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Pushing ML Predictions Into DBMSs
Matteo Paganelli , Paolo Sottovia , Kwanghyun Park , Matteo Interlandi , and Francesco Guerra

Abstract—In the past decade, many approaches have been sug-
gested to execute ML workloads on a DBMS. However, most of
them have looked at in-DBMS ML from a training perspective,
whereas ML inference has been largely overlooked. We think that
this is an important gap to fill for two main reasons: (1) in the
near future, every application will be infused with some sort of ML
capability; (2) behind every web page, application, and enterprise
there is a DBMS, whereby in-DBMS inference is an appealing
solution both for efficiency (e.g., less data movement), performance
(e.g., cross-optimizations between relational operators and ML)
and governance. In this article, we study whether DBMSs are a good
fit for prediction serving. We introduce a technique for translating
trained ML pipelines containing both featurizers (e.g., one-hot
encoding) and models (e.g., linear and tree-based models) into SQL
queries, and we compare in-DBMS performance against popular
ML frameworks such as Sklearn and ML.NET. Our experiments
show that, when pushed inside a DBMS, trained ML pipelines
can have performance comparable to ML frameworks in several
scenarios, while they perform quite poorly on text featurization and
over (even simple) neural networks.

Index Terms—MLOPs, machine learning, SQL.

I. INTRODUCTION

IN THE last few years, the interest in Machine Learning (ML)
both in academia (approximately 100 new ML-related papers

are published on Arxiv every day [1]) and in the industry [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]
has exploded. The expectation is that, in the near future, every
application will incorporate trained ML models for all those
functions that are impossible to write for software developers [2].
To fulfill this vision, ML has to transition from art and sci-
ence into a mature engineering discipline [16] centered around
data [17]. Unfortunately, it is remarkably easy to accumulate
massive maintenance costs (referred to as technical debt) at the
system level when ML is used [18].

For the last 4+ decades, Database Management Systems
(DBMSs) have proven to be the workhorse of many enterprises.
Governance, security, audibility, access control, provenance,
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and performance are some of the common features found in
“Enterprise-grade” software such as DBMSs. One natural ques-
tion then arises: to which extent can DBMSs be used to lower the
technical debt of ML deployments and achieve Enterprise-grade
ML [16]? Many works [19], [20], [21], [22], [23], [24] have
indeed already explored this problem, although mostly from an
ML training perspective, or for a few model classes. Conversely,
in-DBMS prediction serving of end-to-end ML pipelines (i.e.,
pipelines composed of featurizers and ML models) remains
largely an open question. This is somehow surprising, in fact:

1) in practice, ML models are seldomly deployed alone,
whereas data featurizers are often required to transform
data into the format that is understandable by ML models
(e.g., in [25] we found that pipelines can have up to
hundreds of operators);

2) models are often trained once and served many times (e.g.,
rendering of web pages based on users’ profiles, batch
prediction of asset prices based on historical data), and this
pattern appears quite amenable for in-DBMS execution;

3) applications where prediction serving will likely be used
(e.g., websites, smart BI dashboards) are often backed by
a DBMS;

4) the top used operators in practical data science over tabular
data are not compute-heavy neural networks, but rather
memory-intensive operations (such as one-hot encoding
or tree ensemble methods [25], [26]) which should benefit
from in-DBMS execution;

5) when data already resides in a database, execution of in-
DBMS predictions is a natural choice, whereas a different
solution will require pulling the data out of the database.
This not only is a path not always practicable, for instance,
if for security reasons data cannot be moved outside
the database, but it also causes performance costs, while
making it difficult to enforce the “Enterprise-grade” fea-
tures without resorting to bespoken solutions (and likely
increasing the technical debt).

Our observation is further corroborated by the fact that com-
mercial databases are starting to surface functionalities for ex-
pressing model predictions directly from SQL statements [27],
[28], [29], [30]. Pushing the execution of predictions directly into
the DBMS by translating ML pipelines end-to-end into SQL is
therefore the natural next step.

To study whether trained ML pipelines can be pushed into
DBMSs, and predictions served directly in SQL, we have col-
lected 10 representative pipelines, spanning (1) different ML
tasks (binary, multiclass classification, and regression); (2) a
diverse set of models (linear, tree ensembles) and featurizers
(one-hot encoder, normalizer, etc.); and (3) a heterogeneous set
of datasets (from large scale with 10 s of millions of records
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Fig. 1. A typical ML workflow. Rectangles are used to identify data artifacts
(e.g., input data, or trained models); ellipses determine computations (e.g., data
preparation and serving).

to small ones with only few 100 s instances). We experimen-
tally evaluate the performance of Sklearn and ML.NET pipelines
against their SQL implementations executed over MySQL and
SQL Server; we evaluate the performance of using both different
input / output modalities (flat CSV file or database), prediction
settings (batch or online), and optimization and implementation
strategies (e.g., w/ and w/o indexes, columnar store, operator fu-
sion). SQL implementations are generated by MASQ (Machine
learning AS Query): a library whereby trained ML pipelines are
translated into standard SQL (without UDFs or vendor-specific
syntax) and are therefore executable on any DBMSs.

Our experiments show that DBMSs performance can be com-
parable to Sklearn and ML.NET when data resides in the database.
Conversely, when ML pipelines contain textual featurizers or
compute heavy models (e.g., neural networks) databases per-
form quite poorly. Summarizing, the contributions of the paper
are:
� We introduce MASQ1: a library able to translate trained

ML pipelines into SQL;
� We empirically evaluate the performance of queries im-

plementing trained ML pipelines on a diverse workload,
and compare in-DBMS predictions against two ML frame-
works;

� We provide a set of lessons learned (e.g., how to circumvent
the limit on the number of database columns), and addi-
tional insight related to running ML predictions natively
on DBMSs.

To our knowledge, we are the first to evaluate the performance
of ML pipelines run end-to-end in plain SQL and to show that
SQL execution can be achieved even for high-dimensional ML
models and featurizers going beyond DBMSs limits.

The paper is organized as follows: Section II sets the back-
ground. Related works are listed in Section III. Section IV
describes MASQ implementation. The experiments are in
Section V. The paper ends with lessons learned and conclusions
in Section VI.

II. BACKGROUND: ML WORKFLOW

Fig. 1 depicts a typical ML workflow. Starting with some
input data, a data preparation step is used for sanity checks,
data validation, data cleaning, feature generation, and selection.
Data preparation is commonly performed through a set of data

1https://github.com/softlab-unimore/MASQ

featurizers. The featurized data, the output of the data prepara-
tion step, is then passed to the training step, where a learning
algorithm is used to fit an ML model through an iterative process.
Once the model is trained, it can be represented as a prediction
function transforming input features into a prediction score (e.g.,
1 or 0 for binary classification). Finally, the trained ML model
along with the data preparation operators constitute the ML
predictive pipeline which is then deployed for serving prediction
queries [31]. Wrapping data preparation and trained models into
a unique artifact is common practice in ML systems [2]. At
serving time, the new input data is pre-processed and featurized
(using the same operators) and fed into the prediction function
of the trained ML model for rendering the final score.2

The focus of this article is to study whether the prediction
serving process can be pushed down and directly executed
on DBMSs. The training process is kept as in the typical ML
workflow and is not the focus of this article. Rather, once a model
is trained, we use MASQ to generate SQL queries that perform
the same data preparation and prediction logic as the original
predictive pipeline. We purposely target standard SQL such that
we can (1) target different DBMSs; and (2) allow the optimizer to
properly generate efficient end-to-end plans. Finally, our focus is
on models learned over relational data. Therefore, we will only
consider pipelines composed of “traditional” ML operators.
(i.e., no deep neural networks). Traditional methods are the
state-of-the-art over structured data [32], and it is still the more
widely-used type of ML [25], [26]. Nevertheless, we did test
the performance of a shallow neural network in Section V-H2.

III. RELATED WORK

The integration of ML into RDMBSs has a long history.
In the early 2000 s, SQL Server shipped with data mining
operators for classification and clustering [33]. Later in the
2010 s, MADlib [19] and following works (e.g., [20], [34], [35],
[36]) propose to use User-Defined Aggregates (UDAs) and User-
Defined Functions (UDFs) as the Trojan Horse to overcome the
limitations of DBMS regarding iterative computation and linear
algebra routines. Apache Spark’s MLlib [37], SystemML [14],
[15], Apache Mahout Samsara [38] and others [39], [40] could
be seen as a continuation of this trend. Beyond UDAs/UDFs,
other approaches have tried to add ML to DBMSs by extending
database runtimes with linear algebra operations (e.g., [41],
[42]). While extending consumer database runtimes for properly
supporting ML will bring the best performance, this is a her-
culean task because it requires the modification of decades-old
systems. Conversely, the UDA/UDF approach is more generic,
but it introduces non-trivial overheads [43], while limiting the
set of possible cross-optimization between ML and relational
algebra [44], [45]. Finally, factorized approaches (e.g., [46])
rewrite ML models in a database-friendly way. While these
approaches work well over linear-algebra-based models, it is

2This is an oversimplification of actual ML workflows, and it does not cover,
for example, hyper-parameter tuning and model selection. It is however a fair
summary of common use cases. In this work, we deal only with “pure” pipelines,
i.e., pipelines composed only of Sklearn or ML.NET operators, and without
arbitrary code.

https://github.com/softlab-unimore/MASQ
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not clear whether they can also support effectively tree-ensemble
models.

All the above-mentioned works mostly focus on (1) the train-
ing aspect of ML, and on (2) optimizing specific workloads
relying heavily on linear algebra. Conversely, our focus is far
less ambitious but arguably practical: we want to understand
whether off-the-shelf DBMSs are a good fit for serving ML
predictive pipelines. Our observation is that, in practice, pre-
dictive pipelines are not deployed into DBMSs, but rather into
external containers [47] or directly into the application [48], even
when input data resides in a relational format in a database.
Furthermore, predictive pipelines are composed of a variety of
prediction functions and data featurizers (e.g., tree methods and
one-hot encoding), where inefficient linear algebra operations
are not necessarily the bottleneck. Tidypredict [49] is probably
the closest work to MASQ, although it works only in R, and
for a small set of models (linear regression, generalized linear
model, random forest, and decision tree). Amazon Redishift
ML [29] and Azure Synapse Analytics allow SQL predictions,
but this is achieved by a wrapper around external libraries.
Google’s BigQuery supports inference (and training) directly
in SQL, but only for generalized linear models [50]. Inter-
estingly, the original version of MADlib [51] did follow the
same “pure” SQL approach of MASQ. However, they found
that “Unfortunately, the portable core of vanillaSQL is often
not quite enough to express the kinds of algorithms needed for
advanced analytics.” [19]. Nonetheless, this argument refers to
training, while inference algorithms are in general simpler. More
recently, [52] also proposed to translate ML training into SQL,
and with really good performance. Raven [44] co-optimizes
predictive pipelines and SQL queries. Among the optimizations,
Raven can generate SQL queries from ML operators. We see
our study in this article as complementary to approaches such
as Hummingbird [53] since we specifically target predictive
pipelines when data resides on a database and no hardware
accelerator is available. Even when hardware accelerators are
available, using Hummingbird requires (1) pulling the data from
the database; (2) transforming the data into columnar format; (3)
transferring the data into GPU memory (and back). Executing
predictive pipelines directly into SQL can therefore still be
widely beneficial because all the above steps can be avoided.
The cross-point on when one technique is better than the other
is investigated elsewhere [54].

In this article, we will focus on traditional ML, and compare
DBMS execution against Sklearn [55] and ML.NET [2]. Other
alternative libraries include H2O [56], Weka [57], and Spark’s
MLlib [37] (for scale-out training). A demonstration of MASQ
functionalities was presented at SIGMOD 2021 [58].

IV. THE MASQ LIBRARY

As a first step, we describe how trained pipelines can be pro-
grammatically translated into SQL. The MASQ library consists
of two main components (Fig. 2). The Compiler (Section IV-A)
is responsible for the transformation of the predictive pipelines
into SQL queries; the Executor (Section IV-B) instead connects
and runs the queries on the DBMS holding the data.

Fig. 2. MASQ applied to an ML predictive pipeline.

TABLE I
THE TaxiTable USED IN THE EXAMPLES. ABBREVIATIONS: PC = PASSENGER

COUNT; TTS = TRIP TIME; TD = TRIPDISTANCE; PT = PAYMENT TYPE; VI =
VENDOR ID. THE LABEL IS THE FARE AMOUNT

A. The Compiler

The Compiler job can be divided into three phases: during
parsing (Section IV-A1) the fitted parameters are extracted
from the trained featurizers and models; parsed pipelines are
then analyzed (Section IV-A2); finally, a conversion phase
(Section IV-A3) generates the SQL implementations.

1) Parsing: Predictive pipelines are actually Direct Acyclic
Graphs (DAGs) of operators, where each operator can be a data
featurizer or a model. In the parsing phase, input predictive
pipelines are parsed one operator at a time, and each operator
is wrapped by a container object maintaining input/output re-
lationships, as well as an operator signature and an extractor
function used for extracting the fitted parameters. Operator
signatures are initialized with the object types (e.g., the result of
the type function applied over a Python operator object) and
used for picking the correct extractor (and conversion) function
for the given operator instance. MASQ compiler is extensible:
extractor functions are registered at startup time into a hash table
mapping operator signatures into the related extractor function.
In its current implementation, MASQ provides wrappers for
the Sklearn and ML.NET libraries, and extractors for linear and
tree models, as well as a handful of featurizers (standard scaler,
one-hot encoder, and label encoder). At the end of the parsing
phase, the input pipeline is “logically” represented in MASQ as
a DAG of containers storing all the information required for the
successive analysis and conversion phase.

Example 1 (Parsing a Sklearn Pipeline). Let us suppose that
a user provides a Sklearn pipeline composed of a scaler [59]
followed by a linear regression model. Furthermore, let us
suppose that the pipeline is applied over the numeric columns of
the TaxiTable dataset represented in Table I . Fig. 3 depicts the
trained pipeline object with an excerpt of its parameters (top)
and the result of parsing (bottom). During parsing MASQ (1)
generates a container wrapping each operator, and containing
the extractor function; and (2) wires the containers into a DAG
following the input/output dependencies in the pipeline (in this
specific example, the container DAG is a simple sequence).
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Fig. 3. Parsing of the pipeline of Example 1. The pipeline (top) is parsed on
a container DAG (bottom). Each container stores a reference to the operator, its
signature and extractor.

TABLE II
PARAMETERS EXTRACTED FROM THE PIPELINE OF EXAMPLE 1

2) Analysis: In this phase, the DAG of containers generated
in the parsing phase is traversed in topological order. During the
traversal pass, for each operator MASQ extracts the operator’s
parameters by calling the referenced extractor function stored
in the container. Extracted parameters are stored within the
container. MASQ supports different to-SQL converters based
on the operator characteristics. By default, MASQ uses a mix of
SELECT and CASE statements for converting ML operators into
SQL (Section IV-A3), but sometimes the number of features or
structure of the operators is restricted by DBMSs’ limits. In the
latter case, in the first traversal pass, MASQ rewrites the queries
in order to bypass the database limitations. We will show in
Section IV-A4 a couple of techniques used by MASQ for this
task.

Example 2 (Analysis of the Sklearn Pipeline). During
analysis, the extractor functions of the parsed pipeline of
Example 1 are triggered. Specifically, the parameters extracted
from the scaler and linear model are shown in Tables II(a)
and II(b), respectively. In the StandardScaler case, the
extractor pulls the mean and the standard deviation values for
each column by calling mean_ and scale_ from the operator
object, respectively. The extractor for the LinearRegres-
sion retrieves the weights and the bias by calling respectively
operator.coef_ and .intercept_.

3) Conversion: During this last phase, the DAG of containers
is again traversed in topological order and a conversion-to-SQL
function is triggered based on each operator signature. Each
conversion function receives as input the parameters (extracted
during analysis, and stored directly into the container) and
generates a string containing the SQL implementation. The SQL
implementations of all operators are then merged into a unique
query following the input/output dependencies expressed in the
container DAG.

As for the extractors, MASQ stores a map of the operator
signatures/conversion functions. MASQ currently implements
converters for the following operators (where each of them has
a default and triplet-format version): standard scaler, one-hot
encoder, label encoder, gradient boosting classifier/regressor
(w/ and w/o tweedie loss), random forest, decision tree, linear

Fig. 4. Scaling and linear model in SQL.

Fig. 5. One-hot encoding in SQL.

regression with some variants (i.e., Poisson and SDCA), logistic
regression classifier, PCA, and linear SVM classifier. In the
default case, the above operators can be implemented using the
following simple strategies.

a) Conversions via SELECT statements: The conversion
into SQL is straightforward when the ML prediction function
consists only of algebraic operations between the extracted
parameters and the input features. Examples of methods im-
plemented via SELECT statements are normalizers/scalers and
linear models (by unrolling the linear algebra operations into
the SELECT clause).

Example 3 (Pipeline conversion). The conversion of the
pipeline of Examples 1 and 2 leads to the queries in Fig. 4, where
the two SELECT clauses implement the scaler and the regressor,
respectively. For the former case, scaling is implemented by sub-
tracting and subsequently diving each column by the pre-defined
values generated during training. For the latter case, the weights
and bias of the linear regression model are multiplied with the
corresponding column, and the bias term added afterward. Note
that the queries, at conversion time, will be merged into a unique
query.

b) Conversions via CASE statements: SQL CASE state-
ments can be used to implement rule-based learners such as
decision trees, or data featurizers such as one-hot encoding
(OHE). In the former case, each rule from the model is translated
into a SQL CASE statement; rules are then nested, according to
the model, by nesting the correspondent CASE statements. For
the latter, we use CASE statements to encode input categorical
values into a sequence of columns, one for each distinct value.
For each input, only the column of that particular categorical
value will store 1, all the other columns will be 0.

Example 4 (OHE). We want to apply a one-hot encoder to
the columns Pt and Vi of the data represented in Table I. The
result of this transformation is a new set of columns, one for
each unique categorical value of the Pt and Vi columns. As we
can see in the query of Fig. 5, each column name is generated
by concatenating the original categorical input name with each
distinct value. Each column will store 1 only if the value is of
the proper category.3

3Note that this example is only for providing a high-level description of how
OHE could be implemented in SQL. In MASQ we use a “sparse” version of the
above example where only non-zero values are materialized.
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Fig. 6. SQL workflow for the one-hot encoding sparse implementation.

c) Combining SELECT and CASE statements: Some model
requires the combination of SELECT and CASE statements. This is,
for example, the case for tree ensemble models. Tree ensemble
methods construct a sequence of decision trees and adopt dif-
ferent strategies to select the output class (e.g., the mode class
in classification tasks, and the means of the resulting values in
regression tasks). In the SQL implementation for this kind of
method, we nest the CASE-based queries of the decision trees in
a query that collects the results and computes the final output
via a SELECT clause.

4) Escaping DBMSs’ Limits: DBMSs are not designed for
ML, and it is fairly easy to reach database limits with ML
pipelines of reasonable complexity. During the analysis phase,
MASQ detects when a certain limit is reached, and it automati-
cally selects, at conversion time, the proper operator implemen-
tation. Next, we list a couple of problems, and related solutions,
we encountered while implementing MASQ.

Limit to the number of columns. SQL Server-wide (sparse)
tables support 30 k columns; 1024 in regular tables [60]. MySQL
supports a maximum of 4096 columns per table [61]. Conversely,
ML datasets and pipelines can easily reach several millions of
features. Therefore, high dimensional data needs to be stored
using a different format.
MASQ solution. To overcome the above problem, we use

a triplet-based representation where each record is stored
in the form (identifier, attribute_name, at-
tribute_value). In the analysis phase, MASQ injects a
triplet-representation operator (TRO) into the plan if the number
of columns is too large. This operator is used to inform the
compiler to transform the data from the default into a triplet
format during the conversion phase and to successively use the
related triplet-based conversion function for each subsequent
operator. As an example, next, we show the compilation process
for a pipeline that contains an OHE operator generating a large
number of features.

Example 5 (Pipeline with TRO and OHE).
Let us assume we want again to transform the columnsPt and

Vi of Table I using OHE. This time, however, we assume that the
total number of distinct values for these categorical columns is
greater than the maximum number of columns supported by the
database.4 In this case, the compiler will inject a TRO operator
before OHE. The following converter is then instructed to use
the triplet-based conversion function for OHE, which uses a
sparse implementation. Specifically, the converter in this case
generates pairs in the form (1, index_value) instead of

4This check is, for example, implemented for Sklearn as a condition
on the total number of elements of the parameter extracted from opera-
tor.categories_.

materializing the full dense vector as we did in Example 4. In
Fig. 6 we provide the SQL workflow implementing the pipeline.
The SQL statement on the left-hand side of the Figure (➊)
implements the TRO operator. This creates aTripletTablewhere
the first column is the identifier of the rows in the dataset, while
the second and third columns store the attribute name and its
values, respectively. In the SQL query on the right-hand side
(➋), the first CASE statement ( 1©) is used to select the attribute(s)
to encode and sets 1 as the value for those attributes.5 The second
CASE statement ( 2©) provides the index of non-zero values. Note
that indexes are sequential, even across categorical columns
(the index for the Vi column starts at 5 instead of 1). This is
because we implicitly concatenate one-hot encoded columns
into a unique feature vector.

Limits on SELECT and CASE clauses. High-dimensional
datasets introduce problems not only regarding the data rep-
resentation but also regarding how we implement operators in
SQL. In fact, limits exist on the number of columns allowed
in SELECT statements (e.g., 4096 for SQL Server), or the total
number of conditions in CASE clauses (few thousand for SQL
Server [62]).
MASQ solution. These two issues are addressed by injecting

TROs, and partitioning large SELECT and CASE statements.6 We
show how this strategy works through two pipelines made of an
OHE plus a linear regression (Example 6) and a tree ensemble
(Example 7).

Example 6 (OHE and linear regression). Fig. 7 depicts how
MASQ translates this pipeline. Due to space constraints, we
directly start from the TripletTable of Example 5, because, as
in the previous example, we assume that the OHE generates
a large number of features. Additionally, we assume that also
the number of CASE statements in the OHE is too large, and
therefore the query for the encoding needs to be partitioned
(➊). Each partition is executed independently and generates a
distinct OHETable. The OHETables are then joined (➋) with
the WeightsTable containing the linear regression’s parameters
(e.g., Table II(b)). Over the output of the join, we then multiply
each feature value with the respective regression weight, and
generate the partial sums which will then be aggregated by a
final query (➌). Note that, differently than the unrolled version
of Section IV-A3a, by using the triplet representation we can
also avoid the limit of columns in the SELECT statements.

5Note that even if Fval contains all 1 s and therefore could be removed, we
keep them to maintain a uniform interface across the operators defining the
predictive pipelines.

6Currently, the partitioning strategy takes track of how many elements each
statement contains, and it creates a new query once the number of statements
surpasses the database maximum.
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Fig. 7. Pipeline with OHE followed by a linear regression executed in MASQ with TRO and partitioning.

Fig. 8. How tree ensembles over triplet are translated in MASQ.

Example 7 (OHE and tree ensemble model). The implemen-
tation of tree ensemble models after OHE basically follows
the same workflow as Example 6, with two important differ-
ences. First, while WeightsTable can be partitioned following
the OHETable partitioning, for tree ensembles each tree could
potentially touch all input features. To solve this, we partition
tree ensembles into batches (up to the number allowed by
DBMS constraints), and run each batch over the union of the
OHETables. Second, CASE statements cannot be directly used
to implement trees on data in triplet-based representation. This
is because each original (not triplet) row is split into several
triplet rows, and CASE statements, to work, should now be able
to select multiple rows simultaneously. To overcome this limi-
tation, MASQ implements a technique whereby all the trees in
the batch are traversed together, level by level, in a breadth-first
search manner. For each level, we select the triplets that match
the conditions on the trees, and we use the condition to select
the next CASE statement in the next level. In Fig. 8(a) we depict
a tree ensemble model with 3 trees and we detail specifically
the first 2 levels of Tree0 where the decision nodes use OHE
features PtCRD and PtCSH. Fig. 8(b) contains the queries for
the first 2 levels of Tree0. The query for Level 0 (i.e., the root)
of Tree0 contains two nested CASE statements: one for selecting
the proper feature (i.e., feature PtCRD has Findex = 1, PtCSH
has Findex = 2), and one for evaluating the condition of the
feature. The result of the condition contains the index of the
node which will then be used in the successive level. The final
GROUP BY and MAX operations are used to return a unique not
null record. In Level 1 query we use the results of Level 0 and
have three nested CASE statements: in the outermost statement
we have one condition for each node, while for each node we
have, again, two case statements, one for selecting the proper

feature, and one for evaluating the condition. The other levels
follow a similar approach. With this technique, we can evaluate,
for each level, batches of trees concurrently. This algorithm is
equivalent to Tree Traversal strategy in [53]. The SQL query of
Fig. 8(b), for each level, will then actually contain different CASE

statements for each tree. We add padding logic to deal with trees
with different numbers of levels.

B. The Executor

The Executor provides the functionalities necessary for the
execution of the SQL queries generated by the Compiler in
a relational database. The Executor also makes use of a set
of connectors (currently we support MySQL and SQL Server
via Python and C# connectors) for extracting the data from
the database and running the original pipeline externally as
validation. Finally, a small driver program manages the exe-
cutions of the pipelines (either as a SQL query or externally to
the database). We refer readers to our demo paper [58] for a
visualization of the execution flow in MASQ.

V. EXPERIMENTAL EVALUATION

The main question we want to answer in this experimental
evaluation is: are databases a good fit for serving ML pre-
dictive pipelines? To answer this question, we (1) select 10
representative ML pipelines; (2) implement them on two ML
frameworks, namely Sklearn and ML.NET; and (3) compare their
execution against MASQ-generated queries run on 2 DBMSs:
MySQL and SQL Server. We test both the final accuracy (with
the expectation of matching the same accuracy of the ML
frameworks), the throughput, and the latency performance over
single record predictions. Finally, we (4) further explore how
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TABLE III
DESCRIPTION OF THE EXPERIMENTS

TABLE IV
PIPELINES AND DATASETS USED IN THE EXPERIMENTS. IN BRACKETS, THE EFFECTIVENESS IN TERMS OF ACCURACY FOR CLASSIFICATION, R2 FOR REGRESSION

PIPELINES. ABBREVIATIONS: FTC = FASTTREECLASSIFIER; FTR = FASTTREEREGRESSION; FTT = FASTTREETWEEDIE; GBDTR=
GRADIENTBOOSTINGREGRESSION; GBDTC= GRADIENTBOOSTINGCLASSIFIER; LBFGSR = LBFGSPOISSONREGRESSION; LR = LOGISTICREGRESSION;

SDCAR = SDCAREGRESSION; SDCAME = SDCAMAXIMUMENTROPY SGDR = SGDREGRESSION; DC= DROPCOLUMNS; DF= DROPFEATURES; LE =
LABELENCODER; MVK= MAPVALUETOKEY; NMV = NORMALIZEMEANVARIANCE; SS = STANDARDSCALER; SEL ST = SELECT STATEMENT; CASE ST = CASE

STATEMENT; PC = PARTITIONED CASE STATEMENT; PCS = PARTITIONED CASE, SELECT STATEMENT

SQL pipelines perform with optimizations such as indexing and
operator fusion; and (5) report some negative results on text
featurization and neural network models. The experiments are
organized as summarized in Table III.

Datasets. For the main experimental evaluation, we employed
7 datasets (see column Dataset Size in Table IV for details).
On these datasets, we run a wide range of tasks: from binary
and multi-class classification to regression. Iris is the smallest
one with 150 records, each described by 4 numeric columns.
Criteo is the dataset with the largest number of features (39
columns). At prediction time the input columns are transformed
with OHE into around 2.5 million features. FlightDelay is the
biggest dataset: it contains more than 21 million records and 26
initial columns which, during execution, they get expanded into
approximately 700 features.

ML Pipelines. Table IV shows the pipelines we will be using
in our evaluation. 8 pipelines have been taken from ML.NET sam-
ples [63]; 2 of them (Criteo and FlightDelay) are pipelines com-
monly used to evaluate the scalability of ML frameworks [2].
For each pipeline, we (1) started with an implementation in
ML.NET; (2) we re-implemented it over Sklearn (note that for
P3 we used XGBoost [64] as GBDT library in order to match
the Tweedie loss on ML.NET); and finally (3) we used MASQ
to generate SQL queries for both implementations. For each
pipeline, Table IV contains the Featurizers (when used) and
the final Model. For each pipeline, we list the used featurizers
and models by Framework; for MASQ we mentioned which

technique we used from Section IV, i.e., whether we used
SELECT statements, CASE statements, both SELECT and CASE

statements, TROs, or partitioned statements. Finally, the Table
reports the effectiveness of the pipelines (in terms of accuracy
for classification models and R2 score for regression models) as
computed with the ML.NET framework.

Setup. The experiments are executed on an Azure Standard
D32 v3 machine with 32 virtual cores, 128 GB of RAM, and
256 GB of local (SSD) storage. The machine runs Ubuntu
version 18.04, Sklearn version 0.21.2, and ML.NET version 1.2.
Both ML libraries were run with multithreaded. MASQ was
evaluated on MySQL version 5.7.29 and SQL Server 2017
version 14.0.3223. We run all experiments 5 times, and report the
average. ForMASQwe average the query time as reported on the
database catalog; for Sklearn and ML.NET we time the execution
within the running process. The experiments do not include the
time required to convert an ML pipeline into a SQL imple-
mentation. This operation is performed offline once, and in all
experiments the time taken for conversion is insignificant. Due
to space limits, for some experiments, we only report MySQL
numbers. Interested readers can refer to the technical report [65]
for SQL Server results, as well as additional experiments.

A. Accuracy

The first step for evaluating whether DBMSs can be used
as prediction serving systems is to check that the prediction
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Fig. 9. Throughput for Sklearn, ML.NET (on CSV, MySQL and SQL Server) and MASQ (on MySQL and SQL Server).

TABLE V
ERROR (MEAN OF THE ABSOLUTE DIFFERENCES) ON THE PREDICTIONS

GENERATED BY MASQ VERSUS ML.NET AND SKLEARN

outcomes match the original ones generated by the ML frame-
work. Rounding errors introduced by the different floating point
operation implementations can in fact lead to inconsistent re-
sults [66]. In Table V we report the errors between the outcomes
generated by the baseline frameworks (Sklearn and ML.NET)
and MASQ. We compute errors as the mean of the absolute
differences between the returned values (posterior probabilities
of the labeled class) for regression (classification) tasks. As
we can see from the table, using SQL queries for inference
introduces negligible errors (e.g., between 1e− 05 and 1e− 06
in the general case; 1.49e− 02 in the worst case). The worst
case is due to the Compiler which uses ML.NET tree-aggregation
logic, while XGBoost uses a specific aggregation function for
Tweedie.

B. Throughput

The goal of this experiment is to compare the performance
of each framework and on each pipeline in serving predictions
over the full datasets. For Sklearn and ML.NET we also test the
performance when the data resides both over flat CSV files and
in the databases. In the latter case, data has to be moved out of
the database into CSV format before the predictive pipeline can
be executed. This latter case simulates what happens in practice
ML deployments where data must be moved out of the database
in order to be fed to the model. Since the datasets used for the
pipelines have different sizes, we plot the average throughput
in terms of rows evaluated per second (RPS). Fig. 9 shows the
results.

Discussion. There are several insights from this experiment:
(1) there is no system constantly outperforming the others
(Sklearn on CSV is better on 6 over 10, ML.NET on 1, andMASQ
on 3); (2) as expected, the throughput for the ML frameworks
when the data needs to be moved out of the database decreases,
although it decreases considerably (around 10×) for Sklearn,

less for ML.NET—we think that this is due to the quality of con-
nectors; (3) in general there is no clear winner between MySQL
and SQL Server connectors for ML.NET, whereas for Sklearn, the
SQL Server connector performs worse than the MySQL one; (4)
MASQ throughput is better than the database version of the ML
frameworks for almost all the pipelines with linear models (P1,
P3, P4), while it is slightly lower for a couple of tree ensemble
models (P6, P9), and comparable to the other pipelines (P2, P5,
P7, P8, P10); (5) MySQL and SQL Server implement different
optimization strategies whereby the same query generated by
MASQ can result in a different performance. The 4th point is
somehow surprising and invalidates the common knowledge that
databases are not performant over linear algebra. Conversely,
tree-model performance varies based on the implementation and
dataset. We will further explore this behavior in the following
sections.

C. Scalability

In this section, we study how the throughput changes as we
scale the data processed by each system. We implement this
scenario by splitting each dataset into batches of various sizes,
and plotting the overall throughput. We test batches of 1 (i.e.,
online predictions), 10, 100, 1 K, and 10 K rows, plus the full
dataset in one batch. We use the full dataset in cases where the
batch size is greater than the total length. Fig. 10 shows the
results for MySQL. For Sklearn and ML.NET we run the versions
where the data resides in the database.

Discussion. We can notice similar trends in all the pipelines:
as the batch size increases, the throughput increases as well, up
to a saturation point (either we saturate over the dataset size or
the resources). Regarding MASQ: for pipelines P1, P3, P4, and
P7, with linear models, MASQ shows the best performance in
most of the settings. Conversely, for tree-based models, we can
see that in the majority of the settings (P2, P5, P9, P10) MASQ
performance is either the best or in between Sklearn and ML.NET.
For the remaining pipelines (P6, P8) MASQ trend is generally
worse than the baseline frameworks, although in aggregate not
by much. This is because these pipelines have tree ensemble
models and either simple, or absent featurization. In this case,
we cannot use optimizations as we are doing for other tree-based
pipelines.

D. Latency

In this section, we focus on the latency performance for
executing online (single record) predictions. Fig. 11 shows the
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Fig. 10. Scalability of the different frameworks, over MySQL, as we change the batch size.

Fig. 11. Latency numbers over a single record (MySQL).

results computed over MySQL, where for ML.NET and Sklearn
we also consider the time to pull the records out of the database.

Discussion. The latency numbers confirm that MASQ per-
forms better (up to 3×) than the baseline frameworks for linear
models (P1, P3, P4, P7) while tree-based models (P2, P5, P6,
P8, P9, P10) can be up to around 2× slower (P2, P5, P6).
Even for the same dataset, we can notice the latency of tree
ensemble models is worse than the linear ones (i.e., P4, P5).
Next, we will study more in detail the trade-offs between linear
and tree ensemble models by breaking down the performance
for each single pipeline component.

E. Performance Breakdown

In this Section, we drill down into the performance of a few
selected queries over the largest datasets. We first evaluate how
each pipeline operator contributed to the final runtime for queries
P7, P8, P9 and P10 (Section V-E1). Successively, we further look
deeper into how time is spent between data loading, data writing,
and computing for all the above pipelines (Section V-E2).

1) Operator Breakdown: We plot, by batch size (where a
batch of 1 is online), the runtime for each operator as a percent-
age of the total runtime. For MASQ we report the numbers over
MySQL (similar results hold for SQL Server), and we compare
it against Sklearn and ML.NET over CSV for P7 and P8 in Fig. 12.
In Fig. 13 we instead report the results for MASQ for P9 and
P10, where for P9 we show two variants: one with a tree model
(GBDT, as described in Table IV) and one with a linear model
(SDCA). Recall that Criteo is the largest dataset with 2.5 M

Fig. 12. Operator breakdown for P7 and P8.

features (after OHE). We run two variants so that we can study,
in the worst-case scenario, the tradeoffs between linear and tree
ensemble models for MASQ.

Discussion. Starting with P7, we notice that: (1) data fea-
turizers take the majority of the time; and (2) as the batch
size increases, the time spent on normalization decreases. This
second point is even more marked on P8 where for Sklearn
and ML.NET normalization surprisingly takes more than 50% for
batches of 1, while it takes less than 10% when we score the
entire dataset at once. We think that this behavior is due to the
benefits of vectorization which increases with the batch size. In
P8, for MASQ we see that the majority of the time (>90%) is
spent on the evaluation of the GBDT model.

If now we move our attention to the evaluation of P9 and
P10 in Fig. 13, we see that: (1) the time required to complete
the OHE operator is proportional, as expected, to the number
of features generated rather than the number of rows processed
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Fig. 13. Operator breakdown for P9 (Criteo) and P10 (FlightDelay). For P9
we also compare GBDT vs SDCA.

Fig. 14. Latency breakdown for MASQ, ML.NET (ML.) and Sklearn (SK.), for
pipelines P7, P8, P9 and P10. The time spent is divided into three buckets: load,
computation, and write.

(i.e., the percentage of time spent on OHE is greater in P9 than
in P10: the first generated 2.5 M features over 4 M rows, the
second 700 over 21 M rows); (2) as the batch size increase, the
time spent on executing the GBDT model increases, up to reach
80% in P10 for a batch size of 10 K. The experiment performed
on P9 with SDCA, instead, confirms that the time required to
execute the linear model is irrelevant wrt the time for executing
the featurizer or the GBDT.

2) Latency Breakdown: In this section, we look at the latency
(single record) performance for the pipelines used in the previous
section. We compute the breakdown by dividing the latency
into three components: data loading, computation, and data
writing. For this experiment, we have enabled the profiling of
all events / statements generated by the queries using SET @@
profiling = 1 and SET @@ profiling history size = 100, and
we classified each event using the above components. We report
the time performance measured on MASQ running on MySQL,
and compare it against Sklearn and ML.NET run both over CSV
files, and when records are loaded from MySQL.

Discussion. The breakdown in Fig. 14 shows that the com-
putation time is dominant in P7 for MASQ, while load takes
the majority of time for P9. We think that this is because P7
contains a linear model whereby the majority of the time is spent
in multiplications, while for P9 the one-hot encoder generates
2.5 million features out of 26 columns, thus creating substantial
data access in our implementation.

Fig. 15. Performance comparison with indexing (MySQL).

For ML.NET and Sklearn the computation time is almost
always dominant. Interestingly, the difference between data
loading for the CSV and the DB is minimal for ML.NET while it
is quite large for Sklearn. Again, we think that this is due to the
quality of the database connectors.

F. Optimizations

In this section, we explore database-specific optimizations
such as adding indexes (Section V-F1) and “logical op-
timizations” at the operator level such as operator fusion
(Section V-F2).

1) Using Indexes: In this experiment, we evaluate whether
the performance over the DBMSs can be improved by applying
indexes. We evaluate three settings: in the first setting, referred
to as No Index, we add a clustered index on the primary key. In
the second setting, IndexID, a non-clustered index is added to
the column identifier (ID). Finally, in the setting IndexALL we
add a non-clustered index for each column. We add indexes both
to the input dataset, and to temporary tables when used (e.g., in
P7, P9 and P10). Fig. 15 contains the results of this experiment
for MySQL. SQL Server results are similar.

Discussion. The results show that there is no benefit from in-
dexing. This indeed is unexpected behavior. Our intuition is that
the secondary indexes should help, for example, on tree models
for retrieving records more efficiently. This is because, in each
decision node, we only fetch records with specific conditions.
However, as the experiment shows, this is not the case. We think
that this is because conditions are expressed in CASE statements
that cannot be pushed into index lookups. Additionally, we do
not see any improvement for the pipelines where indexes are built
also on temporary tables (P7, P9 and P10). Note that in this latter
case, the cost of building the index is counted into the running
time of the final queries. We also explored a column-store layout
in SQL Server. What we found is that, similarly to indexing, this
technique does not introduce any significant improvement and
sometimes even degrades performance. With small batches (i.e.
1 to 10 k) we measured performance degradations of up to 3×.
This is due to the overhead of reconstructing the per-row format
of records. With large batches (i.e. greater than 100 k) instead
we found an increase in performance only in P8 and with a tree
ensemble depth greater than 6. This is motivated by the fact that
deep trees require repeated access to the features and this pattern
is able to better exploit the columnar format.
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Fig. 16. Operator fusion (OHE + GBDT) for P9 and P10.

2) Operator Fusion: We evaluate an optimization for
pipelines P9 and P10, where the queries implementing the tree
ensemble models are fused with the OHE. Specifically, the CASE

statements evaluating the tree conditions on the columns targeted
by the OHE are rewritten to compute both the featurization and
the prediction in the same statement. Note that this optimization
is currently not supported by database optimizers, and therefore
we had to manually implement it directly in MASQ. Fig. 16
shows the RPS for the optimized implementation on MySQL
compared to the baseline where no optimization is used.

Discussion. The results show that when operator fusion is not
usedMASQperformance decreases substantially for P9 and P10.
With operator fusion,MASQ does more computations per single
row (i.e., for each row we compute the encoding multiple times,
one for every time the row is used by a tree), but since the number
of features is large and not all of them used, the total number
of encodings is less. We tried a similar optimization for P8
where we fuse normalization with GBDT. This last experiment
introduced a 4× slowdown. This is because all features are used
by the GBDT model. This result suggests that a cost-based
optimizer is likely required for selecting the best compilation
strategy when optimizations are enabled. Regarding latency,
operator fusion improves P9 by 5×, and P10 by 2×.

G. Study of Operators Implementation

In this section, we study a few possible variants of the operator
implementations discussed in Section IV-A4 (Section V-G1
for tree ensembles, and Section V-G2 for linear models) as
well as how model characteristics affect the query performance
(Section V-G3).

1) Tree Ensembles Implementation: Pipelines P2, P5, P6, P8,
P9, and P10 make use of tree ensemble algorithms whereby a
certain number of trees (100 in our experiments) are executed,
and their predictions combined. In this experiment, we test two
different implementations for this operation. In the first imple-
mentation, the queries representing each tree are a subquery of an
outer query computing the final score over the partial results (this
is the approach described in Example 7). The results obtained
with this implementation are represented in Fig. 17 as “1 query”.
In the second implementation, we batch different sets of trees
(1, 5, 10, 25, and 50) in multiple queries (respectively 100, 20,
10, 4, 2) and store the partial predictions into an intermediate
table. A final query then computes the output by aggregating
the results from the temporary table. In this experiment, we use

pipelines P8, P9, and P10, and we tested over different batch
sizes. In Fig. 17 we plot the results for MySQL.

Discussion. The experiment shows that the approach with a
single query outperforms the others in pretty much any setting.
This is because the database is able to optimize the execution
end-to-end using a single query, while the more queries we use,
the less they can be optimized.

2) OHE Followed by Linear Models: When an OHE featur-
izer is followed by a linear model, a temporary table is built
storing the results of the featurization (the OHETable in Fig. 7),
and its content is joined with the model parameters table (see
Section IV-A4 for details). In this experiment, we evaluate a
possible alternative plan for implementing the operation as a
multi-way join. We perform a test on MySQL against pipeline
P9 with SDCA, where the OHETable is partitioned into 300
tables.7 Fig. 18 plots the results of the experiment over different
batch sizes.

Discussion. As we can see the join implementation performs
better over large batch sizes, whereas when the data to process is
smaller, the single intermediate table implementation performs
better. This is likely because, for small batch sizes, fewer inserts
to the intermediate table are executed concurrently.

3) Tree Ensembles With a Variable Number of Leaves: In this
experiment, we study how the performance of our tree ensemble
implementation varies as we increase the number of leaves (i.e.,
the height) of the trees. Fig. 19(a) and (b) report the performance
on MySQL of different P8 tree ensembles implementations
obtained by varying the number of leaves.

Discussion. Fig. 19(a) shows how performance varies, per
batch size, as we increase the number of leaves. As we can
see, the difference in performance is stable across the different
batch sizes, and it is because evaluating taller trees (with more
leaves) requires the evaluation of more conditions. If we look
specifically at the batch size of one, from Fig. 19(b) we can
conclude that P8 latency is from 3× to 6× slower on MASQ
compared to the baseline systems. Interestingly, Sklearn and
ML.NET performance slightly increases with the increase of the
number of leaves, while MASQ gets up 2× slower. This is likely
due to the overhead of unrolling tree ensemble evaluation as a
sequence of CASE statements.

H. Negative Results

In this section, we consider two scenarios that are common in
ML pipelines but we found to be hard to support in databases,
with reasonable performance: featurization of textual data (Sec-
tion V-H1), and neural network models (Section V-H2).

1) Managing Textual Data: To study whether MASQ can
support textual data, we create a pipeline over the Sentiment
dataset [67]. This dataset contains 40 k records, with 7 numerical
and 1 textual feature each. The ML pipeline is composed of a data
featurizer (FeaturizeText in ML.NET, TfidFeaturizer in Sklearn)
over the textual column, and a logistic regression model. After
the application of the text featurizer, the number of features

7This is the minimum number of tables required in order to meet MySQL
limits on case statements.
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Fig. 17. Comparison of different tree implementation methods (MySQL).

Fig. 18. Comparison of single intermediate data and multi-way join strategy
for OHE + linear models.

Fig. 19. Comparison of tree ensembles performance with variable number of
leaves on P8.

becomes around 210 K. We implemented the text featurizer
in SQL using temporary tables and CASE statements, while the
logistic regression is implemented as a simple SELECT statement.
The left-hand-side plot in Fig. 20 shows the results against
MySQL. Sklearn and ML.NET are run over the data stored in
the database.

Discussion. The experiment shows that MASQ performance
is several orders of magnitude off compared to the baseline
frameworks. This is due to: (1) the large number of features
generated; (2) the implementation of the text featurizer which
mixes CASE statements and temporary table transformations; and
(3) the heavy use of the string intrinsics provided by the database.
We believe that text featurizers are better supported in databases
with UDFs.

Fig. 20. Left hand-side: Sentiment Analysis over textual features. Right hand-
side: an MLP model applied on CreditCard.

2) What About Neural Networks?: For this experiment, we
created a SQL implementation of a Multilayer Perceptron (MLP)
through SELECT statements. We test the implementation using a
simple model composed of 3 hidden layers, each one with 5
nodes. We used the CreditCard dataset for the experiment, and
we compare the results with Sklearn (note that ML.NET currently
does not provide native support for MLP models). The results
for MySQL are plotted on the right-hand side of Fig. 20.

Discussion. As we can see from the results, MASQ perfor-
mance is comparable to Sklearn only for small batch sizes,
whereas for larger batch sizes Sklearn is able to better use the
hardware than MySQL. This MLP model requires three matrix
multiplications, and Sklearn uses BLAS libraries to efficiently
compute them. Note that these results are over a very small MLP
with only 3 layers and 5 neurons per layer. We also experimented
with larger MLPs with a few hundred neurons, and the results
are, as expected, worse by several orders of magnitude.

VI. LESSON LEARNED AND CONCLUSIONS

From this experimental evaluation, we learned several inter-
esting insights. For example, linear models are not a bottleneck,
while featurizers and tree-based models can be. Adding indexing
is not helpful, while operator fusion sometimes is. Furthermore,
we had to come up with specific implementations and opti-
mizations to address database limits, and these scenarios can
be quite common in practice. MASQ currently supports more
than a dozen of featurizers and models (Section IV-A3), and we
are actively working on adding support for additional operators
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(e.g., feature selection operators, imputers, K-means, missing
linear and tree models). Unfortunately, while we believe that
any ML operator can be translated into SQL, we are aware
that not all operators will have good performance, as we saw
for text featurization, and neural networks. We think that, to
properly support these operators, a UDF-based approach is
probably required. Additionally, since many operators (e.g., tree
methods and one-hot encoding) use CASE statements, having
better support for deep CASE expressions will probably help with
the performance.

Finally, we discovered several interesting compromises be-
tween optimizations and compilation strategies. Examples are,
when to use operator fusion (Section V-F2), or when to change
the operator implementation (Section V-G). This suggests that
a cost-based optimizer is likely required to achieve the best
performance. This is even more true when hardware accelerators
are also available [53]. We recently started the exploration of this
exciting space [44], [54], [68].
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