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Distributed Bernoulli Filtering Using
Likelihood Consensus
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Abstract—We consider the detection and tracking of a target
in a decentralized sensor network. The presence of the target is
uncertain, and the sensor measurements are affected by clutter
and missed detections. The state-evolution model and the measure-
ment model may be nonlinear and non-Gaussian. For this practi-
cally relevant scenario, we propose a particle-based distributed
Bernoulli filter (BF) that provides to each sensor approximations
of the Bayes-optimal estimates of the target presence probabil-
ity and the target state. The proposed method uses all the mea-
surements in the network while requiring only local intersensor
communication. This is enabled by an extension of the likelihood
consensus method that reaches consensus on the likelihood func-
tion under both the target presence and target absence hypotheses.
We also propose an adaptive pruning of the likelihood expansion
coefficients that yields a significant reduction of intersensor com-
munication. Finally, we present a new variant of the likelihood con-
sensus method that is suited to networks containing star-connected
sensor groups. Simulation results show that in challenging sce-
narios, including a heterogeneous sensor network with significant
noise and clutter, the performance of the proposed distributed BF
approaches that of the optimal centralized multisensor BF. We
also demonstrate that the proposed distributed BF outperforms a
state-of-the-art distributed BF at the expense of a higher amount
of intersensor communication.

Index Terms—Bernoulli filter, distributed target tracking, dis-
tributed particle filtering, likelihood consensus, random finite set,
sensor network.
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I. INTRODUCTION
A. Background and State of the Art

E CONSIDER the tracking of a single target based on

measurements provided by multiple sensors. The target
may be present or absent in arbitrary unknown time intervals.
Therefore, the tracking method first decides if a target is present,
i.e., it detects the target, and in the case of a positive detection
result, it estimates the state of the target. An additional com-
plication is the fact that the observed measurements are subject
to a measurement origin uncertainty: it is possible that a mea-
surement is not generated by the target (such a measurement is
known as clutter or a false alarm) or that an existing target does
not generate a measurement at a sensor (this situation is known
as a missed detection) [1].

For measurements with a low signal-to-noise ratio, multiple
sensors may be required for good performance. In the multiple-
sensor setting, a distributed (decentralized), cooperative pro-
cessing mode has important advantages [2]: it does not require
a fusion center, communication between distant points, or com-
plex routing strategies; it is robust to network node and link
failures; it is able to adapt to changing network topologies; it
scales well with the network size; and in a wireless sensor net-
work scenario, it allows for low transmit powers and facilitates
frequency reuse.

The Bernoulli filter (BF)—see [3] and references therein—
provides a Bayes-optimal solution to the joint target detection
and tracking problem. The target state is modeled as a random
finite set (RFS) that is empty when the target is absent and has
a single vector-valued element when the target is present. A
Bayes-optimal extension of the BF to the case of multiple sen-
sors was introduced in [4]. A particle-based BF that is suitable
for arbitrary nonlinear and non-Gaussian state-space models and
dynamically adapts to a variation in sensor performance was
proposed in [5]. However, these methods are not distributed,
i.e., they assume that the measurements of all the sensors are
available at a single processing unit.

Two distributed BFs for decentralized networks were pro-
posed recently. The consensus BF [6] uses Doppler shift mea-
surements in the presence of measurement origin uncertainty.
Single-sensor posterior probability density functions (pdfs) are
transmitted to neighboring sensors and fused by means of a
generalized covariance intersection technique [7]. The random
exchange BF [8] uses non-thresholded received-signal-strength
measurements. A diffusion technique [9] is employed in which

2373-776X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-0587-9299
https://orcid.org/0000-0001-6985-2250
https://orcid.org/0000-0002-3762-4373
https://orcid.org/0000-0001-9010-9285
mailto:giuseppe.papa@kognitiv.com
mailto:rene.repp@tuwien.ac.at
mailto:franz.hlawatsch@tuwien.ac.at
mailto:franz.hlawatsch@tuwien.ac.at
mailto:fmeyer@mit.edu
mailto:paolo.braca@cmre.nato.int

PAPA et al.: DISTRIBUTED BERNOULLI FILTERING USING LIKELIHOOD CONSENSUS 219

each sensor exchanges (i.e., swaps) its local posterior pdf with
a randomly chosen neighbor and broadcasts its local measure-
ments to all neighbors. Then, both kinds of received information
are fused with information related to the local measurements.
Furthermore, a distributed multi-Bernoulli filter for the tracking
of multiple targets was proposed in [10]. We note that all the
mentioned distributed methods are based on the fusion of local
posterior pdfs, which is not Bayes-optimal.

B. Contributions and Paper Organization

In this paper, we propose a distributed, particle-based, ap-
proximate implementation of the Bayes-optimal multisensor
BF introduced in [4]. Our method provides each sensor with
estimates of the time-varying target presence probability and
of the time-varying target state. The method requires only lo-
cal intersensor communication, i.e., each sensor communicates
only with neighboring sensors. Because of its particle-based
formulation, the method is suitable for arbitrary nonlinear and
non-Gaussian measurement and state-evolution models. To the
best of our knowledge, the proposed method is the first dis-
tributed multisensor BF that computes an approximation to the
Bayes-optimal solution in a distributed way and for arbitrary
measurement models.

The centralized multisensor BF in [4] is based on the joint
likelihood function (JLF), which is not locally available at the
individual sensors. The distributed BF algorithm proposed here
uses the likelihood consensus (LC) method [11]-[13] for a dis-
tributed calculation of the JLF. The idea of LC is to expand the
local log-likelihood function of each sensor into a dictionary
of functions and then apply a distributed averaging algorithm
[14], [15] for each expansion coefficient. In this way, an ap-
proximation of the JLF is obtained at each sensor through local
communication. The approximate JLF is then used at the indi-
vidual sensors in local BFs, whose performance approximates
that of the centralized multisensor BF.

The LC method proposed in this paper extends the original
LC of [11]-[13] in two different directions. First, as required by
the BF algorithm, it reaches consensus on the JLF under both
the target presence and target absence hypotheses. Second, it
performs an adaptive pruning of the LC expansion coefficients
via a thresholding in each consensus iteration. We demonstrate
experimentally that this pruning results in a significant reduc-
tion of intersensor communication without compromising the
detection and tracking performance. In addition, we present an
LC variant with reduced communication cost in the case of
networks containing star-connected sensor groups.

The remainder of this paper is organized as follows. The
system model is described in Section II. Section III re-
views the centralized BF and its particle-based implementation.
Section IV develops an LC-based distributed computation of
the JLF under both the target presence and target absence hy-
potheses. Section V extends this computation by including an
adaptive pruning in each consensus iteration. The proposed dis-
tributed BF is presented in Section VI. A new variant of the LC
suited to networks containing star-connected sensor groups is
presented in Section VII. Finally, Section VIII reports simulation
results that demonstrate the performance and communication

requirements of our method and compare them with those of
the state-of-the-art distributed BF proposed in [8]. This paper
advances beyond our conference publication [16] by presenting
the following additional contributions: a new variant of the LC
for networks with star-connected sensor groups (Section VII),
simulation results for a homogeneous sensor network with iden-
tical range-bearing sensors (Section VIII-B), and an experimen-
tal analysis of the variation of the communication cost in the
course of the consensus iterations and due to pruning (Fig. 5).

II. SYSTEM MODEL

We consider a network of S sensors that monitor a given
surveillance region with the aim of detecting the presence of a
single target and tracking the time-varying target state.

A. Target State Model

Ata given time scan k € {1, 2, ...}, the target may be absent
or present. This fact is accounted for by modeling the target
state at time k by a Bernoulli RFS [3], [17]

X, 2 %
o {zr},

Here, x;, € R? is a random state vector that exists when the
target is present. The associated RFS pdf [3] is

L= a,
T = {Qkf(afk),

if the target is absent,

if the target is present.

Xk‘ = 05

(D
X = {xi },

where q; = Pr(X; # () is the probability of target presence
and f(xy) is the pdf of the state vector. The state X}, evolves in
time according to the state transition pdf [3]

J( Xk Xp1)

1- B, X, =0,X-1 =0,
) Bofolr), X ={zp}, Xp1 =0,
S )1-nP, Xp =0, X1 = {1},

Pof(xp|er-1), Xi ={xi}, Xio1 = {xp-1},

where B, is the target birth probability, P is the target survival
probability, fi,(x;) is the target birth pdf, and f (x; |x) 1) is the
state vector transition pdf. We note that f(zy|z;_1) is usually
derived from a state vector evolution model of the form [1]

(@)

where g is a possibly nonlinear state transition function and vy,
is a process noise vector that is independent across time k.

x, = g(xp_1,v;),

B. Measurement Model

1) Measurement Set: We use the measurement origin uncer-
tainty model from [1], [17]. At time &, sensor s € {1,...,S}
observes the set of measurements
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where z,(fz is a measurement vector (briefly termed “measure-

ment”) and |Z IES)| denotes the cardinality of the set Z k<:5). We
assume that there occurs one of the following two events:
(i) one of the measurements in Z,i’” is generated by the target
(hence, this measurement is termed target-originated measure-
ment) and all the other measurements are false alarms (termed
clutter-originated measurements or simply clutter); (ii) all the
measurements are false alarms. In the first event, the clutter-
originated measurements are statistically independent—both
unconditionally and conditioned on the target states—of the
target-originated measurement. When the target is absent, only
the second event is possible. When the target is present, the first
event occurs with probability Pés) (1) and the second event oc-
curs with probability 1 — P\*) (). The probability P\*) (z; ) is
a sensor parameter and is referred to as probability of detection.
Note that Pd<s> (x) can depend on xj. The clutter-originated
measurements are modeled as independent and identically dis-
tributed (i.i.d.). The measurement set 2 ,§S> may also be empty,
which means that there is no clutter and the target, if present,
was not detected by the sensor.

2) Local Likelihood Function: The measurement character-
istic of sensor s is described by the local likelihood function
f(Zlis) | X%). Regarding the dependence on X, we need to dis-
tinguish the cases X = () and X;, = {x; }, resulting in the
Z)10) and f(Z

functions f( ks> [{x.}), respectively.

When X, = (), all the measurements are clutter and Z,is) is

an i.i.d. cluster RFS [3], whose pdf is given by

FZ00) =i (z) 21201000 (1270 11 £
zeZk
3
Here, pgs) (n) is the probability mass function (pmf) of the num-

ber of clutter measurements and fc(s) (z) is the pdf of the clutter

measurements. Note that p£5>

(n) and £ (z) can be sensor-
dependent. ForZ ) = 0, Eq. 3) reduces to f.* ( ) —p£s>(0).
When X, = {@}. }, the local likelihood function f(Z ks) | X% )

= f(Z,SS> [{zx)}) is given by [3, Sec. V-A]
FZ e }) = (1= Py () 1) ( )+ P ()
X Z POzl f(20\(=2)). @)

(s)
z€Z,

Here, the “vector likelihood function” f(*) (z|a;, ) can be derived
from a target-originated measurement model of the form

2 = b (@), wl), 5)

where h(®) is the (generally nonlinear) measurement function of

(s)

sensor s and w,; "’ is a measurement noise vector that is indepen-

dent across k: and s. For Z = (), Eq. (4) reduces to f(0|{x})
= (1= P (@) (0) = (1= B (@))pt™ (0).
3) Joint Likelihood Function (JLF): The JLF is defined as

s
f(Zy| X)), where Z;, = (Zﬁ)s:1 is an ordered sequence of

the measurement sets of all the sensors. Since the measurements
from different sensors are conditionally independent given the
target state Xy, the JLF is equal to the product of the local
likelihood functions of all the sensors, i.e.,

Hf

Here, f(Z,E,$> | X%) is given by (3) if X}, = () and by (4) if X}, =
{zi}.

C. Intersensor Communication

[(Zy| Xy) = |Xk (6)

Each sensor s € {1,...,S} is assumed to be able to commu-
nicate with a subset of the other sensors, Ss C {1,...,S}\{s},
which will be referred to as the set of “neighbors” of sensor
s. Typically, S5 depends on the coverage region of the commu-
nication system with which sensor s is equipped [18], [19]. Com-
munication is assumed symmetric, i.e., s’ € S, implies s € Syr.
The communication graph of the sensor network, which is de-
fined by all neighbor sets S;, is assumed to be connected.

III. REVIEW OF CENTRALIZED BERNOULLI FILTERING

As abasis for developing the proposed distributed BF, we first
review the centralized BF and its particle-based implementation
[3]. For the centralized BF, we allow for multiple sensors but

N
assume that Z;, = (Z,(:) )o
unit.

| 18 available at a central processing

A. The BF Recursion

The centralized BF is a sequential Bayesian estimator that
computes the posterior pdf of the target state X5 %wen all the
measurements up to the current time k, Z;.,, = (Z, i)i—y [3]. This
posterior pdf is of the Bernoulli form (1), i.e.,

1= aqup, :
f(XlZ11) = @)
q}f‘k.f(wk‘zlik)7 =
where gy, i £ Pr(X;, # 0| Z,.1,) is the posterior probability of
target presence and f (x| 2.1 ) is the posterior pdf of the target
state vector. The posterior pdf f(X}|Z1.) is calculated recur-
sively via the prediction step

F(X Zur) = / P Xe) (Xt | Z1r) 6X 1 (8)

and the subsequent update step
J(Zk | X)) f (X | Z1i-1)

f(Xk|Zlk) = f(ZMZl;k*l) ’

©)
where
F(Ze) Zar) = / FZe X (X Zik 1) 86X, . (10)

Here, the integrals in (8) and (10) are set integrals [3]. We note
that f(Xy|Z1.—1) in (8) is the predicted posterior pdf, which
represents the knowledge about the state X}, given all the mea-
surements up to the previous time & — 1. Furthermore, Eq. (9)
incorporates the measurements Z; observed at the current time
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k. Egs. (8)—(10) provide a recursive calculation of f(X}|Z;.x)
from f(Xj_1|Z1.5—1). Thisrecursion is initialized at time k = 1
by setting f(X(|Z1.0) on the right-hand side of (8) equal to an
initial prior Bernoulli pdf f(Xy), which is characterized by a
suitably chosen prior target presence probability ¢y and a suit-
ably chosen prior state vector pdf f(x) according to (1).

It can be shown [3] that if the previous posterior
pdf f(Xg-1|Z1.x—1) is a Bernoulli pdf characterized by
Qr—1jk—1 and f(xy_1|Z1.x 1), then the predicted posterior pdf
f(Xk|Z1.k-1) in (8) is a Bernoulli pdf as well, i.e.,

Xk = ®7
Xk, == {mk}a

1=,
f(Xk|Zl:k’—l) -
qk\k:—lf($k|lekfl)a

where

efe—1 = Psqr—1jp—1 + B(1 — q—1jp—1) (11)

and

f(xp]|Z1:5-1)

Poqi 15—
= LW/f($k|wk71)f(‘”k71‘Zl:kfl)dw""l

qk|k—1

N Bo(1 = qr—1jr-1)
qk|k—1

Jo(@k ). (12)

Furthermore, also the posterior pdf f(X|Zy.r) in (9) is a
Bernoulli pdf [3], i.e.,

1-— Qk\kv Xk - Q)’
X\ Z1.0) =
F(Xk|Z1x) {qkkf(mﬂzlik)’ Xy ={i },
where
L F(Z:|0)(1 — Qlr—1)
Quje =1 f(Zy|Zvi-1) "

and

fanlzi - {G@DI @Iz

C(Z1x)

withC(Z1.,) £ [ f(Zi|{zr}) f(zk|Z1.6-1)dy,. The constant
f(Zg|Z1.x—1) in (13) (cf. (10)) is given by

[(Zi|Z11) = C(Zi)qrp—1 + F(ZR|0)(1 = qrp—1). (15)

Note that (13)—(15) involve the JLF f(Z}|X},) in (6), which in
turn involves the measurements of all the sensors.

B. Detection and Estimation

Target detection is performed by comparing g, in (13) to a
threshold Py, i.e., the target is considered to be present if g, ;, >
Py, [20, Ch. 2]. If the target is considered to be present, then
an estimate of the state vector x, is produced by the minimum
mean-square error (MMSE) estimator [20, Ch. 4]

™ 2 [ (@] Z00)da, (16)
with f(xy|Z1.) given by (14). This Bayesian two-stage
detection-estimation procedure is also employed by the JITS

filter [21], the JIPDA filter [22], and certain other RFS-based
filters besides the BF, such as [23] and [24].

C. Particle-Based Implementation

Typically, the integrals involved in (12)—(16) do not admit
closed-form expressions and can be computed only approxi-
mately. For a particle-based approximate implementation of the
centralized BF [3], the posterior pdf f(X}|Z1.;) in (7) is repre-
sented by an approximate target presence probability gy, and a

set {(mif) , wif) )}il":1 of I, particles :cgj)

and associated weights
w,(!') that represent the posterior state vector pdf f(xy|Z1.x).

1) Prediction Step: Inthe prediction step, the posterior target
presence probability is predicted according to (11), i.e.,

Q-1 = PeGr—1jp—1 + Po(1 = Gr—1jp—1)- (17)

Furthermore, the predicted state vector pdf f (x| Z1.5—1) in (12)
is represented by weighted particles {(wl(ci\)kfl’ w,&j?{il)}f":ﬁl",
where the :1:213671 are sampled from two different distributions:
for i =1,...,I,, they are drawn from the pdf f(a:k|33]<le),
i.e., the state vector transition pdf f(axy|x;_1) evaluated at
Tp_ 1 = az,@l, the respective previous particle; and for ¢ =
I, +1,..., I, + I, they are drawn from the target birth pdf
fo(xr). The resulting two types of particles :L'Ef‘;il will be re-
ferred to as predicted particles and birth particles, respectively.
According to (12), the corresponding weights are obtained as

follows [25]: fori =1,..., 1,

i BQe—1jp—1
wiy = == w, (18)
qk\kfl
and fori = I, +1,..., I, + I,
» Po(1— Gy 1) 1
iy _ Tb k—1lk—1
B e NP A (19)
klk—1 b

Note that (18) and (19), together with the specific sampling of
the particles :c,(j‘)ki1 described earlier, are particle-based com-
putations of, respectively, the first and second component of the
pdf f (x| Z1.1—1) in (12). The overall particle-based computa-
tion of f (x| Z1.,—1) relies on the principle that particles can be
drawn from a weighted mixture of component pdfs by drawing
particles from each component pdf, weighting the particles by
incorporating the component weight, and combining them in a
joint particle set [26]. Based on the importance sampling princi-
ple [27, Sec. 1.3.2], this particle representation of f(xy|Z1.x—1)
will be used in the update step, where f (x| Z1.;—1) is employed
as a proposal pdf.

2) Update Step: In the update step, the posterior target pres-
ence probability is calculated according to (13), i.e.,

F(ZR|0) (1 = Gje—1)
F(ZZvk)

Qe =1 — (20)

Here, f(Zk|Z1;k,1) is calculated according to (15), in
which C(Z;.;) is evaluated via Monte Carlo integration [27,
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Sec. 1.3.1], i.e

(211 Z1g—1) = C(Zun)arp—1 + F(Z|0)(L = Grpr), 21

with C(Zy.) 2 S0 12, |{:ck‘k 1})wk‘k |- Subsequently,
weighted particles representing f(xy|Z;.;) in (14) are calcu-
lated according to the importance sampling principle by using
f(@k|Z1.1,—1) as proposal pdf. This leads to the updated weights

o) = F(Z{@ e, i=1
(i) )}1p+1b

(Note that the particle representation {(acgflacfl,wk‘ (D) it
of f(xk|Z1.1—1) has been calculated in the prediction step.)

L+ (22)

Next, from the current set of particles and weights {(a:;;‘)k 1

’LZJ](f ))}t]ﬁl *, only the I, particles with the highest weights are

retained, and their weights are normalized such that their sum

is 1. Denoting the retained I, particles as ac,(:) and the corre-

sponding normalized weights as w,(;), with a re-indexing such
thati € {1,...,I,}, we now have a set of particles and normal-
ized weights {(a:;;) , w,(fl)) f";l that provides an approximate
representation of f(x|Z;.x). Finally, in order to avoid particle
degeneracy, a resampling step is executed if the effective sample
size [28] is below a given threshold.

The above prediction and update steps provide a recursive
calculation of the approximate target presence probability (jk‘ k
and of the weighted particles {(wg) , w,i”) fpzl representing
f (x| Zy.1). This recursion is initialized at time k = 1 by setting
dojo equal to the initial prior target presence probability qo (see

Section III-A), drawing the particles {glcéZ ;2 from the initial
prior vector pdf f(xo) (again see Section III-A), and choosing
equal weights {w(()z) = 1/Ip}fp:1.

3) Detection and Estimation: Following Section III-B, the
target is considered to be present if gy, ;. is above a threshold FPy,.
In that case, a particle-based approximation of the MMSE state
MMSE in (16) is calculated as

estimate &,
IP
& = Z w,ﬁ')wgf)-
i=1

IV. DISTRIBUTED COMPUTATION OF THE JLF

In the distributed scenario, each sensor s in the network runs
a local instance of a BF. This local BF achieves quasi-global
performance by taking into account the measurements of all the
sensors up to time k, i.e., the total measurement Z;.;, which

s
comprises Zj = (Z,f,))sf1 for ¥ =1,...,k. This is done

by using at each time recursion the JLF f (Zk|Xk) Because
only the local likelihood function f ( p |Xk) is available at
sensor s, the proposed distributed BF includes a distributed
computation of the JLF by means of a consensus-based
algorithm. This computation uses the local weighted particles
(i ol DR
the predicted vector pdf f(xy|Z1.x—1) as discussed in
Section III-C1. The distributed computation of the JLF
employs only local communication between neighboring

with m £ I, + I, which represent

sensors and does not require transmission of the sensor
measurements.

From (6), the (natural) logarithm of the JLF is obtained
as log f(Zy| Xy) = Zle log f(Z,(j) | X ). Dividing and mul-
tiplying by S and exponentiating yields the JLF as

f(Zk|Xk) = exp (SLk(Xk)), (23)

with

Li(Xy) & Slogf Zy|Xi) =

Zlogf

(Note that the dependence of Ly (X} ) on Zj is not shown by
our notation.) According to (23), the computation of the JLF
amounts to computing Ly (X} ), which according to (24) is the
average of the local log-likelihood functions of all the sen-
sors. To develop a consensus-based distributed computation of
Ly (Xk), we separately consider the two hypotheses of target
absence (X, = ()) and target presence (X = {x; }).

JIXy). @4

A. Hypothesis X, = ()
For X}, = ), Eq. (24) simplifies to

L (0 (25)

1S .
)= 5 Zlogf(Z,i‘)W)).
s=1

This is the average of the S constants log f(Z, ,ES) |@) and can thus
be computed iteratively by the average consensus algorithm
[14], using only communication with the neighbor sensors s’ €
S (see Section II-C). Each sensor s has an “internal state,”
which it updates at each consensus iteration. More specifically,
atiteration 7, sensor s broadcasts its previous internal state value

(‘5)1 to its neighbor sensors s’ € S, and receives their previous

values u ) from them. Then, sensor s updates its internal state
accordlng to

Sooqed j=12,
s'e{s}US,

(26)

where the weights v, o satisfy >
ternal state is initialized as

Uo = log f( |@)

and the weights -, . are chosen appropriately (see below), then
for j — oo the consensus recursion (26) is guaranteed to con-
verge to Ly (0) in (25) [29]. In practice, only a finite number .J
of iterations is executed, which is either fixed or chosen online
by terminating the contribution of sensor s to the consensus

U(,:)1 | is below a threshold. The re-

sulting final internal state ul(f)

s'e{s}US; Vs,s' = 1. If the in-

T (s) _
1terations as soon as |uj

then provides an approximation

of Ly (0),1i.e., Ly (0) =~ uEf), and hence an approximation of the
JLF f(Z;|0) is obtained via (23) as

£(Z,|0) = f)(Z,]0) £ exp (SuJ ).

The choice of the weights ~y, o determines how fast the av-
erage consensus algorithm converges. Different choices require

27)
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different prior knowledge of the network topology. A popular
choice is given by the Metropolis weights [29]

1 /
A 1+max{[S[,|S/[}? 5 # %

Vs,s' = ‘ /
1=2 s, Vsrr S =35,

which have been demonstrated to be well suited to various dis-
tributed tracking scenarios, e.g., [11]-[13], [30]. This choice
requires that each sensor knows not only the number of its
own neighbors but also the number of neighbors of each of
its neighbors, i.e., |Sy| for s’ € {s} U S;. This is a reasonable
assumption, since each sensor is able to communicate with its
neighbors. However, there exist other choices of the weights that
do not require this knowledge [29]. Furthermore, the calculation
of f*)(Z;|0) according to (27) requires that each sensor knows
S this information can be provided to the sensors beforehand
or can be determined in a distributed manner by another con-
sensus algorithm [31]. Finally, the consensus iteration steps at
the various sensors must be synchronized.

(28)

B. Hypothesis Xj, = {x}
For X, = {«} }, Eq. (24) becomes

Zlogf

Because the local log-likelihood functions log f (Z,fs>|{a:k})
now are functions of xj, expression (29) cannot be directly
computed by the average consensus algorithm. A solution is
provided by the LC method, which was originally proposed in
the context of distributed particle filtering in [11]-[13]. The idea
is to expand the local log-likelihood functions into a dictionary
of functions and then use the average consensus algorithm on
each expansion coefficient.

1) Likelihood Consensus: Inthe LC method [12], each local
log-likelihood function log f(Z ,(CS) [{x) }) is approximated by a
finite-order function expansion, i.e.,

Ly({zi }) = ). (29)

B

04;:2,1/’1) (.’Bk ) )

)

log f (2 {1 }) ~ (30)

b=1

with a fixed dictionary of functions {1, (z; ) }£_, thatis identical
at all the sensors and known to each sensor. Different dictionar-
ies can be chosen [11], [12]; a choice that is well suited to the
multicomponent, continuous local log-likelihood functions aris-
ing in Bernoulli filtering is the Fourier dictionary considered in
Section VIII-A. Note that the expansion coefficients {a,(jl))}szl
are generally different at different sensors s, as they depend on
the local measurement Z (cf (30)); they can be determined
locally as described in Sectlon IV-B2.

Inserting (30) into (29) and changing the order of summations
yields the following approximation of the log-JLF L. ({zx }):

Li({zr}) = *Z zp) =Y Broty(ar), (31)

s=1 b= =1

with the global expansion coefficients

ﬁkb— yoees B (32)

HMCQ

Thus, the computation of Ly, ( {x}) amounts to computing the
global coefficients 3, ;, for b =1, ..., B. Expression (32) can
be computed by executing B parallel instances of the average
consensus algorithm. Sensor s now updates B internal states

®) ,b=1,..., Bin parallel, in analogy to (26); the resulting
recursion is initialized as

(s.b) _ (s

u " = af). (33)

After a sufficient number J of consensus iterations, the final

internal states yl(,s’b) provide approximations of the global coef-

(s,0)

ficients 3y 5 in (32), 1., By =~ y; . Hence, (31) gives

B

Li({me ) =~ Yo ().
b=1

(34)

Inserting (34) into (23) yields the following approximation of
the JLF:

F(Zel{zi}) = fO(Z {mi}) £ exp (SZZ/]’ Ve wk)) :

b=1
(35)

In the local BF at sensor s, the JLF f(Z|{x}) is not used
as a full-blown function of x; but evaluated at the particles

{mk‘k 1Ly, with m = I, + I, (see (22)). That is, we need
the “sampled JLF” f(ZM{:céﬁikZ Hei=1,...,
to (35), an approximation of f(Zj |{m](:‘klzl }) is given by

m. According

f (Zk|{mk\k 1} = &xp (Szy(Sb wb “"k|k 1)) (36)

2) Computation of the Expansion Coefficients: At each
sensor s, the local coefficient vector a,E;) (ag i aé‘f)B)T
involved in the local function approximation (30) can be com-

puted locally by means of least squares (LS) fitting [11], [12].

More specifically, we calculate the a< *) minimizing the LS
appr0x1mat10n error of the expansmn (30) based on the particles

{:ck‘k 1}?1 1> 1., Z:n 1 € with ¢; = log f( |{$k|k -

Zb L ak bwb(wm ). Assuming m > B (i.e., there are at
least as many particles as expansion coefficients), the solution
to this minimization problem is given by [32]

) = (T e T (37)
with
i) o vs(el)
v 2 (38)
i) o v (@)
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and

n e (logf( e i) - log (2 |{a) 1}))

(39)

We note that the existence of (¥\"TW(*))~1 in (37) requires
that ®\*) has full rank, i.e., the columns of ¥\*) are linearly
independent. Numerical aspects of computing agf) in (37) are
discussed in [32], [33]. An alternative to LS fitting is provided
by the orthogonal matching pursuit [13].

V. LC WITH ADAPTIVE PRUNING

Next, we propose a variant of the LC that uses an adap-
tive pruning to reduce the number of coefficients that have to
be transmitted. This pruning is achieved by the inclusion of a
thresholding operation in each consensus iteration. As will be
shown in Section VIII, the pruning results in a significant re-
duction of intersensor communication without compromising
the detection and tracking performance.

A. Active Index Sets and Thresholding

The jth iteration of the proposed “pruned LC” (where j €

{1,...,J}) works as follows. Let us call an internal state from
the previous iteration, yj( 1), active if |y \ > n; >1
suitably chosen positive threshold 77( >1 that depends on the
sensor index s and the 1teratlon 1ndex j Furthermore let us

deﬁnetheactlvemdexsetijl £{beB j71 : \yj;l | > 77]-,1},

with a

where 35‘1)1 will be explained presently.

Sensor s first determines its active index set B]('S—)l' Then,
(s.0)

sensor s broadcasts its active internal states y;”;", b € B](-‘i)l
to its neighbors s’ € S, and receives from them their active

internal states y(é 1b ,be B . Next, suitably modifying the
standard consensus update in (26) sensor s calculates the linear
combinations

s,b s',b 5(s
yj< ) = Z ’YS,S’y](‘fl)a bEB]( )a
s'e{s}US;

(40)

where Bgs) is the union of all the involved active index sets, i.e.,

B;S) £ US re{sUS, B 1 Note that in (40), all nonactive internal

states, yj 1) for b ¢ B 1 and s’ € {s} US,, are treated as
zero. In the next ((j + l)th) iteration, 5’](-8)

(s s,b s
2 e By > nlV ) ete.

This recursion is initialized in iteration j = 1 by setting yés’b) =

Band B ={1,...,B}.

An adaptive choice of the pruning thresholds n§-5> that has

been observed to yield good performance is to set 77(5) =

J
w- L7 |y](fg"b)| with a fixed factor w > 0. Note that this
adaptive choice of nj(-s) is performed locally at sensor s and does
not require any additional intersensor communication. Our ex-
periments also suggest that to avoid divergence of the consensus

is used to determine

the new active index set BJ(-S)

al(f"’:;forbzl,...,

algorithm, pruning should set in only after a certain number of
initial consensus iterations, i.e., the pruning threshold should be
chosen initially as 775.5) = 0. This number of initial consensus
iterations, as well as the factor w, are application-dependent and

chosen empirically.

B. Algorithm Summary and Communication Cost

At each time k, each sensor s performs J consensus iter-
ations for a distributed computation of f () (Z,|0) (see (27))
and B parallel instances of J Consensus iterations for a dis-
tributed computation of f(*) (Zk|{:nk Wl 1}) i=1,...,m (see
(36)). The overall consensus method for a distributed computa-
tion of the JLF is summarized in Algorithm 1. This algorithm
includes the pruned LC proposed in the previous subsection.

In consensus iteration j of all the 1 + B parallel consensus

algorithms, sensor s broadcasts to its neighbors the internal

states qu and y<7

forb € BY 71, as well as a B-dimensional
binary vectora = (a; - --ap) € {0, 1}% thatencodes the active
index set B;'i)l C{1,...,B},ie,a, =1ifbe Bj(-i)l and aq, =
0 otherwise. If each internal state is represented by R bits, this
amounts to R(1 + |IS’;-"”_)1 |) + B bits. Thus, the communication
cost of the proposed BF consensus method at sensor s, defined
as the number of bits broadcast at each time & by sensor s to its
neighbors during all the J consensus iterations, is

S (r(+ B

Jj=1

i)+ B)
J

=J(R+B)+RY_|B,
j=1

VI. DISTRIBUTED BERNOULLI FILTERING

The proposed distributed BF combines the particle-based im-
plementation of the centralized BF reviewed in Section III-C
with the consensus-based distributed computation of the JLF
presented in Sections IV and V. Each sensor s runs a local BF
that is based on the JLF f(Z;|X}). The local BF at sensor

s propagates at each time k a local estimate (j,(:l,i of the tar-
get presence probability gy and local particle representations
{(@" w2 | of the posterior state vector pdf f (x| Z1.4 )
(see Section ITI-C2). Note that the local particle sets of the indi-
vidual sensors are updated separately but not altogether indepen-
dently since the update at sensor s involves the (approximate)
JLF of all the sensors and not merely the local likelihood func-
tion of sensor s. Thereby, each local BF takes into account the
measurements of all the sensors and, thus, achieves a perfor-
mance similar to that of a centralized BF that has direct access
to all the measurements.

The operations of the local BF executed by sensor s are
stated in Algorithm 2. These operations are similar to those of
the particle-based centralized BF reviewed in Section III-C. The
key difference is the consensus-based distributed computation
of the JLF (using Algorithm 1) in Step 10 of Algorithm 2, which
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Algorithm 1: Consensus Method for Distributed JLF
Computation—Operations Performed by Sensor s at Time
ke{l,2,...}.

Algorithm 2: Distributed Bernoulli Filter—Operations Per-
formed by Sensor s at Time k € {1,2,...}.

Input: {wk|k l}m ;i ;
I: Compute log f ( | ) according to (3) and set ué o) =
2: Compute 'Il§f> and X;CS) using (38) and (39),
respectively;

3: Compute ai,rs) using (37), and set yés‘b) = ai,’sl)) for

b=1,...,Band B\ = {1,...,B};
4: for j =1to J do
5:  Determine the active index set Bi"_)l
s,b s .
] > 0\ s

6: Broadcast uis;)l as well as the active internal states

={beB;:

y7 1), be B 1 and their indices b € B< ', to the

neighbor sensors s eS,;

7: RGCCIVC u§ )1 as well as the active 1nternal states

y]( 1,b€ B 1 and their indices b € B 1 from the

neighbor sensors s e S,

Compute uﬁ-s) = gesjus, Vo5l s )1,

9:  Form l';'(s) = Uyefsius, Bj(-sjl,
10:  forb e B( *) do
11: Compute y( b= > e(s)Us, ’ys,s/y](,‘i,‘ib), where
nonactive yj( ,1 ) are considered to be zero;
12:  end for
13: end for

14: Compute an approximation of f(Z;|0) according to
f<3>(Zk,|®) = exp (SUSS));

15: for i = 1 to m do

16:  Compute an approximation of f (Zk | {:c<€ ' })

klk—1
according to f(*) (Zk|{‘”k|k )=

exp <SZb ly(sb wb( k\k 1)),wherel’niSSing

yg b) are considered to be zero;

17: end for .
Output: f*)(Z;|0) and f() (Zk|{mm 1) ) 1M

provides f(*)(Z;.|0) and f(*) (Z,{|{a:k|]c i S+ 1y
to sensor s. These approximate quantities are then used in-
stead of the exact quantities f(Z;|()) and f(ZH{w,Equzl}),
1 =1,...,I, + I in the subsequent steps of the filter.
Because each local BF uses its own set of local particles,
the random number generators of different sensors (which are
used to draw the local particles from the local proposal pdfs
F(@i|z()) and fy(x4)) do not have to be synchronized. This
is different from the “consensus-over-weights” based distributed
particle filtering methods proposed in [34], [35], in which all the
sensors have to use exactly the same set of particles and, hence,
the random number generators of different sensors have to be

. 48 (1) _ (s,i)\11 (s)
Input: g, =, {(2>7 w”Y) )0, and Z;
is set to the initial prior target

~(s) -
0l0

presence probability qq, the particles {wo }I" | are
drawn from the initial prior pdf f (), and the weights are

(Initialization at k = 1: g

chosen all equal, i.e., wés‘i> =1/I,)

1: Compute (ji,slll_l using (17), i.e.,

A(s)  _ pals) A(s) .
k-1 = Psqk—uk—l + Pb(l - qk—l\k—l)’

2: fori =1to I, do

3:  For each particle a:; 1), draw a predicted particle

scgi,‘ kll from the state vector transition pdf

(i)

4:  Compute a corresponding weight using (18), i.e.,

Ps ~(s)

NCR Te-1k—1 (s,).
Whk=1 = 7 (5 Wy 15
klk—1

5: end for
6: fori = I, +1to I, + I, do

7:  Draw a birth particle mi k- D , from the birth
pdf fb ("Bk ) s

8:  Compute a corresponding weight according to (19),
i.e.,

(5,4) B(1- ‘?1(:7)1\1@71) 1

wk\k 1 (s) T
k-1 Ty
9: end for
10: Execute Algorithm 1 with m = I, + I, to obtain
f©)(Z,]0) and f (Zk]{:nk‘k Bei=1 L+ Iy
11: Compute (jl(:l,i using (20), i.e.,
(o, F0@00 - g )
o f (2 Zrg)
where (cf. (21))
FNZ) 2 ) = CO (Zu)if), + 1O (Z0)

x (1 - qéﬁtn

with C'(%) o f (Zk|{33k|k 1})wk|k 1

(Zyk) =1

12: for i = 1to I, + I do

13:  Compute a nonnormalized weight u?](f‘i) using (22),
ie.,

11);(6“) _ f(s) (Zk|{$l<g]k7 1})1111&?;: 17

14: end for
(continued on next page)
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Algorithm 2 (continued)

15: Retain the I, particles “”1&1121

w(;’” and normalize these weights to obtain (after
re-indexing) a set of particles and normalized weights
{(w,(f?), ](C ))} w1thz =1

16: Perform resampling 1f the effectwe sample size [28] is
below a given threshold.

Output: g} and { (" ")},

with the highest weights

synchronized. Note that the methods in [34], [35] are suitable
only for scenarios where the target is always present.

Another advantage of the proposed LC-based method
relative to the consensus-over-weights approach is that the
communication requirements are significantly reduced: In
the consensus-over-weights approach, m = I, + I, average
consensus algorithms would have to be run in parallel (note
that Iy, has to be equal at all sensors), which means that at each
consensus iteration, each sensor would need to broadcast m
real values. By contrast, in the proposed approach, each sensor
broadcasts only its active internal states. Typically, m is on
the order of several thousands whereas the number of internal
states is significantly smaller (see Section VIII).

VII. Groupr LC

We next propose a variant of the pruned LC presented in
Section V, referred to as group LC (GLC), which can lead to
a further substantial reduction of intersensor communication.
We consider sensor networks that comprise a certain number
of star-connected sensor groups G. C {1,...,S} as depicted
schematically in Fig. 1. Each sensor group G. consists of a
central consensus node ¢ € {1,...,S} and an arbitrary number
of auxiliary nodes that are directly connected to the consensus
node. If a consensus node ¢ is not connected to an auxiliary node,
then G. = {c}. We denote by C C {1,..., S} the set of consen-
sus nodes c. Each consensus node ¢ € C is able to communicate
with a subset of the other consensus nodes, N. C C\{c}; the
consensus nodes ¢’ € N, will be referred to as the neighbors
of consensus node c. The neighbor sets NV, of all the consen-
sus nodes ¢ € C define the consensus network. We make the
following further assumptions:

1) Each node is a consensus node or an auxiliary node.

2) Each auxiliary node is connected to exactly one consensus

node and no other auxiliary node.

3) The graph of the consensus network is connected.

Under these assumptions, the sensor groups G. form a par-
tition of the entire sensor network, i.e., ... G. = {1,...,5}
and G. NG = B if ¢ # /. We note that any connected network
can always be split into consensus nodes and auxiliary nodes
in the sense of the above definition: each consensus node is ad-
jacent to an arbitrary number of other nodes (typically at least
two), whereas each auxiliary node is adjacent to a single node.
However, the reduction in communication cost achieved by the
GLC is greatest when there are few consensus nodes and many

® Consensus node
@ Auxiliary node
[ Sensor group

Fig. 1. Hierarchical sensor network with star-connected sensor groups.

auxiliary nodes (unless the dimension of the measurements is
very high). We assume that the network configuration relevant
to the GLC is known to all the sensor nodes at the start of the
filtering operation. The development of an efficient distributed
method for establishing the GLC network configuration—i.e.,
identifying the consensus nodes and auxiliary nodes and, pos-
sibly, removing certain edges in order to convert some of the
consensus nodes into auxiliary nodes—and for disseminating
the relevant information throughout the network is beyond the
scope of this paper.

Let Z ,Eg") = (ZIES))S cg, denote the ordered sequence of the
measurement sets of all the sensors in sensor group G... The fac-
torization of the JLF in (6) can now be rewritten in a hierarchical
way as

F(Z| Xy) Hf 79 ka
ceC
with
(2 = 1] (2| x0). (41)

s€q.

Note that f ( |X &) is the JLF of sensor group G... The pro-
posed GLC is based on this hierarchical JLF factorization and
performs the following steps at time k. First, the auxiliary nodes
s € G. of each sensor group G, transmit their measurements
Z LES) to the associated consensus node c. The consensus node
(g‘), and it calculates the JLF of its

then has knowledge of Z;

sensor group G., f (Z,Eg”) X} ), according to (41). Next, the
consensus nodes execute the pruned LC (Algorithm 1) within
the consensus network, with each consensus node c using its
group JLF f(Z, .) instead of just its own local likelihood
function f(Z( | X). Let u(() and yJ ,b=1,..., B denote
the internal states obtained at consensus node ¢ after the final
(Jth) consensus iteration. Consensus node c¢ forwards these fi-
nal internal states to its auxiliary nodes. Thus, the internal states
of all the nodes s in sensor group G.—both of the consen-

sus node and of the auxiliary nodes—are given by ') = u{’)

and y<S b = (Jc’b>, b=1,...,B,fors € G,..Finally, each node
uses its 1nternal states to calculate an approximation to the JLF
according to lines 14—17 of Algorithm 1.
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Surveillance region with the sensor network and the target trajectory. The starting point of the trajectory is indicated by a star. (a) Network topology used

for simulating the LC. (b) Modified network topology used for simulating the GLC.

VIII. SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-
posed distributed BF in two different simulation scenarios. The
first scenario consists of a homogeneous sensor network, where
each sensor measures its distance (range) and its angle (bearing)
relative to the target and all the sensors have identical character-
istics. In the second scenario, we consider a heterogeneous sen-
sor network where each sensor acquires either range or bearing
measurements with different sensor characteristics. We compare
the results of our proposed distributed BF with those of the opti-
mal centralized BF and of the random exchange distributed BF
presented in [8], which was adapted to incorporate our measure-
ment model. A second state-of-the-art distributed BF, presented
in [6], was found to be unsuitable for our simulation scenarios
since its inherent linearization of the measurement model led
to excessive errors and a divergent behavior. Before discussing
the two scenarios individually, we describe common simulation
parameters.

A. Common Simulation Parameters

Fig. 2(a) shows the 2-D surveillance region [—10 km, 10 km]
x [—10km, 10 km], the sensor positions, the intersensor com-
munication links, and the target trajectory used in our simula-
tions. A modified network topology is used for our simulations
demonstrating the performance of the GLC: here, as depicted
in Fig. 2(b), four of the communication links are removed in
order to better conform to the hierarchical topology considered
in Section VII.

We consider time scans up to k£ = 120. The target appears at
time k = 10, traverses the surveillance region from left to right,
and disappears at time k = 111. The 4-D state vector is given by
x = (1, yr 21 Ur)", where 2, and yj, are the target positions
and 7 and g, are the target velocities in the two coordinate
directions. When the target is present, the state vector evolves
according to the near constant velocity model (cf. (2)) x; =
Fzj,_, + Av;,. Here, F € R*** and A € R**? are chosen as
in [36, Sec. 6.3.2] (their definition involves a time scan duration

T, and the 2-D driving noise vector v is modeled as an i.i.d.
random process with Gaussian pdf N (vy;0,021,). Note that
f(zp|zp—1) = N(zy; Fop_1,02 AAT). The initial prior target
presence probability is gy = 0.5, i.e., the filters are completely
unaware if the target is present or not. Furthermore, initially,
the filters do not have any information about the position of
the target in the surveillance region and the direction in which
it is moving, but the distribution of the initial target speed is
known. Accordingly, the initial prior vector pdf f () is defined
implicitly by the following sampling procedure:

1) The position (g, yo ) is drawn uniformly from the surveil-
lance region.

2) A nonnegative speed value v, is drawn from a trun-
cated Gaussian distribution with mean 2 and standard
deviation 1/3.

3) A heading angle 6, is drawn uniformly from the interval
[—180°,180°).

4) The velocity components are calculated as &y = v cos 6
and gy = vy sin .

The target birth pdf fi,(x;) is chosen identical to the initial

prior vector pdf f(xg).

The proposed distributed BF uses for the (G)LC a 2-D
Fourier dictionary with B atoms given by [12] ¢y (xy) =
®3, (1)@, (yr), with an index transformation that maps b €
{1,...,B} to (b1,by) € {1,...,2B +1}2. Here, B is a non-
negative integer parameter that determines the size of the dic-
tionary, which is B = (2B + 1)?. The 1-D atoms ¢;(z) are
given by

o
I

1, 1
cos(?l—j(l;fl)as), 2,...,B+1
sin (25(b—1-B)z), b=B+2,...,2B+1,

S
Il

oy () =

where d, = 20 km is the width of the surveillance area in each
coordinate direction. Note that we use a 2-D, rather than 4-D,
dictionary because the sensors produce range and/or bearing
measurements and thus the local likelihood functions depend
only on the =, and y; components of the state ;.. Furthermore,
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TABLE I
COMMON PARAMETER VALUES
Parameter | Value | Description
d 4 Dimension of state vector xp
S 10 Number of sensors
T 40s Time scan duration
B, 0.1 Birth probability
Py 0.999 Survival probability
oy 0.01m/s? | Driving noise standard deviation
Ip 1000 Number of predicted particles
Iy 5000 Number of birth particles
J 25 Number of consensus iterations

the (G)LC uses Metropolis weights «, ¢ given by (28) and per-
forms J = 25 consensus iterations. Adaptive pruning sets in
after 15 consensus iterations, i.e., for j = 1,...,15 the prun-
ing thresholds are set to 77]<-S) =0, and for j = 16,...,25 they
are calculated adaptively as n§s> =w- L350 ‘y;_siﬁ |, where
w = 0.1 was determined empirically. Communication between
sensors is performed in a binary format. More specifically, the
real values (i.e., the internal states and, in the case of the GLC,
also the measurements) to be broadcast are encoded as 32-bit
floating point numbers. In addition, if adaptive pruning is used,
the set of active indices b € {1,..., B} is specified by a binary
word of length B, where the bth bit is 1 if index b is active and
0 otherwise. The numerical values of the common simulation
parameters are listed in Table I.

For comparison, we also considered a variant of the random
exchange distributed BF proposed in [8] that was adapted to
our range-bearing measurement model by using the appropriate
type of local likelihood function. Our implementation of the
random exchange distributed BF uses a single Gaussian for
approximating the posterior distributions; this conforms to the
recommendation given in [8]. The other parameters are as given
in Table I (except for .J, which is not applicable).

B. Homogeneous Sensor Network

In this simulation scenario, all sensors have equal charac-
teristics and acquire range and bearing measurements. Hence,
equation (5) becomes

Viar =22 + (g —y©))? "
) +wk 5

v =y
zp —2(s)

arctan (
(42)

where x;, and y; are the target coordinates at time k, ) and
y(‘s) are the coordinates of sensor s, and wgf) is an i.i.d. zero-
mean Gaussian 2-D random process with covariance matrix
C, = diag{o?,02}. Here, the range and bearing standard
deviations are chosen as o, = 150m and o, = 1°, respec-
tively. At each sensor s, when the target is present, target-

originated measurements zgf)

detection probability of Pd(s) () = 0.9 according to (42). The
clutter measurements are uniformly distributed with pdf (cf.
3) £17(2) = 1/(360°R) for z\") < R and f{”)(z) =0 for

are randomly generated with a

zf) > R, where R = 30km is the maximum range of the sen-
sors. The pmf of the number of clutter measurements, pés) (n)
in (3), is Poisson with mean u(s> = 5.

Fig. 3 shows three averaged performance metrics for the pro-
posed LC-based distributed BF with dictionary size parameter
B € {10, 15,20}, abbreviated LC-BF-10 etc. (Hence, the size
of the 2-D dictionary is B = (2B + 1)? € {441,961,1681}.)
Fig. 4 shows these metrics for the distributed BF using the
GLC, abbreviated GLC-BF-10 etc. For each dictionary size, we
show the results obtained with and without adaptive pruning.
For comparison, we also show the results of the centralized BF
(abbreviated C-BF) and of the random exchange BF (abbrevi-
ated RE-BF). All results were averaged over 100 simulation
runs, and those for the distributed BFs also over the ten sensors.

In particular, Fig. 3(a) and Fig. 4(a) show the root-mean-
square error (RMSE) of the position estimates. For times where
the target is present, i.e., k = 10, ..., 110, the RMSE was calcu-
lated at each individual time k by averaging over all simulation
runs with successful target detections. For times where the target
is absent, the RMSE was set to zero. One can see in Fig. 3(a) that
after the initial detection of the target at time & = 10, the RMSEs
of all filters decrease to an error floor. As expected, larger dictio-
nary sizes lead to smaller RMSE values. For k between about 10
and 40, the RMSE of LC-BF-10 without pruning is significantly
smaller than that of RE-BF. For the remaining %k, the RMSE of
LC-BF-10 with or without pruning is generally similar to that
of RE-BF and about 30 m larger than that of C-BF. However,
at time k = 10, it is much smaller than that of RE-BF. The
RMSEs of LC-BF-15 and LC-BF-20 are considerably smaller
than those of LC-BF-10 and RE-BF and, in fact, very close to
that of C-BF. The adaptive pruning is generally seen to produce
effectively no loss in RMSE performance; an exception is ob-
served in the case of LC-BF-10 for k£ between about 10 and 40,
where pruning increases the RMSE. Finally, a comparison with
Fig. 4(a) shows that GLC-BF has effectively the same position
RMSE as LC-BF. Thus, the significant reduction of communi-
cation obtained with GLC-BF—shown in Fig. 4(c)—does not
result in a reduced accuracy of position estimation.

Fig. 3(b) and Fig. 4(b) show the estimated probability of a
detection error (EPDE), which is defined as the average of an
indicator variable that is one if the tracking method did not
detect the target even though it was present or it detected the
target even though it was absent, and zero otherwise. One can
see in Fig. 3(b) that the EPDEs of all filters are effectively
zero at almost all times. For all filters, a peak occurs at time
k =10, i.e., when the target is born. This is because the target
has been observed only at this single time instant (if at all),
which makes a decision about its presence unreliable. However,
after just one time step, the EPDE drops to zero or almost zero,
which means that the target is almost always detected correctly.
One can also see that adaptive pruning effectively does not
increase the EPDE. Furthermore, a comparison with Fig. 4(b)
shows that the EPDE of GLC-BF is effectively equal to that of
LC-BE.

Fig. 3(c) and Fig. 4(c) show the amount of communication re-
quired by the proposed distributed BF. More specifically, these
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Fig. 4. Same as Fig. 3, but showing the results of GLC-BF rather than LC-BF.

figures depict the total amount of binary data transmitted by
all the ten sensors during one filtering step, i.e., in the course
of all the J = 25 consensus iterations, using the binary repre-
sentation described in Section VIII-A. Both with and without
adaptive pruning, a larger dictionary leads to a higher amount
of communication but also, as was shown by Fig. 3(a), (b) and
Fig. 4(a), (b), to better detection/tracking performance. Thus, as
expected, there is a tradeoff between communication cost and
detection/tracking performance. One can see in Fig. 3(c) that
with adaptive pruning, the communication cost of LC-BF can
be reduced by about 10-25%. This reduction is larger—both ab-
solutely and relatively—for a larger dictionary size. Note that it
is not paid for by a noticeable reduction of the detection/tracking
performance (with the exception of LC-BF-10 for k between 10
and 40).

As can be seen in Fig. 4(c), GLC-BF requires only about
half the amount of communication required by LC-BF. This
reduction in communication is not paid for by any loss
in detection/tracking performance. For RE-BF, encoding the
measurements and Gaussian parameters to be transmitted as

32-bit floating point numbers, the amount of communication is
obtained as about 12 kbit per filtering step.' This is much less
than the amount of communication required by the proposed
distributed BF. In particular, GLC-BF-10 with adaptive pruning
(which has the lowest communication cost among all the con-
sidered variants of the proposed distributed BF) transmits about
1.5Mbit in total with about the same detection and tracking
performance as RE-BF. For (G)LC-BF-15 and (G)LC-BF-20,

IThis value is obtained by noting that for RE-BF, the average number of
bits transmitted by all the sensors in the network in one time step is given by
32-10 - (NG + Nm), where the factor 32 is the binary wordlength, the factor
10 is the number of sensors in the network, N is the total number of real values
representing the Gaussian parameters for one sensor, and Np, is the average
total number of real values representing the measurements for one sensor. Here,
Ng = 2 - 14 = 28, where the factor 2 arises since each exchange between two
sensors comprises two transmissions and the factor 14 is the number of real
values required to represent the parameters of a 4-D Gaussian (4 for the mean
and 10 for the covariance matrix). Furthermore, in the homogeneous sensor
network scenario considered, Ny, = 2 - n,, where the factor 2 arises since each
measurement consists of two real values (range and bearing) and the factor 1y
is the average number of measurements per sensor (both target-originated and
due to clutter).
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Average size of active index set
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Fig. 5. Number of active internal states of each sensor versus the consensus
iteration index j. (a) For a single time step and simulation run. (b) Averaged
over all time steps and simulation runs.

the detection performance and tracking performance are sig-
nificantly better and, for (G)LC-BF-20, they are already very
close to the optimal performance of C-BF; however, this im-
proved performance requires a further increase of the amount
of communication. In conclusion, the significantly better per-
formance of the proposed distributed BF comes at the cost of a
significantly larger amount of communication.

Finally, we show how the size of the active index set of
each sensor evolves with progressing consensus iterations. For
LC-BF-20, Fig. 5 depicts the number of active (thus, broad-
cast) internal states of each of the ten sensors as a function of
the consensus iteration index j. We only show the results for
j=14,...,25 because for j = 1,...,15, no pruning is em-
ployed and thus the number of active internal states of each
sensor is always B = 1681. One can see in Fig. 5(b) that when
pruning is employed, the average number of active internal states
immediately drops to a little more than one third of the number
without pruning; it then further decreases (albeit slowly) with
progressing consensus iterations, and it depends only weakly on
the sensor index.

C. Heterogeneous Sensor Network

Next, we consider a heterogeneous sensor network where
sensors s € Sp 2 {1,5,6,8, 10} acquire only bearing measure-
ments while sensors s € S; 2 {2,3,4, 7,9} acquire only range
measurements. Thus, for s € Sy, equation (5) becomes

: — g5 ,
z,E,,&) = arctan (M> + w,if),

pR—( (43)

TABLE II
SENSOR PARAMETERS FOR THE HETEROGENEOUS SCENARIO

T [P [BY [

1 - 2° 0.8 2
2 100m - 0.95 5
3 150m - 0.9 3
4 | 200m - 0.85 2
5 - 0.5° | 0.95 5
6 - 1° 0.9 3
7 100m - 0.95 5
8 - 2° 0.8 2
9 200m - 0.8 2
10 - 1° 0.9 3

(s)

where w,”’ is ani.i.d. zero-mean Gaussian random process with

standard deviation Ués)

(5) reads

. On the other hand, for s € &;, equation

AV = e =22+ (g -yl @)

(s)

where w, "’ is an i.i.d. zero-mean Gaussian random process with

standard deviation or(s). At each sensor s, when the target is
(s)

present, target-originated measurements z, ~ are randomly gen-

erated with detection probability Pf) (zp) = Pés) according to
(43) or (44). The clutter measurements are uniformly distributed
with the following pdfs: for s € Sy, fc(s) (z) = 1/360° for
z € [~180°,180°) and f)(z) = 0 otherwise, and for s € S;,
fc(s)(z) =1/R for z < R and fc(s)(z) = 0 otherwise, where
R = 30km is the maximum range of the sensors. The number
of clutter measurements has a Poisson distribution with mean
y(s). The sensor parameters (Tr(s), aés), Pd(s), and ,u(S) are cho-
sen differently for different sensors; their values are listed in
Table II.

Figs. 6 and 7 show the averaged performance metrics pre-
viously shown for the homogeneous scenario in Figs. 3 and
4. Again, 100 simulation runs were performed. One can see in
Fig. 6(a) that, similarly to the homogeneous scenario, the RMSE
of all filters quickly decreases to an error floor after the initial
detection of the target at time k = 10. However, differently
from the homogeneous scenario, already LC-BF-10 performs
significantly better than RE-BF. Again, larger dictionary sizes
yield better results: LC-BF-20 performs quite close to C-BF, and
in turn LC-BF-15 performs quite close to LC-BF-20. Further-
more, adaptive pruning in the LC does not increase the RMSE
noticeably, and the RMSE of GLC-BF effectively equals that of
LC-BE.

Fig. 6(b) shows that the EPDE of the proposed distributed BF
is again effectively zero at almost all times but with a larger peak
at the initial detection time k£ = 10 than in the homogeneous
scenario. Differently from the homogeneous scenario, the EPDE
of RE-BF also has a much larger initial peak when the target is
born and afterwards takes about six time steps until it settles at
a floor of about 3%. This means that already LC-BF-10 has a
considerably better detection performance than RE-BF. Again,
as in the homogeneous scenario, adaptive pruning does not have
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Fig. 6. Same as Fig. 3, but showing the results for the heterogeneous scenario.
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Fig. 7. Same as Fig. 4, but showing the results for the heterogeneous scenario.

a noticeable effect on the EPDE, and the EPDE of GLC-BF—
shown in Fig. 7(b)—is effectively equal to that of LC-BF.

Fig. 6(c) shows that the amounts of communication required
per filtering step by LC-BF-10, LC-BF-15, and LC-BF-20 are
quite similar to those obtained in the homogeneous scenario,
with the exception that the reduction achieved by pruning is
smaller. Comparing with Fig. 7(c), we again see that GLC-BF
requires only about half the communication of LC-BF; again,
this does not imply a loss in detection/tracking performance. RE-
BF now transmits about 9.5 kbit per filtering step. Accordingly,
our discussion of Figs. 3(c) and 4(c) still applies here, with the
difference that the performance gains of the proposed distributed
BF over RE-BF are larger than in the homogeneous scenario.

We also investigated the dependence of the number of active
internal states on the consensus iteration index j for the hetero-
geneous network scenario. Our simulation results are similar to
those shown for the homogeneous network scenario in Fig. 5.
In particular, they demonstrate that pruning yields a noticeable
reduction of the number of active internal states, even though
this reduction is smaller than in the homogeneous scenario.

IX. CONCLUSION

We addressed the problem of target tracking in decentralized
sensor networks under the complicating assumptions that the

presence of the target is uncertain, the measurements provided
by the sensors are affected by clutter and missed detections,
and the system model may be nonlinear and non-Gaussian. For
this practically relevant scenario, we developed a distributed
multisensor Bernoulli filter (BF) that approximates the optimal
Bayesian multisensor filter while using only local intersensor
communications. The proposed distributed BF employs an ex-
tended form of the likelihood consensus (LC) method and a
particle-based implementation. The LC method is extended to
account for both the target presence and target absence hypothe-
ses, and to include an adaptive pruning of the LC expansion
coefficients via thresholding operations. We also proposed a
variant of the LC, referred to as group LC, that is advantageous
for networks containing star-connected sensor groups.

We presented simulation results demonstrating the perfor-
mance of the proposed distributed BF for homogeneous and
heterogeneous sensor networks with substantial measurement
noise and clutter. We verified that for increasing size of the
LC dictionary, the performance of the proposed distributed BF
approaches that of the optimal centralized multisensor BF. We
also found that for a sufficient size of the LC dictionary, the pro-
posed distributed BF outperforms the distributed BF proposed
in [8] with respect to both detection and estimation. This perfor-
mance advantage comes at the expense of a significantly higher
amount of intersensor communication. Finally, we demonstrated
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that both the proposed adaptive pruning of the LC expansion co-
efficients and the group LC result in substantial reductions of
intersensor communication without significantly reducing the
detection and tracking performance.

Promising directions for future research include the use of
sparse reconstruction techniques [37] and alternative dictionar-
ies in the LC method. We expect that this will result in an
improved accuracy of approximation and/or an additional re-
duction of the communication requirements. In the context of
the GLC method, the development of a distributed algorithm
for establishing and disseminating the relevant network config-
uration would be desirable. Finally, extensions of the proposed
method to the cases of an unknown number of multiple targets
(cf. [1], [17], [24], [38]-[40]) and of mobile sensors with un-
certain positions (cf. [41]-[43]) are further interesting research
topics.
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