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Abstract—Despite significant progress, there remain three limi-
tations to the previous multi-view clustering algorithms. First, they
often suffer from high computational complexity, restricting their
feasibility for large-scale datasets. Second, they typically fuse multi-
view information via one-stage fusion, neglecting the possibilities in
multi-stage fusions. Third, dataset-specific hyperparameter-tuning
is frequently required, further undermining their practicability. In
light of this, we propose a fast multi-view clustering via ensembles
(FastMICE) approach. Particularly, the concept of random view
groups is presented to capture the versatile view-wise relationships,
through which the hybrid early-late fusion strategy is designed to
enable efficient multi-stage fusions. With multiple views extended to
many view groups, three levels of diversity (w.r.t. features, anchors,
and neighbors, respectively) are jointly leveraged for constructing
the view-sharing bipartite graphs in the early-stage fusion. Then,
a set of diversified base clusterings for different view groups are
obtained via fast graph partitioning, which are further formulated
into a unified bipartite graph for final clustering in the late-stage
fusion. Notably, FastMICE has almost linear time and space com-
plexity, and is free of dataset-specific tuning. Experiments on 22
multi-view datasets demonstrate its advantages in scalability (for
extremely large datasets), superiority (in clustering performance),
and simplicity (to be applied) over the state-of-the-art. Code avail-
able: https://github.com/huangdonghere/FastMICE.

Index Terms—Data clustering, ensemble clustering, hybrid
early-late fusion, large-scale clustering, linear time, multi-view
clustering.

I. INTRODUCTION

C LUSTERING analysis has been a fundamental yet chal-
lenging research topic in knowledge discovery and data

mining [1]. It aims to partition a set of data samples into a certain
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number of homogeneous groups, each of which is referred to as
a cluster. Among the various sub-topics in clustering analysis,
multi-view clustering (MVC) has recently gained a considerable
amount of attention due to its advantage in fusing common
and complementary information from multiple views (or data
sources) to enhance the clustering performance [2]. Despite the
proposals of many MVC algorithms, there are still three crucial
questions (with regard to scalability, information fusion, and hy-
perparameter tuning, respectively) that remain to be addressed.

First, how to enable MVC for very large-scale datasets?
Though a large quantity of MVC algorithms have been devel-
oped in recent years, the high computational complexity is still
a major hurdle for many of them to be applied in large-scale
scenarios. In previous MVC works, there are several often-
encountered complexity bottlenecks, such as affinity graph con-
struction, graph partitioning, and some other expensive matrix
computations. The affinity graph construction is a basic step
in many MVC algorithms, which formulates the sample-wise
relationship by computing an N ×N affinity matrix and gen-
erally takes O(N2d) time and O(N2) space, where N is the
number of samples and d is the dimension. The graph partition-
ing (typically by spectral clustering) is another computationally
expensive step in many MVC algorithms [3], [4], [5], [6], [7],
[8], which often requires singular value decomposition (SVD)
and takes O(N3) time and O(N2) space. Especially, the graph
partitioning via spectral clustering is adopted as an important
step in many MVC algorithms, such as multi-view spectral
clustering [3], [8], multi-view subspace clustering [6], [9], and
multi-view graph learning [4], [5], which, together with some
other expensive matrix computations, contributes to the O(N3)
complexity bottleneck in these MVC algorithms [3], [4], [5],
[6], [7], [8].

Second, in which stage should multi-view information be
fused? An essential task of MVC is to fuse the information from
multiple views for robust clustering. The difference in various
MVC algorithms is typically reflected by in which stage and how
they conduct the multi-view fusion. A naive strategy is to directly
concatenate the features from multiple views and then perform
some single-view clustering algorithm on the concatenated fea-
tures, which in practice is rarely adopted as it neglects the rich
and complementary information across multiple views. In the
MVC literature, the most widely-adopted strategy may be the
early fusion [3], [5], [8], [9], which typically fuse the multi-view
information in a unified clustering model via optimization or
some heuristics (as illustrated in Fig. 1(a)). Besides the early
fusion, another popular strategy is the late fusion [6], [10], [11],
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Fig. 1. In which stage can the multi-view information be fused? Most existing
MVC works adopt either (a) early fusion or (b) late fusion (as illustrated on an
example of three views).

[12], which first obtains multiple base clusterings by performing
the clustering process on each view separately and then fuses
these base clusterings into a more robust clustering result in the
final stage (as illustrated in Fig. 1(b)). While most of the existing
MVC algorithms adopt either early fusion or late fusion, it is
surprising that few of them have gone beyond the single-stage
fusion to explore the rich possibilities and potential benefits
hidden in the multi-stage fusion formulation.

Third, is the dataset-specific fine-tuning necessary? The reg-
ularization hyperparameters or some other types of hyperpa-
rameters are often involved in previous MVC algorithms to
adjust the influences of different terms (or components) [2],
where dataset-specific fine-tuning is frequently required to seek
the proper values of these hyperparameters in a probably ex-
tensive trial-and-error manner. However, unlike supervised or
semi-supervised learning [13], [14], in the unsupervised sit-
uations it may be arguable whether the ground-truth labels
can be used for guiding the fine-tuning process. Without the
fine-tuning guided by partial or even all ground-truth labels,
the practicality of these MVC algorithms may be signifi-
cantly weakened. Moreover, when the number of the tuning-
intensive hyperparameters goes to three or even more, their
tuning costs (typically via grid-search) might become very
expensive on large datasets (as reported in Table VII), which
give rise to the critical question whether the dataset-specific
tuning can be eliminated while maintaining robust clustering
performance.

More recently several efforts have been made to deal with
some of the above issues. In single-view clustering, it has
proved to be an effective strategy to represent large-scale data
samples via a set of anchors (also known as landmarks or
representatives) [15], [16], which can substantially facilitate the
computation of the graph construction and partitioning for large-
scale datasets. When it goes from single-view to multi-view, the
anchor-based formulation still shows its promising ability [17],
[18], [19], [20], but also faces a series of new challenges, ranging
from multi-view anchor selection to multi-view information
fusion. Typically, Li et al. [17] selected a set of anchors by
performing k-means on the concatenated multi-view features.
With this unified anchor set, a bipartite graph is built between
data samples and anchors on each view, and then multiple
bipartite graphs are fused into a consensus graph for the final

Fig. 2. Illustration of the hybrid early-late fusion strategy on an example of
three views. With the benefits brought in by the random view groups, the key
questions arise as to how to diversify them, how to fuse them, and especially
how to ensure the clustering robustness while maintaining the scalability for
extremely large datasets.

clustering [17]. Wang et al. [20] exploited the self-expressive
loss to learn a set of unified anchors and a bipartite graph
for all views. However, considering the diverse characteristics
of multiple views, a single set of unified anchors may not
sufficiently capture the rich and complementary information of
all views. Different from the pursuit of a single anchor set for
all views [17], [20], Kang et al. [18] learned a set of anchors
on each view, and then built a bipartite graph on each view
separately. Then the multiple bipartite graphs are combined
into a unified graph for final clustering. However, since each
anchor set on a view is learned independently of other views, the
cross-view information is inherently neglected in the construc-
tion of each single-view graph, which may lead to a degraded
capacity of multi-view expressiveness. Despite the progress,
these methods [17], [18], [19], [20] either jointly construct a
single anchor set for all views [17], [19], [20] or separately
construct a single anchor set for each view [18], which, however,
neglect the possibilities hidden between single and all, and dwell
in the single-stage fusion strategy without the ability to capture
the view-wise relationships in multiple stages. Furthermore, the
requirement of dataset-specific hyperparameter-tuning in many
of them [17], [18], [19], [21] also poses a practical hurdle for
their real-world applications.

To jointly address the above-mentioned issues, in this paper,
we propose a fast multi-view clustering via ensembles (Fast-
MICE) approach. Different from previous MVC approaches that
tend to work at either single views or all views in each stage, this
paper first presents the concept of random view groups, which
serves as the basic form of our flexible view-organizations.
Specifically, with each view group consisting of a random
number of view members, the multiple views can be extended
to many random view groups for investigating the view-wise
relationships in a diversified manner. Based on random view
groups, a hybrid early-late fusion strategy is devised to en-
able efficient and robust fusions at multiple stages (as shown
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in Fig. 2). In the early stage, multiple fusions are simultane-
ously performed in multiple view groups, where three levels of
diversity, namely, feature-level diversity, anchor-level diversity,
and neighborhood-level diversity, are jointly leveraged to con-
struct a set of view-sharing bipartite graphs. By efficient bipartite
graph partitioning, a set of diversified base clusterings are ob-
tained, which are further utilized to construct a unified bipartite
graph for achieving the final clustering in the late-stage fusion. It
is noteworthy that our FastMICE approach has almost linear time
and space complexity, and is capable of producing high-quality
clustering results without dataset-specific tuning. Extensive ex-
periments are conducted on 22 real-world multi-view datasets,
including 10 general-scale datasets and 12 large-scale datasets,
which demonstrate the scalability (for extremely large datasets),
the superiority (in clustering performance), and the simplicity
(to be applied) of our approach. For clarity, the contributions of
this work are summarized below.
� This paper for the first time, to our knowledge, presents

the concept of random view group to capture the versatile
view-wise relationships, which extends multiple views to
many random view groups and may significantly benefit the
clustering robustness while maintaining high efficiency.

� A hybrid early-late fusion strategy is devised, which breaks
through the conventional single-stage fusion paradigm and
enables the multi-stage fusions to jointly explore different
levels of the multi-view information.

� A novel large-scale MVC approach termed FastMICE
is proposed, whose advantages are three-fold: (i) it has
almost linear time and space complexity and is feasible
for very large-scale datasets; (ii) it is able to achieve
superior clustering performance over the state-of-the-art
approaches as confirmed by extensive experimental results;
(iii) it is simple to be applied, where no dataset-specific
hyperparameter-tuning is required across various multi-
view datasets.

The remainder of the paper is organized as follows. Section II
reviews the related works on multi-view clustering and ensemble
clustering. Section III describes the overall framework of our
FastMICE approach. Section IV reports the experimental results.
Finally, Section V concludes this paper.

II. RELATED WORK

In this paper, we propose a new large-scale MVC ap-
proach termed FastMICE, which involves both MVC and en-
semble clustering (EC). In this section, the related works on
MVC and EC will be reviewed in Sections II-A and II-B,
respectively.

A. Multi-View Clustering

In recent years, many MVC methods have been developed
from different technical perspectives [2]. In spite of the differ-
ence in their specific models, they typically share a common and
essential task, that is, how to fuse the information from multiple
views. A straightforward strategy is to concatenate the features
from all views and then perform single-view clustering on the
concatenated features, which, however, ignores the multi-view

complementariness and is rarely adopted. Besides feature con-
catenation, according to their fusion stage, most of the existing
MVC methods can be classified into two categories, i.e., the early
fusion methods [3], [5], [9] and the late fusion methods [6], [10],
[11].

Early fusion is probably the most widely-adopted fusion
strategy in MVC [3], [5], [8], [9], which typically formulates
the information of all views in a unified optimization or heuristic
model (as shown in Fig. 1(a)). In early fusion, the information
of each view can be given via different representations, such
as the original features [9], transition probability matrix [3],
K-nearest-neighbor (K-NN) graph [5], and so forth. Xia et
al. [3] constructed a shared low-rank transition probability ma-
trix by exploiting multiple transition probability matrices from
multiple views, and then performed spectral clustering on the
shared matrix for final clustering. Zhang et al. [9] conducted
multi-view subspace clustering by minimizing a self-expressive
loss on each view with the tensorized low-rank constraint. Xie et
al. [22] extended the tensorized multi-view subspace clustering
by further incorporating a local structure constraint. Liang et
al. [5], [23] performed graph fusion on multiple K-NN graphs
from multiple views with cross-view consistency and inconsis-
tency jointly modeled.

Late fusion is another popular fusion strategy in recent
years [6], [10], [11], [12], which first builds a base clustering
on each view (often separately) and then fuses them at the
partition-level to obtain a consensus clustering (as shown in
Fig. 1(b)). Wang et al. [11] built the base clusterings by per-
forming kernel k-means clustering on each view, and learned
a consensus clustering by maximizing alignment between the
consensus clustering and the base clusterings. Kang et al. [6]
performed spectral clustering on the subspace representation of
each view to obtain a corresponding base clustering, and learned
a consensus clustering by minimizing the distance between a
unified cluster indicator matrix and the multiple base cluster-
ings [6].

These MVC methods [3], [5], [6], [8], [9], [10], [11], [12]
seek to fuse the multi-view information in different stages and
through different techniques. Yet surprisingly, most of them
perform the fusion in a single-stage manner (either in the early
stage or in the late stage), which lack the ability to go be-
yond the single-stage fusion to investigate more possibilities
in multi-stage fusions. Besides the limitation in their fusion
strategy, another limitation is that many of them still suffer
from quadratic or cubic computational complexity, which makes
them almost infeasible for large-scale datasets. Recently some
large-scale MVC methods have been proposed, among which
the anchor-based methods have been one of the representative
categories [17], [18], [19], [20]. However, in terms of anchor
selection, these anchor-based methods either learn a unified
anchor set for all views [17], [19], [20] or learn a separate
anchor set for each view [18]. In terms of fusion stage, they
still dwell in the single-stage fusion strategy. Moreover, for
most of the previous MVC methods, including the general-scale
methods [3], [5], [6], [8], [9], [10], [11] and the large-scale
methods [17], [18], [19], [21], their requirement of dataset-
specific hyperparameter-tuning also poses a major hurdle for
their real-world applications.
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B. Ensemble Clustering

The purpose of EC is to combine multiple base clusterings into
a better and more robust consensus clustering [24], [25], [26],
[27], [28], [29], [30], [31]. In the final stage of our FastMICE
approach, multiple base clusterings are fused into a unified clus-
tering result, which can be viewed as an EC process. Therefore,
in this section, we will also review the related works on EC.

Previous EC methods can mostly be classified into three
categories, i.e., the pair-wise co-occurrence based methods [24],
[25], the median partition based methods [26], [27], and the
graph partitioning based methods [16], [29], [30], [32]. The
pair-wise co-occurrence based methods typically construct a co-
association matrix by considering the pair-wise co-occurrence
relationship in base clusterings, and then perform some clus-
tering algorithm on the co-association matrix to obtain the
consensus clustering. Fred and Jain [24] proposed the evidence
accumulation clustering method which imposes hierarchical
agglomerative clustering on the co-association matrix. Huang
et al. [25] refined the co-association matrix by an entropy
based local weighting strategy and presented the locally
weighted evidence accumulation method. The median partition
based methods treat the EC problem as an optimization problem,
which aims to find a median clustering by maximizing the simi-
larity between this clustering and the base clusterings. Topchy et
al. [26] cast the EC problem as a maximum-likelihood problem
and solved it via the EM algorithm. Huang et al. [27] formulated
the EC problem as a binary linear programming problem and
solved it via the factor graph model. The graph partitioning
based methods represent the multiple base clusterings as a graph
structure and obtain the consensus clustering by partitioning
this graph. Strehl and Ghosh [32] considered the concept of
hyper-edge and presented three graph partitioning algorithms.
Ren et al. [29] took into account the importance of the objects
and devised three graph partitioning based consensus functions
for weighted-object ensemble clustering.

Despite the progress of these EC works [24], [25], [26], [27],
[28], [29], [30], [31], most of them are devised for single-view
datasets and lack the consideration of multi-view scenarios.
Recently Tao et al. [33] proposed a multi-view ensemble clus-
tering (MVEC) method, which learns a consensus clustering
from the multiple co-association matrices built in multiple views
with low-rank and sparse constraints. Tao et al. [7] further
incorporated marginalized denoising autoencoder into MVEC,
and presented a marginalized multi-view ensemble clustering
(M 2 VEC) method. However, in MVEC and M 2 VEC, the
base clusterings in different views are generated separately, with-
out leveraging multi-view complementariness in their ensemble
generation. Moreover, the high computational complexity also
restricts their applications in large-scale scenarios.

III. PROPOSED FRAMEWORK

In this section, we describe the proposed FastMICE ap-
proach in detail. Specifically, the notations are introduced in
Section III-A. The formation of random view groups is provided
in Section III-B. The view-sharing bipartite graph is described in
Section III-C. The generation of the diversified base clusterings

TABLE I
NOTATIONS USED THROUGHOUT THE PAPER

is introduced in Section III-D. Then the base clusterings are
fused into a unified clustering via a highly efficient consensus
function in Section III-E. The time and space complexity of
FastMICE is analyzed in Section III-F.

A. Notations

Let X = {x1, x2, . . . , xN} be a dataset with N data sam-
ples, where xi is the i-th sample. For a multi-view dataset,
each data sample can be represented by features from dif-
ferent views. Thus, the multi-view dataset can be denoted as
X = {X1,X2, . . . ,XV }, where Xv ∈ RN×dv is the data ma-
trix of the v-th view, V is the number of views, and dv is
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the dimension of the v-th view. For convenience of the later
view group formation, we denote the set of V views as V =
{V iew1, V iew2, . . . , V iewV }, where V iewv is the v-th view in
the dataset. Note that Xv ∈ RN×dv is the data matrix associated
with the v-th view (i.e., V iewv). For clarity, the notations used
throughout the paper are given in Table I.

The purpose of MVC is to fuse the information of multiple
views for enhanced clustering. In large-scale multi-view sce-
nario, where the data size N can be very large, it becomes a
critical challenge how to robustly fuse the multi-view informa-
tion while ensuring high efficiency and practicality, which will
be the focus of our following sections.

B. Early-Stage View Group Formation

An essential task of MVC is to fuse the information of multiple
views for robust clustering result. The previous MVC algorithms
differ from each other mainly in their fusion stages and fusion
techniques [5], [6], [8], [11], [12], but they generally have two
characteristics in common. First, they tend to perform the multi-
view fusion in a single stage, either early or late. Second, they
often implicitly comply with a single-or-all paradigm, where
each stage of them involves either a single view or all views.
For example, in the late fusion algorithms [6], [11], [12], each
base clustering is constructed on a single view independently
of other views, while the final fusion process utilizes the base
clusterings from all views in a one-shot manner. However, the
vast middle ground between single-views-independently and all-
views-together has rarely be explored by previous works.

Different from the conventional single-or-all paradigm, in the
section, we present the concept of random view groups, each
of which encapsules a random number of views and serves as a
basic unit for the view-wise diversification and the hybrid early-
late fusion in our FastMICE framework. Formally, let VG(m) be
the m-th view group, with a randomly selected subset of views,
andV (m) be the number of selected views inVG(m). The number
of views in each view group can be randomly chosen in the
range of [Vmin, Vmax], where Vmin and Vmax are respectively
the lower bound and the upper bound of the number of selected
views such that 1 ≤ Vmin ≤ Vmax ≤ V .

Each selected view in the view group is called a view member.
To enhance the diversity of view groups, we set the lower bound
Vmin = 1 and the upper bound Vmax = V , through which each
view group can have at least one view member and at most
V view members. Thus, the m-th view group VG(m) can be
formed by randomly selected V (m) views from the set of all
views, denoted as

VG(m) = {V iew
(m)
1 , V iew

(m)
2 , . . . , V iew

(m)

V (m)}, (1)

whereV iew
(m)
v is the v-th view member inVG(m). The data ma-

trix associated with V iew
(m)
v is denoted as X (m)

v ∈ RN×d
(m)
v ,

whered(m)
v is the dimension of this view member. By performing

the randomization process repeatedly, a set of random view
groups can be obtained, that is

VG = {VG(1),VG(2), . . . ,VG(M)}, (2)

whereM is the number of the generated random view groups. As
each view group leads to the generation of a base clustering, the
number of view groups is also the number of base clusterings,
also known as the ensemble size.

It is worth mentioning that the early-fusion MVC methods
(as shown in Fig. 1(a)) can be viewed as a special instance of
our view group based formulation with all views selected into
a single view group by setting Vmin = Vmax = V and M = 1.
Similarly, the late fusion MVC methods (as shown in Fig. 1(b))
can also be viewed as special instance of our view group based
formulation with each view being a single view group by setting
Vmin = Vmax = 1 and M = V .

C. View-Sharing Bipartite Graph Construction

With multiple random view groups obtained, our next goal is
to perform the early-stage fusion in the view groups. Note that
the early-stage fusion is not meant to achieve a single optimal
solution in a one-shot manner. Instead, it performs fusions on
multiple view groups, and builds multiple view-sharing bipartite
graphs with multi-level diversities. Besides the diversity, to
enable the scalability for very large datasets, the efficiency is
another of our key concerns during the early-stage multi-fusion
process.

Particularly, in each view group, the bipartite graph struc-
ture is exploited to formulate the information of multiple view
member. In recent years, the bipartite graph structure has shown
its advantage in handling large-scale datasets [15], [16], [19],
[20]. From the perspective of topology, the bipartite graph is
built between the N data samples and a set of p anchors (or
representatives), typically with p � N for large-scale datasets.
From the perspective of matrix notation, the bipartite graph can
be represented by anN × p cross-affinity matrix with its (i, j)-th
entry being the affinity between the i-th sample and the j-th
anchor, which can also be regarded as encoding the data samples
via this small set of anchors.

To enable the diversity of the bipartite graph construction in
multiple view groups, we simultaneously leverage three levels of
diversification, corresponding to the feature-level, the anchor-
level, and the neighborhood-level, respectively.

In the feature-level diversification, we first perform random
feature sampling on each view member in a view group. Let τ (m)

v

denote the feature sampling ratio for the v-th view member in
the m-th view group (i.e., V iew

(m)
v ). To inject the diversity, the

sampling ratio for each view member is randomly chosen in
the range of [τmin, τmax], where τmin and τmax are respec-
tively the lower and the upper bounds of the sampling ratio
such that 0 < τmin ≤ τmax ≤ 1. By performing feature sub-
sampling with a randomized sampling ratio, we can obtain a
subset of features for each view member. For V iew

(m)
v , its

data matrix after random feature sampling can be denoted as

X̃ (m)
v ∈ RN×d̃

(m)
v , where d̃

(m)
v = �τ (m)

v · d(m)
v � is the reduced

dimension, and �·� obtains the ceiling of a real value.
After random feature sampling, we proceed to construct a

bipartite sub-graph on each view member, and then combine
these bipartite sub-graphs into a unified view-sharing bipartite
graph, where a set of p anchors are required and the K-NN
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sparsification is performed. In prior works, the anchor set for
multiple views can be obtained by performing k-means cluster-
ing on the concatenated features of all views [17] or by optimiz-
ing some objective function to learn consensus anchors [20].
However, on the one hand, they typically aim to find a set of
anchors suitable for all views, without sufficient consideration
to view-specific characteristics. On the other hand, their anchor
selection or learning process may also be computationally ex-
pensive when facing very large datasets.

Instead of pursuing a set of consensus anchors, we distribute
the task of findingp anchors to the multiple view members. With-
out prior knowledge, we expect the multiple view members in the
same view group to contribute equally. Specifically, each view
member is expected to make a contribution of p̄(m) = �p/V (m)�
anchors. Similarly, in terms of the neighborhood, each view
member is expected to contribute K̄(m) = �K/V (m)� nearest
neighbors. Thereafter, on each view member in VG(m), we aim
to build a bipartite sub-graph between N samples and p̄(m)

anchors, with each sample connected to K̄(m) nearest anchors.
For the m-th view group VG(m), the anchor selection on the

v-th view member V iew
(m)
v (associated with the data matrix

X̃ (m)
v ) is performed via the hybrid representative selection strat-

egy [16], which efficiently obtains a set of p̄(m) anchors, denoted
as

A(m)
v = {a(m)

v,1 , a
(m)
v,2 , . . . , a

(m)

v,p̄(m)}, (3)

where a
(m)
v,i ∈ Rd̃

(m)
v is the i-th anchor selected from X̃ (m)

v .
Then we define the bipartite sub-graph for the view member

V iew
(m)
v as follows:

G(m)
v = {L(m)

v ,R(m)
v , B(m)

v }, (4)

where L(m)
v = X and R(m)

v = A(m)
v are the left and right

node sets of the bipartite sub-graph, respectively, and B
(m)
v ∈

RN×p̄(m)
is the cross-affinity matrix. An edge between two

nodes exists if and only if one node is a data sample, another node
is an anchor, and this anchor is one of the sample’s K̄(m)-nearest
anchors. Formally, the (i, j)-th entry of the cross-affinity matrix
B

(m)
v can be defined as

b
(m)
v,ij =

{
Sim(x̃

(m)
v,i , a

(m)
v,j ), if a(m)

v,j ∈ NK̄(m)(x̃
(m)
v,i ),

0, otherwise,
(5)

where x̃
(m)
v,i denotes the i-th sample in this view member (with

reduced dimension), Sim(·) computes the similarity between
two vectors, and NK(x) denotes the set of K-nearest anchors
of sample x. Note that Sim(·) can be any similarity measure.
Typically, we utilize the Gaussian kernel similarity, which maps
the euclidean distance to a similarity measure via a Gaussian
kernel. Thus, with each sample linked to K̄(m) nearest anchors,
the cross-affinity matrix B

(m)
v can be represented as a sparse

matrix with only N · K̄(m) non-zeros entries, whose sparsity
can significantly benefit the later matrix computations.

For the v-th view member in the m-th view group, a bipar-
tite sub-graph G(m)

v (with the cross-affinity matrix B
(m)
v ) can

be obtained. From the perspective of information encoding,

the cross-affinity matrix B
(m)
v can be regarded as a represen-

tation matrix to encode the N data samples by the p̄(m) anchors,
with each row of B(m)

v being a low-dimensional feature vector
for a data sample. As there are V (m) view members in VG(m),
each data sample can be represented (or encoded) by the totally
p̄(m) · V (m) anchors, which lead to the view-sharing bipartite
graph for the entire view group, that is

G(m) = {L(m),R(m), B(m)}, (6)

where L(m) = X is the left node set of the bipartite graph, and
R(m) = A(m)

1

⋃
, . . . ,

⋃A(m)

V (m) is the right node set, which is
the union of the anchor sets of the V (m) view members from
VG(m). The cross-affinity matrix for G(m) is defined as B(m) =

[B̄
(m)
1 , . . ., B̄

(m)

V (m) ], where B̄
(m)
v is computed by normalizing

each row of B(m)
v to unit norm, so as to adjust multiple bipartite

sub-graphs into similar scales.
The time complexity of building the view-sharing bipar-

tite graph G(m) mainly comes from the anchor selection
and the cross-affinity matrix construction. For the v-th view
member in VG(m), the anchor selection via hybrid repre-
sentative selection takes O((p̄(m))2d̃

(m)
v t) time, where t is

the number of iterations. Then it takes O(N(p̄(m))1/2) time
to build the cross-affinity matrix B

(m)
v via approximate K-

NN computation [16]. Thus the construction of a bipar-
tite sub-graph (for a view member) takes O(N(p̄(m))1/2 +

(p̄(m))2d̃
(m)
v t) time, which is dominated by O(N(p̄(m))1/2)

with p̄(m) � N . The construction of a view-sharing bipartite
graph for VG(m) involves the construction of V (m) bipar-
tite sub-graphs, which in total take O(N(p̄(m))1/2V (m)) time.
With p̄(m) = �p/V (m)� and V (m) ≤ V , it is easy to know
that p̄(m)V (m) ∈ [p, p+ V (m)), leading to (p̄(m))1/2V (m) =
(p̄(m)(V (m))2)1/2 < ((p+ V )V )1/2. With V � p, the time
complexity of constructing a view-sharing bipartite graph can
be obtained as O(Np1/2V 1/2).

As B̄
(m)
v is a sparse matrix with N · K̄(m) non-zero entries

and B(m) is a sparse matrix with N · K̄(m) · V (m) non-zero
entries, the space complexity of constructing a view-sharing
bipartite graph is O(NK̄(m)V (m)). With K̄(m) = �K/V (m)�
and V (m) ≤ V , we have K̄(m)V (m) ∈ [K,K + V ). Therefore
the space complexity can be written as O(N(K + V )).

D. Ensemble Generation in View Groups

In this section, we describe the ensemble generation, i.e., the
generation of a set of diversified base clusterings, based on the
view-sharing bipartite graphs in multiple view groups.

Specifically, with a view-sharing bipartite graph constructed
for each view group, a set of M view-sharing bipartite graphs,
ranging from G(1) to G(M), can be built for the M view groups.
For the base clustering in each view group, the number of
clusters, say, k(m), will be randomly selected in the range of
[kmin, kmax], where kmin and kmax are respectively the lower
bound and the upper bound of the cluster number. In the fol-
lowing, we proceed to describe the fast partitioning of the m-th
view-sharing bipartite graph into k(m) clusters.
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For the m-th view group, there are totally N + p̄(m) · V (m)

nodes in the view-sharing bipartite graph G(m), with N data
samples in the left node set and p̄(m) · V (m) anchors in the
right node set. By treating G(m) as a general graph, its full
affinity matrix E(m) ∈ R(N+p̄(m)V (m))×(N+p̄(m)V (m)) can be
represented as

E(m) =

[
0 B(m)

(B(m))
�

0

]
(7)

To partition this graph via conventional spectral clustering [34],
the following generalized eigen-decomposition problem should
be solved

L(m)y(m) = λ(m)D(m)y(m), (8)

whereL(m) = D(m) − E(m) is the graph Laplacian,D(m) is the
degree matrix with its (i, i)-th entry being the sum of the i-row in
E(m). It takes O((N + p̄(m)V (m))3) time to solve this problem
via SVD, which is computationally expensive for large-scale
datasets.

Due to the imbalanced sizes of the left and right node sets
in the bipartite graph, with p̄(m)V (m) ≈ p � N , the eigen-
decomposition problem in (8) can be reduced to an eigen-
decomposition problem on a smaller graph G(m)

s with a node
set of p̄(m)V (m) anchors and an affinity matrix of E

(m)
s =

(B(m))�(D̂(m))−1B(m), whose computation takes O(NK2)
time, where D̂(m) is a diagonal matrix with its (i, i)-th entry
being the sum of the i-th row in the cross-affinity matrix B(m).
The generalized eigen-decomposition problem on the reduced
graph G(m)

s can be formulated as

L(m)
s u(m) = δ(m)D(m)

s u(m), (9)

where L
(m)
s = D

(m)
s − E

(m)
s is the graph Laplacian, D(m)

s is
the degree matrix with its (i, i)-th entry being the sum of the
i-th row in E

(m)
s .

By solving the eigen-decomposition problem in (9) with
O((p̄(m)V (m))3) ≈ O(p3) time, the first k(m) eigen-pairs can
be obtained, denoted as {δ(m)

i , u
(m)
i }k(m)

i=1 with 0 = δ
(m)
1 ≤

δ
(m)
2 ≤ · · · ≤ δ

(m)

k(m) < 1. Let {λ(m)
i , y

(m)
i }k(m)

i=1 be the first

k eigen-pairs for the graph G(m) with 0 = λ
(m)
1 ≤ λ

(m)
2 ≤

· · · ≤ λ
(m)

k(m) < 1, which can be efficiently computed from

{δ(m)
i , u

(m)
i }k(m)

i=1 with the following properties [35]

λ
(m)
i (2− λ

(m)
i ) = δ

(m)
i , (10)

y
(m)
i =

[
h
(m)
i

u
(m)
i

]
(11)

where h
(m)
i = (D̂(m))−1B(m)u

(m)
i /(1− λ

(m)
i ).

The time complexity of solving the eigen-decomposition
problem in (9) is O(p3). Due to the sparsity of B(m), it takes
O(NK) time to compute h

(m)
i and obtain each eigenvector

{y(m)
i }k(m)

i=1 from {u(m)
i }k(m)

i=1 . Then, the k(m) eigenvectors will
be stacked as a matrix with each row treating as a new feature
vector, upon which the k-means discretization can be performed

to obtain the m-th base clustering with O(N(k(m))2t) time.
Since k(m) and k are generally at similar scales, the time
complexity of generating the base clustering from a view-sharing
bipartite graph is O(N(k2t+K2 +Kk) + p3), and the space
complexity is O(N(k +K)).

E. Late-Stage Consensus Function

By partitioning the view-sharing bipartite graph of the m-th
view group, we obtain a base clustering with k(m) clusters. Then
the set of base clusterings generated for the M view groups can
be represented as

Π = {π(1), π(2), . . . , π(M)}, (12)

where π(m) = {C(m)
1 , C

(m)
2 , . . . , C

(m)

k(m)} is the m-th base clus-

tering, and C
(m)
i is the i-th cluster in π(m). Each base clustering

consists of a certain number of clusters. For convenience, we
represent the set of clusters in all base clusterings as

C = {C1, C2, . . . , Ckc
}, (13)

where Ci is the i-th cluster, and kc =
∑M

m=1 k
(m) is the total

number of clusters in all base clusterings.
To jointly formulate the information of multiple base cluster-

ings, we construct a unified bipartite graph by treating both the
data samples and the base clusters as graph nodes, denoted as

G = {L,R, B}, (14)

where L = X is the left node set with N data samples, R = C
is the right node set with kc base clusters, and B ∈ RN×kc is
the cross-affinity matrix. A link between two nodes exists if and
only if one of them is a data sample and the other one is a base
cluster that contains the sample. Thus, the (i, j)-th entry of the
cross-affinity matrix B can be defined as

bij =

{
1, if xi ∈ Cj ,
0, otherwise,

(15)

Note that each data sample belongs to one and only one cluster
in a base clustering. With a total of M base clusterings, each
data sample will be linked to exactly M clusters in the unified
bipartite graph. That is, in each row of B, there are exactly M
non-zero entries. Therefore, B is a matrix with N ·M non-zero
entries.

Similar to the partitioning of the view-sharing bipartite graph
G(m), the eigen-decomposition problem of the unified bipar-
tite graph G can also be tackled by conducting the eigen-
decomposition on a smaller graph Gs with an affinity ma-
trix Es = B�D̂−1B, whose computation takes O(NM2) time,
where D̂ is a diagonal matrix with its (i, i)-th entry being the
sum of the i-th row in B.

To obtain the final clustering result with k clusters, solving the
eigen-decomposition of the graph Gs takes O(kc

3) time. Then it
takes O(NM) time to compute each of the k eigenvectors of G
from the eigenvectors ofGs. Thereafter, it takesO(Nk2t) time to
perform the k-means discretization. Thus, the time complexity
of the overall consensus function with the unified bipartite graph
is O(N(k2t+M2 +Mk) + kc

3), and the space complexity is
O(N(k +M)).
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TABLE II
DESCRIPTION OF THE BENCHMARK DATASETS

F. Complexity Analysis

In the following, we will analyze the time and space complex-
ity of the proposed FastMICE approach.

1) Time Complexity: This section analyzes the time com-
plexity of the FastMICE approach. The generation of random
view groups in Section III-B takes O(MV ) time. Then it
takes O(Np1/2V 1/2) time to construct a view-sharing bipartite
graph in each view group, and totally O(NMp1/2V 1/2) time
to construct the view-sharing bipartite graphs in all the M
view groups in Section III-C. Thereafter, the ensemble gener-
ation in Section III-D (to produce M base clusterings) takes
O(NM(k2t+K2 +Kk) +Mp3) time. Finally, the consensus
function in Section III-E takes O(N(k2t+M2 +Mk) + kc

3)
time.

In large-scale scenarios, the number of anchors may range
from hundreds to thousands, which is much smaller than the
data size N , but much larger than the number of clusters k or
the number of nearest neighbors K. With k,K,M, V � p �
N , the overall time complexity of the FastMICE approach can be
written as O(NMp1/2V 1/2), which is linear to the data size N .

2) Space Complexity: This section analyzes the space com-
plexity of FastMICE. The construction of a view-sharing bi-
partite graph takes O(N(K + V )) space, while its partitioning
takes O(N(k +K)) space. Since the base clusterings can be
generated in a serial processing manner, the space complexity of
generating multiple base clusterings is stillO(N(k +K + V )).
The consensus function takes O(N(k +M)) space. Thus, the
overall space complexity of FastMICE is O(N(k +K + V +
M)), which is also linear to the data size N .

IV. EXPERIMENTS

In this section, we evaluate the proposed FastMICE approach
against the state-of-the-art MVC approaches on a variety of

general-scale and large-scale multi-view datasets. The experi-
ments are conducted on a PC with an Intel i5-6600 CPU and
16 GB of RAM.

A. Benchmark Datasets

In the experiments, 22 real-world multi-view datasets are
used, including 10 general-scale datasets and 12 large-scale
datasets (as shown in Table II).

Specifically, the 10 general-scale datasets are MSRCv1 [36],
Yale [36], ORL [36], Movies [37], BBCSport [38], NH-550 [38],
Out-Scene [39], Citeseer [12], NH-4660 [40], and ALOI [41],
and the 12 large-scale datasets are NUS-WIDE [21], VGGFace2-
50, VGGFace2-100, VGGFace2-200, CIFAR-10, CIFAR-100,
YTF-10, YTF-20, YTF-50, YTF-100, YTF-200, and YTF-400.
Note that VGGFace2-50, VGGFace2-100, and VGGFace2-200
are three versions of the VGGFace21 dataset. CIFAR-10 and
CIFAR-100 are two versions of the CIFAR2 dataset. And YTF-
10, YTF-20, YTF-50, YTF-100, YTF-200, and YTF-400 are six
versions of the YouTube-Faces3 (YTF) dataset. The purpose
of testing different versions (of different data sizes) of these
large-scale datasets is to better evaluate the MVC algorithms
with different levels of scalability. The details of the datasets are
given in Table II.

B. Baseline Methods and Experimental Settings

Our proposed FastMICE method is experimentally compared
against ten MVC methods, which are listed below.
� MVSC [17]: multi-view spectral clustering.
� AMGL [4]: auto-weighted multiple graph learning.
� SwMC [42]: self-weighted multi-view clustering.

1www.robots.ox.ac.uk/∼vgg/data/vgg_face2/
2https://www.cs.toronto.edu/∼kriz/cifar.html
3https://www.cs.tau.ac.il/∼wolf/ytfaces/

www.robots.ox.ac.uk/~vgg/data/vgg_face2/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.tau.ac.il/~wolf/ytfaces/
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TABLE III
AVERAGE NMI(%) SCORES OVER 20 RUNS BY DIFFERENT MULTI-VIEW CLUSTERING ALGORITHMS. ON EACH DATASET, THE BEST TWO SCORES ARE

HIGHLIGHTED IN BOLD, WHILE THE BEST ONE IN [BOLD AND BRACKETS]

TABLE IV
AVERAGE ARI(%) SCORES OVER 20 RUNS BY DIFFERENT MULTI-VIEW CLUSTERING ALGORITHMS. ON EACH DATASET, THE BEST TWO SCORES ARE

HIGHLIGHTED IN BOLD, WHILE THE BEST ONE IN [BOLD AND BRACKETS]

� MVEC [33]: multi-view ensemble clustering.
� M 2 VECkm [7]: marginalized multi-view ensemble clus-

tering with k-means
� M 2 VECspec [7]: marginalized multi-view ensemble clus-

tering with spectral clustering
� BMVC [21]: binary multi-view clustering.
� LMVSC [18]: large-scale multi-view subspace clustering.
� SMVSC [19]: scalable multi-view subspace clustering.
� FPMVS-CAG [20]: fast parameter-free multi-view sub-

space clustering with consensus anchor guidance.
Among these baseline methods, BMVC, LMVSC, SMVSC,

and FPMVS-CAG are four large-scale MVC methods, MVEC,

M 2 VECkm, and M 2 VECspec are three EC based MVC
methods, and AMGL, SwMC, and FPMVS-CAG are three
tuning-free MVC methods. For the baseline methods as well as
the proposed method, if the distance metric can be customized,
then the cosine distance will be adopted for the document
datasets, such as Movies, BBCSport, and Citeseer. Otherwise,
their suggested distance (mostly euclidean distance) will be
adopted.

For each of the baseline methods, if the dataset-specific
tuning is needed, then each of its hyperparameters will be
tuned in the range of {10−5, 10−4, . . . , 105}, unless the tuning
range is specifically suggested by the corresponding paper. To
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TABLE V
AVERAGE ACC(%) SCORES OVER 20 RUNS BY DIFFERENT MULTI-VIEW CLUSTERING ALGORITHMS. ON EACH DATASET, THE BEST TWO SCORES ARE

HIGHLIGHTED IN BOLD, WHILE THE BEST ONE IN [BOLD AND BRACKETS]

TABLE VI
AVERAGE PUR(%) SCORES OVER 20 RUNS BY DIFFERENT MULTI-VIEW CLUSTERING ALGORITHMS. ON EACH DATASET, THE BEST TWO SCORES ARE

HIGHLIGHTED IN BOLD, WHILE THE BEST ONE IN [BOLD AND BRACKETS]

avoid the expensive or even unaffordable computational costs of
hyperparameter-tuning on the entire large-scale datasets, for all
the baseline methods except M 2 VECkm and M 2 VECspec, if
N > 10,000, the tuning will be conducted on a random subset
of 10,000 samples. For M 2 VECkm and M 2 VECspec, whose
computational costs rapidly increase with larger data sizes, if
N > 1,000, the tuning will be conducted on a random subset

of 1,000 samples.
Note that the proposed FastMICE method does not require

dataset-specific tuning. Though there exist several parameters
in FastMICE, yet these parameters can safely be set to some
common values (or randomized in some common ranges) across

various datasets. Specifically, the feature sampling ratio τ (m)
v for

each view member is randomized in [0.2,0.8]. The number of
clusters k(m) in each base clustering is randomized in [k, 2k],
where k is the desired number of clusters in the final clustering.
Besides these randomizations, the number of base clusterings
M = 20, the number of anchors p = min{1,000, N}, and the
number of nearest neighbors K = 5 are used in the experiments
on all benchmark datasets.

To evaluate the clustering performances of different MVC
methods, we adopt four wide-used evaluation metrics in our ex-
periments, namely, normalized mutual information (NMI) [32],
adjusted Rand index (ARI) [31], accuracy (ACC) [38], and
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Fig. 3. The average NMI (%) scores over 20 runs by different EC based
MVC algorithms with varying ensemble sizes M . Note that if an algorithm
is not computationally feasible on a dataset, then its curve will not appear in the
corresponding sub-figure.

purity (PUR) [38]. Larger values of these metrics indicate better
clustering results.

C. Performance Comparison and Analysis

In this section, we experimentally compare our FastMICE
method against ten baseline MVC methods. The comparison
results w.r.t. NMI, ARI, ACC, and PUR are reported in Tables III,
IV, V, and VI, respectively.

As shown in Table III, FastMICE achieves the best perfor-
mance w.r.t. NMI on 19 out of the 22 datasets. Though the
MVEC method yields a higher NMI score than FastMICE on the
BBCSport dataset, yet FastMICE outperforms or significantly
outperforms MVEC on all the other datasets. In comparison
with the four large-scale baseline methods, namely, BMVC,
LMVSC, SMVSC, and FPMVS-CAG, our FastMICE method

Fig. 4. The average NMI (%) scores over 20 runs by the proposed algorithm
with varying number of anchors p.

outperforms these methods on all benchmark datasets except
Movies and NUS-WIDE.

Further, we report the average ranks (across the twenty
datasets) of the proposed method and the ten baseline meth-
ods in Table III. Note that, for a dataset, if four MVC meth-
ods are computationally feasible and seven MVC methods are
computationally infeasible due to the out-of-memory error, then
the seven infeasible methods will equally rank in the fifth posi-
tion on this dataset. As can be seen in Table III, the proposed
FastMICE method achieves an average rank of 1.23, which sig-
nificantly outperforms the second best method with an average
rank of 4.41.

Similar advantages of the proposed method over the baselines
can also be observed in Tables IV, V, and VI. In terms of ARI,
our FastMICE method achieves the best scores on 18 out of the
22 datasets, with an average rank of 1.27. In terms of ACC, our
FastMICE method achieves the best scores on 14 out of the 22
datasets, with an average rank of 1.55. In terms of PUR, our
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Fig. 5. The average NMI (%) scores over 20 runs by the proposed algorithm
with varying number of nearest neighbors K.

FastMICE method achieves the best scores on 14 out of the
twenty datasets, with an average rank of 1.45. The experimental
results in Tables III, IV, V, and VI have confirmed the robust
performance of our FastMICE method when compared with the
other MVC methods.

D. Influence of Ensemble Size M

In this section, we test the influence of the ensemble size M ,
which corresponds to the number of base clusterings and also
the number of random view groups in FastMICE. The three EC
based baseline methods, namely, MVEC, M 2 VECkm, and M
2 VECspec, similarly involve the ensemble size M , which will
also be tested in the comparison.

The performances of FastMICE and the three baselines are
illustrated in Fig. 3. Note that the three EC based baseline
methods are not computationally feasible for datasets larger than
NH-4660, so their curves will be absent in the corresponding
sub-figures. As shown in Fig. 3, the proposed FastMICE method

Fig. 6. The comparison (w.r.t. NMI (%)) of the proposed algorithm using
random view groups against treating each single view as a group and treating
all views as a group.

yields consistently high-quality clustering performance with
varying ensemble sizes. When compared with the other EC
based methods, FastMICE achieves overall better performance
than the baselines on the benchmark datasets. Empirically, a
relatively larger ensemble size is beneficial. In our experi-
ments, we use the ensemble size M = 20 on all benchmark
datasets.

E. Influence of Number of Anchors p

In this section, we test the influence of the number of anchors
p in the FastMICE method. As can be seen in Fig. 4, the proposed
FastMICE method shows consistent performance as the number
of anchors goes from 100 to 1400. Empirically, a larger number
of anchors can be beneficial on most of the datasets, especially
on the large-scale ones such as YTF-200 and YTF-400, probably
due to the fact that a larger number of anchors may better reflect
the overall structure of the data. As the number of anchors cannot
exceed the number of original samples, in our experiments, we
use the number of anchors p = min{1000, N} on all benchmark
datasets.
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TABLE VII
TIME COSTS (IN SECONDS) OF DIFFERENT MULTI-VIEW CLUSTERING ALGORITHMS. TUNETIME: TIME COST FOR DATASET-SPECIFIC HYPERPARAMETER TUNING.

RUNTIME: TIME COST FOR RUNNING THE ALGORITHM

F. Influence of Number of Nearest Neighbors K

In this section, we test the influence of the number of nearest
neighborsK in the FastMICE method, which corresponds to the
number of (nearest) anchors that are linked to each data sample.
Specifically, we illustrate the performance of the proposed Fast-
MICE method as the number of nearest neighbors goes from 1 to
10 in Fig. 5. As shown in Fig. 5, a moderate value ofK can often
be beneficial on most of the benchmark datasets. Empirically, it
is suggested that the number of nearest neighbors be set in the
range of [4,8]. In our experiments, we use the number of nearest
neighbors K = 5 on all benchmark datasets.

G. Influence of Random View Groups

In this section, we test the influence of the random view
groups in our framework. As discussed in Section III-B, the

previous early fusion methods can be regarded as a special
instance of our view group formation with all views in a single
group, while the late fusion methods can also be regarded as
a special instance of our view group formation with a single
view in each group. In this section, we compare our FastMICE
method using random view groups against using a single view
in each group and using all views in a group. As shown in
Fig. 6, the use of random view groups leads to substantial
improvements on most of the datasets. Though the use of all
views in a group leads to comparable performance to the use
of random view groups on the Yale dataset, yet on most of
the other datasets the FastMICE method using random view
groups outperforms or significantly outperforms the variants
using a single view in each group or using all views in a
group, which verifies the benefits brought in by the random view
groups.
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H. Execution Time

In this section, we evaluate the time costs of the FastMICE
method and the other MVC methods on the benchmark datasets.
Note that for the proposed FastMICE method, no dataset-specific
hyperparameter-tuning is needed. For the baseline methods, if
the dataset-specific hyperparameter-tuning is required, then the
time costs of tuning and running will be respectively reported.

As shown in Table VII, more than half of the baseline methods
cannot go beyond the ALOI dataset due to the computational
complexity bottleneck. Though the large-scale baseline meth-
ods, including BMVC, LMVSC, SMVSC, and FPMVS-CAG,
have shown their scalability for some larger datasets, yet they
still encounter heavy computational burdens or even the out-
of-memory error when they process the YTF-200 or YTF-400
datasets. Remarkably, on the YTF-200 dataset with 286,006
samples, our FastMICE method only consumes 263.81 seconds
of running time, while the LMVSC, SMVSC, and FPMVS-CAG
methods respectively consume 3,184.79 seconds, 74,063.30
seconds, and 32,974.03 seconds of running times. In terms of
the YTF-400 dataset with 398,191 samples, FastMICE is the
only method that is computationally feasible on this large-scale
dataset, which demonstrates the clear advantage of our Fast-
MICE method in scalability for very large-scale datasets.

To summarize, as shown in Tables III, IV, V, VI, and VII, the
proposed FastMICE method is capable of yielding highly com-
petitive clustering performance over the state-of-the-art, while
showing advantageous scalability on very large-scale multi-view
datasets.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new large-scale MVC approach
termed FastMICE, which is featured by its scalability (for ex-
tremely large-scale datasets), superiority (in clustering perfor-
mance), and simplicity (to be applied without dataset-specific
tuning). In particular, different from the previous approaches
that mostly adopt some types of single-stage fusion strategies,
this paper presents a hybrid early-late fusion strategy based
on the random view groups. A large number of random view
groups are first formed to serve as a flexible view-organizations
to investigate the view-wise relationships. Then, three levels of
diversity, i.e., the feature-level diversity, the anchor-level diver-
sity, and the neighborhood-level diversity, are jointly leveraged
to explore the rich and versatile information in the random view
groups and thereby enable the highly efficient construction of
the view-sharing bipartite graphs. By fast partitioning of these
view-sharing bipartite graphs from different view groups, a set of
diversified base clusterings can be generated, which are further
formulated into a unified bipartite graph for achieving the final
clustering result.

It is noteworthy that our FastMICE approach has almost linear
time and space complexity, and is able to perform robustly
and accurately on various general-scale and large-scale datasets
without requiring dataset-specific hyperparameter-tuning. Ex-
tensive experimental results on 22 multi-view datasets have
demonstrated the superiority of our FastMICE approach over the
state-of-the-art. In the future work, the concept of random view

groups and the diversification-and-fusion strategy may also be
investigated for more MVC tasks, such as the incomplete MVC
task [43] and the deep MVC task [44], [45], so as to promote their
robustness while ensuring scalability for very large datasets.
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