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A Hessian Inversion-Free Exact Second Order
Method for Distributed Consensus Optimization

Dušan Jakovetić , Member, IEEE, Nataša Krejić , and Nataša Krklec Jerinkić

Abstract—We consider a standard distributed consensus op-
timization problem where a set of agents connected over an
undirected network minimize the sum of their individual (local)
strongly convex costs. Alternating Direction Method of Multipliers
(ADMM) and Proximal Method of Multipliers (PMM) have been
proved to be effective frameworks for design of exact distributed
second order methods (involving calculation of local cost Hessians).
However, existing methods involve explicit calculation of local
Hessian inverses at each iteration that may be very costly when
the dimension of the optimization variable is large. In this article,
we develop a novel method, termed Inexact Newton method for
Distributed Optimization (INDO), that alleviates the need for Hes-
sian inverse calculation. INDO follows the PMM framework but,
unlike existing work, approximates the Newton direction through
a generic fixed point method (e.g., Jacobi Overrelaxation) that
does not involve Hessian inverses. We prove exact global linear
convergence of INDO and provide analytical studies on how the
degree of inexactness in the Newton direction calculation affects
the overall method’s convergence factor. Numerical experiments
on several real data sets demonstrate that INDO’s speed is on par
(or better) as state of the art methods iteration-wise, hence having a
comparable communication cost. At the same time, for sufficiently
large optimization problem dimensions n (even at n on the order
of couple of hundreds), INDO achieves savings in computational
cost by at least an order of magnitude.

Index Terms—Inexact Newton, proximal method of multipliers,
distributed optimization, exact convergence, strongly convex
problems.

I. INTRODUCTION

W E CONSIDER problems of the form

min
y∈Rn

N∑
i=1

fi(y). (1)

Here, fi : Rn → R, i = 1, . . ., N , is a strongly convex local
cost function assigned to a node within a network of distributed
agents able to perform local operations and communicate with
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their neighbours. Formulation (1) finds a number of applications
in signal processing, e.g., [7], [21], control, e.g., [26], Big Data
analytics, e.g., [29], social networks, e.g., [3], etc. The available
methods for solving (1) include a large class of the so called
exact methods that ensure convergence to the exact solution of
(1) with different rates of convergence. The exact convergence
is achieved in several ways – by utilizing diminishing step
sizes in gradient methods for penalized reformulation [18], [39],
by gradient tracking or second order methods that are defined
within primal-dual framework, e.g, [8], [14], [15], [19], [24],
[27], [30], [31], [33], [34], [36], [37], [41], [42], [43], [44],
or in the framework of alternating direction methods [6], [25].
Multiple consensus steps per each gradient update to ensure
exact convergence are also considered [5].

For the current paper, of special relevance are two strategies
available in the literature – the proximal method of multipliers
as a framework to develop exact distributed methods in [24], and
the well known theory of inexact Newton methods in centralized
optimization, [12]. The main advantage of the inexact Newton
methods is that they avoid oversolving of the Newtonian system
of linear equations; as such, they have been employed in related
problems, for example in minimizing finite sums in machine
learning applications [4]. To be more specific, we consider the
constrained reformulation of (1) in the augmented space (like
in, e.g., [24]) and build up on the distributed second order
approximation of the Augmented Lagrangian. The second order
approximation of the Augmented Lagrangian conforms with the
sparsity structure of the network and hence Newton-like step is
well defined. The main obstacle for applying the Newton method
is the fact that although the Hessian is sparse and distributed, the
inverse Hessian is dense and challenging to compute efficiently
in a distributed environment. One possibility is to approximate
the inverse Hessian by inverting (local) Hessians of the fi’s and
build a Taylor-like approximation to the inverse of the global
Hessian as suggested in [23], [24], and exploited in [10], [22].

The approach we propose here is based on a recent result on
distributed solution of systems of linear equations [16]. More
precisely, the Newton-like equation that defines the update step
is a solution of a system of linear equations defined by the
global Hessian of the Augmented Lagrangian. So, instead of
approximating the inverse Hessian as done in, e.g., [23], [24],
we propose to solve the system of linear equations inexactly, in a
distributed manner by a suitable iterative method. A distinctive
feature of the approach is that it avoids inversion of the Hessians
of the fi’s; instead, only diagonal elements of the Hessians
are inverted. Another appealing feature of the approach is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3497-5589
https://orcid.org/0000-0003-3348-7233
https://orcid.org/0000-0001-5195-9295
mailto:dusan.jakovetic@dmi.uns.ac.rs
mailto:natasak@uns.ac.rs
mailto:natasa.krklec@dmi.uns.ac.rs
mailto:natasa.krklec@dmi.uns.ac.rs


756 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

compatibility with the theory of inexact Newton methods in
centralized optimization. The proposed approach is particularly
suitable for the case of relatively large n, when the approxima-
tion of the inverse Hessian as in [23], [24] might be expensive,
and thus an iterative solver for the system of linear equations is a
natural choice. The convergence theory developed here relies on
the theory for the proximal methods of multipliers, as the pro-
posed method fits this general framework, following, e.g., [24].
However, the error analysis carried out here – reflecting the
inexact solution of the Newtonian system of linear equations and
how it affects the overall proximal multipliers convergence – is
very different for the proposed method.

To summarize, the main contributions of this paper are the def-
inition and convergence theory of the novel exact second order
method termed INDO (Inexact Newton method for Distributed
Optimization).1 Linear convergence to the exact solution is
shown for strongly convex problems under a set of standard
assumptions. The rate of convergence is also analysed, assuming
that the linear solver is of fixed-point type, in particular we
focused on the application of the Jacobi Overrelaxation method
to derive an estimate of the convergence factor. The convergence
of the JOR method is analysed with respect to the properties of
the system arising in the corresponding primal-dual second order
approximation. Furthermore, it is shown that one can choose a
suitable relaxation parameter and estimate the number of JOR
iterations needed to achieve desired error bound in solving the
linear system.

To the best of our knowledge, INDO is the first exact second
order method that completely eliminates Hessian inverse cal-
culations from the variable updates. As a result, the proposed
method can reduce computational cost by at least an order of
magnitude for problems with sufficiently large variable dimen-
sions, while at the same time achieving at least comparable
communication cost. This advantage has been demonstrated
through a number of numerical real and synthetic data test
examples, by comparing INDO with a state-of-the-art method
ESOM. Furthermore, the advantage observed in experiments has
been corroborated with analytical analysis hints and insights,
through the convergence factor comparisons for the inner loops
of INDO and ESOM. In short, the analytical insights reveal
that, for a range of tuning parameter values, the inner loop
convergence factor can be maintained (incurring a minor degra-
dation or even improvement), when the explicit Hessian inverse
calculation is removed. Finally, we examine INDO’s capabilities
to handle highly heterogeneous data and highly heterogeneous
local costs’ cases. Numerical studies demonstrate that INDO
exhibits improved or comparable performance on heterogeneous
data examples, when compared with ESOM and EXTRA [30].

We now briefly review the literature on distributed second
order methods for consensus optimization to help us contrast
our paper from existing work. We classify distributed second
order, i.e., (inexact) Newton methods, into two categories. The

1To avoid confusion, we clarify that the wording “inexact Newton” here refers
to approximately solving the Newtonian system of linear equations that defines
the Newton direction; on the other hand, the wording “exact method” here
signifies that INDO converges to the exact solution of (1).

methods from the first category include, e.g., [24], [25], [44].
They involve explicit (exact) calculation of the Hessians of
the agents’ local costs fi’s. The proposed INDO method also
belongs to this category. However, unlike other methods from the
category, it does not involve explicit calculation of the inverses
of the Hessians of the fi’s, leading to the advantages of INDO
discussed above.

The second category of distributed inexact Newton methods,
different from INDO, subsumes algorithms that do not explicitly
calculate the Hessians of local functions fi’s. Instead, they
resort to quasi Newton-type (e.g., Broyden–Fletcher–Goldfarb–
Shanno – BFGS) strategies to incorporate second order infor-
mation. The category includes both general-purpose methods,
e.g., [8], [9], [10], and methods designed for targeted appli-
cations, e.g., [11]. Reference [8] develops both synchronous
and asynchronous decentralized BFGS methods for a generic
formulation for a network-wide problem. When translated into
consensus optimization, reference [8] develops a method for
a penalty formulation of the consensus optimization problem.
Consequently, their method is inexact, i.e., it converges to a
neighborhood of the solution of the original consensus prob-
lem (1). In contrast, INDO is exact, and it is hence advantageous
over [8], when high accuracy is desired. Reference [9] develops a
decentralized quasi-Newton method for consensus optimization
by incorporating second-order curvature information in the dual
variable domain. This is in contrast with INDO that is first order –
when the dual variable update is concerned. (INDO involves
second order information in the primal variable updates.) The
method in [9] converges to the exact solution of (1), linearly, as
INDO does. However, its computational cost iteration-wise is in
general not comparable and is much higher than that of INDO –
the primal variable updates therein require an optimization
problem to be exactly solved with respect to primal variables,
per node, per iteration. Reference [10] develops a primal-dual
method that converges to the exact solution of (1), linearly –
as INDO does. The method incorporates (approximate) second
order information in the BFGS-style, both in the primal and
in the dual variable update rules. The method does not require
explicit calculation of the Hessians of the local functions fi’s.
However, the method requires explicit calculation of inverses of
the n× n quasi-Newton matrices calculated to approximate the
primal second order information. In contrast, INDO eliminates
the need for any n× n matrix inversions. The primal variable
update of [10] involves the Taylor-approximation type matrix
inverse approximation as ESOM; hence, the K-th order Taylor
inverse approximation with [10] involves K + 1 inner iterations
(local variable exchange rounds). Also, the dual variable up-
date involves an additional round of communication (variable
exchanges). Hence, compared with INDO and ESOM counter-
parts, the method in [10] requires an additional round of com-
munication per outer iteration while incorporating dual-based
second order information.

This paper is organized as follows. In Section II we introduce
the problem model, the primal-dual framework based on the
proximal method of multipliers and state the assumptions on
the problem. The INDO method is introduced and theoretically
analysed in Section III. Details on distributed implementation
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as well as the analysis of the convergence factor are presented
in Section IV, while Section V is devoted to practical imple-
mentation of INDO with the analysis of computational costs and
comparison with ESOM [24] and EXTRA [30] methods through
standard examples from machine learning. Some conclusions
are drawn in Section VI. Finally, lengthy supporting proofs are
delegated to the Appendix. Some additional numerical results
are presented in an extended version of this paper [17].

II. PRELIMINARIES

The notation used is the paper is the following. We use upper
case blackboard bold letters to denote matrices in RnN×nN , e.g.,
A,B, . . .. For A ∈ RnN×nN , we use its block elements repre-
sentation A = [Aij ], Aij ∈ Rn×n. We denote scalar elements
of A by aij ∈ R. Similarly, upper normal letters A,B, . . ., are
used for stand-alone matrices in Rn×n. The vectors in RnN are
denoted by bold lowercase letters, e.g., x ∈ RnN ; their com-
ponent blocks are xi ∈ Rn; similarly, we use normal lowercase
letters, e.g., y, for stand-alone vectors in Rn. The notation ‖ · ‖2
stands for the 2-norm of its vector or matrix argument; if the
subscript is omitted, ‖ · ‖ also designates the 2-norm, if not
stated otherwise. We denote by diag(A) the diagonal matrix
with diagonal elements equal to those of matrix A, and by σ(A)
the spectral radius of A.

The network of connected computational nodes (agents) is
represented by a graph G = (V, E), where V is the set of nodes
{1, . . ., N} and E is the set of undirected edges (i, j). Denote
by Oi the set of neighbors of node i and let Ōi = Oi

⋃{i}. The
communication network is accompanied by a communication
(weight) matrix W with the following properties.

A 1: The matrixW ∈ RN×N is symmetric, doubly stochastic
and

wij > 0 if j ∈ Ōi, wij = 0 if j /∈ Ōi

Let us assume that each of the N nodes has its local cost
function fi and has access to computing its first and second
derivatives. Under the assumption A1, the problem (1) has the
equivalent form

min
x∈RnN

f(x) :=

N∑
i=1

fi(xi) s. t. (I − W )1/2x = 0, (2)

where x = (x1; . . .;xN ) ∈ RnN , W = W ⊗ I ∈ RnN×nN

and I ∈ RnN×nN is the identity matrix.
A 2: The functions fi’s are twice continuously differentiable

and the eigenvalues of the local Hessians are bounded by positive
constants 0 < m ≤ M < ∞, i.e.,

mI � ∇2fi(y) � MI,

for all y ∈ Rn and i = 1, . . . , N.
The above assumption implies that the function f(x) is also

strongly convex with constantm and its gradient∇f is Lispchitz
continuous with constantM.Given that we consider a method of
Newton-type, the assumption on Lipschitz continuous Hessian
is also needed, as usual in the theory of Newton methods and
in [24].

A 3: The Hessian of the objective function ∇2f(x) is Lips-
chitz continuous, i.e., there exists L > 0 such that

‖∇2f(x)−∇2f(z)‖ ≤ L‖x− z‖, x, z ∈ RnN .

The following Lemma from [25] will be used in the conver-
gence analysis.

Lemma 2.1: [25] Assume that A2-A3 hold. Then for all
x, z ∈ RnN

‖∇f(x)−∇f(z) +∇2f(x)(z− x)‖

≤ min

{
2M,

L

2
‖x− z‖

}
‖x− z‖.

Now, the Augmented Lagrangian function of (2) is defined as

L(x,v) = f(x) + vT (I − W )1/2x+
α

2
xT (I − W )x,

where α > 0 is a constant and v is dual variable. For a strictly
positive proximal coefficient ε, the proximal method of multi-
pliers is defined by the primal update

xk+1 = argminL(x,vk) +
ε

2
‖x− xk‖2, (3)

while the dual update with the stepsize α is

vk+1 = vk + α(I − W )1/2xk+1. (4)

The primal step is not implementable in the distributed environ-
ment due to the augmented term α

2x
T (I − W )x and therefore

an approximation of L(x,v) is needed. We consider the sec-
ond order Taylor approximation with respect to x at the point
(xk,vk),

L (x,vk
) ≈ L (xk,vk

)
+ gk

(
x− xk

)
+

1

2

(
x− xk

)T
Hk
(
x− xk

)
, (5)

with

Hk = ∇2f(xk) + α(I − W ) + εI. (6)

and

gk := ∇xL
(
xk,vk

)
= ∇f

(
xk
)
+ (I − W )1/2 vk

+ α (I − W )xk.

Using the second order Taylor approximation (5) one can define
the Newton step dk

N as

Hkdk
N = −gk, (7)

and form the primal update as xk+1 = xk + dk
N . Notice that

the matrix Hk has the sparsity structure of the graph; hence, one
can apply an iterative method of the fixed point-type to solve (7).
The details of such procedure can be found in [16]. However,
solving (7) exactly might be too costly and an approximate
solution to (7) is in fact sufficient for the convergence as we
will demonstrate further on. Thus the step we use is defined
by Hkdk = −gk + rk, for some residual rk which obeys the
classical Inexact Newton forcing condition [12]

‖rk‖ ≤ ηk‖gk‖,
for a forcing term ηk ≥ 0.
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The dual update is given by (4) but the matrix α(I − W )1/2

is not neighbor sparse. Thus we apply the same variable trans-
formation as in [24], defining a sequence of variables qk as

qk = (I − W )1/2vk.

Now, multiplying the dual update (4) by (I − W )1/2 from the
left and using the definition of qk we obtain

qk+1 = qk + α(I − W )xk+1, (8)

which is computable in the distributed manner. Notice that with
this change of variables we get

gk = ∇f(xk) + qk + α(I − W )xk. (9)

III. DISTRIBUTED INEXACT NEWTON ALGORITHM

With the notation introduced in the previous section we are
now in a position to state the general INDO method. Further
details regarding the inexact Newton step computation (step
S1 in the INDO method below), are postponed to Section IV.
Therein, we discuss different possibilities for fulfilling the Inex-
act Newton condition (10) in a distributed environment. Assume
that the forcing sequence {ηk}∞k=0 is nonnegative.

INDO method

Input: x0 ∈ RnN , q0 = 0, k = 0, {ηk}k, α > 0, ε > 0
S1 Find a step dk such that

Hkdk = −gk + rk, ‖rk‖ ≤ ηk‖gk‖. (10)

S2 Compute the primal update

xk+1 = xk + dk.

S3 Compute the dual update

qk+1 = qk + α(I − W )xk+1,

set k = k + 1 and return to S1.

As already stated, one can easily see that the algorithm fits
the general proximal multipliers framework [24], with the primal
step defined in S1-S2 and the dual update in S3. The key novelty
is the direction computation in S1 where we generate a suitable
inexact direction such that the residual is small enough with
respect to the gradient norm, (10). This important property actu-
ally allows for flexible approach in the linear solver and avoids
oversolving. That is, the proposed approach allows using a
relatively large tolerance while the gradient is large, and implies
stringent tolerance condition as the value of gradient decreases.
The details of S1 implementation are presented in Section IV,
where we also give INDO algorithm from the perspective of
each node in the network.

Due to the convexity and the fact that we only have equality
constraints, x∗ is a solution of problem (2) if and only if there
exists v∗ such that

∇f (x∗) + (I − W )1/2 v∗ = 0 (11)

(I − W )1/2 x∗ = 0. (12)

Strong convexity implies that (x∗,v∗) is unique.

The convergence analysis we develop below relies on the
reasoning from [24] in general but the error analysis, with respect
to the proximal method of multipliers (see Section II) is funda-
mentally different. We present the proof through a sequence of
technical Lemmas, some of which correspond to parts of proofs
in [24] that are rather similar. Proofs of the Lemmas similar
to [24] are provided in Appendix for completeness.

Lemma 3.1: Let A1-A2 hold. A sequence generated by Al-
gorithm INDO satisfies

qk+1 − qk − α(I − W )(xk+1 − x∗) = 0.

Lemma 3.2: Let assumptions A1-A2 hold and {xk,qk} be a
sequence generated by Algorithm INDO. Then

∇f(xk+1)−∇f(x∗) + εdk + qk+1 − q∗ + ek = 0,

where

ek = ∇2f
(
xk
)
dk +∇f

(
xk
)−∇f

(
xk+1

)
− rk, rk = Hkdk + gk,

and

q∗ = (I − W )1/2 v∗.

Lemma 3.3: Let assumptions A1-A3 hold and {xk,qk} be
the sequence generated by INDO. Then

‖ek‖ ≤ min

{
2M,

L

2
‖dk‖

}
‖dk‖

+ ηk(2α+M)‖xk − x∗‖+
√
2ηk‖vk − v∗‖.

In the convergence analysis below we will use the following
inequality, [24]. Let a, b be two arbitrary vectors of the same
dimension and ξ > 0 be an arbitrary real number. Then

−2aT b ≤ 1

ξ
‖a‖2 + ξ‖b‖2. (13)

The technical lemma below is proved in [24], although it is not
stated separately, see the proof of Theorem 2, inequality (93)
in [24].

Lemma 3.4: Assume that A1-A3 hold and {xk,qk} be a
sequence generated by Algorithm INDO. Then

‖vk+1 − v∗‖2 ≤ βε2

(β − 1)λ2
‖dk‖2

+
φβ

λ2
‖∇f(xk+1)−∇f(x∗)‖2

+
βφ

(φ− 1)λ2
‖ek‖2,

where λ2 is the smallest nonzero eigenvalue of I − W , and
β, φ > 1 are arbitrary constants.

Let us define the sequence of concatenated dual and primal
errors as well as the Lyapunov function using the matrixG below,

u =

[
v

x

]
G =

[
I 0

0 αεI

]
.

Analogously define the concatenated u∗ and consider the se-
quence ‖uk − u∗‖2G = ‖vk − v∗‖2 + αε‖xk − x∗‖2. We will
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prove that that the sequence ‖uk − u∗‖2G converges to zero
linearly and hence the sequence of primal errors ‖xk − x∗‖
converges to zero linearly as well.

The following lemma is proved in the Appendix.
Lemma 3.5: Assume that A1-A3 hold and let {xk,qk} be a

sequence generated by Algorithm INDO. Then

‖uk+1 − u∗‖2G − ‖uk − u∗‖2G
≤ − 2α

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2

− ‖xk+1 − x∗‖2( 2αmM
m+M −α

ζ )I+α2(I−W )

− αε‖dk‖2 + αζ‖ek‖2. (14)

The main convergence result is stated in the following
Theorem.

Theorem 3.1: Assume that A1-A3 hold and let {xk,qk}
be a sequence generated by Algorithm INDO. Let β, φ > 1
be arbitrary constants, λ2 the smallest positive eigenvalue of
(I − W ) and ζ ∈ ((m+M)/(2mM), ε/(8M2)). Then there
exists η̄ > 0 such that for ηk ≤ η̄, the sequence of Lyapunov
functions ‖uk − u∗‖G satisfies

‖uk+1 − u∗‖2G ≤ 1 + δ̃

1 + δ
‖uk − u∗‖2G ,

where δ̃ < δ ≤ min{δa, δb} with

δa=
2mM

(m+M) ε
− 1

εζ

δb= min

{(
αε−8M2αζ

)
(φ−1)(β−1)λ2

βε2(φ− 1) + 8M2β(β − 1)φ
,

2αλ2

(m+M)φβ

}
.

Proof: To prove the statement we have to find δ and δ̃ such
that

δ‖uk+1−u∗‖2G−δ̃‖uk−u∗‖2G ≤ ‖uk−u∗‖2G−‖uk+1−u∗‖2G .
(15)

Using the estimate for ‖vk+1 − v∗‖ given in Lemma 3.4 and
(14) in Lemma 3.5, the inequality (15) holds if

δαε‖xk+1 − x∗‖2 + δβε2

(β − 1)λ2
‖dk‖2

+
δφβ

λ2
‖∇f
(
xk+1

)−∇f (x∗) ‖2

+
βφδ

(φ− 1)λ2
‖ek‖2 − δ̃αε‖xk − x∗‖2 − δ̃‖vk − v∗‖2

≤ ‖xk+1 − x∗‖2( 2αmM
m+M −α

ζ )I+α2(I−W )
+ αε‖dk‖2

+
2α

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2 − αζ‖ek‖2. (16)

By Lemma 3.3 we have

‖ek‖2 ≤ 8M2‖dk‖2 + 4η2k(M + 2α)2‖xk − x∗‖2

+ 8η2k‖vk − v∗‖2.

Substituting this bound for ‖ek‖2 and the corresponding lower
bound for −‖ek‖2 at both sides of (16) we get the inequality

0 ≤ ‖xk+1 − x∗‖2( 2αmM
m+M −α

ζ )I+α2(I−W )

+ ‖∇f
(
xk+1

)−∇f(x∗)‖2
(

2α

m+M
− δφβ

λ2

)

+ ‖dk‖2
(
αε− δβε2

(β − 1)λ2
− 8M2

(
βφδ

(φ− 1)λ2
+ αζ

))

+ ‖xk − x∗‖2
(
−4η2k(M + 2α)2

(
δβφ

(φ− 1)λ2
+ αζ

)

+ αεδ̃

)

+ ‖vk − v∗‖2
(
δ̃ − 8η2k

(
αζ +

δβφ

(φ− 1)λ2

))
. (17)

The last inequality holds for δ specified in the statement and
δ̃ < δ if

η2k≤ η̄2

≤ min

⎧⎨
⎩ δ̃αε

4(M+2α)2
(
αζ+ δβφ

(φ−1)λ2

) , δ̃

8
(
αζ+ δβφ

(φ−1)λ2

)
⎫⎬
⎭
�

Notice that the error term of INDO method can be represented
as ek = ekESOM−∞ − rk, where ekESOM−∞ is the theoretical
error for ESOM method with infinitely many inner iterations –
that is, the error of Newton method applied to the Augmented
Lagrangian. Theorem 3.1 reveals that δ̃ can be chosen arbitrarily
from the interval (0, δ), but the forcing term ηk depends on δ̃
directly which can be seen at the end of the proof of Theorem 3.1.
Smaller δ̃ implies smaller ηk which further implies smaller ‖rk‖,
i.e., the error in solving Newton’s equation. So, smaller δ̃ yields
smaller theoretical convergence factor since we are approaching
the Newton step, but on the other hand it increases the number
of inner iterations which influences both communication and
computational costs of the method.

IV. DISTRIBUTED COMPUTATION OF INEXACT NEWTON STEP

In this section we focus on the Step S1 in (10) of the algorithm
INDO, for a fixed iteration k. We drop the iteration counter in
the Hessian matrix Hk in (6) and remaining relevant quantities
to simplify notation. That is, further on denote Hk = H, i.e.,

H = ∇2f(xk) + α(I − W ) + εI, (18)

where ε > 0 is the proximal parameter and g = gk =
∇f(xk) + qk + α(I − W )xk. By assumption A2 the Hessian
of the objective function f is positive definite with mI �
∇2f(xk), the matrix α(I − W ) is positive semidefinite and
since ε > 0 we conclude that there holds

(m+ ε)I � H.

Notice that we can even make H strictly diagonally dominant
by taking ε large enough. Furthermore, H has the same sparsity
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structure of the network and hence one can easily apply an
iterative solver of the fixed point type in S1 of Algorithm INDO.

Let us look more closely at the step calculation in S1. For
simplicity of exposition here we concentrate on the Jacobi
Overrelaxation (JOR) method although other options for linear
solver are possible. For each k we need to solve the system
Hd = −g approximately i.e. we are looking for dk such that
(10) holds. Thus we will consider the linear system

Hd = −g, (19)

with H satisfying (18). With the splitting H = D − G, where
D is the diagonal part of H, the Jacobi Overrelaxation matrix
Tγ is defined as

Tγ = γD−1G + (1− γ)I (20)

and the JOR iterative method is defined as

d�+1 = Tγd
� − γD−1g, (21)

with γ being the relaxation parameter, for arbitrary d0. For γ =
1 we get the Jacobi iterative method with the iterative matrix
T1 = D−1G.

The matrix Tγ has the same sparsity structure as W and
all other matrices we considered so far, including the global
Hessian. More precisely we can specify block-rows of Tγ that
are used in the JOR method by each node as follows. Notice
that, for matrix D, we have its diagonal blocks Dii ∈ Rn×n, i =
1, . . . , N, given by

[Dii]j = ε+ α(1− wii) +
[∇2fi

(
xk
i

)]
jj
, j = 1, . . . , n,

(22)
where [∇2fi(x

k
i )]jj denotes the j-th diagonal element of the

local Hessian ∇2fi(x
k
i ). Similarly, with matrix G, consider its

blocks Gij ∈ Rn×n, i, j = 1, . . . , N . Then for i �= j we have
that Gij is diagonal with elements αwij I on the diagonal, and
for i = j we have

Gii = diag
(∇2fi(x

k
i )
)−∇2fi

(
xk
i

)
, (23)

with diag(∇2fi(x
k
i )) ∈ Rn×n being the diagonal of local Hes-

sian ∇2fi(x
k
i )), for all i = 1, . . . , N. Thus the matrix Tγ has

block elements [Tγ ]ij = D−1
ii Gij , i, j = 1, . . . , N. Let [Tγ ]i ∈

Rn×nN be the block row of Tγ , i = 1, . . . , N

[Tγ ]i =
[
D−1

ii Gi1, . . . , D
−1
ii Gii, . . . , D

−1
ii GiN

]
. (24)

Similarly, we can define the partition of the gradient vector g
with the ith component being

gki = ∇fi(x
k
i ) + qki + α

⎡
⎣(1− wii)x

k
i −
∑
j∈Oi

wijx
k
j

⎤
⎦ ,

× i = 1, . . . , N. (25)

Notice that each node i can compute [Tγ ]i and gki .
Let us now state the k + 1-th iteration of INDO algorithm in

the node-wise manner.
Notice that Step 1.2 requires only the neighboring elements of

d� as Gij = 0 ifwij = 0, i �= j, and thus the step is well defined
and (26) is equivalent to (21). The algorithm above specifies a
choice for Step S1 in the general INDO method in (10), but

Algorithm: INDO-Nodewise.

Given: xk,qk, α > 0, ε > 0, �k ≥ 1, � ∈ N.
S1 Computing the direction dk

S1.1 Each node computes [Tγ ]i and gki by (22)–(25)
and chooses d0i ∈ Rn.

S1.2 Each node computes dki as follows.
For � = 0, . . . , �k − 1

Each node sends d�i to all its neighbors and
receives d�j , j ∈ Oi.

Each node computes

d�+1
i = [Tγ ]id

� − γD−1
ii gki x (26)

with d� = (d�1, . . . , d
�
N ).

Endfor.
Set dki = d�ki .

S2 Primal update
S2.1 Each node updates the primal variable

xk+1
i = xk

i + dki .

S2.2 Each node sends xk+1
i to all its neighbours and

receives xk+1
j , j ∈ Oi.

S3 Each node computes the dual update

qk+1
i = qki + α[(1− wii)x

k+1
i −

∑
j∈Oi

wijx
k+1
j ],

and sets k = k + 1.

it is not straightforward to understand the connection. Namely,
in Step 1.2 of the node-wise algorithm we state that each node
should perform �k JOR iterations, while the main algorithm (see
(10)) requires the step dk such that the inexact forcing condition
(10) with some ηk > 0 holds. In the sequel we first analyse the
convergence conditions of the JOR method for solving (19) and
then we show that one can in fact determine �k such that (10)
holds after �k iterations in Step 1.2 of the above algorithm.

The JOR method is convergent for

γ ∈ (0, 2/σ (D−1H
))

(27)

for symmetric positive definite matrices, with σ(D−1H) being
the spectral radius of D−1H, [13]. In the statement below we
estimate the upper bound for the spectral radius of matrix D−1H,
using the block-wise Euclidean norm as in [2], [16]. For T ∈
RnN×nN ,T = [Tij ], Tij ∈ Rn×n we define

‖T‖b = max
1≤i≤N

N∑
j=1

‖Tij‖2. (28)

Clearly, ‖ · ‖b is a norm.
Proposition 4.1: Let Assumptions 1-3 hold and α > 0. Then

the Jacobi Overrrelaxation method (19) is convergent for

γ ∈
(
0, 2

m+ α(1− wd) + ε

M + ε+ α(1− wm) + α(1− wd)

)
,

where wd = max1≤i≤N wii, wm = min1≤i≤N wii.
Proof: Given the fact that for positive ε and α we have that

H is positive definite, the convergence interval is determined
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by (27). On the other hand we have σ(D−1H) ≤ ‖D−1H‖b, so
we have to estimate ‖D−1H‖b. By definition of D−1H and the
norm we have

‖D−1H‖b = max
1≤i≤N

N∑
j=1

‖ [D−1H
]
ij
‖2

= max
1≤i≤N

⎛
⎝‖I −D−1

ii Gii‖2 +
∑
j �=i

‖ −D−1
ii Gij‖2

⎞
⎠ .

For each i = 1, . . . , N we have that Dii is given by (22).
Furthermore, the diagonal elements of local Hessian ∇2fi(x

k
i )

are in the interval [m,M ] by A2. Therefore

‖Dii‖2 ≥ m+ α (1− wii) + ε ≥ m+ α(1− wd) + ε.

Next, for i �= j, we have ‖Gij‖2 = αwij and
∑

j∈Oi
wij = 1−

wii ≤ 1− wm by the properties of W stated in A1. On the other
hand, for i = j, we have by (23)

‖Gii‖2 ≤ ‖∇2fi − diag(∇2fi)‖2.
It can be shown that ‖∇2fi(x

k
i )− diag(∇2fi(x

k
i ))‖2 ≤ M −

m and thus

‖Gii‖2 ≤ M −m.

Combining the bounds for Dii and Gii we get

‖I −D−1
ii Gii‖2 ≤ 1 + ‖D−1

ii Gii‖2

≤ 1 +
M −m

m+ α(1− wd) + ε

=
M + α(1− wd) + ε

m+ α(1− wd) + ε
.

Finally, using the bound above and the bounds for ‖D−1
ii ‖2 and

‖Gij‖2, we get

‖D−1H‖b ≤ α(1− wm)

m+ α(1− wd) + ε
+

M + α(1− wd) + ε

m+ α(1− wd) + ε

=
M + ε+ α(1− wm) + α(1− wd)

m+ α(1− wd) + ε
,

and the statement follows. �
Notice that the bound obtained above does not depend on

k, and hence we can claim that the method in Step 1.2 of the
node-wise algorithm will converge to the true solution d∗ for
an arbitrary d0 ∈ RnN if we define the JOR matrix with the
relaxation parameter γ as stated in Proposition 4.1.

The remaining question is the number of inner iterations
in Step 1.2 �k that ensures that the forcing condition (10) is
satisfied. In the statement bellow we will prove that such �k exists
considering a special choice of d0i for simplicity of exposition.
Similar result can be proved for other choices of d0i .

Proposition 4.2: Let A1-A3 hold and assume that γ is chosen
from the interval specified in Proposition 4.1. For given ηk > 0
denote by dk a step obtained through Step 1.2 of the node-
wise algorithm INDO with d0i = 0, i = 1, . . . , N and �k inner

iterations (26). Then ‖Hdk + g‖ ≤ ηk‖g‖ after at most

�k ≥
⌈

ln(ηk/c)

| ln(σ(Tγ))|
⌉
,

where iterations, where �a� denotes the smallest integer greater
than or equal to a and

c :=
M + 2 + ε

m+ ε

√
ε+M + α(1− wm)

ε+m+ α(1− wd)
.

Proof: Denote by d∗ the exact solution of Hd = −g and
consider the sequence {d�} generated at Step 1.2 with d0 =
0. As d�+1 = Tγd

� − γD−1g, � = 0, 1, . . . and d∗ = Tγd
∗ −

γD−1g we have

d� − d∗ = T �
γ(d

0 − d∗).

Notice that Tγ is not symmetric, but it has the same set of
eigenvalues as the following symmetric matrix

T ′
γ = D−1/2(γG + (1− γ)D)D−1/2 := D−1/2CγD−1/2,

since Tγ = D−1Cγ and both D−1 and Cγ are symmetric (see
Remark 4.2 of [1] for instance). Therefore, we conclude

σ(Tγ) = σ(T ′
γ) = ‖T ′

γ‖
and according to the choice of γ and Proposition 4.1 we have
σ(Tγ) < 1. Moreover, it ca be shown that

T �
γ = D−1/2(T ′

γ)
�D1/2

and thus we obtain

‖d� − d∗‖ ≤ ‖D−1/2‖‖T ′
γ‖�‖D1/2‖‖d0 − d∗‖

= ‖D−1/2‖(σ(Tγ))
�‖D1/2‖‖d0 − d∗‖. (29)

Considering that, by the structure of D, we have

(ε+m+ α(1− wd))I � D � (ε+M + α(1− wm))I,

we conclude that

‖D−1/2‖‖D1/2‖ ≤
√

ε+M + α(1− wm)

ε+m+ α(1− wd)
:= cD.

Therefore, we obtain

‖d� − d∗‖ ≤ (σ(Tγ))
�cD‖d0 − d∗‖ (30)

= (σ(Tγ))
�cD‖H−1g‖ (31)

≤ (σ(Tγ))
�cD‖H−1‖‖g‖ (32)

≤ (σ(Tγ))
� cD
m+ ε

‖g‖, (33)

since by A1 and A2 we can upper bound the Hessian and its
inverse as

‖H‖ ≤ M + 2 + ε, ‖H−1‖ < (m+ ε)−1,

as ‖I − W ‖ ≤ 2. Finally, we have

‖Hd� + g‖ = ‖Hd� − Hd∗‖ ≤ ‖H‖‖d�

− d∗‖ ≤ cD
M + 2 + ε

m+ ε
(σ(Tγ))

�‖g‖
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and we get

‖Hd�k + g‖ ≤ ηk‖g‖
for �k given in the statement. �

The above statement implies that we can run INDO with the
fixed number of inner iterations for all k, by taking �k = �(η̄)
(see Theorem 3.1), to avoid the overhead needed to define suit-
able iteration-varying quantities ηk and �k. In fact, the numerical
results we present in the next Section show that INDO behaves
remarkably well if we take a very modest number of inner
iterations at each outer iteration; namely, even �k = 1 with the
so-called warm start gives satisfactory results. In practice, this
also alleviates the need to calculate the complicated expression
for �(η̄) as per Proposition 4.2 that depends on certain global
quantities such as σ(Tγ).

Another possibility would be to define the forcing condition
in the block infinity norm, i.e.,

‖Hdk + g‖∞ ≤ ηk‖g‖∞.

Then each node can compute the value of local residual ‖r�i‖∞
at each �; subsequently, at each �, the nodes can run an iterative
primitive for computing maximum (e.g., [45]) of their local
residuals until the overall forcing condition in the block infinity
norm is satisfied.

A couple of words on the forcing sequence {ηk} are due here.
Given that we are in the framework of the proximal method
of multipliers, the most we can achieve is the overall linear
convergence as the linear convergence is achieved even if the
Newtonian linear systems are solved exactly i.e. for ηk = 0,
see [24]. On the other hand we know from the classical opti-
mization theory that ηk greatly influences the local convergence
rate of Inexact Newton methods. In fact for ηk → 0 we have
superlinear local convergence while ηk = O(‖gk‖) recovers the
quadratic convergence of the Newton method. In fact, one can
show that the bound for η̄ can be made arbitrarily close to 1
and still have a convergent method if a weighted norm is used,
see [40]. But given the overall linear convergence at most in the
assumed framework, it seems most efficient to work with a con-
stant ηk during the whole process as such procedure maintains
the linear rate of convergence while minimizing the effort needed
for tuning ηk and �k. The key property – avoiding oversolving
in the approximate Newton step calculation – is achieved with
a constant ηk (and hence constant �k). The comparison with
ESOM, both in terms of (inner iterations) convergence factor and
numerically, presented in the next section strongly supports the
approach we advocate here – approximate second order direction
with the error proportional to the gradient value while incurring
a small computational cost.

A. Inner Iterations’ Convergence Rate of INDO and ESOM

We provide here a more detailed comparison of INDO with
the ESOM method proposed in [24] with respect to inner it-
erations’ convergence. The two algorithms have identical dual
variable updates, given by (8). Hence we focus on the primal
variable updates. At each outer iteration k, both INDO and
ESOM approximately solve the system of linear equations (19).

While INDO solves (19) via (20)–(21), [24] adopts a different
approach through a Taylor approximation; see equation (13)
in [24]. However, the Taylor approximation approach admits a
representation in the spirit of (20)–(21). Namely, it can be shown
that the ESOM solver of (19) can be expressed as follows:

d�+1
E =

(
D−1

E B
)
d�
E − D−1

E g, (34)

for � = −1, 0, 1, . . ., with d−1
E = 0. Here, ESOM utilizes the

splitting H = DE − B of the Hessian H in (18), with

DE = ∇2f
(
xk
)
+ 2α (I − diag(W )) + ε I (35)

B = α (I − 2diag(W ) + W ). (36)

That is, an ESOM inner iteration � in (34) is of a form similar to
INDO; however, a major difference is that the utilized splitting
involves a block-diagonal matrix DE with non-sparse n× n
diagonal blocks. As a result, (34) requires inverting a dense
n× n positive definite matrix per node. In contrast, with the
INDO approach in (20)–(21), the splitting matrix D is diagonal
and hence no matrix inversion is required. A more detailed
computational cost analysis per inner iteration for quadratic and
logistic regression problems is presented in Section V-II.

We next compare convergence rates of inner iterations of
ESOM and INDO. For both methods, it is easy to show that
the error c� = d� − d∗ with respect to the solution d∗ of (18)
evolves as:

c�+1 = Tc�. (37)

Here, for ESOM, we have that c� = d�
E − H−1g, and

T = D−1
E B; and for INDO, we have c� = d� − H−1g, and

T = Tγ = γ D−1G + (1− γ)I. That is, provided that the spec-
tral radius σ(T ) is less than one, c� converges to zero linearly
with the convergence factor determined by σ(T ). It is in general
difficult to explicitly evaluate σ(T ) for INDO and ESOM. We
hence compare the two methods in terms of the block-wise
matrix norm upper bound ‖T‖b on σ(T ) introduced in (28), that
in turn admits intuitive upper bounds. Assuming for simplicity
that all elements on the diagonal of W are mutually equal,
wii = w, i = 1, . . . , N , and that γ = 1 with INDO, it can be
shown, similarly as in Proposition 4.1, that the following holds:

ESOM : ‖T‖b ≤ 2α (1− w)

2α (1− w) + ε+m
< 1 (38)

INDO : ‖T‖b ≤ M −m+ α (1− w)

α (1− w) + ε+m
< 1,

for ε > max{M − 2m, 0}. (39)

We now comment on the convergence factor upper bounds in
(38) and (39). First, we can see that, with both ESOM and INDO,
the convergence factor can be made arbitrarily good (close to
zero) by taking a sufficiently large ε. However, a too large ε
comes at a price of slowing down the outer iterations, i.e., as
too large ε makes small differences between xk+1 and xk, see
equations (29) and (3). Second, we can see that, while we can
take arbitrary (in fact, arbitrarily small) positive ε for ESOM,
with INDO ε needs to be sufficiently large, i.e., we need to
have ε > max{M − 2m, 0}. That is, by avoiding n× n matrix
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inversion at each node with INDO, we pay a price in that ε
should be sufficiently large, i.e., of orderM . However, extensive
simulations in the next subsection show that this incurs no overall
loss of INDO, i.e., INDO is comparable or faster iteration and
communication-wise (and faster computational cost-wise) than
ESOM with a best hand-tuned ε. Third, interestingly, when
α and ε are large compared with M , INDO’s inner iteration
convergence factor upper bound (39) is comparable or even
smaller than that of ESOM in (39). Extensive simulations show
that taking α, ε to be of the same order and of the same order
as M (in fact, we can take α = M = ε) works well with INDO.
This choice is in a good agreement with the theoretical upper
bound in (39).

The recommended tuning parameter choice α = M = ε still
requires a beforehand global knowledge of system parameters,
specifically the constant M . Assuming that each node knows
Mi–a Lipschitz constant of its own function fi’s gradient,
M = maxi=1.,,,,N Mi can be obtained by running beforehand
a distributed algorithm for computing maximum of scalar val-
ues held by the nodes, e.g., [45]. This can be done with a
low overhead, wherein the number of required inter-neighbor
(scalar-transmission) communication rounds is on the order of
the network diameter. INDO as implemented in Section V also
requires the beforehand knowledge ofm andwd; these quantities
can be computed beforehand analogously to M .

V. NUMERICAL RESULTS

In this section we analyze computational and communication
costs of INDO and test its performance on a set of standard
test examples. INDO is a second-order method based on the
Proximal Method of Multipliers and differs significantly from
the ESOM method, [24] in the primal variable construction
update. Thus, our main aim is to investigate how INDO compares
with ESOM. On the other hand, first order methods such as EX-
TRA [30] can also achieve exact linear convergence; henceforth,
we compare INDO with EXTRA as a representative of exact first
order methods.

First, we compare INDO with ESOM on quadratic cost
functions (simulated data) and on logistic regression problems
(real data). The network we consider has N = 30 nodes and is
formed as follows, [19]. The points are sampled randomly and
uniformly from [0, 1]× [0, 1]. The edges between points exists
if their Euclidean distance is smaller than r =

√
log(N)/N .

The resulting graph instance considered is connected. The
weight coefficients in the communication matrix W are taken as
wi,j = 1/(1 + max{deg(i), deg(j)}), where deg(i) stands for
the degree of node i, for directly connected nodes i and j, and
the diagonal weights are wi,i = 1−∑j �=i wi,j . The matrix W
generated in this way satisfies A1.

Let us now describe the test examples. Quadratic local cost
functions are of the form

fi(y) =
1

2
(y − bi)

TBii(y − bi) (40)

and the data is simulated as in [19], i.e., vectors bi are drawn from
the Uniform distribution on [1,31], independently from each
other. Matrices Bii are of the form Bii = PiSiPi, where Si are

diagonal matrices with Uniform distribution on [1,101] and Pi

are matrices of orthonormal eigenvectors of 1
2 (Ci + CT

i ) where
Ci have components drawn independently from the standard
Normal distribution. Given that in this case we can compute the
exact minimizer y∗, the error is measured as

E(xk) :=
1

N

N∑
i=1

‖xk
i − y∗‖
‖y∗‖ , (41)

Both Algorithms require the Hessian lower and upper bound
M,m and we calculate them as M = maxi Mi, where Mi is
the largest eigenvalue of Bii and m = mini mi, where mi > 0
is the smallest eigenvalue of Bii. The dimension of the problem
is set to n = 100.

The two methods are also compared on binary classification
problems and the following data sets: LSVT Voice Rehabili-
tation [32] (n = 309, total sample size T = 126) and Parkin-
son’s Disease Classification [28] (n = 754, total sample size
T = 756). See also [17] for results on the Mushrooms data
set [35] (n = 112, total sample size T = 8124). For each of
the problems, the data is divided across 30 nodes of the graph
described above. The logistic regression with the quadratic
regularization is used and thus the local objective functions are
of the form

fi(y) =
1

|Ji|
∑
j∈Ji

log
(
1 + e−ζjp

T
j y
)
+

m

2
‖y‖2,

where Ji collects the indices of the data points assigned to node
i, pj ∈ Rn is the corresponding vector of attributes and ζj ∈
{−1, 1} represents the label. The data is scaled in a such way that
M = 1 +m with m = 10−4. Since the solution is unknown in
general, the error is measured as the average value of the original
objective function across the nodes’ estimates

V
(
xk
)
=

1

N

N∑
i=1

N∑
j=1

fj
(
xk
i

)
. (42)

We fix the free parameters of INDO method to α = ε = M . The
reasoning behind this choice is explained in the previous section.
We use this choice in all the tested examples, although it may
not be the optimal choice. As discussed in the previous section,
step S1 of INDO method can be implemented in different ways
depending on the network characteristics, dimension of the
problem, etc. We use a practical version of INDO in the tests
by taking a fixed number � of inner iterations of JOR method
(e.g., � = 1) with γ = 2(m+ ε+ α(1− wd))/(M + 2α+ ε)
denoted by INDO-� in the sequel. Initial d0 is obtained by solv-
ing ‖H0d+ g0‖∞ ≤ ‖g0‖∞. In all the subsequent iterations we
use the so called warm start, i.e., we setd0 = dk−1 at Step 1.2 in
the node-wise INDO representation. Given that we implement
the fixed number of inner iterations � the forcing term ηk is not
explicitly imposed.

Denote by ESOM-�-α-ε the ESOM method with � inner
iterations and the corresponding free parametersα and ε. Notice
that ESOM-� requires the same amount of communications as
INDO-�.

Regarding the computational cost, the main advantage of
INDO method with respect to ESOM is the following: ESOM
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requires inverting full n× n matrices at each node, while INDO
only inverts the diagonal ones. The difference is more evident in
non-quadratic case where the corresponding matrices need to be
inverted in every outer iteration of ESOM method. This is even
more significant in problems with relatively large n.

Let us now estimate the computational costs of the tested
algorithms more precisely. We measure computational cost in
terms of the total number of scalar (inner) products of vectors
of size n incurred. Both ESOM and INDO are second order
methods, so the cost of calculating the derivatives are the same.
Moreover, the outer iterations updates are identical. The main
difference lies in performing the inner iterations. In order to
estimate the costs, let us observe the formula for INDO (26),
i.e.,

d�+1
i = γD−1

ii

⎛
⎝Giid

�
i + α

∑
j∈Oi

wijd
�
j − gki

⎞
⎠+ (1− γ) d�i .

(43)
and ESOM

d�+1
i = [D−1

E ]ii

⎛
⎝α(1− wii)d

�
i + α

∑
j∈Oi

wijd
�
j − gki

⎞
⎠ ,

d0i = − [D−1
E ]iig

k
i . (44)

Both methods perform one consensus step (
∑

j∈Oi
wijd

�
j) per

inner iteration per node. Both methods perform one matrix-
vector product per inner iteration per node as well: INDO
calculates Giid

�
i and ESOM calculates product of [D−1

E ]ii with
the corresponding vector. The difference lies in the following.
INDO inverts the diagonal matrix Dii and multiplies it with the
corresponding vector in each inner iteration, i.e., at each inner
iteration we have component-wise division of two vectors. Thus,
the cost of this operations can be estimated to n� scalar products
of vectors in Rn (SPs) per outer iteration per node for INDO-�
algorithm. On the other hand, ESOM calculates the inverse of
possibly dense symmetric positive definite matrix [DE ]ii which
can be estimated to n2/6 SPs. For logistic regression problems,
we estimate the common computational costs (see [20] for more
details) of both algorithms to |Ji|(2 + n/2) +N + n�+N�/n
SPs per node per (outer) iteration: |Ji|(2 + n/2) SPs is the
cost of calculating the gradient and the Hessian of local cost
function, N = nN/n SPs comes from consensus step in calcu-
lating gk, matrix-vector products take n� SPs and the consensus
with respect to dj vectors takes �N/n SPs. Thus, the overall
computational cost per node per iteration in logistic regression
case is estimated to |Ji|(2 + n/2) +N + n�+N�/n+ n� for
INDO-� and to |Ji|(2 + n/2) +N + n�+N�/n+ n2/6 for
ESOM-�. Clearly, these costs differ by the order O(n). For the
quadratic costs we do not have costs of calculating the local
Hessian in every iteration while the cost of calculating the local
gradient isn SPs. Other common costs are the same as in logistic
regression case. INDO still needsn�SPs in every iteration, while
ESOM only inverts the Hessian in the initial phase with the cost
of n2/6 SPs.

Fig. 1. INDO (solid line) versus ESOM methods (dotted lines): error (41) with
respect to iterations/communication cost (the two top figures) and computational
cost (the two bottom figures) for the number of inner iterations � = 1 (first and
third figure from top) and � = 2 (second and fourth figure from top); Simulated
quadratic costs (40) with n = 100 and N = 30.

Fig. 1 presents results on simulated quadratic costs for dif-
ferent number of inner iterations, i.e., with respect to communi-
cation cost–total number of n-dimensional vectors transmitted
per node. We test different combinations of α and ε for ESOM
method, while INDO is tested with fixed parameters as explained
above. The best tested ESOM algorithm is ESOM-�-M-M, and it



JAKOVETIĆ et al.: HESSIAN INVERSION-FREE EXACT SECOND ORDER METHOD FOR DISTRIBUTED CONSENSUS OPTIMIZATION 765

outperforms the INDO method on this example. Other variants of
ESOM start better, but they fail to converge to the same solution
vicinity of the exact solution as the the remaining two methods.

Figs. 2–3 present analogous tests on logistic regression prob-
lems and the data sets LSVT Voice Rehabilitation and Parkin-
son’s Disease Classification. See also [17] for results on the
Mushrooms data set. As already mentioned, for these problems
M = 1.0001 so we omit the case α = 0.01, ε = 1 for ESOM
method in these tests. All the parameters for INDO algorithm
are the same as in quadratic case. The results show that INDO
algorithm is better or comparable with the ESOM algorithm with
respect to iterations, i.e., communication cost. The difference
seems to be bigger in the case of � = 1 than for the larger number
of inner iterations � = 2. On the other hand, INDO outperforms
ESOM method with respect to computational cost. Notice that
for the Mushrooms dataset [17],n is relatively small with respect
to |Ji| and thus the common cost is the dominant cost, so the
computational cost plots are very similar (in the sense of relative
comparison INDO versus ESOM) to the ones that represent
iterations and communication costs. For the remaining logistic
regression problems, n is comparable to the total sample size T
and thus the INDO’s advantage in computational cost savings is
more evident.

It is of significant interest to compare the methods on test ex-
amples with a high degree of data and local costs’ heterogeneity
across different nodes in the network. To this end, we compare
INDO with ESOM on a test example with highly heterogeneous
quadratic costs. In more detail, we use quadratic costs (40)
where one half of nodes in the network have the Bii matrices
whose eigenvalues are generated from the standard Uniform
distribution; the other half of nodes have the Bii matrices
whose eigenvalues are generated from the standard log-Normal
distribution. All the vectors bi are generated from the standard
Normal distribution. The spectrum (the range that includes the
minimal and the maximal eigenvalue of the matrix) varies from
approximately [0.002,1] to [0.04,28]; the corresponding condi-
tion numbers of the matrices vary from approximately 40 to 940.
The test is performed on the same network with 30 nodes and
the decision variable dimension n = 100. The results are shown
in Fig. 4. For this example, we can see that INDO exhibits better
capabilities to cope with data and local functions heterogeneity
than ESOM.

The same type of results is obtained on a a heterogeneous local
costs example with the logistic regression losses. We continue
to consider the same 30-node network and the Voice data set.
However, now we vary the number of data points available at
each node. More precisely, 5 nodes have 15 data points; 24 nodes
have only two data points; and 1 node has 3 data points. Clearly,
the local costs’ minimizers can be very different here, where the
nodes with 2 data points can have poor local classifiers (that cor-
respond to local loss minimizers). Fig. 5 shows the comparison
of ESOM and INDO versus communication and computational
costs. The results confirm significant advantages of INDO over
ESOM computational cost-wise on the heterogeneous example
also, while the two methods are still comparable communication
cost-wise.

Fig. 2. INDO (solid line) versus ESOM methods (dotted lines): error (42) with
respect to iterations/communication cost (the two top figures) and computational
cost (the two bottom figures) for the number of inner iterations � = 1 (first and
third figure from top) and � = 2 (second and fourth figure from top). LSVT
Voice Rehabilitation dataset.
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Fig. 3. INDO (solid line) versus ESOM methods (dotted lines): error (42) with
respect to iterations/communication cost (the two top figures) and computational
cost (the two bottom figures) for the number of inner iterations � = 1 (first and
third figure from top) and � = 2 (second and fourth figure from top). Parkinson’s
Disease Classification dataset.

Fig. 4. INDO (solid line) versus ESOM methods (dotted lines): error (41) with
respect to iterations/communication cost (the two top figures) and computational
cost (the two bottom figures) for the number of inner iterations � = 1 (first
and third figure from top) and � = 2 (second and fourth figure from top);
Heterogeneous quadratic costs (40) with n = 100 and N = 30.
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Fig. 5. INDO (solid line) versus ESOM methods (dotted lines): error (41) with
respect to iterations/communication cost (the two top figures) and computational
cost (the two bottom figures) for the number of inner iterations � = 1 (first
and third figure from top) and � = 2 (second and fourth figure from top);
Heterogeneous logistic regression costs, LSVT Voice Rehabilitation dataset with
N = 30.

Now, we compare INDO with EXTRA as a representative
first order method. The EXTRA update of the solution estimate
sequence xk

i at node i, using the notation in this paper is defined
as:

x0
i = 0, x1

i =

N∑
j=1

wijx
0
j − αg0i , (45)

Fig. 6. INDO (solid line) versus EXTRA methods (marked lines): error (41)
with respect to communication cost (top) and computational cost (bottom).
Homogeneous quadratic costs (40) with n = 100 and N = 30.

xk+2
i = xk+1

i +

N∑
j=1

wijx
k+1
j −

N∑
j=1

w̃ijx
k
j − α

(
gk+1
i − gki

)
.

(46)

The standard choice of the matrix W̃ = (I +W )/2 is used. Un-
der the above setting, EXTRA requires only the xk

j ’s exchange
per iteration (broadcast of one n-dimensional vector per node),
and thus its communication cost is (�+ 1) times smaller than the
corresponding cost of INDO-�, per iteration. The per-iteration
computational cost of EXTRA is estimated analogously to the
estimation of costs for INDO and ESOM. Namely, the cost per
node per iteration of the EXTRA algorithm is n+N/n and
|Ji|2 +N/n SPs for quadratic and logistic costs, respectively.
Thus, it is obvious that EXTRA method is much cheaper than
INDO per iteration, and hence in general it requires a smaller
execution time per iteration, per node. We test INDO-1 against
EXTRA with different choices of its step size α; we designate
in plots the corresponding EXTRA variant as EXTRA-α. The
considered network and the choice of the weight matrixW , same
for both EXTRA and INDO, are same as before. The results
are shown in Figs. 6 and 7. Fig. 6 presents results obtained
on the homogeneous quadratic problem (40). The advantage
of INDO is clear on this example. For the logistic regression
problem (see [17]), EXTRA outperforms INDO-1 in terms of
computational cost, while the methods are at least compara-
ble (or the comparison goes in favor of INDO) in terms of
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Fig. 7. INDO (solid line) versus EXTRA methods (marked lines): error (41)
with respect to communication cost (top) and computational cost (bottom).
Heterogeneous quadratic costs (40) with n = 100 and N = 30.

Fig. 8. Performance of INDO method on different graphs represented with
different number of nodes and spectral gap controlled by the connection radius.
INDO-1 (solid lines) vs INDO-2 (dotted lines). Simulated strongly convex
quadratic costs (40).

communication cost. Finally, INDO-1 outperforms EXTRA on
the heterogeneous quadratic example described above (Fig. 7),
both in terms of computations and communications. This can
be explained by the fact that, for a challenging heterogeneous
problem with poor condition numbers here, second order cost
functions’ information, harnessed by INDO and ignored by
(a first order method) EXTRA, seems to be crucial for good
performance.

Fig. 8 represents comparison of INDO performance on dif-
ferent graphs on simulated quadratic costs. We vary the number
of nodes N ∈ {10, 20, 30, 40, 50} and the connection radius
R ∈ {0.7r, r, 2r} with r =

√
log(N)/N which influences the

spectral gap of the graph. We set the budget for computational

cost to 104 SPs and report the resulting error of the method
E(xk). Solid lines represent INDO-1 while dotted lines repre-
sent INDO-2 counterparts. INDO-2 seems to be a better option
than INDO-1 in these circumstances, although INDO-2 requires
more SPs per iteration. The advantage is even more evident when
the graph has more links.

VI. CONCLUSION

In this paper, we proposed INDO, an exact distributed second
order method for strongly convex distributed consensus opti-
mization. INDO is design based on the framework of Proximal
Method of Multipliers (PMM) and maintains a primal and a dual
variable per iteration. Unlike existing exact distributed second
order methods like ESOM [24] and DQM [25], INDO does not
involve explicit Hessian inverse calculation when calculating
the primal variable update. Instead, INDO calculates the primal
variable update via a few inner iterations of a fixed point method
(e.g., Jacobi overrelaxation) to approximately solve the system
of linear equations that underlie the Newton direction evaluation;
this update process alleviates the need for Newton inverse calcu-
lation. We prove that INDO achieves a global linear convergence
to the exact solution of the problem of interest. Then, we provide
analysis that reveals how the degree of inexactness in solving the
Newton direction systems of linear equations affects the overall
convergence rate. Furthermore, we provide intuitive bounds on
the convergence factor of the involved linear system solver; these
bounds shed light on the role of different method’s parameters
and provide guidelines on how these parameters should be set.
Numerical experiments on several real data sets demonstrate that
INDO achieves a comparable speed iteration-wise and commu-
nication cost-wise as ESOM, while at the same time reducing
computational cost by at least an order of magnitude, when the
dimension of the optimization variable is on the order of couple
of hundreds or larger. We also examined how INDO compares
with EXTRA, a representative first order method, that does not
involve Hessian calculations and hence has lower per-iteration
computational cost. The results suggest that harnessing second
order information is beneficial in terms of communication cost
and can be beneficial for the overall computational cost, for
heterogeneous and poorly conditioned quadratic problems.

APPENDIX

A. Proof of Lemma 3.1

Starting from (8) and adding the zero term from (12) mul-
tiplied by α(I − W )1/2), i.e., α(I − W )x∗, implies the state-
ment. �

B. Proof of Lemma 3.2

By the definition of step dk in S2, (8) and (11) we have

0 = Hkdk + gk − rk

=
(∇2f

(
xk
)
+ α (I − W ) + εI

)
dk

+ gk − rk ± qk+1

= ∇2f
(
xk
)
dk + α (I − W )dk + εdk +∇f

(
xk
)
+ qk
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+ α (I − W )xk − rk ± qk+1

= ∇2f
(
xk
)
dk + α (I − W )xk+1 + εdk +∇f

(
xk
)

+−rk + qk − (∇f (x∗) + q∗)±∇f
(
xk+1

)
= ∇f

(
xk+1

)−∇f (x∗) + εdk

+
(
qk+1 − q∗)+ ek.

�

C. Proof of Lemma 3.3

By Lemma 2.1, Lemma 3.2 and the condition in S2 of the
algorithm we have

‖ek‖ ≤ ‖∇2f
(
xk
)
dk +∇f

(
xk
)−∇f

(
xk+1

) ‖+ ‖rk‖
≤ min{2M,

L

2
‖dk‖}‖dk‖+ ηk‖gk‖. (47)

Furthermore, the definition ofgk in (9) and optimality conditions
(11), (12) imply

‖gk‖ = ‖∇f
(
xk
)
+ (I − W )1/2 vk + α (I − W )xk

−
(
∇f (x∗) + (I − W )1/2 v∗

)
− α (I − W )x∗‖

≤ ‖∇f
(
xk
)−∇f (x∗) ‖+ ‖ (I − W )1/2

(
vk − v∗) ‖

+ ‖α (I − W )
(
xk − x∗) ‖

≤ M‖xk − x∗‖+
√
2‖vk − v∗‖

+ 2α‖xk − x∗‖
= (M + 2α) ‖xk − x∗‖+

√
2‖vk − v∗‖.

Placing the last inequality into (47) we get the statement. �

D. Proof of Lemma 3.5

By assumption A2 we have that the aggregate function f is
strongly convex with constantm and its gradient∇f is Lipschitz
continuous with constant M. Therefore the following inequality
holds
mM

m+M
‖xk+1 − x∗‖2 + 1

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2

≤ (xk+1 − x∗)T (∇f
(
xk+1

)−∇f (x∗)
)
. (48)

On the other hand from Lemma 3.2 we have

∇f
(
xk+1

)−∇f (x∗) =−εdk−(I−W )1/2
(
vk+1−v∗)−ek

Putting the right hand side of this inequality back in (48) and
multiplying with 2α yields

2αmM

m+M
‖xk+1 − x∗‖2

+
2α

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2

≤ −2α
(
xk+1 − x∗)T (I − W )1/2

(
vk+1 − v∗)

− 2αε
(
xk+1 − x∗)T dk − 2α

(
xk+1 − x∗)T ek. (49)

Now, Lemma 3.1 implies α(xk+1 − x∗)T (I − W )1/2 =
(vk+1 − vk)T , and therefore

2αmM

m+M
‖xk+1 − x∗‖2 + 2α

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2

≤ −2
(
vk+1 − vk

)T (
vk+1 − v∗)− 2αε

(
xk+1 − x∗)T dk

− 2α
(
xk+1 − x∗)T ek. (50)

Notice further that

2
(
vk+1 − vk

)T (
vk+1 − v∗) = ‖vk+1 − vk‖2

+ ‖vk+1 − v∗‖2 − ‖vk − v∗‖2

and

2
(
xk+1 − x∗)T dk = ‖dk‖2 + ‖xk+1 − x∗‖2 − ‖xk − x∗‖2.

Going back to (50) we get

2αmM

m+M
‖xk+1 − x∗‖2 + 2α

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2

≤ −‖vk+1 − vk‖2 − ‖vk+1 − v∗‖2 + ‖vk − v∗‖2

− αε‖dk‖2 − αε‖xk+1 − x∗‖2

+ αε‖xk − x∗‖2 − 2α
(
xk+1 − x∗)T ek. (51)

Lemma 3.1 implies that ‖vk+1 − vk‖2 = ‖xk+1 −
x∗‖2α2(I−W ) and by definition of Lyapunov function we

have ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G = ‖vk − v∗‖2 − ‖vk+1 −
v∗‖2 + αε‖xk − x∗‖2 − αε‖xk+1 − x∗‖2. Thus, inequality
(53) reduces to

2αmM

m+M
‖xk+1 − x∗‖2 + 2α

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2

≤ ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G − αε‖dk‖2

− ‖xk+1 − x∗‖2α2(I−W )

− 2α
(
xk+1 − x∗)T ek. (52)

Regrouping the terms in the above inequality yields

‖uk+1 − u∗‖2G − ‖uk − u∗‖2G
≤ − 2α

m+M
‖∇f
(
xk+1

)
−∇f (x∗) ‖2 − ‖xk+1 − x∗‖22αmM

m+M I+α2(I−W )

− αε‖dk‖2 − 2α
(
xk+1 − x∗)T ek. (53)

Using the bound 2(xk+1 − x∗)T ek ≥ −1/ζ‖xk+1 − x∗‖2 −
ζ‖ek‖2, which holds for any ζ > 0, we get

‖uk+1 − u∗‖2G − ‖uk − u∗‖2G
≤ − 2α

m+M
‖∇f
(
xk+1

)−∇f (x∗) ‖2 − ‖xk+1

− x∗‖2( 2αmM
m+M −α

ζ )I+α2(I−W )

− αε‖dk‖2 + αζ‖ek‖2. (54)
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Newton methods for minimizing large sums of convex functions,” IMA
J. Numer. Anal., vol. 40, no. 4, pp. 2309–2341, Oct. 2020.

[5] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei, “Balancing
communication and computation in distributed optimization,” IEEE Trans.
Autom. Control, vol. 64, no. 8, pp. 3141–3155, Aug. 2019.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Founda. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[7] F. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed
estimation,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1035–1048,
Mar. 2010.

[8] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-Newton
methods,” IEEE Trans. Signal Process, vol. 65, no. 10, pp. 2613–2628,
May 2017.

[9] M. Eisen, A. Mokhtari, and A. Ribeiro, “A decentralized quasi-Newton
method for dual formulations of consensus optimization,” in Proc. IEEE
55th Conf. Decis. Control (CDC)., 2016, pp. 1951–1958.

[10] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual Quasi-Newton
method for exact consensus optimization,” IEEE Trans. Signal Process.,
vol. 67, no. 23, pp. 5983–5997, Dec. 2019.

[11] H. Du, T. Lin, R. Bi, Q. Li, and S. Kea, “A primal-dual-quasi-newton-
based decentralized SCOPF approach for coordinated corrective control
of interconnected power grids,” Int. J. Elect. Power Energy Syst., vol. 135,
Feb. 2022, Art. no. 107504.

[12] R. S. Dembo, S. C. Eisenstadt, and T. Steihaugh, “Inexact Newton meth-
ods,” SIAM J. Numer. Anal., vol. 19, no. 2, pp. 400–408, 1982.

[13] A. Greenbaum, Iterative Methods for Solving Linear Systems. Philadel-
phia, PA, USA: SIAM, 1997.
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