreign keys that influence the choice of indices. We grant the
aforementioned memory budget on top of this.

In search of the best possible design, we do not constrain the
running time of PDTool. All proposed indices are materialised
and workload invoked over the same commercial DBMS in both
cases (MAB and PDTool).

Hardware: All experiments are performed on a server
equipped with 2x 24 Core Xeon Platinum 8260 at 2.4 GHz,
1.1 TB RAM, and 50 TB disk (10 K RPM) running Windows
Server 2016. We report cold runs, clearing database buffer
caches prior to every query execution.

VII. EXPERIMENTAL RESULTS

This section reports empirical comparisons of MAB against
PDTool and MCTS on HTAP workloads and summarises results
under analytical workloads, reported earlier [40]. We report the
total workload time broken down by recommendation, index
creation, and workload execution times. Total workload time
captures all the costs incurred from the start of the experiment to
the end. Index deletion cost is negligible compared to creation
and execution costs and does not have an observable growth
with index size.7 Therefore, we ignore the index deletion cost.
For HTAP experiments, execution time is further divided into
analytical and transactional components. In addition, we present
original statement times without any secondary indices (denoted
as NoIndex). We present summary graphs with total end-to-end
workload time and convergence graphs with total workload and
execution times per round. Finally, we present results against a
well-tuned reinforcement learning agent.

A. MAB Versus PDTool Under HTAP Workloads

1) Static HTAP Workloads: To illustrate the impact of trans-
actional statements, we use a series of CH-BenCHmark static
experiments varying the transactional to analytical ratio. In each
of these experiments, we keep the analytical component constant
with 22 adapted TPC-H queries (a set of analytical queries)
while changing the size of the transactional component.

The transactional component of the workload is composed
of 5 transactions (new-order, payment, order-status, delivery
and stock-level) with a pre-specified transaction mixture (44%,
44%, 4%, 4% and 4%, respectively). The smallest transactional
workload adhering to the specified TPC-C transaction mixture
comprises 11 new order transactions, 11 payment transactions,
an order-status transaction, a delivery transaction and a stock-
level transaction (approximately 650 statements). This smallest

6Both tools converge to the same execution cost by the final round, when
enough memory was given to fit the entire useful configuration.

7When tested with indices of different sizes and complexities, we observed
sub-millisecond deletion costs in all cases.
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Fig. 3. MAB vs. PDTool vs. MCTS total workload time under CH-
BenCHmark for static workloads with a range of different TARs.

transactional workload is henceforth referred to as a set of
transactional statements. We define the transactional to ana-
lytical ratio (henceforth referred to as TAR) as the ratio between
transactional and analytical statement sets. As an example, 5:1
TAR is composed of one analytical set (22 TPC-H queries) and
5 transactional sets (i.e., 55 new order transactions, 55 payment
transactions, 5 order-status transactions, 5 delivery transactions
and 5 stock-level transactions, resulting in approximately 3300
transactional statements per round).

As evident from Fig. 3, in transaction-heavy workloads,
MAB performs much better than PDTool providing up to 51%
speed-up (5:1) in total workload time, whereas PDTool performs
better in the fully analytical workload (0:1) providing up to
8% speed-up. Static workloads over uniform datasets are the
best case for offline physical design tools, as a pre-determined
workload sequence may perfectly represent future statements.
We will look into analytical workloads in more detail in Section
VII-B3. At 1:1 TAR, the first ratio that introduces the transac-
tional component, MAB starts to take the lead providing a 4%
performance gain in total workload time. MAB reaches the same
last round execution time as PDTool; however, due to better
execution times in early rounds, PDTool provides 7.7% total
execution time speed up over MAB. From 2:1 TAR onwards,
MAB dominates the PDTool providing 26%, 47%, 51% and
51% total workload time speed-up over PDTool, under 2:1,
3:1, 4:1, 5:1 TARs, respectively. PDTool struggles to perform
better than NoIndex from 3:1 TAR onwards due to the heavy
recommendation costs incurred by PDTool, yet PDTool is still
superior to NoIndex in execution cost.

The MCTS-based approach performs much better than NoIn-
dex but records lower performance in total workload cost com-
pared to the PDTool and MAB. MAB managed to outperform
MCTS by 21.7%, 16.3%, 18.7%, 20%, 23.7% and 24.1% under
0:1, 1:1, 2:1, 3:1, 4:1 and 5:1 TARs, respectively. Furthermore,
MCTS requires longer training outside the total workload time
(e.g., MCTS used 1 h on average for training across the ex-
periments). On the downside, MCTS action space grows like
O(2k) where k is the number of arms, which limits its candidate
indices to unique column subsets and not the permutation of
those columns.

Fig. 4. MAB vs. PDTool versus MCTS convergence under CH-BenCHmark
for static workloads with 3:1 TAR: (a) End-to-end workload time, (b) Total
execution time.

Fig. 5. MAB vs. PDTool versus MCTS convergence under CH-BenCHmark
for static workloads with 3:1 TAR: (a) Transactional Execution cost, (b) Ana-
lytical Execution cost.

To further understand the results, we dive into the 3:1 TAR
experiment, which provides a good balance of transactional and
analytical statements to demonstrate the importance of both
analytical gain and transactional overhead. As shown in the con-
vergence graphs in Fig. 4(b), MAB converges to a better config-
uration providing 29.4% and 42.8% faster execution time by the
last round compared to PDTool and MCTS, respectively. Fig. 4
also explains PDTool’s higher total workload time compared to
NoIndex. While PDTool consumes a high recommendation time
in the first round, it results in a better per round total workload
and execution times than NoIndex.

Balancing the configuration fitness between transactional and
analytical workloads is the prime concern of index tuning in
HTAP environments. How tools achieve this balance can be
better understood by breaking the execution cost into analytical
and transactional components. As Fig. 5 demonstrates, MAB
configuration provides better execution time for both analyti-
cal and transactional workload components compared to both
PDTool and MCTS. MAB provides 19.9% and 42.5% better
execution times by the 25th round for analytical and transactional
workloads, respectively, compared to the second best option
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TABLE I
HTAP: TOTAL WORKLOAD TIME BREAKDOWN FOR HTAP WORKLOADS (IN MIN): THE BEST CHOICE IS IN BOLD TEXT

(MCTS in the transactional and PDTool in the analytical cost). In
initial rounds, MAB performance is inferior to PDTool in trans-
actional execution time, but it quickly learns the negative impact
of indices on the transactional workload. By the 4th round, MAB
surpasses PDTool in transactional execution time by dropping
indices with negative rewards. While removing the unnecessary
indices, MAB makes sure not to impact the analytical execution
times by keeping the high reward indices intact. MAB performs
several configuration changes in rounds 15–17, which results
in a sudden oscillation in transactional execution time, but these
configuration changes allow the bandit to find a superior configu-
ration in both analytical and transactional execution costs. There
is some variability in transactional execution costs even with the
same number of transactions in each round, as the number of
statements per round can be different (e.g., different new orders
can have a different number of items in a transaction, leading to
a different number of statements).

MCTS performance under the static experiments are less
satisfactory due to its limitations in the action space and longer
training times. These issues will be compounded with dynamic
workloads which would require multiple training sessions.
Therefore, in the remaining experiments, we compare MAB
against PDTool (the strongest competitor).

Further analysis of additional RL approaches under analytical
workloads can be found in [40]. Those experiments demonstrate
that deep RL’s randomised exploration of the vast state-action
space and challenging hyperparameter tuning contributes to
the solution volatility, whereas MAB typically provides better
convergence and simpler implementation.

2) The Impact of Data Skew in HTAP Workloads: We now
experiment with TPC-H and TPC-H Skew HTAP workloads to
demonstrate the impact of the addition of transactional state-
ments to well-known OLAP benchmarks.

We experiment with a similar number of transactional state-
ments as in the 3:1 TAR CH-BenCHmark experiment. The OLTP
part of the workload is composed of 6 templates (two insert
templates, two delete templates and two update templates). We
use the original data generation tools to generate the INSERT,
DELETE and UPDATE statements for ORDER and LINEITEM
tables. The transactional workload used here is less complex
than CH-BenCHmark but sufficient to demonstrate the impact
of HTAP workloads on the overall performance.

As shown in Fig. 6, MAB performs better in both TPC-H and
TPC-H skew HTAP workloads. Interestingly, MAB achieves
5.2% better total workload time under the TPC-H benchmark,
which is usually favourable to PDTool. MAB converges to a
similar performant configuration, comparing the final round
execution cost. However, with MAB’s longer execution times in
the first few rounds, PDTool achieves a 6% better total execution

Fig. 6. MAB vs. PDTool vs. NoIndex total end-to-end workload time for static
TCP-H and TPC-H skew HTAP workloads.

time. Due to the higher recommendation time of PDTool, it has
a higher total workload time. In TPC-H Skew, MAB dominates
the PDTool across all dimensions, having 28.4% better total
workload time and 24% better execution time. All HTAP results
are summarised in Table I.

3) Dynamic HTAP Workloads: This experiment gradually
increases and decreases the transactional workload component
over the rounds. We start with 0:1 TAR, which is purely an-
alytical, and then we add transactional workload sets one by
one till we reach 5:1 TAR. Afterwards, we gradually reduce the
transactional workload sets one by one to reach 0:1 TAR again.
We run 20 rounds in each TAR.

After each workload change, PDTool is invoked with the new
workload from the previous round, which is a good representa-
tion of the next 19 rounds. It is essential to provide the workload
from at least one complete round because PDTool considers the
transactional to analytical ratio when making recommendations.
However, as observable from Fig. 7, each invocation of PDTool
takes a substantial amount of time for larger workloads in higher
transaction levels.

MAB performs most of the configuration changes at the start
of the experiment and then after the first workload change (0:1→
1:1). Understandably, MAB needs to explore extensively at the
start of the experiment. However, a similar level of exploration
for the first workload change might not be as intuitive, given
that we do not see such exploration from MAB for the rest of
the experiment. In round 21, MAB is exposed to transactional
statements for the first time in this experiment. As a result, MAB
performs more exploration and learns the negative impact of
indices in these rounds and thus performs much better after round
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Fig. 7. MAB vs. PDTool total-workload time convergence under CH-
BenCHmark for dynamic workloads with different transaction levels (log y-axis).

Fig. 8. MAB vs. PDTool total execution time convergence under CH-
BenCHmark for dynamic workloads with different transaction levels.

40. Ultimately, MAB provides a 57.8% speed up in the total
workload time compared to PDTool. A significant portion of
this speed-up is attributed to MAB’s lower recommendation cost
compared to PDTool.

To compare the different configurations proposed by the tools,
we plot execution time over the rounds in Fig. 8. After the
first two transaction levels (i.e., after round 40), MAB always
manages to lock into a superior configuration providing faster
execution time. As a result, MAB provides an 11% speed-up in
total execution cost.

In the entire experiment, we go through the same TAR two
times (except for 5:1 TAR), which results in similar workloads.
However, from Fig. 8, it is noticeable that PDTool reaches
higher execution costs in the descending part of the experi-
ment (after round 120) compared to the ascending part of the
experiment (rounds 1 to 120). Configurations proposed by the
PDTool depend on the existing secondary indices present in
the system and the underlying data. Continuous additions and
deletions change the underlying data, partially invalidating the
statistics used by the optimiser. Furthermore, at each PDTool
invocation, the system has a different starting set of secondary
indices, impacting PDTool’s recommendations. Therefore the
recommendations proposed for similar workloads in ascending
and descending parts of the graph are different. For example,
rounds 80–100 and 120–140 run a 4:1 TAR workload, whereas
PDTool proposes two very different configurations for these two
sections. While it proposes only 18 indices at round 81, 27 are

Fig. 9. MAB vs. PDTool analytical execution time convergence under CH-
BenCHmark for dynamic workloads with different transaction levels.

Fig. 10. MAB vs. PDTool transactional execution time convergence under
CH-BenCHmark for dynamic workloads with different transaction levels.

proposed in round 121, with only 11 indices being shared across
2 configurations. On the other hand, MAB converges quickly
in the later experiment rounds, taking advantage of the already
obtained knowledge.

To further analyse MAB’s gain in the dynamic experiment,
we need to break down the execution time into analytical and
transactional components. As one can observe from Figs. 9
and 10, MAB obtains the gain mainly from the transactional
workload. MAB provides 4.5% better analytical execution cost
and 22.6% better transactional execution cost compared to the
PDTool. As observable from Fig. 9, MAB is obtaining a no-
ticeable analytical gain in 2:1 and 3:1 TARs. In the analytical
heavy workloads (0:1, 1:1 TARs), PDTool records a better or
similar analytical execution time. MAB opts for the transactional
friendly configuration for transactional heavy workloads (4:1,
5:1 TARs), reducing thereby the analytical execution time gain.
On the transactional end, MAB leads in almost all workloads.
As expected, transactional execution cost gain increases for the
transactional heavy workloads.

Impact of data skewness on dynamic HTAP workloads: This
section explores the compound effect of data skewness and
dynamic workloads. We experiment with a dynamic HTAP
TPC-H skew workload to demonstrate this effect. We run a
shifting workload with different TARs similar to the dynamic
ch-BenCHmark, where each shift runs for 15 rounds. There
are three shifts (0.5×, 1×, 2× TARs) with 45 rounds in total.
Here 1× represents the TAR used in the static TPC-H skew
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Fig. 11. MAB vs. PDTool convergence under CH-BenCHmark for static
workloads with 5:1 TAR: (a) Memory use, (b) Total execution time.

HTAP experiment. However, in this experiment, we shift the
analytical workload as well. All analytical templates are divided
into three almost equal size sets and used one set per shift. In this
experiment, MAB provided an 82.51% gain in total workload
time and a 22.77% gain in total execution time.

4) Space Savings Under HTAP Workloads: In the case of
index tuning of HTAP workloads, more indices can result in
higher running time for transactional components of the work-
load. Consequently, a minimal index set can be optimal for a
transaction-heavy workload. While such a configuration might
be suboptimal for the analytical component of the workload,
a minimal configuration can result in a better total workload
execution time due to the significant savings obtained from
avoiding index maintenance activities stemming from trans-
actional statements. Our experiments observed that PDTool
usually exploits the entire given memory budget, resulting in
a higher transactional execution cost.8

On the flip side, MAB learns the negative impact of indices
on transactional statements and dynamically adjusts the con-
figuration. However, this behaviour was not visible with fully
analytical workloads. The index size context feature typically
carries a negative weight due to negative rewards from index
creation operations and forces the bandit to choose the smaller
arms that provide the best gains in execution cost.

At 5:1 TAR, MAB provides a configuration that yields an
83% memory saving while achieving an 8.8% execution time
gain by the last round (see Fig. 11). This execution cost gain is
smaller than the gain we observed under transaction level 3, as
the usefulness of indices reduces when the workload becomes
transactions heavy.

While it might be counter-intuitive for an index tuning tool to
use less memory to provide better performing configurations,
it can be easily understood by observing the analytical and
transactional execution times of both tools by the last round
(see Fig. 12). Comparing the last round configurations of both

8We have observed that PDTool sometimes goes over the given budget due
to errors in index size estimations. On the other hand, MAB initially estimates
the index size based on the statistics and corrects the estimate after indices are
materialised for the first time and therefore does not suffer from the same issue.

Fig. 12. MAB vs. PDTool convergence under CH-BenCHmark for static
workloads with 5:1 TAR: (a) Transactional Execution cost, (b) Analytical
Execution cost.

TABLE II
HTAP: TOTAL WORKLOAD TIME BREAKDOWN FOR CH-BENCHMARK 3:1

TAR WORKLOADS (IN MIN)

tools, PDTool creates an analytical friendly configuration that
provides a 27% speed-up in analytical execution time (around
40 second gain per round). On the other hand, MAB locks into
a smaller configuration that is more suitable for transactional
statements providing a 60% speed-up in transactional execution
cost (around 60 second gain per round). Ultimately MAB pro-
vides an 8.8% speed-up in total execution time while offering a
significant memory saving.

5) Impact of Restricted Recommendation Times Under HTAP
Workloads: In all experiments, we run with unrestricted running
times for PDTool in search of the best recommendation quality.
Some tuning tools, like PDTool, can restrict the tuning session
to a time provided by the user [41]. While this can negatively
impact the recommendation quality (and in turn execution time),
this restriction can reduce the total workload time.

To shed some light on this issue, we experiment with CH-
BanCHmark 3:1 TAR workload providing different tuning times
to the PDTool (See Table II). We notice an apparent increase in
execution time when we reduce the recommendation time, im-
pacting the total workload time in the long run. However, in our
25-round experiments, the reduction in recommendation time
leads to better total workload times for the PDTool. Nevertheless,
MAB’s total workload time remains superior.

As observable in Table II, when given a tuning time less
than the minimum, PDTool will end without providing any
recommendations. Unfortunately, identifying the minimum time
requirement for the tuning session is next to impossible (other
than through the trial and error). For example, the 3:1 TAR ex-
periment gives the first recommendation at 30 minutes, whereas
under the 5:1 TAR workload, PDTool took 60 minutes.
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TABLE III
TOTAL TIME BREAKDOWN FOR ANALYTICAL WORKLOADS (IN MIN): THE BEST CHOICE IS IN BOLD TEXT

6) Impact on Recommendation Quality of Including Index
Maintenance Time in Rewards: This section tests the impact
of including the index maintenance time in the reward. We
experiment against the OLAP version of the bandit, which only
considers the index creation time and query execution time.
While the OLAP version focuses on improving the data scan
gains entirely, the HTAP version tries to balance the gain from
the data scans and the negative impact of the index maintenance.
We run a CH-BenCHmark 5:1 TAR workload for 25 rounds. In
this experiment, we notice that the OLAP version provides a
5.33-minute gain in analytical execution time, while causing a
13.02-minute loss in transactional execution time. Overall, the
HTAP version provides a 7.68-minute gain in total execution
time. This experiment shows that HTAP reaches a better balance
by considering both data scan gains and index maintenance
overheads.

B. MAB Versus PDTool Under Analytical Workloads

In addition to the static and dynamic workloads, we incorpo-
rate random workloads for analytical testing.9 Random experi-
ments test the delicate balance between swift and careful adap-
tation under returning workloads, which can lead to unwanted
index oscillations. As presented in Table III, under all three
analytical settings (static, dynamic, and random, MAB achieves
a faster total workload time, except for SSB and TPC-H static
analytical workloads. Consistent with the HTAP experiments,
fully analytical workloads on uniform datasets work as the
best case for offline tuning tools. However, when underlying
data is skewed or dynamic, recommendations based on a pre-
determined workload alone can have unfavourable outcomes.

The main experiments used skewed datasets with Zipfian
factor 4 (and uniform datasets with Zipfian factor 0). To further
investigate the impact of the degree of data skew, we experiment
with different Zipfian factors ranging from 1 to 3 with analytical
workloads. As shown in Fig. 13 under Zipfian factors 2 and
3, MAB demonstrates over 51% and 58% performance gain

9A query sequence is chosen entirely at random (modelling more dynamic
settings, such as cloud services)

Fig. 13. MAB vs. PDTool total end-to-end workload time under TPC-H skew
static analytical workloads with different Zipfian factors (z).

TABLE IV
TOTAL END-TO-END WORKLOAD TIME FOR STATIC ANALYTICAL WORKLOADS

UNDER DIFFERENT DATABASE SIZES (IN MIN)

against PDTool, respectively. Whereas under Zipfian factor 1,
PDTool outperforms MAB by 16%. PDTool missing the index
on Orders.O_custkey appears to be more costly with Zipfian
factors 2 and 3, mainly affecting Q22. An in-depth analysis of
the solution fitness on analytical workloads can be found in [40].

1) The Impact of Database Size: To examine the impact
of database size, we run TPC-H uniform and TPC-H Skew
benchmarks with static analytical workloads on SF 1, 10 and
100 databases. Under SF 10, MAB performs better in the case
of TPC-H Skew and PDTool performs better on TPC-H (see
Table IV). The impact of sub-optimal index choices is even
more evident for larger databases, leading to a huge gap between
total workload times of MAB and PDTool for TPC-H Skew



PERERA et al.: NO DBA? NO REGRET! MULTI-ARMED BANDITS FOR INDEX TUNING OF ANALYTICAL AND HTAP WORKLOADS 12869

(44 hours in the former versus 20 hours in the latter case). In
TPC-H, PDTool results in a higher total workload time (14.8
hours vs. 13.2 hours for MAB). This is mainly due to sub-optimal
optimiser decisions, where the optimiser favours the usage of
indices (coupled with nested loops joins) when alternative plans
would be a better option. For instance, under the recommended
indices from PDTool, some instances of Q5 run longer than 8
minutes (using index nested loops join), whereas others finish in
1.5 minutes (using a plan based on hash joins). We notice that,
with larger database sizes, execution time dominates contribut-
ing more than 91% to the total workload time. We observe faster
and more accurate convergence of MAB under larger databases,
due to a clear difference between rewards for different arms,
highlighting MAB’s excellent potential for larger databases.

2) Hypothetical Index Creation Versus Actual Index Cre-
ation: Managing the exploration-exploitation balance under a
large number of candidate indices, with an enormous number of
combinatorial choices, is non trivial. PDTool explores using the
“what-if” analysis, which comes under the tool’s recommenda-
tion time, whereas MAB explores using index creations.

Comparing the total of recommendation and index creation
times (henceforth referred to as exploration cost) between MAB
and PDTool presents a clear picture about these two exploration
methods. From Table III we can observe that, in most cases (9
out of 15) MAB archives a better exploration cost compared
to PDTool when running analytical workloads. However when
the workload is small (e.g., dynamic shifting) PDTool tends to
perform better. TPC-DS, with the highest number of candidate
indices among these benchmarks (over 3200 indices), provides a
great test case for exploration efficiency. Under TPC-DS, MAB
exploration cost is significantly lower in shifting and random
settings, and marginally higher in the static setting. Despite the
efficient exploration, MAB does not sacrifice recommendation
quality in any way (achieving faster execution times in 12 out of
15 cases, with significantly faster execution across all TPC-DS
experiments).

This efficient exploration is promoted by the linear reward-
context relationship along with C2UCB’s weight sharing (Sec-
tion III), resulting in a small number of parameters to learn.
An arm’s identity becomes irrelevant and context (Section IV)
becomes the sole determining factor of each arm’s expected
score, which allows MAB to predict the UCB of a newly arriving
arm with known context without trying it even once.

3) The Impact of Round Size: In the original TPC-H Skew
static analytical experiment (1x), each bandit round includes all
the benchmark templates (22 queries). To analyse the impact
of the round size (bandit invocation frequency), we conduct
experiments with single-query (1 query), 0.5x (11 queries) and
2x (44 queries) round sizes using the TPC-H Skew analytical
workload. All three round sizes converge to the same performant
configurations by the last round. We observe a faster conver-
gence with small round sizes, resulting in lower execution costs
in the first few rounds. While the execution cost gain from 1x
to 0.5x is noticeable, dividing the round further (single query)
does not provide a considerable benefit compared to the added
creation and recommendation overhead. With larger round sizes,
we observe lower creation costs due to less frequent bandit

TABLE V
TOTAL TIME BREAKDOWN FOR ANALYTICAL TPC-H SKEW WORKLOADS

UNDER DIFFERENT ROUND SIZES (IN MIN)

Fig. 14. MAB end-to-end workload time convergence with and without focus
update for static analytical workloads: (a) TPC-H, (b) TPC-H Skew.

updates (see Table V). MAB performs better under all round-
sizes compared to PDTool. A DBA can decide on the round
size (bandit invocation frequency) based on the application and
DBA’s primary goal (faster convergence versus lower creation
cost). We leave auto-tuning of this parameter as an interesting
future work avenue.

4) The Impact of Focused Updates: This section analyses the
impact of focused updates on the convergence speed. As shown
in Fig. 14, under both TPC-H and TPC-H Skew analytical work-
loads, there is a clear improvement in convergence speed. Faster
convergence results in 17% and 20% gain in total execution time
and 21% and 28% gain in total workload time under TPC-H and
TPC-H skew benchmarks with focused updates, respectively.

C. Experimental Results Summary

This section summarises the experimental results. In an ex-
periment against a uniform dataset and 6 TARs, MAB showed
a 28.9% and 20.8% gain on average compared to PDTool and
MCTS, respectively. Diving deeper into the 3:1 TAR, we noticed
that MAB provides improvements in both transactional execu-
tion cost and analytical execution cost. Execution cost gain from
MAB peaks with more balanced TARs. With workloads that are
at the extreme ends of the spectrum (either purely analytical or
purely transactional queries), both PDTool and MAB provide
similar execution times. However, large PDTool recommenda-
tion times were observed with transactional heavy workloads.
Besides better performance, we noticed that MAB also provides
remarkable memory saving with transactional heavy workloads
(up to 83%).



12870 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Using learned knowledge, MAB performed much better than
PDTool in dynamic experiments. On the other hand, PDTool’s
performance degraded in the dynamic setting when index rec-
ommendations had to consider existing indices. Furthermore, we
demonstrated the superiority of MAB-based PDS tuning over
different bandit update frequencies and with large databases.
Finally, we demonstrated that under analytical workloads, MAB
outperforms PDTool in 13/15 experiments, showcasing the ro-
bustness of the MAB framework.

VIII. RELATED WORK

HTAP: HTAP workloads are composed of online transaction
processing (OLTP) workloads and online analytical processing
(OLAP) workloads. While most existing analytical systems
depend on data pipelines writing to a separate data warehouse
for OLAP queries, such an approach limits the users from run-
ning analytics on fresh operational data. Research has targeted
hybrid environments that can cater to OLTP statements and
OLAP queries. The last few years have witnessed the emer-
gence of HTAP focused database architectures, platforms and
databases [42], [43], [44], [45], [46], [47], [48], commercial
tools [49], [50], [51], and benchmarks [32], [33], [52]. This rapid
growth of research and commercial interest in HTAP environ-
ments highlights an important point of efficiently processing
analytical and transactional statements over the same dataset.

Automated physical design tuning: Most commercial DBMS
vendors nowadays offer physical design tools in their prod-
ucts [1], [2], [3]. These tools rely heavily on the query optimiser
to compare benefits of different design structures without mate-
rialisation [16]. Such an approach is ineffective when base data
statistics are unavailable, skewed, or change dynamically [10].
In these dynamic environments, the problem of physical design
is aggravated: a) deciding when to call a tuning process is not
straightforward; and b) deciding what is a representative training
workload is a challenge.

Online physical design tuning: Several research groups have
recognised these problems and have offered lightweight solu-
tions to physical design tuning [11], [12], [13]. While such so-
lutions are more flexible and need not know the workload in ad-
vance, they are typically limited in terms of applicability to new
unknown workloads (generalisation beyond past), and do not
come with theoretical guarantees that extend to actual runtime
conditions. Moreover, by giving the optimiser a central role, the
tools remain susceptible to its mistakes [9]. [8] extends [1] with
the use of additional components, in a narrowed scope of index
selection to mimic an online tool. This takes corrective actions
against the optimiser mistakes through a validation process.

Adaptive and learning indices: Another dimension of online
physical design tuning is database cracking and adaptive index-
ing that smooth the creation cost of indices by piggybacking
on query execution [53], [54]. Recent efforts have gone a step
further and proposed replacing data structures with learned
models that are smaller in size and faster to query [55], [56].
Such approaches are complementary to our efforts: once the
data structures (or models) are materialised inside a DBMS, the
MAB framework can be used to automate the decision making

as to which data structure should be used to speed-up query
analysis.

Learning approaches to optimisation and tuning: Recent
years have witnessed new machine learning approaches to auto-
mate decision-making processes within databases. For instance,
reinforcement learning approaches have been used for query
optimisation and join ordering [57], [58], [59], [60]. In [9],
regression has been used to successfully mitigate the optimiser’s
cost misestimates as a path toward more robust index selec-
tion. [9] shows promising results when avoiding query regres-
sions. However, this classifier incurs up to 10% recommendation
time, impacting recommendation cost in all cases, especially
where recommendation cost already dominates the cost for
PDTool (e.g., TPC-DS, IMDb).

When it comes to tuning, the closest approaches employ
variants of RL for index selection or partitioning [23], [30],
[31], [61], [62] or configuration tuning [5], [29]. [62] describes
RL-based index selection, which depends solely on the recom-
mendation tool for query-level recommendations and is affected
by decision combinatorial explosion, both issues addressed in
our work. Unlike its more general counterpart (RL), MABs have
advantages of faster convergences, simpler implementation, and
theoretical guarantees [40]. There has also been recent interest
in using bandits for database tasks such as monitoring, query
optimisation and join ordering [63], [64], [65].

Use of learned cost/cardinality estimators and cost models:
Learned cost estimators and models [66], [67] allow accurate
and faster cost estimations and provide better execution plans.
Better estimations and models can be particularly beneficial for
avoiding estimation errors in offline optimiser-based tools like
PDTool. Even learned systems like our MAB system can benefit
from such cost models to avoid the cold start problem [68]. These
learned models and estimations will require using ‘optimiser
hints’, forcing the optimiser to use a different query plan than
its original choice. However, when used externally with com-
mercial systems, flexibility in optimiser hints will be limited.
Furthermore, such learned solutions suffer from long training
times [66], which will be problematic given that PDTool already
suffers from long recommendation times.

Workload compression: Large complex workloads have been
a challenge for index tuning tools. This is visible from high
recommendation times in PDTool and high creation times in
HMAB under CH-BenCHmark. Workload compression [69],
[70], [71] can alleviate these challenges by efficiently identifying
a small subset of queries that can be used for index tuning.

Workload forecasting: Both PDtool and MAB have limited
visibility into the future. Understanding what a future work-
load might look like would allow these tools to provide better
recommendations. We acknowledge the progress in workload
forecasting [72] as a complementary research direction to PDS
tuning.

IX. CONCLUSION

This paper develops a multi-armed bandit learning framework
for online index selection. This framework does not depend
on the DBA and the (error-prone) query optimiser for index
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selection and learns the benefits of indices through strategic
exploration and observation. We justify our choice of MAB over
general reinforcement learning for online index tuning, compar-
ing MAB against DDQN, a popular RL algorithm based on deep
neural networks, demonstrating significantly faster convergence
of the MAB. Furthermore, our extensive experimental evaluation
demonstrates advantages of MAB over an existing commercial
physical design tool (up to 75% speed up, and 23% on average),
and exemplifies robustness to data skew, unpredictable ad-hoc
workloads and complex HTAP environments.
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