
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023 10339

STD: A Seasonal-Trend-Dispersion
Decomposition of Time Series

Grzegorz Dudek

Abstract—The decomposition of a time series is an essential
task that helps to understand its very nature. It facilitates the
analysis and forecasting of complex time series expressing various
hidden components such as the trend, seasonal components, cyclic
components and irregular fluctuations. Therefore, it is crucial
in many fields for forecasting and decision-making processes. In
recent years, many methods of time series decomposition have been
developed, which extract and reveal different time series proper-
ties. Unfortunately, they neglect a very important property, i.e.,
time series variance. To deal with heteroscedasticity in time series,
the method proposed in this work – a seasonal-trend-dispersion
decomposition (STD) – extracts the trend, seasonal component and
component related to the dispersion of the time series. We define
STD decomposition in two ways: with and without an irregular
component. We show how STD can be used for time series analysis
and forecasting.

Index Terms—Time series analysis, time series decomposition,
time series forecasting.

I. INTRODUCTION

A TIME series expresses states of a certain variable that de-
scribe a given phenomenon (economic, biological, phys-

ical, etc.) observed in subsequent periods. Time series analysis
and forecasting is an extremely important task in many fields,
including business, industry, government, politics, health and
medicine [1]. However, this task can be difficult due to the
complex nature of the time series. Time series can exhibit a
variety of unobservable (latent) components that can be associ-
ated with different types of temporal variations. These include:
(1) a long-term tendency or trend, (2) cyclical movements su-
perimposed upon the long-term trend (usually non-periodical),
(3) seasonal variations (periodical), and (4) irregular fluctua-
tions. In economics, the seasonal variations represent the com-
posite effect of climatic and institutional events which repeat
more or less regularly each year [2]. The cycles appear to
reach their peaks during periods of economic prosperity and
their troughs during periods of depression. Their rise and fall
constitute the business cycle.

Extracting the components of a time series can help us to
understand the underlying process and to forecast it. Instead of

Manuscript received 21 April 2022; revised 14 February 2023; accepted 8
April 2023. Date of publication 19 April 2023; date of current version 15
September 2023. Recommended for acceptance by R.C.-W. Wong.

The author is with the Department of Electrical Engineering, Czesto-
chowa University of Technology, 42-200 Czestochowa, Poland (e-mail:
dudek@el.pcz.czest.pl).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TKDE.2023.3268125, provided by the author.

Digital Object Identifier 10.1109/TKDE.2023.3268125

building a complex forecasting model for the composed time
series, after decomposition into basic components, we can built
simpler specialized models for each component. This approach
is very common in forecasting using both classical statistical
methods and machine learning methods. Therefore, many meth-
ods of time series decomposition have been proposed.

A. Related Work

Time series decomposition has a long history dating back to
the mid 19th century [3]. The idea of decomposing the time series
into unobservable components appeared in the work of 19th
century economists who drew their inspiration from astronomy
and meteorology [4]. Much research back then was done to
reveal the ”cycles” that made it possible to explain and predict
economic crises. In 1884, Poynting proposed price averaging as
a tool to eliminate trend and seasonal fluctuations [5]. Later his
approach was extended by other researchers including Copeland
who was the first to attempt to extract the seasonal compo-
nent [6]. Persons was the first to define the various components
of a time series, i.e., the trend, cycle, seasonal and irregular
components, and proposed an algorithm to estimate them (link
relatives method) [7]. The process of decomposition was re-
fined by Macauley who proposed a way of smoothing time
series, which has become a classic over time [8]. Based on
Macauley’s method, the Census II method was developed and its
numerous variants are widely used today such as X-11, X-11-
ARIMA, X-12-ARIMA, X-13ARIMA-SEATS, and TRAMO-
SEATS. A detailed discussion of these methods is provided
by [2].

Structural time series decomposition, which involves decom-
posing a series into components having a direct interpretation,
is very useful from a practical point of view. A structural model
is formulated directly in terms of unobserved components, such
as the trend, cycles, seasonals and remaining component. These
components can be combined additively or multiplicatively. An
additive decomposition is applied if the variation around the
trend-cycle, or the magnitude of seasonal variations, does not
change with the time series level. When such variation is ob-
served to be proportional to the time series level, multiplicative
decomposition is more appropriate.

To extract the components of the series, both parametric
or non-parametric methods are used. A parametric approach
imposes a specific model on the component, e.g., linear or
polynomial. The nonparametric approach offers more possibil-
ities because it does not limit the model to a specific class. A

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-2285-0327
mailto:dudek@el.pcz.czest.pl
https://doi.org/10.1109/TKDE.2023.3268125

10340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

popular example of a non-parametric method to extract a trend
is smoothing with a moving average.

One of the most widely used methods of time series de-
composition is STL (Seasonal and Trend decomposition using
Loess) [9]. STL is additive. The STL decomposition procedure
is iterative and relies on the alternate estimation of the trend
and the seasonal components using locally estimated scatterplot
smoothing (Loess), which can estimate nonlinear relationships.
The seasonal component is allowed to change over time. It is
composed of seasonal patterns estimated based on k consecutive
seasonal cycles, where k controls how rapidly the seasonal
component can change. Other attractive features of STL are:
robustness to outliers and missing data, the ability to decompose
time series with seasonality of any frequency, and the possibility
of implementation using numerical methods instead of mathe-
matical modeling.

Another popular method of additive time series decompo-
sition uses a discrete wavelet transform. Wavelet-based multi-
resolution analysis decomposes the series in an iterative process
into components with decreasing frequencies [10]. In the subse-
quent levels of decomposition, the series is processed by a pair of
filters – high-pass and low-pass (two-channel subband coding).
The result is a low-frequency component, the so-called approxi-
mation, representing the trend and a high-frequency component,
the so-called detail, representing the detailed features of the
series. In each iteration, the approximation from the previous
iteration is decomposed into detail and new approximation. The
sum of all the details produced at all levels, and the lowest-
level approximation gives the input series. The decomposition
depends on the form and parameters of the wavelet function,
which is a function of both time and frequency.

In [11], Empirical Mode Decomposition (EMD) was pro-
posed, which decomposes the time series in the time domain
into components called Intrinsic Mode Functions (IMFs). These
form a complete and nearly orthogonal basis for the original
time series. An IMF amplitude and frequency can vary with
time. The IMFs are obtained by applying a recursive so-called
sifting process. This extracts the local minima and maxima of the
series and then interpolates them separately using cubic splines.
The IMFs extracted at subsequent levels are characterized by
ever lower frequencies. Since the decomposition is based on the
local characteristic time scale of the data, EMD is suitable for
both non-linear and non-stationary time series.

Other, less popular, time series decomposition methods in-
clude: Variational Mode Decomposition (VMD) [12], Singular
Spectrum Analysis (SSA) [13], and Seasonal-Trend Decompo-
sition based on Regression (STR) [6]. VMD is a generalization
of the classical Wiener filter into many adaptive signal bands.
It extracts a set of IMFs defined in different frequency bands,
which optimally reconstruct the time series. As an alternative
to EMD, VMD is devoid of some EMD limitations, such as the
lack of theoretical foundations, sensitivity to sampling and data
disturbance, and the dependence of the result on the methods of
extremes detection and envelope interpolation.

SSA is based on the matrix representation of the time series in
the form of a so-called trajectory matrix (Hankel matrix) and its
singular value decomposition (SVD). Using the SVD products,

i.e., eigentriples, the trajectory matrix is expressed as the sum of
elementary matrices. The time series components are obtained
by appropriate grouping of the elementary matrices using eigen-
triples for this purpose. The SSA decomposition is additive. The
components obtained as a result are interpretable. They express
the trend, periodic components and random disturbances.

STR is an additive decomposition with a matrix representation
of the seasonal component. The method can produce multiple
seasonal and cyclic components. Seasonal components can be
fractional, flexible over time, and can have complex topology.
STR allows us to take into account the influence of additional
external variables on decomposition and to estimate confidence
intervals for components.

B. Motivation and Contribution

Existing methods of time series decomposition extract dif-
ferent components expressing different time series properties.
However, to our knowledge, none of them extracts the com-
ponent representing the series dispersion. To fill this gap, this
work proposes a new method of time series decomposition that
extracts the components of the trend, seasonality and dispersion.
It can assist in the analysis and forecasting of heteroscedastic
time series.

Our research contributions can be summarized as follows:
1) We propose a new method of time series decomposition.

It has two variants. In the first, STD, it extracts the trend,
seasonal component and dispersion component. In the
second variant, STDR, it extracts additionally an irregular
component (reminder).

2) We demonstrate how the proposed decomposition method
can be used for simplifying and solving complex forecast-
ing problems including those with multiple seasonality
and variable variance.

The rest of the work is organized as follows. Section II
describes decomposition of the heteroscedastic time series using
standard methods. The proposed STD and STDR methods are
presented in Section III. Section IV gives some application
examples and shows how STD can be used for forecasting.
Finally, Section V concludes the work.

II. DECOMPOSITION OF HETEROSCEDASTIC TIME SERIES

USING ADDITIVE AND MULTIPLICATIVE METHODS

Typically, time series decomposition can be expressed in an
additive or multiplicative form as follows [2], [14]:

yt = Tt + St +Rt (1)

yt = Tt × St ×Rt (2)

where yt denotes the observed series, Tt is a trend-cycle compo-
nent combining the trend and cycle (often just called the trend for
simplicity),St is the seasonal component, andRt is the irregular
component (reminder), all at period t.

In the additive model, heteroscedasticity in yt has to be
expressed by heteroskadisticity in one or more decomposition
products. Usually, the trend is a smoothed original time series,

DUDEK: STD: A SEASONAL-TREND-DISPERSION DECOMPOSITION OF TIME SERIES 10341

so it does not include short-term variations of varying vari-
ance. These variations appear in the seasonal and/or irregular
components. If the decomposition method produces a regular
seasonal component, i.e., composed of seasonal cycles of the
same shape, which is a classical approach [14], the time series
variance has to be expressed by the irregular component. But
a desired property of the irregular component, which is often
assumed for inferential purposes, is to be normally identically
distributed and not correlated, which implies independence [2].
Hence, Rt ∼ NID(0, σ2). When the variance of the irregular
component changes in time, it does not express white noise
in the strict sense. Therefore, the additive model (1) is not
recommended for heteroscedastic time series.

In the multiplicative model, all components are multiplied, so
the variations included in the irregular and seasonal components
are amplified or weakened by the trend. An increasing trend
increases these variations, while a decreasing trend decreases
them. Thus, the multiplicative model is most useful when the
variation in time series is proportional to the level of the series.

Fig. 1 shows decomposition of a time series expressing
monthly electricity demand for Poland (17 years, observed from
1997 to 2014) using the most popular decomposition methods,
i.e., classical additive and multiplicative methods, STL, wavelet
transform, and EMD. Note that the times series has decreasing
variations with the trend level. Mean values of the series and their
standard deviations are shown in the bar chars shown in the right
panel. They are calculated for successive sequences of length
n = 12. To estimate the trend, the classical additive and multi-
plicative methods use two-sided moving averages. The negative
effect of this is that the first and last few observations are missing
from the trend and irregular components. The classical methods
assume that the seasonal component is constant throughout the
entire series. This constant seasonal pattern is determined as an
average of all seasonal sequences of the detrended series. The
long-term variability is expressed by the trend. Note how this
variability changes over time in the std-chart. The short-term
variability is expressed in the remainder component. The std-
chart for this component shows that the variance is smallest in
the middle part of the data period. In this part, the combined
trend and seasonal components approximate the time series
most accurately. In the first part, the amplitude of the combined
components is smaller than the amplitude of the real series and
must be increased by the irregular component. In this part, the
extremes of the irregular component correspond to the extremes
of the seasonal component. In the final part of the series, the
amplitude of the combined trend-seasonal component is higher
that the real amplitude. The irregular component compensates
the amplitude. Its extremes are opposite to the extremes of the
seasonal component. The compensation function of the irregular
component results in its variable variance and autocorrelation.

STL produces a smoother trend than classical decomposition
methods due to the use of local polynomial regression. The
seasonal component in STL averages the real seasonal patterns
but can still reflects its amplitude. Therefore, to compensate
for the amplitude mismatch, the irregular component may be
smaller than in classical decomposition methods. However, it
still expresses the variable variance and autocorrelation.

Fig. 1. Monthly electricity demand time series decomposition using standard
methods.

Wavelet decomposition produces the components corre-
sponding to the trend (A3) and smoothed seasonal variations
(D3) as well as components expressing more detailed variations.
Each of them expresses changing variance. As can be seen
from Fig. 1, EMD produces the most smoothed trend (residual
component) compared to other methods and a separate compo-
nent representing non-periodical cyclical movements (IMF3).
The seasonal component, IMF2, which is very similar to the
D3 component generated by wavelet transform, smooths the

10342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

seasonal cycles significantly. The random component, IMF1,
is very similar to the highest-level detail of the wavelet
decomposition, D1. The variance of the series is distributed
between EMD components.

Note that the time series variance is not expressed explicitly
in the decomposition products of the presented methods. It is
hidden in the components. A separate dispersion component
could be very useful for time series analysis and forecasting.
In the next section, we propose a method which extracts this
component.

III. SEASONAL-TREND-DISPERSION DECOMPOSITION

Let {yt}Nt=1 be a time series with a seasonality of period n.
Assume that the length of the series is a multiple of the seasonal
period, i.e., N/n = K,K ∈ N. Time series yt can be written as
a series of successive seasonal sequences:

{{yi,j}nj=1}Ki=1 = {{y1,j}nj=1, . . ., {yK,j}nj=1} (3)

where i = 1, . . .,K is the running number of the seasonal cycle,
and j = 1, . . ., n is the time index inside the given seasonal
cycle. The global time index t = n(i− 1) + j.

The average value of the i-th seasonal sequence is:

ȳi =
1

n

n∑
j=1

yi,j (4)

and its diversity measure is defined as:

ỹi =

√∑n

j=1
(yi,j − ȳi)2 (5)

The trend component is defined using averages of the seasonal
sequences as follows:

{Tt}Nt=1 = {{ȳi, . . ., ȳi︸ ︷︷ ︸
n times

}}Ki=1 (6)

while the dispersion component is defined using diversities of
these sequences:

{Dt}Nt=1 = {{ỹi, . . ., ỹi︸ ︷︷ ︸
n times

}}Ki=1 (7)

Based on the trend and dispersion components, we define the
seasonal component:

St =
yt − Tt

Dt
(8)

The proposed STD decomposition is expressed as follows:

yt = St ×Dt + Tt (9)

Fig. 2 shows an example of STD decomposition of the time
series of monthly electricity demand for Poland. Note that the
trend and dispersion components are step functions, where the
step length corresponds to seasonal period n. The trend ex-
presses the level of the time series in successive seasonal periods,
while the dispersion expresses the variation of the time series
elements in these periods. The seasonal component is composed
of the seasonal patterns, which are centered, i.e., their average
value is zero, and unified in variance, i.e., their dispersion is the

Fig. 2. Monthly electricity demand time series decomposition using STD.

same. Moreover, when we express seasonal patterns by vectors,
si = [Si,1, . . ., Si,n], where Si,j is the j-th component of the
i-th seasonal pattern, their length is equal to one. Thus, they
are normalized vectors. Although unified, the seasonal patterns
differ in ”shape”. Their ”shapes” express unified variations of the
series in the successive seasonal periods. Note that the ”shapes”
are not smoothed or averaged as in the standard decomposition
methods.

A variant of STD is STD with a reminder component, STDR,
defined as follows:

yt = S ′
t ×Dt + Tt +Rt (10)

where S ′
t is an averaged seasonal component and Rt is a re-

minder component.
In STDR, the trend and dispersion components are defined

in the same way as in STD. The seasonal component is defined
using an average seasonal pattern, {S̄j}nj=1, determined as fol-
lows:

S̄j =
1

K

K∑
i=1

Si,j (11)

The seasonal component in STDR is a sequence of K aver-
aged seasonal patterns:

{S ′
t}Nt=1 = {{S̄j}nj=1, . . ., {S̄j}nj=1︸ ︷︷ ︸

K times

} (12)

thus, it is identical across all seasonal periods.
The reminder component is calculated from (10):

Rt = yt − (S ′
t ×Dt + Tt) (13)

An example of STDR decomposition is depicted in Fig. 3.
Note the same trend and dispersion components as in Fig. 2 for
STD, and the different seasonal component, which for STDR is
composed of the same averaged seasonal pattern. Fig. 4 shows
the seasonal patterns and the averaged pattern. The remainder
corresponds to the mismatch between the original seasonal
cycles and the averaged seasonal cycles. Thus, it contains addi-
tional dispersion resulting from averaging the seasonal cycles.
This dispersion is lower for the cycles whose patterns are similar
to the averaged pattern. Note that the reminder has a zero average
value in each seasonal period. To assess its stationarity visually,
Fig. 5 shows the plots of its sample autocorrelation function

DUDEK: STD: A SEASONAL-TREND-DISPERSION DECOMPOSITION OF TIME SERIES 10343

Fig. 3. Monthly electricity demand time series decomposition using STDR.

Fig. 4. Seasonal patterns of the monthly electricity demand time series
(averaged pattern drawn with a thick line).

Fig. 5. ACF and PACF plots for the reminder component of STDR applied
for the monthly electricity demand time series.

(ACF) and sample partial autocorrelation function (PACF). As
can be seen from this figure, most of the spikes are not statisti-
cally significant, i.e., the reminder series is not highly correlated,
which characterizes a stationary process. To confirm that the
reminder is stationary, we apply three formal tests for a unit
root in a univariate time series: augmented Dickey-Fuller test,
Kwiatkowski, Phillips, Schmidt, and Shin test, and Phillips-
Perron test. All tests confirmed stationarity at a 1% level of
significance.

Remark: The dispersion component can be defined using a
standard deviation as a diversity measure (which is diversity
(5) divided by

√
n). In such a case, all components including

the remainder have the same shape as in the standard formu-
lation, but the dispersion component decreases its range

√
n

times, and the seasonal component increases its range
√
n

times.

Fig. 6. Airline passengers time series (in thousands) and its decomposition
using STD and STDR.

TABLE I
RESULTS OF THE STATIONARITY TESTS FOR THE REMINDER AND THE RATIO OF

THE REMINDER TO THE TIME SERIES

IV. APPLICATION EXAMPLES

In this section, we apply the proposed decomposition method
to time series of different nature, including multiple seasonality
and no seasonality. We also present forecasting approaches
based on STD decomposition.

A. Time Series Analysis Using STD

As a first example we use the classic Box & Jenkins airline
data [15], i.e., monthly totals of international airline passengers
from 1949 to 1960. This time series expresses an increasing
trend and strong yearly periodicity (n = 12) that increases in
size with the series level – see top panel in Fig. 6. Fig. 6 shows
both STD and STDR decompositions. They have the same trend
and dispersion components. The seasonal component for STD is
shown in blue, and the seasonal component for STDR as well as
the reminder component are shown in red. Note that the seasonal
patterns generated by STD are very similar in shape.

Table I shows the results of stationarity tests for the reminder,
i.e., augmented Dickey-Fuller test (aDF), Kwiatkowski, Phillips,
Schmidt, and Shin test (KPSS), and Phillips-Perron test (PP). All
the tests confirm stationarity with 1% significance level. Table I
also shows the median and interquartile range of the ratio of the
reminder to the time series defined as follows:

rt =

∣∣∣∣Rt

yt

∣∣∣∣ ∗ 100 (14)

The ratio of the reminder to the time series for Airline data is
relatively small, 1.78%.

The second example uses data for the US unemployment rate
for males (16 years and over) observed from January 1992 to

10344 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 7. Unemployment time series decomposition using STD and STDR.

Fig. 8. Hourly electricity demand time series decomposition using STD and
STDR.

December 2013 (n = 12). This series was analysed extensively
in [2]. It exhibits yearly seasonality with strong asymmetric
behavior, i.e., it displays steep increases that end in sharp peaks
and alternate with much more gradual and longer declines that
end in mild troughs [16]. Thus the seasonal patterns are generally
similar to each other. The seasonal patterns observed in Fig. 7 are
similar in shape, except for three patterns, which reflect sharp
spikes in unemployment in the final months of the year, i.e.,
sequences 109-120, 193-204 and 205-2016. Due to a deviation
from the typical shape for these three sequences, the reminder
takes larger values for them than for other annual sequences.
Nevertheless, it passes the stationarity tests, see Table I. The
ratio of the reminder to the time series for unemployment data
is 2.29%.

The third example concerns hourly electricity demand. Time
series of this type exhibit triple seasonality: yearly, weekly and
daily. The seasonalities are related to the local climate, weather
variability and the nature of a country’s economy. Fig. 8 shows
decomposition products of the hourly electricity demand for
Poland in 2018. We assumed a seasonal period as a daily one
(n = 24). In Fig. 8, we show three weekly sequences of the
time series, from January, July and December. As can be seen
from this figure, the seasonal component expresses daily patterns
whose shapes are related to the day of the week and season
of the year. The daily patterns representing the working days

Fig. 9. S&P 500 Index time series decomposition using STD and STDR.

Fig. 10. Decomposition of S&P 500 weekly log returns using STD and STDR.

from Tuesday to Friday for the same period of the year are
similar to each other. Patterns for Mondays are slightly different
from them. Saturdays and Sundays have their own shapes. Note
that the trend and dispersion components have both weekly
and yearly seasonalities. These two components can be further
decomposed using STD or STDR. The ratio of the reminder
to the time series is only 2.04%. The reminder passes all the
stationarity tests.

The next two examples are for financial time series. We
analyse one of the most important stock market indexes, S&P
500. It tracks the performance of the 500 largest companies
listed on stock exchanges in the United States. Fig. 9 shows
decomposition of the weekly S&P 500 Index over the period
2019-2021. S&P 500 Index shows development within a rising
trend that dips at the beginning of 2020 due to the Covid-19
crisis. The time series does not express seasonality. We assume
n = 16 weeks for STD decomposition. Because of the rising
trend, the 16-week patterns forming the seasonal component
have a rising character, but differ due to significant random noise.
For the pattern representing the Covid-19 fall period (sequence
65-80) the highest remainder values are observed as well as the
highest dispersion. The ratio of the reminder to the time series
is low, 1.12%. The reminder passes all stationarity tests (see
Table I).

Fig. 10 shows decomposition of the S&P 500 returns calcu-
lated as ln(yt/yt−1), where yt represents the original time series.
While the original time series of S&P 500 Index is nonstationary,

DUDEK: STD: A SEASONAL-TREND-DISPERSION DECOMPOSITION OF TIME SERIES 10345

Fig. 11. Mackey-Glass time series decomposition using STD and STDR.

the returns fluctuate around a stable mean level [15]. However,
their variability around the mean changes. In the period 2019-21,
it is highest during the Covid-19 crisis, see Fig. 10, where the
dispersion and remainder are highest for the crisis period, i.e.,
sequence 65-80. The ratio of the reminder to the time series
is high (around 93%), which indicate the dominant content of
the noise in the series of returns. The reminder passes all the
stationarity tests (see Table I).

The last example concerns decomposition of a synthetic time
series – a Mackey-Glass time series which is produced by de-
lay differential equation [17], i.e., dx(t)

dt = ax(t−τ)
1+x10(t−τ) − bx(t),

where we assumed typical values for parameters: a = 0.2, b =
0.1, x(0) = 1.2, and τ = 17. With these parameters, the time
series is chaotic and exhibits a cyclic behavior. This time series is
commonly used as a benchmark for testing different forecasting
methods, because it has a simple definition, and yet its elements
are hard to predict [1].

Fig. 11 depicts the Mackey-Glass time series decomposition.
The series was computed with a time sampling of 1. First
1000 points of the series is shown. We assumed a seasonal
pattern length as n = 50. Note the irregular character of the
seasonal patterns and also the chaotic variability in the trend
and dispersion components. The ratio of the reminder to the
time series is 6.51%. The reminder passes all the stationarity
tests (see Table I).

B. Time Series Forecasting Using STD and STDR

Decomposition not only helps to improve understanding of
the time series, but it can also be used to facilitate forecasting
complex series. Extracted components have lower complexity
than the original time series and so can be modelled indepen-
dently using simple models. In the case of STDR, the seasonal
pattern does not change and we can use a naive approach to
predict it for the next period. In STD, the seasonal pattern
changes and we should use an appropriate forecasting method
to predict it. Note that in the examples considered above the
reminder was a stationary process. Thus it can be predicted even
by those methods that require stationarity such as ARIMA. Trend
and dispersion components can exhibit seasonality such as in
the case of hourly electricity demand shown in Fig. 8. Such time

series can be predicted using seasonal models or can be further
decomposed into simple components using STD or STDR.

1) Forecasting Based on Patterns: To avoid the troublesome
task of forecasting all the components extracted by STD, in [18],
a method was described which combines all components into an
output pattern (in fact in [18] many input and output patterns
were proposed. We focus on the patterns denoted as X3.1 and
Y3.1, which are related to STD). The forecasting model predicts
output patterns based on the input patterns which are seasonal
patterns expressed by vectors si = [Si,1, . . ., Si,n], where Si,j is
the j-th component of the i-th seasonal pattern. They are defined
as follows (this is an alternative notation to (8)):

si =
yi − ȳi

ỹi
(15)

where yi = [yi,1, . . ., yi,n] is a vector representing the i-th sea-
sonal sequence of the time series.

Thus, the input patterns are centered and normalized seasonal
sequences. The output pattern represents a forecasted seasonal
pattern. It is defined as:

si+τ =
yi+τ − ȳi

ỹi
(16)

where si+τ = [Si+τ,1, . . ., Si+τ,n] and τ ≥ 1 is a forecast hori-
zon.

Note that in (16) to calculate the output pattern, we use the
average and dispersion for sequence i and not for sequence i + τ .
This is because these two coding variables for future sequence
i+ τ , which has been just forecasted, are not known. Using the
coding variables for the previous period has consequences: the
output patterns are no longer centered and normalized vectors
like the input patterns are. But if the mean value of the series and
its dispersion do not change significantly in the short period, i.e.,
ȳi+τ ≈ ȳi and ỹi+τ ≈ ỹi, the output patterns are close to cen-
tered and normalized. For time series with multiple seasonality,
we cannot assume that the trend and dispersion are constant in
the short term because they are influenced by additional seasonal
fluctuations. For example, the average values and dispersions
of daily sequences can changes with the weekly seasonality,
see Fig. 8. This translates into output patterns. Referring to the
example shown in Fig. 8, the output patterns for Mondays are
coded with the averages and dispersions of Sunday sequences
(for τ = 1), which are lower than those for Mondays. This
has the effect of shifting the output patterns for Mondays up
and stretching them. For similar reasons, output patterns for
Saturdays and Sundays are placed lower than output patterns for
the other days of the week and are less stretched (compare this
in Fig. 12). Thus, the output patterns are not unified globally
but are unified in groups composed of the same days of the
week (unified means that they have a similar average value and
dispersion). For this reason, it is reasonable to construct the
forecasting models that learn from data representing the same
days of the week. For example, when we train the model to
forecast the daily sequence for Monday, a training set for it is
composed of the output patterns representing all Mondays from
history and the corresponding input patterns representing the

10346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 12. Examples of output patterns for hourly electricity demand time series
(first day is Monday, last day is Sunday).

Fig. 13. Diagram of forecasting based on STD.

previous days (depending on the forecast horizon; Sundays for
τ = 1).

The forecasting model fits function f : si → si+τ . The fore-
casted output pattern, ŝi+τ , is postprocessed to obtain the real
forecasted sequence using transformed (16):

ŷi+τ = ŝi+τ ỹi + ȳi (17)

Note that in (17), the coding variables, ȳi and ỹi, are known
from the most recent history. This enables us to perform the
postprocessing (decoding).

Note that (15) and (16) filter out the current process variability
from the data, i.e., filter out the local average and dispersion. The
model learns on filtered (unified) patterns and forecasts output
pattern ŝi+τ . Equation (17) introduces information about the
process variability in sequence i (the most recent historical se-
quence) into the output data. This approach, depicted in Fig. 13,
enables us to take into account the local variability of the process
when constructing the forecast.

Due to representation of the time series by unified patterns si
and si+τ , the forecasting problem simplifies and can be solved
using simple models. The models proposed in [19] and [20],
which were developed for short-term electrical load forecasting,
are based on the similarity between the patterns. They assume
that similarity in the input space is related to the similarity in the
output space. Thus the forecasted output pattern is constructed
from the training output patterns paired with the most similar
input training patterns to the query pattern. To model function f ,
which in this approach has a nonparametric form, many models
have been investigated such as the nearest-neighbor model,
fuzzy neighborhood model, kernel regression model, general
regression neural network, and pattern clustering-based models
(including classical clustering methods and artificial immune
systems).

In [21], function f was modeled locally using different linear
models including stepwise and lasso regressions, principal com-
ponents regression and partial least-squares regression. In [22], a
random forest was used to model f , and in [23], different neural
network architectures were compared. In [24], it was shown
that STD decomposition improves the forecasting accuracy of
an advanced hybrid and hierarchical deep learning model which

TABLE II
FORECASTING QUALITY METRICS FOR SHORT-TERM LOAD FORECASTING:

MAPE - MEAN ABSOLUTE PERCENTAGE ERROR, MDAPE - MEDIAN OF APE,
IQRAPE - INTERQUARTILE RANGE OF APE, AND RMSE - ROOT MEAN

SQUARE ERROR

combines exponential smoothing (ES) and residual dilated long
short-term memory network (LSTM).

Table II shows the results for the short-term electrical load
forecasting problem described in [25]. It concerns the prediction
of hourly loads for the next day for 35 European countries.
The models, which use pattern representation of input and
output data described above are marked with an asterisk in
Table II. They include the fuzzy neighborhood model (FNM),
general regression neural network (GRNN), and support vec-
tor machine (SVM). The comparative models include standard
statistical models such as ARIMA and ES, modern statistical
model, Prophet, and state-of-the-art machine learning models
such as boosted tree-based models (XGBoost and LightGBM;
note the excellent performance of tree-based models in the
forecasting competitions [26]), graph NN for multivariate TS
forecasting (MTGNN) and a hybrid model combining ES and
gated recurrent NN (RNN). The last model was developed
in [25] especially for short-term load forecasting and is equipped
with many procedures and mechanisms increasing its accuracy
such as hierarchical RNN architecture, new recurrent cells with
dilation and attention mechanisms, dynamic ES model, cross-
learning and ensembling. As can be seen from Table II, the
domain-adjusted ES-adRNNe model produces the most accurate
forecasts. But when we compare the results of other models with
the results of pattern-based models, we can see that the latter
outperform the former in terms of accuracy. This proves that
the pattern-based representation of the input and output data for
STLF is advantageous. It simplifies the forecasting problem and
enables the model to deal efficiently with multiple seasonality,
nonlinear trend and variable variance.

2) Forecasting Individual Components of STDR: An alter-
native way of forecasting using the proposed decomposition
approach is to predict each component of STD or STDR indi-
vidually. Let us focus on STDR in this example. To predict time
series for the next period using STDR, the seasonal component
is just copied for this period, while the T, D and R components
are forecasted using certain models. In this study, for these
three components, we use a simple neural network, multilayer
perceptron (MLP), composed of a single hidden layer with
sigmoid nonlinearity and a linear output neuron. The predictors

DUDEK: STD: A SEASONAL-TREND-DISPERSION DECOMPOSITION OF TIME SERIES 10347

TABLE III
RESULTS (SMAPE) OF FORECASTING M4 HOURLY TIME SERIES

are defined as the lagged points of the component series, and
expressed by vectors x as follows:
� xT = [ȳi, . . ., ȳi−lT] for T,
� xD = [ỹi, . . ., ỹi−lD] for D,
� xR = [Rt, . . ., Rt−lR] for R,

where lT , lD and lR are the lag values for T, D and R, respec-
tively.

The T and D components are predicted for i+ 1 period,
while R is predicted for t+ 1. To cover period i+ 1, R is
predicted recursively K times (the predictions of the previous
steps are used to create the new lagged predictors). The proposed
approach was applied to forecasting 414 hourly time series from
the M4 competition dataset [28]. The time series were collected
from a number of diverse sources and express daily and weekly
seasonalities. The length of the time series is 700 or 960 (training
part). We assumed a forecast horizon equal to 24 hours. The
model hyperparameters were selected as follows: lT = lD = 3,
lR = 24, and the number of hidden neurons is 1.

Table III shows the results (symmetric mean absolute percent-
age error, sMAPE, which was the main accuracy measure in M4)
for our method, SARIMA (ARIMA(1,1,1) model seasonally
integrated with seasonal AR(24) and MA(24)) and the five top
ranked methods in M4. They include:
� ES-RNN – a hybrid and hierarchical model combining ES

and LSTM [29]. It includes such state-of-the-art solutions
as: dilated LSTM layers, on-the-fly preprocessing, cross-
learning, and three levels of ensembling.

� FFORMA – an automated method for obtaining weighted
forecast combinations using time series features [30]. It
employs a meta-model for assigning weights to various
forecasting methods which include nine methods such as
naive, random walk, Theta method, ARIMA, ES, TBATS
model, STL with AR modeling and NN.

� WASM – a weighted aggregation of statistical methods
such as naive, ES, Theta method, ARIMA and linear re-
gression [31].

� ESML – an ensemble of statistical and machine learning
methods such as TBATS model, THIEF ARIMA method,
THIEF naive method, general ES, double seasonal Holt-
Winters, multilayer perceptron, and extreme learning ma-
chine [32].

� GROEC – a combination method via generalized rolling
origin evaluation. It produces a weighed combination of
the Theta method, ES and ARIMA [33].

As can be seen from Table III, our model, MLP-STDR,
outperforms in terms of accuracy the standard statistical model,
SARIMA, but does not match the specialized M4 models except

TABLE IV
RESULTS OF FORECASTING FOR TIME SERIES SHOWN IN FIGS. 6, 7, 8, 9, 10,

AND 11

for the least sophisticated of them, GROEC. Note that the M4
models combine many different forecasting methods using en-
sembling. This gives them an advantage over individual methods
like MLP-STDR and SARIMA.

Table IV compares forecasting results for six time series
analyzed in Section IV-A (Figs. 6, 7, 8, 9, 10, and 11) us-
ing the following approaches: MLP-Patterns, which uses MLP
based on patterns defined in Section IV-B1; MLP-STDR, which
uses MLPs for individual forecasting of STDR components;
MLP-STL, which uses MLPs for individual forecasting of STL
components; and MLP-raw, which uses multilayer perceptron
for forecasting the raw time series. The time series are forecasted
in two final sequences of length 2n (sequence by sequence). A
variant of the STL decomposition is used in which the seasonal
component does not change over time (the same as in the
STDR decomposition), allowing for the use of a naive method
to predict this component. To predict the trend and residual
components for the next period, MLPs are used. The input
vector covers the recent historical sequence of length n, and
the output vector includes the forecasted sequence of the same
length. Similar definitions of the input and output vectors are
used for forecasting the raw series. In MLP-STDR lT = lD = 5,
and lR = n. The number of hidden neurons was selected through
experimentation. Fig. 14 shows the forecasted sequences.

Note that MLP-Patterns gives the lowest errors for all datasets
except Airline data, where MLP-STDR provides a slightly lower
sMAPE (but this was not confirmed statistically by Wilcoxon
test). The greatest advantage in accuracy between MLP-Patterns
and the other methods is observed for the Electricity and
Mackey-Glass data, so for time series with the most complex and
chaotic seasonality. Usually the largest errors are generated by
MLP-raw, i.e., the method based on the raw time series without
decomposition.

C. Discussion

The advantage of STD over the standard decomposition
methods is that it extracts a dispersion component showing the
short-term variability of the time series over time, i.e., variability
of the series in seasonal periods. This is very useful for analysing
heteroscedastic time series, which are very common in different
domains such as finance, business, industry, meteorology etc.
For example in finance, a statistical measure of the dispersion

10348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 14. Forecasts of time series shown in Figs. 6, 7, 8, 9, 10, and 11.

of returns for a given security or market index (a volatility) is
extremely important. An asset’s volatility is a key factor when
pricing options contracts. The dispersion component enables
direct evaluation, analysis and prediction of the series variance,
which is not possible using standard methods, where this vari-
ance is expressed in many components, and additional calcu-
lations are required to estimate it. The graphical representation
of the dispersion component provided by our method allows
a quick visual evaluation of the properties of the series such
as some regularities, periods of ups and downs, cyclicality, and
seasonality. The picture given by the decomposition components
helps us to choose an appropriate forecasting model, e.g., models
requiring stationarity will not be appropriate in the case of
variable dispersion.

The standard additive and multiplicative methods as well as
STL produce an averaged seasonal component. It can be useful
when our goal is to extract an averaged seasonal pattern but
at the same time it can be viewed as a limitation when we
want to evaluate how the seasonal pattern changes over time
(averaged pattern masks these changes). Our proposed approach
provides us with a choice: STDR produces an averaged seasonal
pattern and STD produces seasonal components composed of
the different seasonal patterns reflecting the real shapes of the
seasonal sequences. So we can investigate the stability of the
seasonal pattern or its variability over time which can be very
useful in many fields. For example we can observe how the
shape of the daily electricity demand curve differs for different
days of the week and changes from season to season or year to
year. We can also compare the shapes for different countries.
Note that to measure shape variability, a simple euclidean dis-
tance between the seasonal patterns can be used because the
patterns are represented by normalized vectors. The distance
between a seasonal pattern and an averaged pattern can be a

measure of atypicality. On this basis, outliers in seasonal shape
can be detected. Comparing the shapes of seasonal cycles is
impossible when using standard decomposition methods. This
is because these methods either average the seasonal cycles,
like the classical additive and multiplicative methods and STL,
or express these cycles in many components, such as wavelet
decomposition and EMD.

STDR averages the normalized seasonal patterns and delivers
the reminder component. This component expresses the differ-
ence between real time series and series with unified seasonal
cycles, i.e the series which has the same trend and dispersion
components as the real series but its seasonal pattern is aver-
aged. Analysing the reminder, we can detect periods in which
the seasonal patterns differ from the averaged pattern most.
For example, the unemployment time series shows increased
differences in the shapes of seasonal cycles in periods 109-120
and 193-204. In these periods, the falling series temporarily
increases (see Fig. 7). Patterns in the reminder can be further
investigated in order to analyze the magnitudes and directions
of deviations of seasonal cycles from the averaged cycles.

It is worth emphasizing the high interpretability of STD. It
extracts easy to understand and informative components ex-
pressing the main properties of the series, i.e., the tendency of the
series (trend averaged in seasonal periods), local variability of
a series (dispersion in seasonal periods) and shapes of seasonal
cycles (unified seasonal patterns). Compared to STD compo-
nents, the components produced by standard methods, such as
high frequency IMFs and details, are not easy to interpret. They
do not express clear patterns.

Another very important advantage of STD and STDR are
their simple algorithms, which can be coded in less then 30
lines of code in Matlab, as shown in Appendix A, available in
the online supplemental material. The algorithms do not require
complex computation. The components can be extracted using
simple formulas (see mathematical formulation composed of
just three equations for STD: (4), (5) and (8), and additional
two for STDR: (11), (13)). Note that both versions, STD and
STDR, have no parameters when used for seasonal time series.
For non-seasonal series only one parameter should be selected,
i.e., the ”seasonality” period n. The simplest methods among
the standard methods, the classical additive and multiplicative
methods, require the selection of one parameter, i.e., the order
of the moving average. More sophisticated methods, such as
STL, wavelet decomposition and EMD, require more parameters
to be selected. For STL these include: the spans of the Loess
windows for the trend, seasonality and low-pass filter, and the
degrees of the locally-fitted polynomials for trend, seasonality
and low-pass filter. Wavelet decomposition requires the number
of decomposition levels and wavelet type (or alternatively the
coefficients of the low-pass and high-pass filters), while EMD
requires selection of the interpolation method for envelope con-
struction, decomposition stop criteria and shifting stop criteria.
EMD suffers from a boundary problem which results in anoma-
lously high amplitudes of the IMFs and artifact wave peaks
towards the boundaries [27]. Another boundary problem occurs
for classical additive and multiplicative decompositions. Due
to the need to estimate the moving average using a two-sided

DUDEK: STD: A SEASONAL-TREND-DISPERSION DECOMPOSITION OF TIME SERIES 10349

window, the estimate of the trend and reminder are unavailable
for observations near boundaries. In the proposed STD and
STDR there are no boundary problems.

The existing methods use some form of smoothing to ex-
tract components. Thus the resulting components are smooth.
STD/STDR does not need any smoothing algorithm (like Loess,
high-pass and low-pass filtering or cubic splines), just averaging
(4) or diversity calculation (5), which are extremely simple and
fast. The resulting T and D components have a step-wise form,
which can be useful for comparing the mean and dispersion
of successive seasonal periods. Thanks to this we can evaluate
changes in mean and dispersion for successive periods instead of
“continuous” changes in the time series which are expressed by
its smoothed representation. So the step-wise components pro-
duced by the proposed approach does not have to be considered
a disadvantage.

Although STD and STDR were designed for time series with
single seasonality, they can be used for non-seasonal time series.
In such a case, the seasonal component does not express a
regular pattern such as for S&P 500 returns (see Fig. 10) or
expresses a pattern resulting from the general tendency of the
time series such as for S&P 500 Index, where the rising “sea-
sonal” patterns reflect the rising trend of the series (see Fig. 9).
For non-seasonal time series parameter n should be selected in
some way. When STD/STDR is used in the forecasting model,
n is treated as an additional hyperparameter of the model and
is selected in the grid search/Bayesian optimization and some
variant of cross-validation to minimize the forecasting error.
STD and STDR can also be useful for decomposition of time
series with multiple seasonality. In such a case, the seasonal
component expresses the seasonal patterns of the shortest period,
and trend and dispersion components express seasonalities of the
longer periods, see the example in Fig. 8. To extract all seasonal
components, the STD/STDR decomposition can be applied for
trend and dispersion components again.

Based on STD decomposition, we can define the input and
output variables for the forecasting models. The input variables
are just the seasonal patterns for period i, while the output
variables are the seasonal cycles for period i+ τ encoded using
the average and dispersion for period i. Such encoding of both
input and output variables filters out the trend and variability of
the time series. This makes the relationship between the variables
simpler. Thus this relationship can be modeled using simpler
models such as linear regression or similarity-based models.
Forecasting models using STD-based coding are great at dealing
with time series with multiple seasonality, as has been proven
in many papers [18], [19], [21], [22], [23].

V. CONCLUSION

Time series decomposition into several components repre-
senting an underlying pattern category is a key procedure for
time series analysis and forecasting. In this work, we propose a
new decomposition method, seasonal-trend-dispersion decom-
position. It has two variants: with (STDR) and without (STD)
the reminder component. The proposed decomposition can be
summarized as follows:

1) It distinguishes itself from existing methods in that it
extracts the dispersion component which expresses the
short-term variability of the time series. A separate dis-
persion component is very useful for heteroscedastic time
series analysis.

2) It produces interpretable components which express the
main properties of the time series: the trend, dispersion
and seasonal patterns.

3) In STD, the seasonal component is composed of cen-
tered and normalized seasonal patterns, which express the
“shapes” of the seasonal cycles. By emphasizing these
shapes, STD facilitates comparison and analysis of the
seasonal cycles.

4) In STDR, the remainder component expresses the differ-
ence between the real seasonal cycles and the averaged
cycles. It enables the detection of outlier seasonal cycles
that differ in shape from the averaged cycles.

5) It has no parameters to adjust for seasonal time series. For
non-seasonal time series, only one parameter should be
selected.

6) The algorithms of STD and STDR are very simple and
easy to implement. The computation time is extremely
fast.

7) STD can be used for encoding the input and output vari-
ables for the forecasting models. STD-based encoding
facilitates forecasting complex heteroscedastic time series
with multiple seasonality. It simplifies the relationship
between variables, which translates into simpler models.

REFERENCES

[1] A. K. Palit and D. Popovic, Computational Intelligence in Time Se-
ries Forecasting: Theory and Engineering Applications. London, U.K.:
Springer-Verlag, 2005.

[2] E. B. Dagum and S. Bianconcini, Seasonal Adjustment Methods and Real
Time Trend-Cycle Estimation. Cham, Switzerland: Springer, 2016.

[3] G. L. Mazzi, Ed., Handbook on Seasonal Adjustment. Luxembourg: Pub.
Office Eur. Union, 2018.

[4] C. Buys-Ballot, Les Changements Périodiques de Température. Utrecht,
The Netherlands: Kemink et Fils, 1847.

[5] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting:
Methods and Applications, 3rd ed. New York, NY, USA: Wiley, 1998.

[6] A. Dokumento and R. J. Hyndman, “STR: Seasonal-trend decomposition
using regression,” Informs J. Data Sci., vol. 1, no. 1, pp. 50–62, 2021.

[7] W. M. Persons, “Indices of general business conditions,” Rev. Econ.
Statist., vol. 1, pp. 111–205, 1919.

[8] F. R. Macaulay, The Smoothing of Time Series. New York, NY, USA: Nat.
Bur. Econ. Res., 1931.

[9] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. J. Terpenning, “STL:
A seasonal-trend decomposition procedure based on loess,” J. Official
Statist., vol. 6, no. 1, pp. 3–33, 1990.

[10] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11,
no. 7, pp. 674–693, Jul. 1989.

[11] N. E. Huang et al., “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis,” in Proc.
Roy. Soc. London Ser. A: Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 903–
995, 1998.

[12] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE
Trans. Signal Process., vol. 62, no. 3, pp. 531–544, Feb. 2014.

[13] N. Golyandina, V. Nekrutkin, and A. A. Zhigljavsky, Analysis of Time
Series Structure: SSA and Related Techniques, 1st ed. London, U.K./Boca
Raton, FL, USA: Chapman and Hall/CRC, 2001.

[14] R. J. Hyndman and C. Athanasopoulos, Forecasting: Principles and
Practice, 3rd ed. Melbourne, Australia: OTexts. Accessed: Mar. 09, 2022.
[Online]. Available: OTexts.com/fpp3

OTexts.com/fpp3

10350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

[15] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control, 5th ed. Hoboken, NJ, USA: Wiley,
2016.

[16] J. G. De Gooijer, Elements of Nonlinear Time Series Analysis and Fore-
casting. Cham, Switzerland: Springer, 2017.

[17] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems,” Science, vol. 197, no. 287, pp. 287–289, 1977.

[18] G. Dudek, “Pattern similarity-based methods for short-term load forecast-
ing – Part 1: Principles,” Appl. Soft Comput., vol. 37, pp. 277–287, 2015.

[19] G. Dudek, “Pattern similarity-based methods for short-term load forecast-
ing – Part 2: Models,” Appl. Soft Comput., vol. 36, pp. 422–441, 2015.

[20] G. Dudek and P. Pełka, “Pattern similarity-based machine learning meth-
ods for mid-term load forecasting: A comparative study,” Appl. Soft
Comput., vol. 104, 2021, Art. no. 107223.

[21] G. Dudek, “Pattern-based local linear regression models for short-term
load forecasting,” Electric Power Syst. Res., vol. 130, pp. 139–147, 2016.

[22] G. Dudek, “Short-term load forecasting using random forests,” in Proc.
Adv. Intell. Syst. Comput., 2015, pp. 821–828.

[23] G. Dudek, “Neural networks for pattern-based short-term load forecasting:
A comparative study,” Neurocomputing, vol. 2015, pp. 64–74, 2016.

[24] G. Dudek, P. Pełka, and S. Smyl, “3ETS+RD-LSTM: A new hybrid model
for electrical energy consumption forecasting,” in Proc. Int. Conf. Neural
Inf. Process., 2020, pp. 519–531.

[25] S. Smyl, G. Dudek, and P. Pelka, “ES-dRNN with dynamic attention for
short-term load forecasting,” in Proc. Int. Joint Conf. Neural Netw., 2022,
pp. 1–8, doi: 10.1109/IJCNN55064.2022.9889791.

[26] C. S. Bojer and J. P. Meldgaard, “Kaggle forecasting competitions: An
overlooked learning opportunity,” Int. J. Forecasting, vol. 37, pp. 587–603,
2021.

[27] A. Stallone, A. Cicone, and M. Materassi, “New insights and best practices
for the successful use of empirical mode decomposition, iterative filtering
and derived algorithms,” Sci. Rep., vol. 10, 2020, Art. no. 15161.

[28] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 competition:
Results, findings, conclusion and way forward,” Int. J. Forecasting, vol. 34,
no. 4, pp. 802–808, 2018.

[29] S. Smyl, “A hybrid method of exponential smoothing and recurrent neural
networks for time series forecasting,” Int. J. Forecasting, vol. 36, no. 1,
pp. 75–85, 2020.

[30] P. Montero-Manso, G. Athanasopoulos, R. J. Hyndman, and T. S. Talagala,
“FFORMA: Feature-based forecast model averaging,” Int. J. Forecasting,
vol. 36, no. 1, pp. 86–92, 2020.

[31] M. Pawlikowski and A. Chorowska, “Weighted ensemble of statistical
models,” Int. J. Forecasting, vol. 36, no. 1, pp. 93–97, 2020.

[32] S. Jaganathan and P. K. S. Prakash, “A combination-based forecasting
method for the M4-competition,” Int. J. Forecasting, vol. 36, no. 1,
pp. 98–104, 2020.

[33] J. A. Fiorucci and F. Louzada, “GROEC: Combination method via gen-
eralized rolling origin evaluation,” Int. J. Forecasting, vol. 36, no. 1,
pp. 105–109, 2020.

Grzegorz Dudek received the PhD degree in elec-
trical engineering from the Czestochowa University
of Technology (CUT), Poland, in 2003, and the ha-
bilitation degree in computer science from the Lodz
University of Technology, Poland, in 2013. Currently,
he is an associate professor with the Department
of Electrical Engineering, CUT. He is the author of
two books concerning machine learning methods for
load forecasting and evolutionary algorithms for unit
commitment and more than 120 scientific papers. He
came third in the Global Energy Forecasting Com-

petition 2014 (price forecasting track). His research interests include pattern
recognition, machine learning, artificial intelligence, and their application to
practical classification, regression, forecasting, and optimization problems.

https://dx.doi.org/10.1109/IJCNN55064.2022.9889791

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

