
288 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

Permutation Entropy for Graph Signals
John Stewart Fabila-Carrasco , Chao Tan , Senior Member, IEEE, and Javier Escudero , Senior Member, IEEE

Abstract—Entropy metrics (for example, permutation entropy)
are nonlinear measures of irregularity in time series (one-
dimensional data). Some of these entropy metrics can be gen-
eralised to data on periodic structures such as a grid or lattice
pattern (two-dimensional data) using its symmetry, thus enabling
their application to images. However, these metrics have not been
developed for signals sampled on irregular domains, defined by
a graph. Here, we define for the first time an entropy metric to
analyse signals measured over irregular graphs by generalising
permutation entropy, a well-established nonlinear metric based
on the comparison of neighbouring values within patterns in a
time series. Our algorithm is based on comparing signal values
on neighbouring nodes, using the adjacency matrix. We show that
this generalisation preserves the properties of classical permutation
for time series and the recent permutation entropy for images, and
it can be applied to any graph structure with synthetic and real
signals. We expect the present work to enable the extension of other
nonlinear dynamic approaches to graph signals.

Index Terms—Graph signal processing, Graph Laplacian,
Permutation entropy, Adjacency matrix, Irregularity, Nonlinearity
Dynamics, Topology, Entropy metric.

I. INTRODUCTION

IN THE analysis of time series, entropy is a common tool
used to describe the probability distribution of the states of a

system. Based on this concept, the seminal paper [1] introduced
the so-called permutation entropy (PE) as a measure to quan-
tify irregularity (or complexity) in time series, a fundamental
challenge in data analysis. This entropy involves calculating
permutation patterns, i.e., permutations defined by comparing
neighbouring values of the time series. In the last years, PE has
been applied in different fields as biomedicine [2], [3], physical
systems [4] and economics [5]. Some variants, modifications and
extensions of PE have been introduced, including: a multiscale
step [6]; changes targeting signals with noise [7]; a variation for
detecting heartbeat dynamic [8]; the inclusion of a nonlinear
mapping to consider the differences between the amplitude
values [9], [10]; considering time reversibility conditions [11],
[12]; and extensions to higher dimensions [13].

Manuscript received October 1, 2021; revised March 7, 2022; accepted April
3, 2022. Date of publication April 13, 2022; date of current version April
27, 2022. The work of John Stewart Fabila-Carrasco and Javier Escudero
was supported by Leverhulme Trust through a Research Project under Grant
RPG-2020-158. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. David I Shuman. (Corresponding
author: John Stewart Fabila-Carrasco.)

John Stewart Fabila-Carrasco and Javier Escudero are with the School of En-
gineering, Institute for Digital Communications, University of Edinburgh, West
Mains Rd, Edinburgh EH9 3FB, U.K. (e-mail: math.john.stewart@gmail.com;
javier.escudero@ed.ac.uk).

Chao Tan is with the School of Electrical and Information Engineering, Tianjin
University, Tianjin 300072, China (e-mail: tanchao@tju.edu.cn).

Digital Object Identifier 10.1109/TSIPN.2022.3167333

A time series can be considered as a one-dimensional data vec-
tor (1D), while an image can be regarded as a two-dimensional
regular data set (2D). In the field of image processing, several
entropy algorithms have been proposed to quantify the irreg-
ularity of images as generalisations of their one-dimensional
analogous. Examples include: 2D permutation entropy [13],
2D sample entropy [14], 2D dispersion entropy [15], and 2D
distribution entropy [16]. Most of the methods are straightfor-
wardly generalised to higher-dimensional periodic structures,
for example, 3D dispersion entropy [17], 3D fuzzy entropy [18].
The generalisation comes from the fact that the underlying
structure (the lattice graph or grid graph, for example for an
image) is a periodic structure. Then, the algorithms [13]–[16]
use the symmetry from the structure to compare the values of
the signal. However, thus far, it is unclear how to generalise
the two-dimensional methods to a general irregular domain (or
graph).

The study of data defined on irregular graphs domains is
the main interest of graph signal processing (GSP), an active
research area in recent years [19], [20]. This is motivated by the
fact that, new technological advances have enabled the recording
of data from complex systems [21]. GSP is immediately useful
in applications where measures are distributed on irregular do-
mains. Examples include a network of weather stations, vehic-
ular networks or power grids, among others [19]–[21]. In some
cases, the signal domain is not a set of equidistant time points
(time series) or a regular grid (image), and in some cases, the data
is not related to space or time. Graphs can model such data and
complex interactions, and these new relations may be included
in the data processing techniques. Then, some conventional
signal-processing operations can be extended to graphs, such
as filtering in the spectral and vertex domain, interpolation,
subsampling the data with regarding to the graph [20]–[22] and
generating surrogate graph signals [23].

For a time series, the classical PE is computed based on
the successive values of the time series or neighbouring values.
These concepts are equivalents in 1D. However, for a signal on
a graph, the concept of successive values is unclear, but we have
the notion of neighbouring vertices. This concept is fundamental
to generalise the permutation entropy for graphs signals (PEG).
In particular, we will consider time series as a signal function
on a 1D-graph (an undirected path) and an image as a signal
function on a 2D-graph (a grid).

Of note, the concept of graph entropy has been defined in
previous literature [24], [25]. However, this definition involves
the computation of the spectrum of the Laplacian [26], its
probability distribution and the Shannon entropy. Therefore, it
measures the complexity/irregularity of the geometric structure

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3290-391X
https://orcid.org/0000-0001-5146-4807
https://orcid.org/0000-0002-2105-8725
mailto:math.john.stewart@gmail.com
mailto:javier.escudero@ed.ac.uk
mailto:tanchao@tju.edu.cn


FABILA-CARRASCO et al.: PERMUTATION ENTROPY FOR GRAPH SIGNALS 289

and topology of the graph, but not of the signals on the graph
itself.

Thus, here we introduce a measure of the regularity of a signal
over a graph, combining the signal values with the topology of
the graph, thus extending entropy algorithms for time series and
images to graphs.

A. Related Work

The computation of the classical PE requires four elements:
1) The input, most often a time series; 2) The choice of the
parameters: the embedding dimension m and time delay L;
3) The computation of the permutation patterns; and 4) The
computation of the entropy value. Most of the variations and
improvements for the original PE method focus on one of the
previous elements.

1) Input Permutation entropy was originally designed to anal-
yse a univariate time series [1]. Beyond univariate time series,
a multivariate permutation entropy was defined in [27]. Some
variations of PE consider signals defined on regular domains,
notably a 2D permutation entropy [13] and a 3D permutation
entropy [17]. However, there are no PE extensions that consider
signals defined on irregular input. This is where we make our
main contribution. Our algorithm can be used for any signal
defined on a regular (time series, image, etc.) or irregular domain
(a graph).

2) Parameters Given a time series, calculating PE involves
selecting parameters such as the embedding dimension m and
time delays L. On this front, [28] proposed a way to choose the
parameters automatically, [29] extended the scalar time delay
to vector time delays, [30] presented non-uniform embeddings
time delays, and [31] described a parameter optimisation strat-
egy for multiscale PE.

3) Permutation patterns PE considers only the order of the
values but not its amplitudes. In order to include information
contained in the amplitude values, [32], [33] defined a weighted-
permutation entropy, and [34] defined an amplitude-aware per-
mutation entropy. These modifications affect how the patterns
are defined.

4) Entropy computation Once the relative frequency for the
distinct permutation patterns has been estimated, the original
PE algorithm uses Shannon’s definition to compute the entropy.
Other entropy definitions have been used in the literature, for
example, [35] presented a Rènyi-based permutation entropy.

All the improvements to classical PE presented above in
2), 3), and 4) are designed for univariate time series. Very
recently, extensions have been introduced for regular 2D and
3D data [13], [17]. However, there is no previous work on how
to extend entropy metrics (like PE or other related methods)
to irregular domains. Our algorithm uses the same principles
behind the classical PE, but we extend the input to any general
graph. What is more, any variations of the original algorithm
related to the choice of parameters, estimation of patterns, and
calculation of entropy can be straightforwardly applied to our
algorithm. However, this is beyond the scope of this paper, where
we focus on presenting an PEG and exploring the relationships
of this metric with the signal and, crucially, the graph. Likewise,

exploration of applications of PE (or PEG) as features for
classification tasks (such as in [36]) is outside of the scope of
this paper.

A. Contributions

The main contributions of this article are:
� For the first time, the concept of a nonlinear entropy metric

-permutation entropy- is extended, from unidimensional
time series and two-dimensional images to data residing
on the vertices of (irregular) undirected graphs.

� We explore how the permutation entropy of graph signals
depends on both the signal and the graph. We also give con-
ditions to change the graph while maintaining the entropy
of a signal.

� We show that our algorithm can also be applied to signals
on directed graphs and/or weighted graphs.

� We illustrate the application of the permutation entropy on
graphs algorithm on well-established benchmark synthetic
datasets and on real-world data, showing that it generalises
well the behaviour of the unidimensional PE and the
recently introduced two-dimensional permutation entropy.

A. Structure of the article

The outline of the paper is as follows: Section II introduces
the classical permutation entropy and the notation on graph
theory used in the article (including the basic definition of
the normalised Laplacian). Section III presents the main con-
tribution: the permutation entropy for graphs signals, includ-
ing a version for weighted and directed graphs. In addition,
the section presents some examples and study how geometric
modification on the graph preserves the entropy values of the
signal. Section IV shows how PEG applies to real and synthetic
signals residing on 1D, 2D and irregular graphs. The conclusions
and future lines of research are presented in Section V and it
concludes the paper.

II. BACKGROUND AND NOTATION

In this section, we introduce general background information,
including the original permutation entropy (Section II-A), the
definition of a graph and the notion of the normalised Laplacian
(Section II-B). These definitions will be fundamental to gener-
alise the permutation entropy from a time series to a general
graph signal case.

A. Original Permutation Entropy

Permutation entropy (PE) measures the irregularity of a time
series. The algorithm is based on the comparison of neighbour-
ing values within patterns in the time series [1]. It is a simple,
robust method and computationally very fast (as it depends
linearly on the number of samples of the signal: O(N)). For
a time series X = {xi}Ni=1, the algorithm to compute PE is the
following [2]:

1) For 2 ≤ m ∈ N the embedding dimension and L ∈ N
the delay time, the embedding vector xm

i (L) ∈ Rm is



290 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

given by

xm
i (L) = (xi+jL)

m−1
j=0 =

(
xi, xi+L, . . . , xi+(m−1)L

)
(1)

for all1 ≤ i ≤ N − (m− 1)L. For practical purposes, the
authors [1] suggest working with 3 ≤ m ≤ 7.

2) The m real numbers of the embedding vector xm
i (L) are

associated with natural numbers from 1 to m, and then
arranged in increasing order. Then, each embedding vector
xm
i (L) is assigned to one of the m! permutation (also

called possible patterns) denoted by π.
Formally, the embedding vector

xm
i (L) =

(
xi, xi+L, . . . , xi+(m−1)L

)
is arranged in the increasing order vector:(

xi+(k1−1)L ≤ xi+(k2−1)L ≤ · · · ≤ xi+(km−1)L

)
.

Following the convention in [2], if some values are equal,
the order is given by the corresponding k′s. For exam-
ple, if xi+(kl1−1)L = xi+(kl2−1)L and kl1 < kl1, we write
xi+(kl1−1)L ≤ xi+(kl2−1)L. This convention does not af-
fect the results [37]. In particular, the constant vector
(1, 1, . . . , 1) is mapped onto (1, 2, . . . ,m). Therefore, any
embedding vector xm

i (L) is uniquely mapped onto the
vector (k1, k2, . . . , km) ∈ Nm.

3) The relative frequency for the distinct permuta-
tion π1, π2, . . . , πk where k ≤ m! is denoted by
p(π1), p(π2), . . . , p(πk). The permutation entropy PE for
the time series X is computed as the Shannon entropy for
the k distinct permutations as follows

PE(m,L) = −
k∑

i=1

p(πi) ln p(πi) .

It is clear that 0 ≤ PE(m,L) ≤ ln(m!), then, for conve-
nience, it is normalised by ln(m!), then

0 ≤ PE(m,L)

ln(m!)
≤ 1 .

The simple case is for m = 2 and L = 1. Given a time series
X, the idea of PE(m,L) is to organise the N − 1 pair of neigh-
bours according to their relative values. Let p1 be the number
of pair of neighbours such that xt < xt+1, represented by the
permutation (1,2); and p2 be the number of pair of neighbours
such thatxt > xt+1, represented by the permutation (2,1). Then,
using Shannon’s entropy:

PE(m,L) = − p1
N − 1

log
p1

N − 1
− p2

N − 1
log

p2
N − 1

.

In permutation entropy, the ordering of the values is taken into
account, but not the magnitude of changes.

An extension of Permutation Entropy to two-dimensional
patterns (images) has very recently been published [13]. This
two-dimensional algorithm takes rectangular windows across
the image and, for each window, vectorises its contents. Then,
steps 2 and 3 are applied.

B. Graphs, Graph Signals and the Normalised Laplacian

An undirected graph G is defined as the triple G = (V, E ,A)
which consists of a finite set of vertices or nodes V =
{1, 2, 3, . . . , N}, an edge set E ⊂ {(i, j) : i, j ∈ V} and A is
the correspondingN ×N symmetric adjacency matrix on edges
with entries 1 = Aij = Aji if (i, j) ∈ E and 0 otherwise.

Along this article, we consider graphs containing no multiple
edges, loops or isolated vertices, i.e. simple graphs.

A graph signal is a real function defined on the vertices, i.e.,
X : V −→ R. The graph signal X can be represented as an N -
dimensional column vector, X = [x1;x2; . . . ;xN ] ∈ RN (with
the same indexing of the vertices).

It is well-known that the power of the adjacency matrix counts
the number of k-walks between two vertices, i.e., the entry
(Ak)i,j is equal to the number of walks of length equal to k
having the vertex i as start and vertex j as end.

Given a graph G = (V, E ,A), we define a function on the
vertices degk : V −→ R given by

degk(i) :=
∑
j∈V

(Ak)ij =
∑
j∈V

(Ak)ji ; (2)

for k = 1, we write deg1(i) = deg(i), i.e., the degree of a vertex
i is the number of edges that are incident to it.

Given a vertex i, we define Nk(i) as the set of all vertices
connected to the vertex i with a walk on k edges, i.e.,

Nk(i) := { j ∈ V | it exists a walk on k edges

joining i and j } , (3)

with the convention N0(i) = {i} and N1(i) = N (i).
The normalised Laplacian is defined using the adjacency

matrix as follows:

Δ := I −D− 1
2AD− 1

2 ,

where D is the degree matrix, i.e., a diagonal matrix given by
Dii = deg(i).

III. PERMUTATION ENTROPY FOR GRAPH SIGNALS

This section introduces the permutation entropy for graph
signals (denoted as PEG). In the original PE for time series,
the construction of the embedding vectors given by (1) is
made between values on consecutive steps (t and t+ L) for
m = 2. Consecutive values cannot be defined straightforwardly
in irregular graphs.

As a motivation for the general definition, we show (with an
example) how to compare between values on a fixed vertex and
its neighbourhoods (Section III-A). For the general formulation,
we will consider the topology of the graph encoded in the
adjacency matrix to define the algorithm and construct the em-
bedding vectors (Section III-B). Finally, we extend the algorithm
for directed (Section III-C) and weighted graphs (Section III-D).

A. Motivation and Example

Consider the graph G = (V, E ,A) and X be any signal on
the graph. Similarly to PE for time series of order m = 2 and
L = 1, we compare the signal value at the vertex i with respect



FABILA-CARRASCO et al.: PERMUTATION ENTROPY FOR GRAPH SIGNALS 291

to the average of its neighbours, i.e., we will compare:

xi and
1

deg(i)

∑
j∈N (i)

xj .

Observe the relation with the normalised Laplacian, i.e.,

1

deg(i)

∑
j∈N (i)

xj = xi −Δxi = (I −Δ)xi = D− 1
2AD− 1

2xi .

For each i ∈ V , we define the pair where its first component is
the value of the signalX on the node i and the second component
is the average of the signal X on the neighbours of i, i.e.,

yi := (xi, (I −Δ)xi) =
(
xi,D

− 1
2AD− 1

2xi

)
. (4)

The pair is analogous for the embedding vector defined by (1)
in PE.

We organize the N pairs according to their relative values.
Let p1 be the number of pairs for which xi < D− 1

2AD− 1
2xi, or

equivalently Δxi < 0 (represented by the permutation 12) and
let p2 be the number of the pairs for which xi > D− 1

2AD− 1
2xi

or equivalently Δxi > 0 (represented by the permutation 21).
We define the permutation entropy of the graph signal X for

embedding m = 2 and L = 1 as a measure of the probability of
the permutation (1, 2) and (2, 1), so:

PEG = −p1
N

log
p1
N

− p2
N

log
p2
N

.

Intuitively, we are dividing the vertices of G according to the
signal X into two subsets. One set corresponds to the vertices
such that Δxi > 0, i.e., it contains the local maximums of the
signal on the graph domain. Similarly, the other set contains ver-
tices such Δxi < 0, i.e., the local minimums. The interpretation
is analogous to the permutation entropy for time series (for the
case m = 2 and L = 1), where the patterns are defined by the
points where the function is increasing or decreasing.

Example 1: Consider the graph G = (V, E ,A) and signal X
shown in Fig. 1.

We construct the embedding vectors given by (4). We
obtain one pair for each vertex, i.e., y1 = (−1,−1.15),
y2 = (−2.3,−0.5), y3 = (0.−1.325), y4 = (−3, 2.5), y5 =
(1, 2.5), y6 = (5,−0.333),y7 = (1, 1.95) and y8 = (−1.1, 1).

We have two patterns for the case m = 2. The pairs
y2,y4,y5,y7 and y8 belong to the same pattern (where xi <
D− 1

2AD− 1
2xi) and y1,y3 and y6 belong to the second pattern

(where xi > D− 1
2AD− 1

2xi).
The relative frequency of each permutation pattern is 5

8 and
3
8 respectively. Finally using Shannon’s entropy, the PEG value
of the signal X is equal to − 5

8 ln(− 5
8 )− 3

8 ln(− 3
8 ) = 0.6616.

The normalised PEG is 0.6616
ln(2) = 0.9544.

B. Permutation Entropy for Graphs Signals

Let G = (V, E ,A) be a graph and X = {xi}Ni=1 be a signal
on the graph, the permutation entropy for the graph signals PEG

is defined as follow:
1) For 2 ≤ m ∈ N the embedding dimension and L ∈ N the

delay time, we construct the embedding vector ym,L
i ∈

Fig. 1. 1(a) An example of a graph G, 1(b) its adjacency matrix A, and 1(c)
a graph signal X.

Rm given by

ym,L
i =

(
ykLi

)m−1

k=0
=

(
y0i , y

L
i , . . . y

(m−1)L
i

)
,

for all i = 1, 2, . . . , N and where

ykLi =
1

|NkL(i)|
∑

j∈NkL(i)

xj (5)

=
1

|NkL(i)| (A
kLX)i . (6)

Recalling NkL is defined by (3), it follows that y0i = xi

and y1i = (I −Δ)xi.
2) The m real numbers of the embedding vector ym,L

i are
associated with integer numbers from 1 to m and then
arranged in increasing order.
There are m! permutation (also called possible patterns)
π for an m-embedding vector.

3) The relative frequency for the distinct permuta-
tion π1, π2, . . . , πk where k ≤ m! is denoted by
p(π1), p(π2), . . . , p(πk). The permutation entropy PEG

for signal X is computed as the Shannon entropy for the
k distinct permutations

PEG(m,L) = −
k∑

i=1

p(πi) ln p(πi) .

In the next sections, without specification L = 1 is chosen.
If all possible patterns have equal probability value, the PEG

reaches its highest value which is equal to ln(m!). Note that we

use the normalised PEG as
PEG

ln(m!)
.

We use (5) to prove some properties ofPEG, while (6) is more
useful for a numerical implementation. Recall that the Laplacian
of a isolated vertex xi is defined in the literature as zero,
hence y1i = (I −Δ)xi = xi and ym,L

i is the constant vector.



292 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

Following the convention in [2] is mapped onto (1, 2, . . . ,m)
and according to [37], the convention does not affect the result.
For simplicity in the notation, along with this article, we will also
assume that G has no isolated vertices to avoid |NkL(i)| = 0 in
both equations.

Some of the similarities and differences between the original
PE and the permutation entropy for graph signals PEG are the
following:

1) The main difference is the construction of the embedding
vectors in step 1. With (1), PE constructs N − (m−
1)L embedding vectors using m consecutive values of the
signal. PEG uses the adjacency matrix and (4) to obtain
N embedding vectors (independent of m and L), each
embedding vector corresponds to one vertex.

2) Step 2 (arrange the embedding vectors in increasing order)
and 3 (computing Shannon’s entropy) for both algorithms
PE and PEG are the same. The computational cost of
PEG depends on the the number of vertices and edges
(see Section IV-E).

3) A time series X can be considered as a graph signal over
the graph G given by the undirected path. The value given
byPE for the time seriesX and the value given by thePEG

when X is considered as a graph signal are (in general)
different. However, the dynamics detected by the PE is
preserved with PEG, see Section IV. The arrow of time
information is lost when we consider the undirected path.
One way to preserve the information is to consider X as
a graph signal on the directed path and define PEG for
directed graphs (see Section III-C).

4) The adjacency matrix A is a particular case of the weight
matrix W, where all non-zero weight values are equal
to one. The general algorithm for weighted graphs is
presented in Section III-D.

The entropy of the graph signal X depends on its numerical
values and the graph topology. It is interesting to study these
quantities (that depend on the geometric structure of the graph)
under some geometric perturbation (delete edges, vertices and
contractions [38], [39]). We will show that under some condi-
tions, adding or deleting edges on the graph will preserve the
permutation entropy of the signal X.

Proposition 1: Let X be a graph signal over the graph G =
(V, E ,A) with entropy value PEG for m = 2 and L = 1. Let
i, j ∈ V be two vertices such that Δxi < 0 < Δxj .

1) If {i, j} /∈ E and xi < xj , thenPEG = PEG′ whereG′ =
G+ {i, j}.

2) If {i, j} ∈ E and xj < xi, thenPEG = PEG′ whereG′ =
G− {i, j}.

Proof: We will prove 1 and the proof for 2 is similar.
1) First, we will prove that Δxi < 0 together with xi < xj

implies ΔG′xi < 0 where G′ = G+ {i, j}. It follows by:

Δxi < 0

degG(i)xi <
∑

k∈NG(i)

xk

xi (degG(i) + 1) <
∑

k∈NG(i)

xk + xj

Fig. 2. Examples of two graphs. G1 is a subgraph of G and G is a subgraph of
G2. Both graphs G1 and G2, preserve the entropy of the original signal defined
on G.

xi <
1

degG′(i)

∑
k∈NG′ (i)

xk

ΔG′xi < 0 .

In an analogous way, it can be shown that 0 < Δxj and
xi < xj imply that 0 < ΔG′xj . Therefore, for each vertex
k ∈ V the pairs (xk, (I −Δ)xk) preserve the same order
on both graphs (G and G+ {i, j}). The relatives frequen-
cies are equals, hence, their entropy are equals.

�
In the previous result, we prove a condition that preserves not

only the entropy value but their relative frequencies. Hence, we
can apply in an iterative way to generalise the result with the
following corollary.

Corollary 1: Let X be a graph signal over the graph G =
(V, E ,A)with entropy valuePEG form = 2 andL = 1. Define
the sets with the following property

E0 = {(i, j) | i ∈ A, j ∈ B and xi < xj} (7)

E1 = {(i, j) | i ∈ A, j ∈ B and xj < xi} (8)

where A = { i ∈ V |Δxi < 0 } and B = { i ∈ V | 0 < Δxi }.
� If E ′ ⊂ E0 and E ′ ∩ E = ∅, then PEG = PEG′ where
G′ = G+ E ′.

� If E ′ ⊂ E1 and E ′ ⊂ E , then PEG = PEG′ where G′ =
G− E ′.

Example 2: Consider the graph G and signal X given
in Example 1. Define the sets A = { i ∈ V |Δxi < 0 } =
{2, 4, 5, 7, 8} and B = { i ∈ V | 0 < Δxi } = {1, 3, 6}.

The edge set given by E0 = {(1, 4), (1, 8), (3, 8),
(6, 2), (6, 8)} fulfil the condition in (7). Define G′ = G+ E ′

for any E ′ ⊂ E0, then by Corollary 1 follows the entropy is
the same, i.e., PEG = PEG′ . The case E ′ = E0 is shown in
Fig. 2(a).

Similarly, E1 = {(3, 5)} (fulfil the condition in (8)), then G
and G− E1 have the same entropy. Graph G− E1 is shown in
Fig. 2(b).

In this sense, given a signal over a graph, with Proposition 1
we can find structures that preserve not only the same numeric
entropy value but the maximal and minimal values of the signal
on the same vertices.

The invariance property with respect to monotonic transfor-
mation of the time signal is an important property of the PE,
i.e., if X is a time series, and f is an arbitrary strictly decreasing
(or increasing) real function, then the classical PE of the time



FABILA-CARRASCO et al.: PERMUTATION ENTROPY FOR GRAPH SIGNALS 293

series X and f(X) are equal [1]. This function occurs, for
example, when the data is measured with different equipment.
In a similar scenario, the following proposition shows that some
modification on the signal does not change the permutation
entropy.

Proposition 2: Let X be a graph signal over the graph G and
c a real (non zero) constant function defined on the vertices. The
entropy of the signals: X, cX and c+X are equal.

Proof: For any 2 ≤ m ∈ N and L ∈ N, the embedding vec-
tor for the graph signalX are defined asym,L

i = (ykLi ) (see (5)).
It is easy to show that the embedding vectors for cX are cym,L

i

and the embedding vectors for c+X are c+ ym,L
i . Therefore,

the proportion of the patterns in the original signalX is preserved
in the signals cX and c+X. Therefore, its entropy values are
equal.

�
The previous proposition shows a difference with respect to

the definition of smoothness on graph signals. Formally, for a
graph signal X on the G, the smoothness is measured in terms
of the quadratic form of the normalised Laplacian

XTΔX :=
1

2

∑
i∼j

(xi − xj)
2 . (9)

Therefore, the smoothness of the signal cX is different (in
general) from the smoothness of the signal X. The algorithm
PEG is interested in the change of the patterns rather than the
changes of values of the signal as in the smoothness definition.

C. Permutation Entropy for Signals on Directed Graph

In Section III-B we introduced the permutation entropy for
undirected graphs. As a particular case, in this section, we
introduce a permutation entropy algorithm for directed graphs,
denoted as PE−→

G
.

A directed graph or digraph is a graph where each edge has
an orientation or direction. The directed edge (called also an
arc) is an ordered pair (i, j) and it is drawn as an arrow from the
vertex i to the vertex j. A directed path on k vertices is a directed
graph that joins a sequence of different vertices with all the edges
in the same direction and is denoted as

−→
P , i.e. its vertices are

{1, 2, . . . , k} and its arcs (i, i+ 1) for all 1 ≤ i ≤ k − 1.
The permutation entropy for signals on directed graphs will

be almost identical to the presented in Section III-B except for
a small change in the construction of the embedding vector.

1) For 2 ≤ m ∈ N the embedding dimension and L ∈ N the
delay time, define the set

V ∗ = { i ∈ V |−→N (m−1)L(i) �= ∅ } , (10)

where
−→N k(i) = { j ∈ V | it exists a directed path on k arcs

from i to j }. (11)

We construct the embedding vector ym,L
i ∈ Rm given by

ym,L
i =

(
ykLi

)m−1

k=0
=

(
y0i , y

L
i , . . . y

(m−1)L
i

)
, (12)

for all i ∈ V ∗ where

ykLi =
1

|−→N kL(i)|
∑

j∈−→N kL(i)

xj . (13)

Step 2 and 3 are the same as in Section III-B. The next
proposition shows that the classical permutation entropy is the
same if we consider the time series as a signal over a directed
path. Therefore, we generalise the PE for all directed graphs
with the same values as the original one.

Proposition 3: LetX = {xi}Ni=1 be a time series and consider

G =
−→
P the directed path on N vertices, then for all m and L

the equality holds:

PE(m,L) = PEG(m,L) .

Proof: For the embedding dimension m, delay time L and G

the directed path with N vertices, then
−→N k(i) = {i+ k} for all

1 ≤ k ≤ N − i and ∅ otherwise (see (11)).
The set defined in (10) is V ∗ = {1, 2, 3, . . . , N − (m−

1)L}. Then, for all i ∈ V ∗, by (13):

ykLi =
1

|−→N kL(i)|
∑

j∈−→N kL(i)

xj = xi+kL .

Therefore, the embedding vector ym,L
i ∈ Rm defined by (12)

is

ym,L
i =

(
ykLi

)m−1

k=0
=

(
xi, xi+L, . . . xi+(m−1)L

)
,

for all i ∈ V ∗ = {1, 2, 3, . . . , N − (m− 1)L}, hence the are
exactly the same embedding vectors defined in the original PE
in (1), i.e. ym,L

i = xm
i (L). Because steps 2) and 3) in both

algorithms are the same, we conclude PE = PEG.

D. Permutation Entropy for Signals on Weighted Graphs.

In most of the examples, the adjacency matrix usually it is
enough. Nevertheless, the previous results and algorithms can
be generalised for weighted graphs.

A weighted undirected graph G is defined as the triple G =
(V, E ,W) which consist of a finite set of vertices or nodes V =
{1, 2, 3, . . . , N}, an edge set E = {(i, j) : i, j ∈ V} and W is
the corresponding n× n symmetric adjacency matrix weighted
on edges with entries 0 ≤ wij = wji the weight of edge (i, j).

Observe that (Wk)ij is the sum of the product of all the
weights of all the walks from the vertex i to the vertex j of length
exactly k. We define a function on the vertices degk : V −→ R
given by

degk(i) :=
∑
j∈V

(Wk)ij =
∑
j∈V

(Wk)ji . (14)

Let X = {xi}Ni=1 be a signal on the graph G = (V, E ,W),
the permutation entropy of the signal X on the weighted graph
G is the same that the presented in Section III-B, but replace the
(5) by the following:

ykLi =
1

degk(i)
(WkLX)i .



294 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

Similarly to Section III-C, we can extend the algorithm for
weighted directed graphs.

E. Permutation Entropy for Signals With Vector Embedding
Delays

In [29], [30], PE is generalised for a vector of embedding de-
lays (rather than a scalar). Analogously, we can extendPEG with
vector embedding delays. For 2 ≤ m the embedding dimension,
the embedding delay is represented as a m− 1 element vector
L = (l1, l2, . . . , lm−1). The embedding vector ym,L

i ∈ Rm is
given by

ym,L
i =

(
y0i , y

l1
i , yl1+l2

i , . . . , y
∑m−1

j=1 lj
i

)
,

for all i = 1, 2, . . . , N (see (5)).
In particular, if X is a time series, we can prove (similar

to Proposition 3) that PE with vector embedding delays [29] is
equal to PEG, where G =

−→
P is the directed path on N vertices

and the embedding vectors are defined above.

IV. EXPERIMENTS AND DISCUSSION

In this section, we apply our algorithm to synthetic and real
data, including signals on 1D (time series), 2D (image) and
irregular domains (graph). We show that PEG is a suitable
generalisation of the original PE for time series, but with the
advantage that the input could be any graph signal.

In 1D, the equality PEG = PE holds if the underlying graph
G is the directed path (Proposition 3). The values differ slightly
whenG is an undirected graph. However,PEG can detect differ-
ent dynamics for synthetic signals (logistic map, autoregressive
models) and for real signals (fantasy data set). In case the input is
2D, our algorithm gives similar results to the recently introduced
two-dimensional permutation entropy [13].

Finally, we apply the algorithm for signals defined in general
graphs. Fixing the underlying graph G and considering a signal
X, we show the PEG value depends on the irregularity of the
signal. We also consider the reverse case, fixing the signal X
(for example, a set of n random values). We consider several
underlying graphs G with X as a graph signal, and we study the
impact on the graph structure has on the entropy measure.

A. Examples on 1D and the Classical Permutation Entropy

In this section, we consider a time series X = {xi}Ni=1 and
three underlying graphs: G1 a directed path, G2 an undirected
path, and G3 a directed path with the reverse orientation respect
G1. For any m and L, recall that the classical PE gives equal
results as PEG1

(Proposition 3), hence the permutation for
graph signals has the same properties as the classic one in 1D.
Moreover, we verified computationally that the values of PEG1

are almost the same as PEG3
, and for N > 30, its difference

is always in the order of 10−16 (computational accuracy of
MATLAB).

1) The Logistic Map: PE has been used to detect dynamical
changes in time series [1], [2]. A non linear dynamic sys-
tem used to show the performance of PE is the logistic map,

Fig. 3. Diagram for the logistic map and the values of the permutation entropy
for graph signals.

given by

xn+1 = rxn(1− xn) .

The analysis is relevant for the parameter r. Thus, we vary the
parameter 3.55 < r < 4.0 with increments r in steps of 10−5 at
each iteration. We define the sequence given byX(r) = {xi}Ni=1

where the sample points are N = 212. To discard transients, we
delete the first 210 sample points. The initial value is x0 = 0.65.
Fig. 3(a) shows the time series, where each point of the discrete
time is plotted for each value of r, i.e., the bifurcation diagram
for the logistic map for r ∈ (3.55, 4.0).

We created 4501 time series. For each sequence, we con-
sider two underlying graphs: G1 a directed path and G2 an
undirected path, both on N vertices. Finally, we compute its
permutation entropy for m = 3 and L = 1 (see Fig. 3(b)). It is
known that chaotic behaviour starts for 3.5699 ≤ r ≤ 4. The
entropy algorithm is able to detect island of stability, i.e., values
of r such the data sequence shows non-chaotic behaviour. The
largest window is 1 +

√
8 ≈ 3.8284 < r < 3.8415, this range of

r shows oscillation among three values [40]. The algorithm (with
both underlying graphs G1 and G2) detects the window (for any
embedding dimension m). However, the wider gap between the
values for G2 indicates a large sensitivity of the algorithm to
detect the changes of the dynamic on the data. A similar effect
in other islands of stability occurs. This fact is in agreement with
other previous studies [1], [2].

For computing PEG, we used different combination of
embedding dimension (m = 2, 3, 4), delay time L = 1, 2, 3,
lengths of time series and initial condition. In all the cases, PEG



FABILA-CARRASCO et al.: PERMUTATION ENTROPY FOR GRAPH SIGNALS 295

Fig. 4. Averaged entropy values and standard error bars for embedding di-
mensions 2 ≤ m ≤ 8.

had good performance in detecting the dynamic changes in the
time series.

2) Heartbeat Time Series: The Fantasia database has been
analysed widely to validate the performance of some entropies
algorithms [7], [8]. We use 10 heartbeat time series: 5 corre-
spond to young subjects (aged between 21 and 34 years) and
5 recordings from elderly subjects (aged between 68 and 85
years). Each time series is divided into samples of 800 points
with an overlap of 400 points. The classical PE is computed
(or equivalently, its permutation graph entropy for the directed
path) for each sample. We also consider each time series as a
graph signal on the undirected path, and PEG is computed for
each case. We consider the embedding dimensions 2 ≤ m ≤ 8
for the computation. The averaged entropy values with their
standard error bars are shown in Fig. 4.

The analysis shows that the elderly and young subjects are not
indistinguishable by the classical PE for 3 ≤ m ≤ 6. Consid-
ering X as a graph signal on the undirected path, the algorithm
PEG can difference the subjects for all embedding dimensions
(except m = 2). Changing the size of the samples and/or inter-
section does not change this behaviour. In addition, we observe
that the entropy values of the elderly subjects are consistently
higher than the young subjects for all embedding dimensions
with PEG. The results are consistent for a larger time delay.
In contrast, the order in PE values depends on the parameter
m, that is, the ranking of elderly and young people is not
consistent.

B. Permutation Entropy for Images (2D)

One of the main advantages of our algorithm is the fact
that it can be applied on any graph, including the directed
graph shown in Fig. 5(a) (or its undirected version), where any
signal can be regarded as an image. Therefore the permutation
entropy (described in Section III-C) gives us a metric of the
regularity/complexity of images.

An image can be considered a graph signal defined on the
2D grid. One can apply the classical Shannon entropy to the
probability distribution of the image values (without permuta-
tion patterns), but this would ignore its geometrical structure. In
contrast, some 2D algorithms inherently use such geometrical

Fig. 5. Examples of images generated by the MIX process in (15). The size
of each image is 100× 100 pixels.

structure. [13] introduces a 2D permutation entropy (PE2D),
which implicitly uses the spatial information in the images when
building patterns from neighbouring pixels before computing
the entropy of this distribution of patterns. PE2D was used to
discriminate periodic from synthesized images. The distribution
entropy for images (DistE2D) presented in [16] also uses the
geometrical information to compute a distance matrix which
eventually feeds into Shannon entropy. DistE2D is used to
analyse the irregularity of small-sized textures. In [41], the Wada
index used the geometrical information based on the standard
box-counting algorithm. The distribution of different colours in
two-dimension was obtained, and the truncated Shannon entropy
was applied. The Wada index was used to detect the existence
of Wada basin boundaries. The algorithms PE2D,DistE2D and
Wada index use the geometrical structure of the regular 2D grid.
However, their definition depends strongly on the regularity of
the structure (of the image). It is unclear how the methods can
be applied to irregular domains or graph domains. PEG also
allows the consideration of the geometrical structure of the 2D
grid but, as a major novelty, the definition does not depend on
the regularity of the image. Hence, PEG can deal with irregular
domains, but the behaviour is similar to PE2D or DistE2D in
the cases where the domains are regular.

For the analysis, we choose the directed graph
−→
G because:

1) the directed adjacency matrix has more entries equal to zero
than the undirected version and hence the algorithm is faster,
2) the algorithm PE2D presented in [13] (and almost every 2D
algorithm) implicitly uses this orientation in the vectorisation,
3) the orientation preserves more information of the geometry of
the graphs and hence gives us better results, 4) if

−→
G is a 2D graph

with sizeN × 1 or 1×N , thenPE−→
G

is equal to the classicalPE,
hence, our algorithm is a natural generalisation and 5) choosing
vertex 1 or any other vertex as an origin of the orientation gives
almost identical results, because of its symmetry.

To assess the ability of PEG and similarly to [14], [16], we
use the two-dimensional processing MIX2D.

1) MIX2D Processing: Let Xi,j = sin ( 2πi12 ) + sin ( 2πj12 )
and letZi,j be a random variable whereZi,j = 0with probability
1− p and Zi,j = 1 with probability p. In addition, consider Yi,j

a matrix of random values ranged in [−√
3,
√
3]. The MIX2D



296 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

Fig. 6. Mean value and standard deviation of results obtained by PEG

computed from 20 realisations from MIX processing.

Fig. 7. Examples of periodic textures (a) to (f) and their corresponding
synthetic texture (g) to (l).

process is defined by the equation:

MIX2D(p)i,j = (1− Zi,j)Xi,j + Zi,jYi,j . (15)

Fig. 5 shows samples for different values of p, and the underlying
graph consider. To understand the effect of the size of image,
we create 10 different realization of MIX2D(p) for each p =
0.1, 0.25, 0.5, 0.9 whose size changed from 10 × 10 to 100 ×
100 (for larger size, the results are similar). For each realisation,
we compute its PE−→

G
(Fig. 5a) with embedding dimension m =

6. In Fig. 6 is shown the mean and standard deviation values of
PE−→

G
. We also compute the PE2D with embedding dimension

dx = 3 and dy = 2 (see [13]). In both methods, 6! permutation
patterns are possible and the results are similar.

As p goes to 1, the image gets closer to random noise (more
irregular) and then thePE−→

G
gets close to 1. In particular, if r < s,

then the entropy value of MIX2D(r) is smaller than MIX2D(s).
These results are in agreement with the bidimensional entropy
algorithms as the distribution [16] and sample entropy [14].

2) Artificial Periodic and Synthesized Textures: We use the
same six periodic textures and their corresponding synthesized
textures (as in [13]) to show how PEG changes when a periodic
turns into a synthesized texture. The images dataset are down-
loaded from [42]. The original textures and their corresponding
texture (sized 256 × 256) are depicted in the same order in
Fig. 7. Considering the directed graph depicted in Fig. 5(a)
and for m = 4, we compute the PEG. Results in Table 1 show
that the permutation entropy of a synthesized texture is higher
than of its corresponding periodic texture. Hence, the algo-
rithm discriminates synthetic periodic from periodic textures
in agreement with [13], [16].Similarly to the discussion in 1D
examples, the main novelty of this paper is that we can apply the
same algorithm (without modification) for any irregular graph,

TABLE I
NUMERICAL VALUES OF PEG FOR PERIODIC TEXTURES AND SYNTHETIC

TEXTURES IN FIG. 7

Fig. 8. Permutation entropy measures of the random signal X on several
underlying graphs G on 500 vertices.

included synthetic signals and real-world 2D data. PEG offers
similar performance to standard 2D algorithms in the literature.
Our algorithm uses the spatial structure but does not depend on
the regularity of the graph. Almost all the methods in 2D depend
on the regularity of the grid, and are not straightforward apply
to irregular domains. We can apply PEG to any graph signal as
the next section shows.

C. Permutation Entropy for Signals on Graphs

Here, the signal X = {xi}Ni=1 will be white Gaussian noise.
The entropy has different values depending on the graph under-
lying, even if X remains the same.

1) Random Signals on Different Graph Structures: We show
that the algorithm is able to distinguish different values of
regularity degree of the graph.

We considerer several graph structures G on N vertices with
X as a graph signal: G1 the cycle graph, G2 the complete
bipartite graph with bipartition V1 and V2 where |V1| = |V2| =
N/2, and G3 the complete graph. Considering N = 500, we
generate 20 realisations of signal X and we compute PEG

for G = G1, G2 and G3 for different embedding values m. In
Fig. 8, we show the mean and standard deviation for dimensions
2 ≤ m ≤ 8.

Observe that G1, G2 and G3 are 2, N/2 and N − 1 regular
graphs, respectively. The analysis shows the random signalX on
the cycle graph cycle G1 has larger entropy values than the same
signal on the complete graph G3. In general, the entropy value
for the signal decreases as the degree of regularity of the graph
increases. Formally, denote by G(k,N) a k-regular graph on N
vertices, then: limm→N PEG(k,N)(m) = 0 and a larger value
of k increases the convergence ratio. Hence PEG(k1,N)(m) <
PEG(k2,N)(m) for allm andk2 � k1. Then, for the same signal,
the algorithm is able to detect different degrees regularity on the
graph structure.



FABILA-CARRASCO et al.: PERMUTATION ENTROPY FOR GRAPH SIGNALS 297

Fig. 9. Erdő-Rényi model for values p equal to 0.1, 0.3, 0.6 and 0.9 and N =
2000. Mean value of its PEG and standard deviation for 20 simulations.

2) Erdő-Rényi Graphs: The random graph model introduced
by Erdő-Rényi (ER graphs) is parametrised by the number
of vertices N , the probability p, and it is denoted by GN,p.
Therefore, ER graphs are models with random connections and
they are used to represent common real-world data.

For a fixed N = 2000, we consider the ER graph GN,p for
several values of p = 0.1, 0.3, 0.6, 0.9. For 20 realisations of the
signal X we compute its PEGN,p

for 2 ≤ m ≤ 7. In Fig. 9, we
show the mean and standard deviations. In all the cases (except
for m = 2) there is no overlapping on the intervals. Then, for a
fixed m > 2 a smaller value of p implies a smaller number of
edges (less connectivity) and therefore a larger entropy value.
Then PEGN,p1

< PEGN,p2
(m) for all m > 2 and p2 � p1, and

the algorithm is able to detect different connectivity degree on
the graph structure.

3) Controlling the Entropy Value by Changing the Graph
Topology: Any graph signal can be more regular/irregular de-
pending on the topology graph. Let X be any signal with N
points and consider the embedding dimension m = 2, for any
α ∈ [0, 1] we will be able to construct a graph G such its entropy
of the signal X is equal (or close enough depending on N ) to α.

Let 1 ≤ k ≤ N − 1, and without loss of generality, sup-
pose that x1, x2, . . . , xk are the k largest values from the sig-
nal X. Consider Gk the complete bipartite graph with parti-
tion A = {1, 2, . . . , k} and B = {k + 1, k + 2, . . . , N}. In this
case, PEGk

= −N−k
N ln(N−k

N )− k
N ln( k

N ).
In particular, if k = 1 then G1 is the star graph with cen-

tre on the vertex 1. The entropy PEG1
= −N−1

N ln(N−1
N )−

1
N ln( 1

N ) → 0 as N → ∞. Then, we have constructed a graph
structure with small entropy for the signal X. Similarly, for N
even, we consider k = N/2, the entropy of the signal X on the
graph GN

2
is − ln( 12 ) and its normalised entropy is equal to 1.

In Fig. 10, we show for N = 2000 the entropy of a signal
random signal X with underlying graph the bipartite graph Gk

for 1 ≤ k ≤ 1000. Observe that permutation entropy for the
graph Gk and GN−k are equal because for the graph symmetry.
Then, for m = 2 and any value α ∈ [0, 1] we construct a graph
Gk with entropy equal to α (or close enough). Observe that this
construction is optimised form = 2, and the range of the entropy
for larger dimensions is narrower. Similar constructions can be
done to maximise or minimise the entropy for a fixed embedding
dimension m.

Fig. 10. Permutation entropy values of the random signal X on the complete
bipartite graph G on k and 2000 − k vertices.

Fig. 11. Two different readings of temperatures in Brittany during January
2014.

D. A Real-World Data Example: Temperature Data

We use the temperature readings of ground stations observed
in Brittany for January 2014 [43]. The graph is defined as fol-
lows: each vertex represents the ground station, and the weighted
edges between vertices are given by a Gaussian kernel of the
Euclidean distance between vertices [22]:

Wij =

{
exp

(
−d(i,j)2

2σ2
1

)
if d(i, j) ≤ σ2

0 otherwise.

Similarly to [43], we use σ2
1 = 5.18 and σ2 = 105. Let X1

be the signal corresponding to the temperature observation at
14:00 (January 27, 2014) shown in Fig. 11(a) and X2 the signal
at 04:00 (January 23, 2014) shown in Fig. 11(b). The signal X1



298 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

Fig. 12. Each vertex corresponds to one pattern of the signal. Equal colours
are equal patterns.

is more irregular than X2 in the following sense: In X1, the
maximum/minimum values are more dispersed along with the
map. In contrast, the extreme values are more grouped in X2. In
Fig. 11(b), we see that the lowest temperatures are localised in
the North-East, the highest in the South-West and the transition
between ground stations are smother. While in Fig. 11(a), the
distribution of the temperatures is more random. This fact is
captured by the patterns computed for the entropy.

Formally, the irregularity is measured using PEG in both
signals. For example, consider m = 4, L = 1 for computing the
entropy, which requires up to 24 permutation patterns. For each
vertex, one pattern is generated ( (5)). In the signal X1, 13 pat-
terns appear with distribution {1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 8}
(see Fig. 12(a)) and for the signal X2, 5 patterns are formed
with distribution {1, 1, 2, 13, 20} (see Fig. 12(b)). The PEG of
the signal X1 is 0.7529, while for X2 is 0.3313.

In general, the entropy values for the signal X1 are
0.9995, 0.8729, 0.7529, 0.5438 for m = 2, 3, 4, 5 and for X2

are 0.9740, 0.5667, 0.3313, 0.2739 for m = 2, 3, 4, 5. In all the
cases, the entropy for X2 is smaller than X1 (this fact is true for
1 ≤ L).

In fact, the difference (and relations) of entropy values for
04:00 and 14:00 are preserved for all embedding dimensions
m. We compute the entropy for all temperature measures (one
per hour for 31 days). Table 2 shows the average of the entropy
values for the temperature signals at 04:00 and at 14:00. The
entropy value of the temperature measurement is higher at 14:00
than at 04:00. We speculate that this reflects a more irregular
distribution of temperatures over the ground at 14:00 (during
the early afternoon when temperatures could reach higher values

TABLE II
AVERAGE OF PEG VALUES FOR THE TEMPERATURE MEASUREMENTS AT 04:00

AND 14:00

Fig. 13. Computational time of PEG with different underlying graphs and
signal lengths.

depending on the geographical situation of each station) than at
4:00 in the middle of the night.

In this example, we see how the performance of PEG is
different from the smoothness signal definition in (9). While
the smoothness of the X1 is 221.9 and for X2 is 138.2, i.e. is
smoother X1 than X2, visually it seems more regular X2 than
X1. Recall that we are interested in the change of the pattern
and the smoothness in the change of values (Proposition 2 and
(9)).

E. Computational Cost

In order to assess the computational time of PEG compared
with the classical PE, we use random values with different
lengths, changing from 100 to 10,000 sample points. The op-
timised implementation of PE [44] was used in this article. We
treat a time series as a signal on a path graph, and we use the
adjacency matrix to compute PEG with embedding dimension
m = 2, time delay L = 1. Our algorithm can deal with diverse
graph topologies. Thus, we consider several underlying graphs
with random signalsX: a complete graph, a cycle, a path, and the
2D grid (see Fig. 5(a)). The results are depicted in Fig. 13. The
simulations were carried out using a PC with Intel(R) Core(TM)
i7 with MATLAB R2021a.

Our algorithm is more computationally expensive than the
classicalPE. However, this is expected asPEG does not assume
any a priori information about the structure of the domain where
the signal was sampled. We note that the computational time
increases with the number of vertices and edges in the graph.
The results show that the computational times of the cycle,
the 2D grid, and the path (undirected and directed) are very
close because the number of edges increases linearly with the
number of vertices. For the complete graph, the number of edges
increases quadratically with the number of vertices. Thus, the
number of non-zero entries on the adjacency matrix (used for
PEG) also increases quadratically, leading to a computational



FABILA-CARRASCO et al.: PERMUTATION ENTROPY FOR GRAPH SIGNALS 299

cost of O(N2). We postulate, though, that more efficient imple-
mentations for PEG can be done for special kinds of graphs
using, for example, the graph’s symmetries (as 1D and 2D
graphs) or when its adjacency matrix is symmetric (undirected
graphs). However, these optimisations are beyond the scope of
this paper. Here we report the cost of the general algorithm for
either directed or undirected unweighted graphs.

V. CONCLUSION AND FUTURE WORK

In this paper, we generalised the permutation entropy for
graph signals. Some modifications and extensions of the clas-
sical PE have been developed in the literature [7], [13], [15].
However, we introduce for the first time an entropy measure
for signals on general irregular domains defined by graphs. In
particular, we observe that by considering the underlying graph
G as a path (1D), the results of PEG coincide with the results
for standard algorithms on time series (as the original PE [1]).
Moreover, our graph algorithm also enables applyingPE-related
analysis to images (2D).

We also observe that the results depend on how much informa-
tion we have about the underlying graph. Weights or directions
on the edges give different kinds of relations between the signals
at neighbouring vertices captured by the algorithm.

We explore how the same signal changes its entropy depend-
ing on the topology of the graph and how the same underlying
graph with signals with different dynamics has different PEG.
It demonstrates the importance of the signal and graph for
computing the entropy values.

Some future lines of research are the following:
� Extend other entropy metrics (e.g., dispersion entropy [9])

to irregular domains, including multivariate signals [45].
� Generate surrogate graph signals and test the nonlinearlity

of the signals defined on the graph.
� Study the relationship between properties of the graph (for

example, the spectrum of the graph Laplacian), and the
regularity of the signal. This would also be useful to help
determine how to define the graph for a given graph signal
that would be subject to entropy analysis.

We expect the algorithm presented in this paper to enable the
extension of similar techniques that inspect nonlinear dynamics
from data acquired over irregular graphs.

The MATLAB code used in this paper is freely available at
https://github.com/JohnFabila/PEG.

ACKNOWLEDGMENT

We thank the anonymous reviewers whose comments helped
improve and clarify this manuscript.

REFERENCES

[1] C. Bandt and B. Pompe, “Permutation entropy: A natural complexity mea-
sure for time series,” Phys. Rev. Lett., vol. 88, no. 17, 2002, Art. no. 174102.

[2] Y. Cao, W. W. Tung, J. B. Gao, V. A. Protopopescu, and L. M. Hively, “De-
tecting dynamical changes in time series using the permutation entropy,”
Phys. Rev. E, vol. 70, no. 4, 2004, Art. no. 046217.

[3] E. Olofsen, J. W. Sleigh, and A. Dahan, “Permutation entropy of the
electroencephalogram: A measure of anaesthetic drug effect,” BJA, Brit.
J. Anaesth., vol. 101, no. 6, pp. 810–821, 2008.

[4] R. Yan, Y. Liu, and R. X. Gao, “Permutation entropy: A nonlinear statistical
measure for status characterization of rotary machines,” Mech. Syst. Signal
Process., vol. 29, pp. 474–484, 2012.

[5] L. Zunino, M. Zanin, B. M. Tabak, D. G. Pérez, and O. A. Rosso,
“Forbidden patterns, permutation entropy and stock market inefficiency,”
Physica A, Stat. Mechanics Appl., vol. 388, no. 14, pp. 2854–2864, 2009.

[6] H. Azami and J. Escudero, “Improved multiscale permutation entropy
for biomedical signal analysis: Interpretation and application to elec-
troencephalogram recordings,” Biomed. Signal Process. Control, vol. 23,
pp. 28–41, 2016.

[7] Z. Chen, Y. Li, H. Liang, and J. Yu, “Improved permutation entropy for
measuring complexity of time series under noisy condition,” Complexity,
2019, pp. 1–12.

[8] C. Bian, C. Qin, Q. D. Ma, and Q. Shen, “Modified permutation-entropy
analysis of heartbeat dynamics,” Phys. Rev. E, vol. 85, no. 2, 2012,
Art. no. 021906.

[9] H. Azami and J. Escudero, “Amplitude- and fluctuation-based dispersion
entropy,” Entropy, vol. 20, no. 3, pp. 1–21, 2018.

[10] M. Rostaghi and H. Azami, “Dispersion entropy: A measure for time-
series analysis,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 610–614,
May 2016.

[11] J. H. Martínez, J. L. Herrera-Diestra, and M. Chavez, “Detection of
time reversibility in time series by ordinal patterns analysis,” Chaos,
Interdiscipl. J. Nonlinear Sci., vol. 28, no. 12, 2018, Art. no. 123111.

[12] M. Zanin, A. Rodríguez-González, E. Menasalvas Ruiz, and D. Papo, “As-
sessing time series reversibility through permutation patterns,” Entropy,
vol. 20, no. 9, 2018, Art. no. 665.

[13] C. Morel and A. Humeau-Heurtier, “Multiscale permutation entropy for
two-dimensional patterns,” Pattern Recognit. Lett., vol. 150, pp. 139–146,
2021.

[14] L. E. V. Silva, A. C. S. Senra Filho, V. P. S. Fazan, J. C. Felipe, and
L. M. Junior, “Two-dimensional sample entropy: Assessing image tex-
ture through irregularity,” Biomed. Phys. Eng. Exp., vol. 2, no. 4, 2016,
Art. no. 045002.

[15] H. Azami, L. E. V. da Silva, A. C. M. Omoto, and A. Humeau-Heurtier,
“Two-dimensional dispersion entropy: An information-theoretic method
for irregularity analysis of images,” Signal Processing, Image Commun.,
vol. 75, pp. 178–187, 2019.

[16] H. Azami, J. Escudero, and A. Humeau-Heurtier, “Bidimensional distri-
bution entropy to analyze the irregularity of small-sized textures,” IEEE
Signal Process. Lett., vol. 24, no. 9, pp. 1338–1342, Sep. 2017.

[17] D. Lebret et al., “Three-dimensional dispersion entropy for uterine fibroid
texture quantification and post-embolization evaluation,” Comput. Meth-
ods Programs Biomed., vol. 215, 2022, Art. no. 106605.

[18] A. S. F. Gaudencio et al., “Three-dimensional multiscale fuzzy entropy:
Validation and application to idiopathic pulmonary fibrosis,” IEEE J.
Biomed. Health Informat., vol. 25, no. 1, pp. 100–107, Jan. 2021.

[19] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[20] L. Stanković, D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo, and T.
Constantinides, “Data Analytics on Graphs Part I: Graphs and Spectra on
Graphs,” FNT Mach. Learn., vol. 13, no. 1, pp. 1–157, 2020.

[21] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[22] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analy-
sis on graphs,” Appl. Comput. Harmon. Anal., vol. 40, no. 2, pp. 260–291,
2014.

[23] E. Pirondini, A. Vybornova, M. Coscia, and D. Van De Ville, “A spectral
method for generating surrogate graph signals,” IEEE signal Process. Lett.,
vol. 23, no. 9, pp. 1275–1278, Sep. 2016.

[24] L. Han, F. Escolano, E. R. Hancock, and R. C. Wilson, “Graph charac-
terizations from von neumann entropy,” Pattern Recognit. Lett., vol. 33,
no. 15, pp. 1958–1967, 2012.

[25] F. Passerini and S. Severini, “The Von Neumann entropy of networks,”
2008. [Online]. Available: https://arxiv.org/abs/0812.2597

[26] J. S. Fabila-Carrasco, F. Lledó, and O. Post, “Spectral gaps and discrete
magnetic laplacians,” Linear Algebra Appl., vol. 547, pp. 183–216, 2018.

[27] S. He, K. Sun, and H. Wang, “Multivariate permutation entropy and its
application for complexity analysis of chaotic systems,” Physica A, Stat.
Mechanics Appl., vol. 461, pp. 812–823, 2016.

[28] A. Myers and F. A. Khasawneh, “On the automatic parameter selection
for permutation entropy,” Chaos, vol. 30, no. 3, 2020, Art. no. 033130.

https://github.com/JohnFabila/PEG
https://arxiv.org/abs/0812.2597


300 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

[29] D. J. Little and D. M. Kane, “Permutation entropy with vector embedding
delays,” Phys. Rev. E, vol. 96, no. 6, pp. 1–8, 2017.

[30] M. Tao, K. Poskuviene, N. F. Alkayem, M. Cao, and M. Ragulskis,
“Permutation entropy based on non-uniform embedding,” Entropy, vol. 20,
no. 8, pp. 1–13, 2018.

[31] X. Wang, S. Si, Y. Wei, and Y. Li, “The optimized multi-scale permuta-
tion entropy and its application in compound fault diagnosis of rotating
machinery,” Entropy, vol. 21, no. 2, 2019, Art. no. 170.

[32] J. Xia, Jianan, P. Shang, J. Wang, and W. Shi, “Permutation and weighted-
permutation entropy analysis for the complexity of nonlinear time serie,”
Commun. Nonlinear Sci. Numer. Simul., vol. 31, no. 1-3, pp. 60–68, 2016.

[33] B. Fadlallah, B. Chen, A. Keil, and J. Principe, “Weighted-permutation
entropy: A complexity measure for time series incorporating amplitude
information,” Phys. Rev. E, vol. 87, no. 2, 2013, Art. no. 022911.

[34] H. Azami and J. Escudero, “Amplitude-aware permutation entropy: Il-
lustration in spike detection and signal segmentation,” Comput. Methods
Programs Biomed, vol. 128, pp. 40–51, 2016.

[35] S. Chen, P. Shang, and Y. Wu, “Weighted multiscale rènyi permutation
entropy of nonlinear time series,” Physica A, Stat. Mechanics Appl.,
vol. 496, pp. 548–570, 2018.

[36] M. Landauskas, M. Cao, and M. Ragulskis, “Permutation entropy-based
2D feature extraction for bearing fault diagnosis,” Nonlinear Dyn.,
vol. 102, no. 3, pp. 1717–1731, 2020.

[37] D. Cuesta–Frau, M. Varela–Entrecanales, A. Molina–Picó, and B. Var-
gas, “Patterns with equal values in permutation entropy: Do they re-
ally matter for biosignal classification,” Complexity, vol. 2018, 2018,
Art. no. 1324696.

[38] J. S. Fabila-Carrasco, “The discrete magnetic Laplacian: Geometric and
spectral preorders with applications,” PhD dissertation, Universidad Car-
los III de Madrid, 2020. [Online]. Available: https://e-archivo.uc3m.es/
handle/10016/31372

[39] J. S. Fabila-Carrasco, F. Lledó, and O. Post, “Spectral preorder and
perturbations of discrete weighted graphs,” Mathematische Annalen, 2020,
pp. 1–49.

[40] C. Zhang, “Period three begins,” Math. Mag., vol. 83, no. 4, pp. 295–297,
2010.

[41] L. Saunoriene, M. Ragulskis, J. Cao, and M. A. Sanjuan, “Wada index
based on the weighted and truncated Shannon entropy,” Nonlinear Dyn.,
vol. 104, pp. 739–751, 2021.

[42] Graphics.stanford.edu, “Texture Analysis and Synthesis,” 2013.
[Online]. Available: https://graphics.stanford.edu/projects/texture/demo/
synthesis_eero.html

[43] B. Girault, “Stationary graph signals using an isometric graph translation,”
in Proc. 23rd Eur. Signal Process. Conf., 2015, pp. 1516–1520.

[44] X. Li, G. Ouyang, and D. A. Richards, “Predictability analysis of absence
seizures with permutation entropy,” Epilepsy Res., vol. 77, no. 1, pp. 70–74,
2007.

[45] J. S. Fabila-Carrasco, C. Tan, and J. Escudero, “Multivariate permutation
entropy, a cartesian graph product approach,” arXiv:2203.00550. [Online].
Available: https://arxiv.org/abs/2203.00550

https://e-archivo.uc3m.es/handle/10016/31372
https://e-archivo.uc3m.es/handle/10016/31372
https://graphics.stanford.edu/projects/texture/demo/synthesis_eero.html
https://graphics.stanford.edu/projects/texture/demo/synthesis_eero.html
https://arxiv.org/abs/2203.00550


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


