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Latent Parameter Estimation in Fusion Networks
Using Separable Likelihoods

Murat Üney , Member, IEEE, Bernard Mulgrew , Fellow, IEEE, and Daniel E. Clark , Member, IEEE

Abstract—Multisensor state-space models underpin fusion ap-
plications in networks of sensors. Estimation of latent parameters
in these models has the potential to provide highly desirable ca-
pabilities such as network self-calibration. Conventional solutions
to the problem pose difficulties in scaling with the number of sen-
sors due to the joint multisensor filtering involved when evaluating
the parameter likelihood. In this paper, we propose a separable
pseudo-likelihood which is a more accurate approximation com-
pared to a previously proposed alternative under typical operating
conditions. In addition, we consider using separable likelihoods in
the presence of many objects and ambiguity in associating mea-
surements with objects that originated them. To this end, we use a
state-space model with a hypothesis-based parameterization, and
develop an empirical Bayesian perspective in order to evaluate
separable likelihoods on this model using local filtering. Bayesian
inference with this likelihood is carried out using belief propaga-
tion on the associated pairwise Markov random field. We specify a
particle algorithm for latent parameter estimation in a linear Gaus-
sian state-space model and demonstrate its efficacy for network
self-calibration using measurements from noncooperative targets
in comparison with alternatives.

Index Terms—Sensor networks, hidden Markov models,
Markov random fields, pseudo-likelihood, simultaneous localisa-
tion and tracking, Monte Carlo algorithms, dynamical Markov
random fields.

I. INTRODUCTION

AWIDE range of sensing applications including wide area
surveillance is underpinned by state space models which

are capable of representing a variety of dynamic phenomena
such as spatio-temporal (see, e.g., [1]) processes. In fusion (or,
object tracking [2]) networks, multi-sensor versions of stochas-
tic state space models, also known as hidden Markov models [3],
are used to estimate object trajectories in a surveillance region.

These models, however, are often specified by some latent
parameters [4] some of which are unknown in practice and
need to be estimated based on measurements from the state pro-
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cesses (or, objects). Examples of this problem setting in fusion
networks include estimation of noise parameters [5], sensor bi-
ases [6], [7] and localisation/calibration of sensors in a GPS
denying environment (e.g., in underwater sensing [8]) using
point detections from non-cooperative targets [9], [10]. Another
example is the estimation of the orientations and positions of
nodes in a camera network based on feature detections [11].

Such problems fall in the domain of parameter estimation in
state space models (see, e.g., [12] for a review). The parame-
ter likelihood of the multi-sensor problem, however, does not
scale well with the number of sensors which specifies the di-
mensionality of the unknown, or, the length of the measurement
window that will be used for estimation. In the presence of
multiple objects, the scalability issue is exacerbated by the mea-
surement origin (or, data association) uncertainties that arise.
Exact evaluation of the likelihood, in this case, has combinato-
rial complexity with the number of sensors [13], and, in general
multiple object models, it is intractable even for a single sen-
sor [14]. Estimation using a maximum likelihood (ML) or a
Bayesian approach requires repeated evaluation of this likeli-
hood (see, e.g., [12], [15], [16]) necessitating the use of efficient
approximation strategies.

Intractable or computationally prohibitive likelihoods have
motivated a number of lines of work in the statistics literature
including likelihood free methods, or, approximate Bayesian
computation [17], and, composite likelihood/pseudo-likelihood
approaches [18]. Likelihood free methods can be used for sam-
pling from the parameter posterior in state space models [19]
including those capable of modelling multiple objects [20]. The
latter approach is based on developing surrogates to replace the
original likelihood, e.g., block based approximations in max-
imum likelihood [21]. The pseudo-likelihood perspective has
been useful in networked settings in which constraints on (i) the
availability of parts of data, and/or, (ii) scalability in processing
with the number of sources arise. Examples include surrogates
built upon local functions for estimation of parametric prob-
ability measures (e.g., exponential family distributions) from
distributedly stored high dimensional samples [22]–[24].

It is not straightforward to find such pseudo-likelihoods for
parameter estimation in state space models, however, that can
resolve these two issues that arise when there are multiple data
sources (or, sensors). It is worthwhile to develop and analyse
surrogates that provide scalability with the number of sources,
and, are suitable to local computations (e.g., local filtering).
In [25], we proposed a pseudo-likelihood which is a product
of “dual-term” approximations replacing their intractable exact
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counterparts. These approximations are separable in that they
can be evaluated using single sensor filtering. This feature
underpins scalability with the number of sensors. In [26], we
have investigated the quality of the dual-term approximation,
and, related it to the level of uncertainty in the prediction and
estimation of the underlying state process.

In this work, we propose an alternative pseudo-likelihood
which is provably a more accurate approximation for parame-
ter estimation in multi-sensor state space models, under typical
operating conditions. This approximation is also separable in
that it is a scaled product of quadruple terms each of which
can be found using single sensor filtering. In order to exploit
this quad-term likelihood when there are multiple objects, extra
attention should be paid to the handling of the data association
uncertainties. We propose to use a hypothesis based parameter-
isation for the multi-object state space model as detailed in [14]
and [27] in order to facilitate the use of the quad-term surrogate
in this setting. In the parameterised model, we explicitly point
out the combinatorial complexity of exact likelihood evaluation
with the number of sensors. Then, we introduce an empirical
Bayesian [28] interpretation of local filtering that facilitates the
use of separable likelihoods within this model. These modelling
aspects detailing the use of separable likelihoods in hypothesis
based multi-object models constitute the second contribution of
this work.

Separable likelihoods fit well in distributed fusion architec-
tures in which locally filtered distributions are transmitted in the
network, as opposed to sensor measurements [29]. Moreover,
they facilitate parameter estimation using a message passing
computational structure which is desirable in networked prob-
lems. Specifically, the proposed likelihood surrogate together
with independent parameter priors leads to a pairwise Markov
random field (MRF) posterior model. The marginal distributions
of this model approximate posterior marginals of the latent pa-
rameters to be estimated. We estimate these marginals iteratively
using Belief Propagation (BP) [30] which consists of successive
message passings among neighbouring nodes and updating of
local marginals based on these messages. This computational
structure lends itself to decentralised estimation, as well as scal-
able computation at fusion centre.

As an indication of the approximation quality, we consider the
Kullback-Leibler divergence (KLD) [31] of the quad-term like-
lihood with respect to the actual pairwise likelihood and relate
it to the uncertainties in predicting and estimating the underly-
ing state using individual and joint sensor histories. We show
that with more accurate local filters the approximation qual-
ity improves and the proposed quad-term separable likelihood
has an improved error bound compared to the aforementioned
dual-term approximation.

We provide a Monte Carlo algorithm for sensor self-
calibration in this framework for linear Gaussian state space
(LGSS) models. The algorithm is based on the nonparamet-
ric BP approach [32] and involves sampling from the up-
dated marginals followed by quad-term likelihood evaluations
in the message passing stage. As BP iterations converge to
a fixed point, the empirical average of the samples from the
marginals constitute (an approximate) minimum mean squared
error (MMSE) estimate of the latent parameters. The edge

potentials are evaluated using the entire measurement history
within a selected time period in an offline fashion which is a
strategy similar to particle Markov chain Monte Carlo (MCMC)
algorithms [15]. As such, we differ from [26] in which window-
ing of measurements is used for enabling online processing.

Preliminary results of the proposed pseudo-likelihood can be
found in [33]. This article provides a complete account of our
solution strategy in multiple object models and is structured
as follows: Section II provides the probabilistic model and the
problem statement. Then, we detail pairwise pseudo-likelihoods
in parameterised multi-object models, and, relate this perspec-
tive to latent parameter estimation via inference over pair-
wise MRFs, in Section III. The proposed quad-term node-wise
separable likelihood approximation is detailed in Section IV.
Section V details the structural and computational properties of
the quad-term approximation when the unknowns are respec-
tive quantities. Based on these results, we propose a distributed
sensor localisation algorithm in linear Gaussian multi-object
state space models in Section VI. The efficacy of this algo-
rithm is demonstrated in comparison to the approach in [26], in
Section VII. Finally, we conclude in Section VIII.

II. PROBLEM DEFINITION

A. Probabilistic Model

Let us consider a set of sensors V = {1, . . . , N} networked
over communication links listed by E ⊂ V × V . The graph G =
(V, E) is undirected (i.e., the links are bi-directional), connected,
and, might contain cycles.

Next, let us consider a single object with state evolution mod-
elled as a Markov processXk for time index k ≥ 1. This process
is specified by an initial state distribution and a transition den-
sity. The state space model with parameters θ is then specified
as follows [12]: The state value xk is a point in the state space
X and is generated by the chain

Xk |(X1:k−1 = x1:k−1) ∼ π(xk |xk−1 ; θ),

X1 ∼ πb(x1 ; θ), (1)

where .|. denotes conditioning. A measured value zik ∈ Zi at
sensor i ∈ V is generated independently in accordance with the
likelihood model

Zi
k |(X1:k = x1:k , Z

i
1:k = zi1:k ) ∼ gi(zik |xk ; θ) (2)

where subscript 1 : k indicates a vector concatenation over time.
In fusion scenarios, there are multiple such objects denoted

by a multi-object state

Xk � [Xk,1 , . . . , Xk,Mk
], (3)

that induce measurements according to the above state space
model resulting with sensors collecting a multitude of measure-
ments

Z ik �
[
Zi
k,1 , . . . , Z

i
k,O i

k

]
, (4)

where Mk is the number of objects and Oi
k is the number of

measurements collected at sensor i at time k. Here, the origin
of Zi

k,j s are unknown, i.e., the data associations which encode
a mapping from these measurement (random) variables to the
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elements of Xk (and, equivalently to the previously collected
measurements from the same objects) are not known [2].

In the general multi-object tracking model, Mk and Oi
k are

random variables with laws determined by probability models
regarding how these objects appear in the surveillance region
and disappear (which is often referred to as their birth and death,
respectively), the law for the false alarms, etc. For the sake of
simplicity and ease of presentation in the limited space espe-
cially when relating computational complexity to the number of
sensors and objects in the following discussion, we assume that
all of the objects that exist at time step k = 1 remain in the scene
for the time window considered and there are no missed detec-
tions and false alarms in sensor measurements which imply that
Mk = M andOi

k = Mk , respectively, for some positive integer
M with probability one.

In this simplified “closed world” model the multi-object state
transition is given by

π(Xk |Xk−1 ; θ) =
M∏
m=1

π(xk,m |xk−1,m ; θ). (5)

The likelihood of the measurements collected by sensor i is
conditioned not only on the multi-object state Xk , but, also on
a (data association) hypothesis τ ik that encodes the association
of measurements to the objects within Xk :

li(Zi
k |Xk , τ

i
k ; θ) =

M∏
o=1

gi(zik,o |xk,τ ik (o) ; θ), (6)

and, the prior on τ ik assigns equal probability to all M ! permu-
tations of [1, . . . ,M ] that τ ik can take, i.e.,

p(τ ik ) =
1
M !

. (7)

B. Statement of the Problem

We are interested in estimating θ ∈ B using the measurements
collected across the network by sensors i ∈ V for a time window
of length t. The parameter likelihood of the problem quantifies
how well these measurements fit into the state space model
with the selected value of the parameter, and, is evaluated via
multi-sensor filtering [4, Sec. IV]:

l
(
Z1

1:t , . . . ,Z
N
1:t |θ

)

=
t∏

k=1

p
(
Z1
k , . . . ,Z

N
k |Z1

1:k−1 , . . . ,Z
N
1:k−1 , θ

)
, (8)

where the time updates on the right hand side are given by

p
(
Z1
k , . . . ,Z

N
k |Z1

1:k−1 , . . . ,Z
N
1:k−1 , θ

)

=
∑
τ 1
k

· · ·
∑

τ Nk

p(τ 1
k )× . . .× p(τNk )

×
∫

XM

l(Z1
k , . . . ,Z

N
k |Xk , τ

1
k , . . . , τ

N
k ; θ)

× p(Xk |Z1
1:k−1 , . . . ,Z

N
1:k−1 ; θ)dXk , (9)

and, the multi-sensor likelihood inside the integration factorises
as

l(Z1
k , . . . ,Z

N
k |Xk , τ

1
k , . . . , τ

N
k ; θ) =

∏
i∈V

li(Zi
k |Xk , τ

i
k ; θ),

(10)

where the terms in the product are given by (6).
Here, (8) follows from the chain rule of probabilities. The

term in (9) is the contribution at time step k which updates
the likelihood of the previous time step and is found using the
Markov property that the sensor measurements are mutually
independent of the measurement histories, conditioned on the
current state for any value of θ. Let us denote this relation by
Zjk ⊥⊥Z

j
1:k−1 |Xk , θ for i ∈ V (see, e.g., [34], for this notation).

(10) follows from that the measurements of different sensors are
mutually independent, i.e., Z ik ⊥⊥Z

j
k |Xk , θ for (i, j) ∈ V × V .

This likelihood can be used in a MMSE estimator of θ ∈ B,
in principle, for a random variable Θ associated with a prior
density p(θ). This estimate is given by the expected value of the
posterior distribution

p(θ|Z1
1:t , . . . ,Z

N
1:t) ∝ l(Z1

1:t , . . . ,Z
N
1:t |θ) p(θ), (11)

θ̂ =
∫

B
θ p(θ|Z1

1:t , . . . ,Z
N
1:t) dθ. (12)

The MMSE estimate can be computed by generating L sam-
ples from the posterior distribution in (11) using, for example,
MCMC methods [15] and using these samples to find a Monte
Carlo estimate of the integral in (12). In both this approach and
maximum likelihood (ML) solutions aiming to maximise (8)
with iterative optimisation, repeated evaluations of the likeli-
hood are required.

The evaluation of this likelihood is intractable, however, not
only because of the (M !)N summations in (9), but, also because
of the complexity in finding the integrations involved. The inte-
grands here are i) the multi-sensor likelihood in (10), and, ii) the
prediction density for Xk based on the network’s entire mea-
surement history up to time k. In other words, (9) is the scale
factor for the posterior density of Bayesian recursions, or, the
“centralised” filter given by

p(Xk , τ
1:N
k |Z1

1:k , . . . ,Z
N
1:k ; θ)

=
l(Z1

k , . . . ,Z
N
k |Xk , τ

1:N
k ; θ)

p
(
Z1
k , . . . ,Z

N
k |Z1

1:k−1 , . . . ,Z
N
1:k−1 , θ

) × p(τ 1:N
k )

× p(Xk |Z1
1:k−1 , . . . ,Z

j
1:k−1 , θ), (13)

p(Xk |Z1
1:k−1 , . . . ,Z

N
1:k−1 , θ)

=
∑
τ 1
k −1

· · ·
∑

τ Nk −1

∫

XM

π(Xk |Xk−1 , θ)

× p(Xk−1 , τ
1:N
k−1 |Z1

1:k−1 , . . . ,Z
N
1:k−1 , θ)dXk−1 , (14)

where we denote by τ 1:N
k the concatenation of τ ik s and it has

(M !)N different configurations. Here, both the prediction (14)
and update (13) are O((M !)N ).

In order to address these challenges, multi-object filtering (or,
tracking) algorithms often employ two approximations: First,
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they aim to find the most probable data association hypoth-
esis in (13) denoted by τ̄ 1:N

k , instead of both evaluating this
expression for all possible associations and storing them. The
benefits of doing so are that i) one can generate tracks (or, object
trajectories) as simply marginals of p(Xk , τ

1:N
k = τ̄ 1:N

k | . ) for
k = 1, . . . , t, and, ii) evaluations of the integral in (14) in the
next time step can be restricted to this value of the hypothe-
sis variable. Equivalently, the posterior distribution in (13) is
factorised as

p(Xk , τ
1:N
k |Z1

1:k , . . . ,Z
N
1:k ; θ)

= p(Xk |Z1
1:k , . . . ,Z

N
1:k , θ, τ

1:N
k )p(τ 1:N

k |Z1
1:k , . . . ,Z

N
1:k , θ)

(15)

where the association variables appear as model parameters in
the first term and the second term is similar to a prior distribution
on these models with the difference that it is conditioned on the
measurements. At time k − 1, let us select this “empirical prior”
as

p(τ 1:N
k−1 |Z1

1:k−1 , . . . ,Z
N
1:k−1 , θ)← δτ̄ 1 :N

k −1
(τ 1:N
k−1 ) (16)

where δ is Kronecker’s delta function and ← denotes assign-
ment. The second approximation follows from the first one:
Evaluation of the prediction stage in (14) reduces to evalua-
tion of the Chapman-Kolmogorov equation for only the most
likely value of the association parameters. This approach is of-
ten referred to as empirical Bayes [28], and is used to facilitate
approximate solutions to otherwise intractable problems.

A similar approximation can be used when evaluating the pa-
rameter posterior in (11). This leads to the following likelihood

l
(
Z1

1:t , . . . ,Z
N
1:t |θ, τ 1:N

1:t
)

=
t∏

k=1

pτ 1 :N
k

(
Z1
k , . . . ,Z

N
k |Z1

1:k−1 , . . . ,Z
N
1:k−1 , θ

)
, (17)

conditioned on τ 1:N
1:t where the factors are defined by

pτ 1 :N
k

(
Z1
k , . . . ,Z

N
k |Z1

1:k−1 , . . . ,Z
N
1:k−1 , θ

)

�
∫

XM

l(Z1
k , . . . ,Z

N
k |Xk , τ

1:N
k ; θ)

× p(Xk |Z1
1:k−1 , . . . ,Z

N
1:k−1 ; θ)dXk . (18)

This likelihood evaluated at τ 1:N
1:k = τ̄ 1:N

1:k replaces the one in (8)
when the empirical (model) prior is selected as in (16) (see
Appendix A for details). We will refer to (17) as the empirical
likelihood. Note that (18) is the integral term in (9).

The empirical likelihood update term is computationally more
convenient, however, alone it is not sufficient for scalability
with the number of sensors N : Finding τ̄ 1:N

k is equivalently
an N + 1-dimensional assignment problem which is NP hard
even for N = 2 sensors [35] which partly underlies the local
filtering paradigm for multi-sensor processing and our interest in
compatible solutions. For a moment, let us consider the problem
for a single object, i.e., for M = 1. In this case τ ik for i =
1, . . . , N have only one possible configuration (i.e., there is no
data association uncertainty). Because the dimensionality of θ is
specified byN and (8) will be evaluated for roughlyNL samples

(when estimating (12) (see, e.g., [36])) each of which costing
– in the simplest linear Gaussian measurements case (9)1–at
the least O(N 2t), the computational cost will be cubic in the
number of sensors which can easily become prohibitive for
large N .

The networked setting has additional constraints to take into
account: The sensors perform local filtering of their measure-
ments and exchange filtered (track) distributions over G as op-
posed to transmitting their measurements [29]. As a result, the
network-wide measurements are not available to evaluate the
likelihood of the problem. Instead, local distributions we denote
by p(Xk , τ

j
k = τ̂ jk |Z

j
1:k ) are made available to neighbouring

nodes where τ̂ jk is an approximation to the most probable asso-
ciation configuration τ̄ j

k found locally, based on only the local
sensor measurements at sensor j. There are computationally ef-
ficient algorithms for finding such solutions for the single sensor
problem (see, e.g., [35] and the references therein). Therefore,
a viable solution needs to build upon these densities and local
data associations τ̂ ik as opposed to joint multi-sensor filtering in
the network.

The problem we address in this work is the design of scalable
approximations to (8) for estimating θ in a networked setting
based on local filtering results at the nodes. The proposed ap-
proach also addresses the aforementioned computational bottle-
neck at fusion centres in centralised multi-sensor architectures
with a designated node receiving unfiltered sensor measure-
ments.

It is also worth noting that the parameter vector θ ∈ B can
be used to represent a wide variety of parameters of the global
model some of which can be intrinsic to sensors i ∈ V individ-
ually such as parameters pertaining to local noise models. We
are particularly interested in a second class of parameters which
have dependencies among sensors such as respective parame-
ters, e.g., sensor locations and similar “calibration” parameters.
In the former setting, the estimation of local parameters decou-
ple into independent estimation problems which can be solved
using a suitable approach (see, e.g., [27], [37], [38]).

In our setting, θ � [θ1 , . . . , θN ] where θi is associated with
i ∈ V and its estimation does not decouple and depends on
all measurements across the network due to the dependencies
of parameters, which, in turn, brings forward the multi-sensor
aspects of the problem this work aims to address. Because local
filtering is performed, on the other hand, local estimation of data
association τ̂ ik is available independent of θ, which we discuss
in detail later in Section V.

III. A PSEUDO-LIKELIHOOD AND A PAIRWISE MRF POSTERIOR

FOR DECENTRALISED ESTIMATION

Pseudo-likelihoods are constructed from likelihood like func-
tions which are computationally convenient and defined typi-
cally over smaller subsets of the data to overcome difficulties
posed by intractable likelihoods over the entire set of data

1Specifically, for linear Gaussian measurements with no data association
uncertainty, the marginal parameter likelihood involves computation of the
innovation covariance for the so called group-sensor measurements in joint
multi-sensor filtering.
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(see, e.g., [18] and the references therein). Let us denote the
network-wide data set by

Z � [Z1
1:t , . . . ,Z

N
1:t ].

A fairly general form for a pseudo-likelihood is given by [18]

l̃(Z|θ) =
∏
s∈S

l̃(Zds |Zcs, θ)
ωs (19)

where S is an index set, ωs is a positive real number, and, Zds

and Zcs are mutually exclusive subsets of Z (for example, Zd1 =
Zi

2 and Zc1 = Zj
1 , etc.). These sets can be selected in various

ways ensuring that the factors are computationally convenient
functions, for example, marginals and/or conditional densities,
and, estimates based on l̃(Z|θ) are sensible. Note that (8) is also
in this form, however, with difficult to evaluate factors.

Let us consider θ = [θ1 , ..., θN ] and a pseudo-likelihood sur-
rogate for the empirical likelihood in (17):

l̃τ 1 :N
1 : t

(Z|θ) =
∏

(i,j )∈E
lτ i , j1 : t

(Zi ,Zj |θi,j ), (20)

=
∏

(i,j )∈E

t∏
k=1

pτ i , jk
(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
k−1 , θi,j ).

(21)

Here, E is essentially the set of sensor pairs whose likelihoods
we would like to incorporate into the pseudo-likelihood, and, it is
convenient to choose them as those that share a communication
link, in a networked setting (Section II-A).

The pairwise structure above is beneficial to use with the
MMSE estimator in (12). Note that the MMSE estimate is the
concatenation of the expected values of posterior marginals,
i.e., p(θi |Z) for i = 1, . . . , N . These distributions can be found
using message passing algorithms over G when the surrogate
(20) is used in (11) together with independent but arbitrary a
priori distributions selected for Θi s. Specifically, the parameter
posterior corresponding to such a selection of priors and the
pseudo-likelihood (20) is a pairwise Markov random field over
G = (V, E) [34]:

p(θ|Z) ∝
∏
i∈V

ψi(θi)
∏

(i,j )∈E
ψij (θi, θj ), (22)

ψi(θi) = p0,i(θi),

ψij (θi, θj ) = lτ i , j1 : t
(Zi ,Zj |θi, θj ), (23)

where the node potential functions (i.e., ψis) are the selected
priors (e.g., uniform distributions over bounded sets θi s take
values from) and the edge potentials (i.e., ψij s) are the pair-
wise likelihoods for the pairs (i, j) s. This model is illustrated
in Fig. 1.

The pairwise MRF model in (22) allows the computation
of posterior marginal p(θi |Z) through iterative local message
passings such as Belief Propagation (BP) [30]. In BP, the nodes
maintain distributions over their local variables and update them
based on messages from their neighbours which summarise the
information neighbours have gained on these variables. This is

Fig. 1. A multi-sensor state space-or, hidden Markov-model (black dashed
box on the right representing a chain over k) and a Markov Random field model
of the parameter posterior (the blue edges on the left).

described for all i ∈ V by

mji(θi) =
∫
ψij (θi, θj )ψj (θj )

∏
i ′∈ne(j )\i

mi ′j (θj ) dθj , (24)

p̃i(θi) ∝ ψi(θi)
∏

j∈ne(i)
mji(θi). (25)

In BP iterations, nodes simultaneously send messages to their
neighbours using (24) (often using constants as the previously
received messages during the first step) and update their lo-
cal “belief” using (25). If G contains no cycles (i.e., G is
a tree), p̃i s are guaranteed to converge to the marginals of
(22), in a finite number of steps [30]. For the case in which
G contains cycles, iterations of (24) and (25) are known as
loopy BP (LBP). For the case, convergence does not have
general guarantees, nevertheless LBP has been been very suc-
cessful in computing approximate marginals in a distributed
fashion, in fusion, self-localisation and tracking problems in
sensor networks [39]–[41]. In our problem setting, we assume
that the models over spanning trees of a loopy G are consis-
tent in that they lead to “similar” marginal parameter distribu-
tions, which suggests the existence of LBP fixed points [42]
that will be converged when initial beliefs are selected
reasonably [43].

IV. QUAD-TERM NODE-WISE SEPARABLE LIKELIHOODS

The pseudo-likelihood introduced in Section III leads to a
parameter posterior that admits a pairwise MRF model. This is
advantageous in providing a means for decentralised estimation
through message passing algorithms in a network. The edge po-
tentials (23) of this model, however, are i) conditioned jointly
on two sensors’ measurements simultaneous access to which is
infeasible in a networked setting, and, ii) conditioned on associ-
ation variables for two sensors and ideally should be evaluated
at its most probable configuration τ̄ i,j

1 , . . . , τ̄ i,j
t each of which

is NP-hard to find, as explained in Section II.
In order to overcome these difficulties, we introduce an ap-

proximation which factorises into terms local to nodes, i.e., a
node-wise separable approximation. Let us consider the “cen-
tralised” pairwise likelihood update term in (21) given some
configuration τ i,jk for k = 1, . . . , t, and, drop them from the
subscript for the sake of simplicity in notation, as well as the i, j
subscript in θ, in the following discussion. This term factorises
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in alternative ways as follows:

p(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

= p(Zi
k |Zi

1:k−1 ,Z
j
1:k , θ)p(Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ) (26)

= p(Zj
k |Zi

1:k ,Z
j
1:k−1 , θ)p(Z

i
k |Zi

1:k−1 ,Z
j
1:k−1 , θ) (27)

=
(
p(Zi

k |Zi
1:k−1 ,Z

j
1:k , θ)p(Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

)1/2

×
(
p(Zj

k |Zi
1:k ,Z

j
1:k−1 , θ)p(Z

i
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

)1/2

(28)

In the first and second lines above, the chain rule is used. The
third equality can be found by taking the geometric mean of the
first two expressions. All four factors in (28) are conditioned on
the measurement histories of both sensors to which one cannot
have simulatenous access in a networked setting. We would like
to aviod this by leaving out the history of sensor i (sensor j) in
the first two (last two) terms of (28), i.e.,

q(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

� 1
κk (θ)

(
p(Zi

k |Zj
1:k , θ)p(Z

j
k |Z

j
1:k−1 , θ)

)1/2

×
(
p(Zj

k |Zi
1:k , θ)p(Z

i
k |Zi

1:k−1 , θ)
)1/2

(29)

κk (θ) =
∫ ∫ (

p(Zi
k
′
,Zj

k

′|Zj
1:k−1 , θ)

×p(Zi
k
′
,Zj

k

′|Zi
1:k−1 , θ)

)1/2
dZi

k
′dZj

k

′
(30)

where κk (θ) is the normalisation constant that guarantees q to
integrate to unity. Note that κk is a function of the parameters θ.

The appeal of this quadruple term is that its factors depend on
single sensor histories. As such, they require filtering of sensor
histories of i and j individually enabling the evaluation of their
product in a network. This point is discussed later in this section.

A. Approximation Quality

We consider the difference between the original centralised
update term in (28) and the quad-term approximation introduced
in (29). Because these terms are probability densities over sensor
measurements, their “divergence” can be quantified using the
KLD [31]:

Proposition 4.1: The KLD between the centralised update
and the node-wise separable approximation in (29) is bounded
by the average of the mutual information (MI) [31] between the
current measurement pair and a single sensor’s history condi-
tioned on the history of the other sensor, i.e.,

D(p(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)||q(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ))

≤ 1
2
I(Z ik ,Zjk ;Z i1:k−1 |Zj1:k−1 ,Θ)

+
1
2
I(Z ik ,Zjk ;Z

j
1:k−1 |Z i1:k−1 ,Θ). (31)

The proof can be found in Appendix B.2 The upper bound
in (31) measures the departure of the current pair of measure-
ments, and, one of the sensor histories from conditional inde-
pendence when they are conditioned on the history of the other
sensor. Note that these variables, when conditioned on Xk , are
conditionally independent, i.e., (Z ik ,Z

j
k )⊥⊥Z

j
1:k−1 |Xk ,Θ holds

and consequently

I(Z ik ,Zjk ;Z i1:k−1 |Xk ,Θ) = I(Z ik ,Zjk ;Z
j
1:k−1 |Xk ,Θ) = 0.

Similarly, the average MI term on the right hand side of
(31) is zero if (Z ik ,Z

j
k )⊥⊥Z i1:k−1 |Z

j
1:k−1 ,Θ and (Z ik ,Z

j
k )⊥⊥

Zj1:k−1 |Z i1:k−1 ,Θ hold simultaneously. This condition is satis-
fied, for example, in the case that either of the measurement
histories Z i1:k−1 and Zj1:k−1 are sufficient statistics for Xk (i.e.,
it can be predicted by both sensors with probability one). This
level of accuracy should not be expected as the transition density
of state space models introduce some uncertainty. Therefore, it
is instructive to relate the KLD in (31) further to the uncertainty
on Xk given the sensor histories:

Corollary 4.2: The KLD considered in Proposition 4.1 is
upper bounded by the weighted sum of uncertainty reductions
in the local target prediction and posterior distributions achieved
when the other sensor’s history is included jointly:

D(p(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)||q(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ))

≤ 1
2

((
H(Xk |Zj1:k−1 ,Θ)−H(Xk |Zj1:k−1 ,Z i1:k−1 ,Θ)

)

+
(
H(Xk |Z ik−1 ,Θ)−H(Xk |Zj1:k−1 ,Z i1:k−1 ,Θ)

))

+
1
2

((
H(Xk |Zj1:k ,Θ)−H(Xk |Zj1:k ,Z i1:k−1 ,Θ)

)

+
(
H(Xk |Z i1:k ,Θ)−H(Xk |Z i1:k ,Zj1:k−1 ,Θ)

))
, (32)

where H denotes the Shannon differential entropy [31].
The proof is provided in Appendix C. Corollary 4.2 relates

the approximation quality of the quad-term node-wise separable
updates to the uncertainties in the target state prediction and
posterior distributions when individual node histories and their
combinations are considered. The difference terms on the RHS
of (32) quantify the difference in uncertainty between estimating
the target state Xk using only the local measurements, and, also
taking into account the other sensor’s measurements. Overall,
a better quality of approximation should be expected when the
local filtering densities involved concentrate around a single
point in the state space.

2Note that the results presented in this section are valid for any selection
of τ i,j1:t as they relate random variables which are conditioned on the data
association. The divergences and bounds, nevertheless, are more relevant
for τ i,j1:t = τ̄ i ,j

1:t .
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B. The Quad-Term Pairwise Likelihood

The quad-term update in (29) leads to a separable approximate
likelihood given by

l̃
(
Zi

1:t ,Z
j
1:t |θ

)
=

t∏
k=1

q(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ) (33)

We refer to this term as the quad-term separable likelihood
as it can also be expressed as a (scaled) product of four factors
each of which are the products of the four factors of (29) over k.
Let us define

rkij (Z
i
k , θ) � p(Zi

k |Zj
1:k , θ),

skj (Z
j
k , θ) � p(Zj

k |Z
j
1:k−1 , θ).

Then, the quad-term update in (33) is given by

q(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

=
1

κk (θ)

(
rkij (Z

i
k , θ)s

k
j (Z

j
k , θ)

)1/2(
rkji(Z

j
k , θ)s

k
i (Z

i
k , θ)

)1/2
,

(34)

where the normalisation factor is given in (30), and, equivalently
in terms of the four factors above as

κk (θ) =
∫ ∫ (

rkij (Z
i
k
′
, θ)skj (Z

j
k

′
, θ)

)1/2

×
(
rkji(Z

j
k

′
, θ)ski (Z

i
k
′
, θ)

)1/2
dZi

k
′dZj

k

′
.

Corollary 4.3: The KLD between the parameter likelihood
in (8) and the node-wise separable approximation in (33) is
bounded by the terms on the right hand sides of (31) and (32)
summed over k = 1, . . . , t as

D
(
l
(
Zi

1:t ,Z
j
1:t |θ

)
||l̃

(
Zi

1:t ,Z
j
1:t |θ

))
=

t∑
k=1

D (p||q) . (35)

Proof: Equation (35) can easily be found after expanding the
KLD term explicitly and expressing the logarithm of products
involved as sums over logarithms of the factors. Boundedness
follows from non-negativity of KLDs and summing both sides
of (31) and (32) over k = 1, ..., t. �

As a conclusion, when t is not large–e.g., on the order of tens
which is typical in fusion applications–the proposed approxi-
mation can be used for parameter estimation via local filtering.
Sensors that are more accurate in inferring the underlying state
process result with a smaller KLD in (35), which in turn leads
to a more favourable estimation performance.

One other approximation based on local filtering distributions
was studied in [26] which has the following dual-term product
form

u(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

� p(Zi
k |Zj

1:k−1 , θ)p(Z
j
k |Zi

1:k−1 , θ). (36)

In Appendix D, we shown that D(p||q) < D(p||u), when
sensors are equivalent. The entropy bound given in (32) is also
smaller than that for the dual-term approximation. In other

words, the quad-term approximation is more accurate com-
pared to the dual-term approximation, under typical operating
conditions.

The scaling factor of the dual term approximation is unity re-
gardless of θ, on the other hand, admitting a significant amount
of flexibility in the range of the distributions and likelihoods
that can be accommodated in the state space model. For exam-
ple, the dual-term pseudo-likelihood is used with random finite
set variables (RFS) in [26] and [44], which, in a sense, have
the association variables marginalised out making it possible
to avoid multi-dimensional assignment problems in the general
multi-object tracking model. For RFS distributions, however, it
is not straightforward to compute the scaling factor in (30) for
the quad-term. In this article, we consider a parametric model
instead, which is effectively configured through association vari-
ables.

V. QUAD-TERM LIKELIHOOD FOR SENSOR

CALIBRATION PARAMETERS

The results presented so far are fairly general and do not de-
pend on the nature of Θ. When Θ represents respective parame-
ters such as calibration parameters, there are certain simplifica-
tions of the expressions involved which provide computational
benefits. In particular, parameters such as respective location
and bearing angles relate the local coordinate frames of the sen-
sors which collect measurements in their local frame. The local
filtering distributions are hence over the space of state vectors
in the local frame. A point xk ∈ X (Section II-A) is implicitly
in the Earth coordinate frame (ECF), and, associated with its
representation in the jth local frame [xk ]j through a coordinate
transform T with the following properties

[xk ]j = T (xk ; θj ), (37)

[xk ]i = T (T−1([xk ]j ; θj ); θi).

As an example, when xk is a location on the Cartesian plane,
and, θj is the position of sensor j, T is given by

T (xk ; θj ) � xk − θj ,

T (T−1([xk ]j ; θj ); θi) = [xk ]j + θj − θi.
For simplicity in notation, we will denote T (T−1(.; θj ); θi) by
Tθ (.) when semantics is clear from the context.3

In this section, it is revealed how local filtering distributions
are used in the quad-term update. When θ are respective quanti-
ties, these distributions become independent of θ because both
the state and the measurement variables are in the same local
coordinate frame. In other words, at sensor j

p(Xk , τ
j
k |Z

j
1:k , θj ) ≡ p([Xk ]j , τ

j
k |Z

j
1:k ), (38)

holds for the filtering posterior, for any configuration of τ jk .
In the prediction stage of filtering, the multi-object transition

kernel in (5) also becomes independent of Θ, so, the Chapman-
Kolmogorov equation for finding the prediction density at

3Note that, when the calibration parameters also include orientation angles,
Tθ (.) involves rotation matrices accordingly.
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sensor j (together with the empirical Bayes selection of as-
sociation priors during iterations as explained in Section II)
becomes

p([Xk ]j |Zj
1:k−1) =

∫
π([Xk ]j |[Xk−1 ]j )

× p([Xk−1 ]j , τ
j
k−1 = τ̄ j

k−1 |Z
j
1:k−1)d[Xk ]j . (39)

Note also that the entropy terms in (32) that are conditioned on
a single sensor’s measurements measure the uncertainty of the
above densities. Consequently, they also become independent of
Θ, i.e.,H(Xk |Zj1:k−1 ,Θ) equals toH(Xk |Zj1:k−1) for example,
which highlights its relevance to the local prediction accuracy.

A. The Quad-Term Update for Calibration

Now, let us expand the quad-term time updates in (34), and,
explicitly show the aforementioned simplifications. We start
with skj which is the scale factor of the local Bayesian filter at
sensor j:

skj (Z
j
k , θ) = pτ jk

(Zj
k |Z

j
1:k−1 , θ),

=
∫
lj (Z

j
k |Xk , τ

j
k , θ)p(Xk |Zj

1:k−1 , θ)dXk ,

=
∫
lj (Z

j
k |[Xk ]j , τ

j
k )p([Xk ]j |Zj

1:k−1)d[Xk ]j ,

(40)

where in the last line independence from θ is asserted. Because
skj does not depend on θ, we denote skj (Z

j
k , θ) by skj (Z

j
k ) in the

rest of the article.
Next, let us consider rkij which has terms in different coordi-

nate frames:

rkij (Z
i
k , θ)

= pτ i , jk
(Zi

k |Zj
1:k , θ)

=
∫
li(Zi

k |Xk , τ
i
k , θ)p(Xk , τ

j
k |Z

j
1:k , θ)dXk

=
∫
li

(
Zi
k |T (Xk ; θi), τ ik

)
p

(
T−1(Xk ; θj ), τ

j
k |Z

j
1:k

)
dXk

=
∫
li

(
Zi
k |Tθ ([Xk ]j ), τ ik

)
p

(
[Xk ]j , τ

j
k |Z

j
1:k

)
d[Xk ]j . (41)

In the third line above, the coordinate transformations are sub-
stituted explicitly. The last line follows from that the filtering
distribution (38) is in the jth local frame.

B. Evaluation of the Quad-Term Update Based on Single
Sensor Filtering Distributions

Here, we discuss the evaluation of the quad-term likelihood
given local filtering distributions and single sensor association
configurations which we denote for sensor j by p([Xk ]j , τ

j
k =

τ̂ jk |Z
j
1:k ) and τ̂ jk , respectively, as explained in Section II-B.

Instead of considering evaluation for the most probable as-
sociation hypothesis τ̄ i,j

k which is infeasible to find, we pro-
pose to use the local results τ̂ i,jk � (τ̂ ik , τ̂

j
k ) as a reasonable

approximation to this configuration and substitute them in (40)–
(41). These approximations can be found regardless of θ as dis-
cussed earlier in this section by using one of the well studied
algorithms in the literature [2] such as solving a 2−D associ-
ation problem at each time step [35] to find τ̂ jk . We detail this
approach for a linear Gaussian state space model in Section VI.

Given these local results and their exchange over the network,
one can consider an in-network computation scheme for evalu-
ating (40)–(41). Specifically, these terms (and, the other factors
of the quad-term update which are obtained by replacing i and j
in these expressions) can be found at the sensor platform where
the measurements to be substituted for evaluation are stored,
i.e., sensors j and i, respectively, for skj and rkij . Substitution
of the measurement histories on the conditioning side will have
been carried out by local filtering.

More explicitly, skj in (40) (or, ski ) becomes a product of sim-
ilar terms when τ̂ kj is substituted in (40), and, its computation is
carried out during the local filtering of sensor j’s (or, sensor i’s)
measurements using

skj (Z
j
k ) =

M∏
o=1

skj,o(z
j
k,o) (42)

skj,o(z
j
k,o) �

∫
gj (z

j
k,o |x′k )pm ′(x′k |Z

j
1:k−1)dx

′
k

where m′ = τ̂ jk (o) and the density in the integral is the m′th
marginal of the local prediction density, the mth of which is
given by

pm (x′|Zj
1:k−1) �

∫
p(Xk = [xk,1 , . . . , xk,m−1 , x

′, xk,m+1 ,

xk,m+2 , . . . , xk,M ] ,τ jk = τ̂ jk |Z
j
1:k−1)

dxk,1 . . . dxk,m−1dxk,m+1 . . . dxk,M .

The term rkij in (41) (or, rkji) is also computed based on these
local filtering distributions. The integration in the RHS of (41)
implicitly assumes that the ordering of individual objects in the
local multi-object vectors are the same. In a networked setting,
however, this is not necessarily the case and the identities of
the fields in the state vector may differ [45]. In order to tackle
with this unknown correspondance, we introduce an additional
permutation random variable γk (see, e.g., [46]) for relating the
fields of a multi-object vector Xk as ordered locally at sensor i
and j, such that the mth field of the state vector at sensor i
refers to the same object in the γk (m)th field of the state vector
at sensor j. For example,

[xk,m ]i = Tθ ([xk,γk (m ) ]j ).

Suppose that an estimate γ̂k of this quantity is provided. After
substituting in (41) together with τ̂ i,jk one obtains

rkij (Z
i
k , θ) =

M∏
o=1

rkij,o(z
i
k,o , θ), (43)

rkij,o(z
i
k,o , θ) �

∫
gi

(
zik,o |Tθ (x′k )

)
pm ′(x′k |Zj

1:k )dx
′
k
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where m′ = γ̂k (τ̂ ik (o)) and the density inside the integral is the
m′th marginal of the filtering distribution local to sensor j. In
Appendix E, we show that (43) replaces the likelihood for γk
when m′ = γk (τ̂ ik (o)) and an ML estimate γ̂k can be found in
a way similar to solving the data association problem in local
filtering, which is detailed later in Section VI-A.

Finally, the scale factor (30) is computed. This involves find-
ing the measurement distributions in (30) using the prediction
distribution in (39) for both sensors i and j together with their
likelihoods. This leads to the following two decomposition: The
first term in (30) is found as

p(Zi
k
′
,Zj

k

′|Zi
1:k−1 , θ) =

M∏
o=1

po(zi
′
k,o , z

j ′
k,ξ(o) |Zi

1:k−1 , θ)

po(zi, zj |Zi
k−1 , θ) �

∫
gi(zi |x′k )pm ′(x′k |Zi

1:k−1)dx
′
k

×
∫
gj (zj |Tθ−1(x′k ))pm ′(x

′
k |Zi

1:k )dx
′
k

(44)

where ξ(o) = τ̂ j−1
k ◦ τ̂ ik (o) maps the oth measurement at sen-

sor i to the corresponding one in sensor j, and, m′ = τ̂ ik (o) in
the second line.

The second term in (30) is found as

p(Zi
k
′
,Zj

k

′|Zj
1:k−1 , θ) =

M∏
o=1

po(zi
′
k,o , z

j ′
k,ξ(o) |Zj

k−1 , θ)

po(zi, zj |Zj
k−1 , θ) �

∫
gj (zj |x′k )pm ′(x′k |Zj

1:k−1)dx
′
k

×
∫
gi(zi |Tθ (x′k ))pm ′(x′k |Zj

1:k ) dx′k

(45)

where m′ = γ̂k ◦ τ̂ ik (o) in the last line is the object that corre-
sponds to the oth measurement at sensor i.

Consequently, the scale factor is found as

κk (θ) =
M∏
o=1

κk,o(θ)

κk,o(θ) �
∫ (

po(zi, zj |Zi
1:k−1 , θ)

×po(zi, zj |Zj
1:k−1 , θ)

)1/2
dzidzj , (46)

using the densities found in (44) and (45).
The expressions above describe the evaluation of the quad-

term likelihood in terms of single sensor filtering distributions
that can be obtained using any filtering algorithm with individ-
ual measurement histories. The use of the local filtering dis-
tributions provides scalability with the number of sensors for
parameter estimation in the state space model in Section II.

These computations can be distributed in the pair (i, j) as
follows: Both sensors i and j perform local filtering and ex-
change the resulting posterior densities at every step, as well
as si and sj , respectively, found using (42). Based on the

received densities, sensors i and j evaluate rij and rji , respec-
tively, using (43). As part of the filtering process, they realise
the Chapman-Kolmogorov equation in (39) with their local pos-
terior, as well as the remote posterior recently received. These
densities are then used in (44), (45), and, (46) to compute the
scale factor for the next step. The scale factor hence found in
the previous step, therefore, is substituted in (34) together with
the four terms computed. This is repeated for k = 1, . . . , t, and,
the quad-term likelihood (33) is computed, as a result.

VI. A MONTE CARLO LBP ALGORITHM FOR SENSOR

CALIBRATION IN LINEAR GAUSSIAN STATE SPACE MODELS

In this section, we consider a linear Gaussian state space
(LGSS) model with the probabilistic graphical model in Fig. 1,
and, specify an algorithm for estimation of θ s that com-
bines the quad-term calibration likelihood evaluation detailed in
Section V with BP message passing on the resulting pairwise
MRF model (Section III). This algorithm uses Monte Carlo
methods for realising BP [32] and facilitates scalability by build-
ing upon single sensor filtering as required by the quad-term
approximation. As a result, an efficient inference scheme over
the model in Fig. 1 is achieved.

The state space model we consider is specified by a linear state
transition with process noise that is additive and Gaussian, and,
linear measurements with independent Gaussian measurement
noise, i.e.,

π(xk |xk−1) = N (xk ;Fxk−1 ,Q) (47)

gj (z
j
k |xk ; θj ) = N (zjk ;Hj [xk ]j ,Rj ) (48)

for j = 1, . . . , N , where N (.;μ,P) is a multi-dimensional
Gaussian density with mean vector μ and covariance matrix P.

Here, xk is the concatenation of position and velocity (on a
2−D Euclidean plane, without loss of generality). The matri-
ces F and Q model motion with unknown acceleration (equiv-
alently, manouevres), and, are selected as

F =
[

I, ΔT × I
0, I

]
, Q = σ2

[
q1I, q2I
q2I, q3I

]

where I and 0 are the 2× 2 identity and zero matrices, re-
spectively. ΔT is the time difference between consecutive
steps. Q is positive definite and parameterised with σ2 , and,
0 < q1 < q2 < q3 < 1 specifying the magnitude of the uncer-
tainty, and, contributions of higher order terms, respectively.4

In the measurement model, Rj is the measurement noise
covariance, and, Hj is the observation matrix which we assume
forms an observable pair with F (e.g., Hj = [I,0]).

A. Local Single Sensor Filtering

We now focus on filtering and provide explicit formu-
lae that adopt the recursions in (13)–(18) for a single sen-
sor in the LGSS model. We use the empirical Bayes ap-
proach explained in Section II-B for scaling with time un-
der data association uncertainties. This approach corresponds

4It can easily be shown that this state transition model is invariant under the
selected coordinate frame for xk s.
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to the single frame data association solution in multi-object
tracking [35].

First, let us consider the prediction stage at time k in which
we are given a filtering density evaluated at the most likely data
association hypothesis τ̂ jk−1 of the previous step.5 The latter is
a product of its marginals

p(Xk−1 , τ
j
k−1 = τ̂ jk−1 |Z

j
1:k−1)

=
M∏
m=1

pm (xk−1,m , τ
j
k−1 = τ̂ jk−1 |Z

j
1:k−1)

where

pm (xk−1,m , τ
j
k−1 = τ̂ jk−1 |Z

j
1:k−1) = p(xk−1,m |zj,m1:k−1).

Here, zi,m1:k−1 denotes the measurements induced by object m
from step 1 to k − 1, i.e.,

zj,m1:k−1 �
(
zj
k−1,ρjk −1 (m )

, zj
k−2,ρjk −2 (m )

, . . . , zj
1,ρj1 (m )

)
,

where ρ is the inverse of τ , i.e., ρ ◦ τ is the identity permutation.
Consequently, the mth marginal of the posterior at k − 1 is a

Gaussian density that can be obtained equivalently by Kalman
filtering [36] over zj,m1:k−1 , i.e.,

pm (xk−1,m |zj,m1:k−1) = N (xk−1,m ; x̂jk−1,m ,P
j
k−1,m ), (49)

with the mean and covariance matrices over time specifying the
mth “track.”

Hence, the prediction density in (39) (Section V-A) evaluated
at τ jk−1 = τ̂ jk−1 for the state transition in (47) is given by

p(Xk |Zj
1:k−1) =

M∏
m=1

N (xk,m ; x̂jk |k−1,m ,P
j
k |k−1,m ) (50)

x̂jk |k−1,m = Fx̂jk−1,m ,

Pj
k |k−1,m = FPj

k−1,mFT + Q,

where the last two lines are Kalman prediction equations with
(.)T denoting matrix transpose.

Next, let us consider the update stage in which we use
the prediction density (50) with M measurements concate-
nated in Zj

k and the measurement likelihood. This likeli-
hood is found by substituting (48) in (6). First, we use this
term within the likelihood for the association variable τ jk
which –as it is mutually independent from τ j1 , . . . , τ

j
k−1–is

5Note that the empirical prior on τ j
k−1 is selected as in (16) leading to this

posterior be identically zero for all values of τ j
k−1 other than τ̂ j

k−1 .

given by

lj (Z
j
1:k |τ

j
k ) ∝ pτ jk (Zj

k |Z
j
1:k−1) (51)

=
∫
l(Zj

k |Xk , τ
j
k )p(Xk |Zj

1:k−1)dXk

=
M∏
o=1

∫
gj (z

j
k,o |x′k )pτ jk (o)(x

′
k |Zj

1:k−1)dx
′
k

=
M∏
o=1

∫
gj (z

j
k,o |x′k )p(x′k |z

j,τ jk (o)
1:k−1 )dx′k .

The first line above follows from that the joint distribution of
Zj

1:k−1 and τ jk is independent of the latter.

The prior distribution for τ jk is non-informative as given in (7),
so, the ML estimate using (51) coincides with the MAP estimate
and it is given by

τ̂ jk = arg max
τ jk ∈SM

lj (Z
j
1:k |τ

j
k ) (52)

where SM is the set of M -permutations.
An equivalent problem is found by taking the logarithm of

the objective function in the combinatorial optimisation problem
above as follows:

τ̂ jk = arg max
τ jk ∈SM

M∑
o=1

c
(
o,m = τ jk (o)

)
(53)

c(o,m) � log
∫
gj (z

j
k,o |x′k )p(x′k |z

j,m
1:k−1)dx

′
k ,

for o,m = 1, . . . ,M .
This cost for the LGSS model is explicitly found using the

prediction distribution (50) and the measurements within the KF
innovations [36] as

c(o,m) = logN (zjk,o ; ẑ
j
k ,m ,S

j
k ,m ) (54)

ẑjk ,m = Hj x̂
j
k |k−1,m , Sjk ,m = Rj + HjP

j
k |k−1,mHT

j .

The optimisation in (53) is a 2−D assignment problem
which can be solved in polynomial time withM (despite that the
search spaceSM has a factorial size) using one of the well known
solvers [47] including the auction algorithm [48]. This algorithm
operates over a matrix of costs obtained by C = [c(o,m)] to it-
eratively find theM pairs corresponding to the best permutation
τ̂ jk in the ML problem (52). Here, computation of the M 2 cost
matrix usually has the predominant computational time.

Next, we consider the state distribution update (see (15) in
Section II-B) and assert the empirical (model) prior in (16).
As a result, the filtering density at k becomes a product of its
marginals each of which is a Gaussian as in (49) found by the
KF update [36], i.e.,

p(Xk , τ
j
k = τ̂ jk |Z

j
1:k ) =

M∏
m=1

N (xk,m ; x̂k ,m ,Pk,m ) (55)



762 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 4, NO. 4, DECEMBER 2018

where,

x̂k ,m = x̂k |k−1,m + Kk,m (zj
k,ρjk (m )

−Hj x̂k |k−1,m )

Pk,m = (I−Kk,mHj )P
j
k |k−1,m

Kk,m � Pj
k |k−1,mHT

j Sjk
−1
,m .

Note that, because the posterior density is now non-zero only
for τ jk = τ̂ jk , the marginalisation over τ jk (see, e.g., (14)) in the
following prediction stage reduces to (39) and (50).

B. Evaluation of the Calibration Quad-Term in the
LGSS Model

Let us consider the evaluation of skj given by (42) using the
formulae for the LGSS model introduced in Section VI-A. By
comparison with the cost term in (53) and (54), it can easily be
seen that skj is the exponential of the association cost for τ̂ jk , i.e.,

skj (Z
j
k ) = exp

M∑
o=1

c
(
o, τ̂ jk (o)

)
. (56)

Next, let us consider (43) for evaluating rkij . Evaluation of
this term involves finding the object identity correspondance γ̂k
by solving a 2-D assignment as explained in Appendix E. In
the LGSS model, the assignment cost matrix D = [d(o,m)] is
found as

d(o,m) = logN (zik,o ; ẑ
i
k ,m ,S

i
k ,m ) (57)

ẑik ,m = HiTθ (x̂jk ,m ),

Sik ,m = Ri + HiTθ (Pj
k ,m )HT

i .

for o,m = 1, . . . ,M . Here, the second order statistics Pj
k ,m is

also transformed by applying any rotations involved in Tθ to
its eigenvectors. The best assignment which here encodes γ̂k
is found using the auction algorithm [48] as well, similar to
the assignment in the Bayesian filtering update (Section VI-A).
Using this estimate, the quad-term factor is computed using

rkij (Z
i
k , θ) = exp

M∑
o=1

d
(
o, γ̂k

(
τ̂ ik (o)

) )
. (58)

In order to evaluate the other factors of the quad-term update,
i.e., sik and rkji , similar computations are used. It suffices to
replace i in the subscripts/superscripts of the expressions above
with j, and, vice versa.

Finally, let us consider the scale factor in (46). Let us use the
notation introduced in the previous section for expressing the
densities inside the integration. Starting with (44), one obtains

po(zi, zj |Zi
1:k−1 , θ) = p(zi, zj |zi,τ̂

i
k −1 (o)

1:k−1 , θ) (59)

= N ([zi, zj ]T ;μ1 ,Σ1)

μ1 =

[
ẑik ,m

HjT −1
θ (x̂ik ,m )

]

Σ1 =
[
Sik ,m 0
0 Rj + HjT −1

θ (Pi
k ,m )HT

j

]

wherem = τ̂ ik−1(o), and, ẑik ,m and Sik ,m are computed as in (54)
with i substituted in place of j.

The second density in (46) conditioned on sensor j’s history,
i.e., (45), is similarly found as

po(zi, zj |Zj
1:k−1 , θ) = N ([zi, zj ]T ;μ2 ,Σ2)

μ2 =

[
HiTθ (x̂jk ,m )

ẑjk ,m

]

Σ2 =

[
Ri + HiTθ (Pj

k ,m )HT
i 0

0 Sjk ,m

]

where m = γ̂k−1 ◦ τ̂ ik−1(o) and, ẑjk ,m and Sjk ,m are given
in (54).

Using the densities above and integration rules for Gaussians,
the oth term of the scale factor in (46) is found as

κk,o(θ)

=

(∣∣Σ−1
1

∣∣ ∣∣Σ−1
2

∣∣)1/4

∣∣∣Σ−1
1 +Σ−1

2
2

∣∣∣
1/2 exp

{
−1

4
(
μT1 Σ−1

1 μ1 + μT2 Σ−1
2 μ2

)

+
1
4

(
Σ−1

1 μ1 + Σ−1
2 μ2

)T (
Σ−1

1 + Σ−1
2

)−1

×
(
Σ−1

1 μ1 + Σ−1
2 μ2

)}
. (60)

In a distributed setting, the scale factor expressions above are
computed both at sensors i and j, for which the prediction stage
given in (50) is carried out for both the local posterior and the
posterior recevied from the other sensor at time k − 1.

C. Sampling from the Calibration Marginals Using
Non-Parametric BP

In this section, we introduce particle based representations
and Monte Carlo computations [49] for the realisation of (loopy)
BP message passings. Note that Sections VI-A and VI-B specify
the evaluation of edge potentials given in (33) for (τ i1:t , τ

j
1:t) =

(τ̂ i1:t , τ̂
j
1:t).

For sampling from the marginal parameter posteriors, we
adopt the approach detailed in [26, Sec.VI] for carrying out
LBP belief update and messaging in (25) and (24), respectively.
Given L equally weighted samples from p̃i(θi), i.e.,

θ
(l)
i ∼ p̃i(θi), (61)

for l = 1, . . . , L, the edge potentials are evaluated to obtain

ψij (θ
(l)
i , θ

(l)
j ) = l̃

(
Zi

1:t ,Z
j
1:t |θ = (θ(l)

i , θ
(l)
j )

)
. (62)

Consider the BP message from node j to i in (24). Suppose
that independent identically distributed (i.i.d.) samples from
the (scaled) product of the jth local belief and the incoming
messages from all neighbours except i are given, i.e.,

θ̄
(l)
j ∼ p̃j (θj )

∏
i ′∈ne(j )/i

mi ′j (θj ) for l = 1, ..., L. (63)

These samples are used with kernel approximations in order
to represent the message from node j to i (scaled to one), in
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the NBP approach [32]. We use Gaussian kernels leading to the
approximation given by

m̂ji(θi) =
L∑
l=1

ω
(l)
j i N (θi ; θ

(l)
j i ,Λj i), (64)

θ
(l)
j i = T (T−1(θ̄(l)

j ; θ(l)
j ); θ(l)

i ),

ω
(l)
j i =

ψi,j (θ
(l)
i , θ

(l)
j )

∑L
l ′=1 ψi,j (θ

(l ′)
i , θ

(l ′)
j )

,

where the kernel weights are the normalised edge potentials.
Λj i is related to a bandwidth parameter that can be found using
Kernel Density Estimation (KDE) techniques. In particular, we
use the rule-of-thumb method in [50] and find

Λj i =
(

4
(2d+ 1)L

)2/(d+4)

Ĉj i ,

Ĉj i =
∑
l ′

∑
l

ω
(l ′)
j i ω

(l)
j i (θ(l ′)

j i − m̂j i)(θ
(l)
j i − m̂j i)T ,

m̂j i =
L∑
l=1

ω
(l)
j i θ

(l)
j i

where m̂j i and Ĉj i are the empirical mean and covariance of
the samples, respectively, and d is the dimensionality of θji s.

Given these messages, let us consider sampling from the up-
dated marginal in (25). We use the weighted bootstrap (also
known as sampling/importance resampling) [51] with samples
generated from the (scaled) product of Gaussian densities with
mean and covariance found as the empirical mean and covari-
ance of the particle sets, respectively. In other words, given m̂j i

and Ĉj i as above, we generate

θ
(l)
i ∼ f(θi), l = 1, . . . , L,

f(θi) ∝ N (θi ; m̂i , Ĉi)
∏

j∈ne(i)
N (θi ; m̂j i , Ĉj i).

The particle weights for these samples to represent the up-
dated marginal is given by

ω
(l)
i = ω̂

(l)
i /

L∑
l ′=1

ω̂
(l ′)
i

ω̂
(l)
i =

(
p0,i(θ

(l)
i )

∏
j∈ne(i)

m̂ji(θ
(l)
i )

)
/f(θ(l)

i )

where p0,i is the prior density selected for θi (and, the node po-
tential in (22)). Thus, the local calibration marginal is estimated
by

P̂i(dθi) =
L∑
l=1

ω
(l)
i δ

θ
( l )
i

(dθi). (65)

As the final step of the bootstrap, {θ(l)
i , ω

(l)
i }Ml=1 is resampled

(with replacement) leading to equally weighted particles from
p̃i(θi), i.e., {θ(l)

i }Ll=1 . We follow similar bootstrap steps in order
to generate the samples in (63).

Algorithm 1: Pseudo-code for estimation of θ using the
quad-term separable likelihood within Belief Propagation.

1: for all j ∈ V do � Local filtering
2: for k = 1, . . . , t do
3: Find p(Xk, τ

j
k = τ̂ jk |Z

j
1:k ) in (55) as described in

Section VI-A
4: Find skj (Z

j
k ) in (56)

5: end for
6: end for
7: for all j ∈ V do � Sample from priors
8: Sample θ(l)

i ∼ p0,i(θi) for l = 1, . . . , L as in (61)
9: end for

10: for s = 1, ..., S do �S-steps of LBP
11: for all (i, j) ∈ E do � Evaluate edge potentials
12: for l = 1, . . . , L do
13: Find rkij (Z

i
k , θ = (θ(l)

i , θ
(l)
j )) using (57), (58) for

k = 1, . . . t
14: Find rkji(Z

j
k , θ = (θ(l)

i , θ
(l)
j )) for k = 1, . . . t

15: Find κk (θ = (θ(l)
i , θ

(l)
j )) using (46), (59)–(60) for

k = 1, . . . , t
16: Find q(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ = (θ(l)

i , θ
(l)
j ))

using (34) for k = 1, . . . , t
17: Find ψi,j (θ

(l)
i , θ

(l)
j ) in (62) as the quad-term

likelihood in (33)
18: end for
19: end for
20: for all (i, j) ∈ E do � Find LBP messages
21: Find the kernel representation m̂ji(θi) in (64)
22: end for
23: for all i ∈ V do � Update local marginals
24: Find the updated P̂i in (65) and sample θ(l)

i ∼ p̃i(θi)
25: θ̂i ← 1

L

∑L
l=1 θ

(l)
i

26: end for
27: end for

After nodes iterate the BP computations described above for
S times, each node estimates its location by finding the empirical
mean of {θ(l)

i }Ll=1 . These steps are summarised in Algorithm 1.

VII. EXAMPLE: SELF-LOCALISATION IN LGSS MODELS

In this example, we demonstrate the quad-term node-wise
separable likelihood in sensor self-localisation. The LGSS
model given by (47) and (48) is used with process noise param-
eters selected as σ = 0.5, q1 = 1/4, q2 = q3 = 1/2, q4 = 1.
The measurement model for sensor i is given by Hi = [I,0]
and Ri = σ2

nI with σn = 10 modelling noisy position mea-
surements in the local coordinate frame.

Let us consider the multi-object multi-sensor scenario de-
picted in Fig. 2. 16 sensors observe 4 objects moving with data
association uncertainties. The locations of the sensors are to be
estimated with respect to sensor 1 which is selected as the origin
of the network coordinate system. Therefore θ = [θ1 , . . . , θ16 ]
with the prior distribution for θ1 selected as Dirac’s delta, i.e.,
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Fig. 2. Example scenario: 16 Sensors collect measurements from 4 objects
(T1-T4) with association uncertainties. Initial positions of the objects are de-
noted by black squares. Trajectories for 60 time steps are depicted. The blue
lines depict the edges of the MRF model used for estimation.

Fig. 3. Node beliefs in LBP iterations: Marginal posterior estimates after
iteration 4 (upper-left), 6 (upper-right), 8 (lower-left), and 10 (lower-right).

p0,1(θ1) = δ(θ1). For the other nodes, the localisation prior,
i.e., p0,i(θi) for i = 2, . . . , 16, is a uniform distribution over the
sensing region.

We use Algorithm 1 specified in Section VI for estimating θ.
The MRF model we consider is specified by the pairwise graph
G in Fig. 2 (blue edges). We use L = 100 points in (61) to
represent the local belief densities. We select the sensor data
time window length as t = 10 (starting at time 21 until 30 in
the scenario in Fig. 2). We follow the steps in Algorithm 1 for
S = 16 iterations.

A typical run is illustrated in Fig. 3. Here, the scatter plot of
particles from marginal posteriors are given over iterations. Note
that the network coordinate system is established by sensor 1
through its informative prior, and, LBP emanates this informa-
tion towards the outer nodes while learning the edge potentials
using node-wise separable likelihood evaluationsψi,j (θ

(l)
i , θ

(l)
j )

given in (23) and (33).
For performance assesment, first, we consider the mean

squared error for θ̂ output by our algorithm, as we have built
our discussion on MMSE estimators in (12). We find this value
empirically by taking the average of the squared norm of es-

Fig. 4. Log-normalised error margin versus the iteration number n.

Fig. 5. Localisation miss-distance averaged over nodes versus the iteration
number. 100 Monte Carlo runs displayed with the boxes centered at the median
(red). Edges (blue) indicate the 25th and 75th percentiles.

timation errors over 100 Monte Carlo simulations. In Fig. 4,
we present a semi-log plot of this quantity over iterations (blue
line). Note that, convergence occurs in less than ten iterations
which is a favourable feature. We compare this algorithm with
the RFS based dual-term pseudo-likelihood proposed in [26].
When evaluating this term, we use a Poisson multi-object model
output by using the Gaussian mixture probability hypothesis
density (GM-PHD) filter [52] with the LGSS model. The aver-
aged MSE performance for the case that dual-term likelihoods
are used as edge potentials is depicted with the green dashed
line in Fig. 4. The quad-term approximation is seen to provide
faster convergence with both pseudo-likelihoods leading to an
on par accuracy in the steady regime, in this example. The edge
update time for the quad-term update averages to 0.601s per
edge per particle compared to 1.312s for the dual-term update
demonstrating its relative efficiency.

Note that, the MSE is a network-wide term and the local error
norms are smaller. The localisation miss-distance averaged over
sensors is given in Fig. 5. The average error (±one standard
deviation) in the final step is 2.60± 0.70 m with a maximum
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value of 4.96 which is less than 0.5% of the edge distances of
1000 m. These results demonstrate that the proposed scheme is
capable of providing self-localisation with favourable accuracy
and small error margins.

VIII. CONCLUSION

In this work, we have addressed the prohibitive complex-
ity of latent parameter estimation in state space models when
there are many sensors collecting measurements. We proposed
a pseudo-likelihood, namely the quad-term node-wise separa-
ble likelihood, as an accurate surrogate to the actual likelihood
which is extremely costly to evaluate. The separable structure
of this quad-term approximation makes it possible to evaluate it
using local filtering operations, hence, scale with the number of
sensors.

In order to use the proposed approximation in the case of
multiple objects, we employed a parameterised multi-object
state space model in which different configurations of the pa-
rameter specify different hypothesis of object-to-measurement
and object-to-object associations. Specifically, we introduced
an empirical Bayesian perspective for evaluating separable like-
lihoods in this model, using only local Bayesian filtering. This
approach substitutes the estimates of the hypothesis variables
when evaluating the likelihood of the latent parameter, and, de-
couples these two inference tasks if the hypothesis variables can
be estimated locally. Therefore, it can be extended to general hy-
pothesis variables that capture, for example, variable number of
objectsMk , less than one probability of detection, i.e., PD < 1,
and, measurements with false alarm, by adapting the assignment
problems involved accordingly (see, for example [35]).

The associated posterior distribution is a MRF over which dis-
tributed inference is possible using message passing algorithms
such as LBP. We specified a particle message passing algo-
rithm for sampling from latent parameter marginals for a linear
Gaussian state space model with multiple objects. This algo-
rithm is demonstrated in simulations for sensor self-localisation
using point measurements from non-cooperative objects in a
potentially GPS denying environment. It is possible to estimate
unkown orientation angles as well, by appropriately defining the
transform in (37) and taking into account the rotations implied
by θi s in the LBP steps of Algorithm 1 (additional details can
be found in [53]).

APPENDIX

A. Empirical Bayes Parameter Likelihood

The empirical Bayes parameter posterior follows from the
decomposition of the posterior in (11) using the chain rule of
probabilities as

p(θ|Z1
1:t , . . . ,Z

N
1:t)

=
∑
τ 1

1 : t

· · ·
∑

τ N1 : t

p(θ|Z1
1:t , . . . ,Z

N
1:t , τ

1:N
1:t )p(τ 1:N

1:t |Z1
1:t , . . . ,Z

N
1:t).

(66)

The first term inside the summations is the parameter posterior
conditioned on the association variables and the second term is
similar to a prior with respect to the first term. The fact that this
term is conditioned on the measurements makes an empirical
selection possible as discussed in Section II-B. Let us use a
similar empirical prior selection approach as used in (16), i.e.,

p(τ 1:N
1:t |Z1

1:t , . . . ,Z
N
1:t)←

t∏
k=1

p(τ 1:N
k |Z1

1:k , . . . ,Z
N
1:k )

p(τ 1:N
k |Z1

1:k , . . . ,Z
N
1:k )← δτ̄ 1 :N

k −1
(τ 1:N
k−1 ). (67)

After substituting from (67) in (66), the parameter posterior is
found as

p(θ|Z1
1:t , . . . ,Z

N
1:t)

= p(θ|Z1
1:t , . . . ,Z

N
1:t , τ

1:N
1:t = τ̄ 1:N

1:t )

∝ l(Z1
1:t , . . . ,Z

N
1:t |θ, τ 1:N

1:t = τ̄ 1:N
1:t )p(θ)

where the likelihood in the last line is given by (17) and (18) in
Section II-B.

B. Proof of Proposition 4.1

Proof: Let us expand the KLD term in (31) by substituting
its arguments given in (9), (29) and (30):

D
(
p(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)||q(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

)

=
∫

dZi
1:kdZ

j
1:kdθ p(Z

i
1:k ,Z

j
1:k , θ)

× log
p(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

q(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)

=
∫

dZi
1:kdZ

j
1:kdθ p(Z

i
1:k ,Z

j
1:k , θ)

× 1
2

(
log

p(Zi
k ,Z

j
k ,Z

i
1:k−1 |Z

j
1:k−1 , θ)

p(Zi
k ,Z

j
k |Z

j
1:k−1 , θ)p(Z

i
1:k−1 |Z

j
1:k−1 , θ)

+ log
p(Zi

k ,Z
j
k ,Z

j
1:k−1 |Zi

1:k−1 , θ)

p(Zi
k ,Z

j
k |Zi

1:k−1 , θ)p(Z
j
1:k−1 |Zi

1:k−1 , θ)

+ 2 log κk (θ)

)
(68)

=
1
2

(
I(Zjk ,Z ik ;Z i1:k−1 |Zj1:k−1 ,Θ)

+I(Zjk ,Z ik ;Z
j
1:k−1 |Z i1:k−1 ,Θ)

)
+E{log κk (θ)}. (69)

In the equations above, κk (θ) is a normalisation constant given
by (30). Equation (68) is obtained after multiplying both the
numerator and the denominator of the quotient inside the log-
arithm by p(Zi

1:k−1 |Z
j
1:k−1 , θ)p(Z

j
1:k−1 |Zi

1:k−1 , θ) and a rear-
rangement of the terms. The definition of MI [31] results with
the first two terms in (69). The last term is the expectation of the
normalisation constant over the joint distribution of the sensor
histories Z i1:k−1 and Zj1:k−1 , and, Θ.
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Let us now consider the normalisation constant:

κk (θ)

=
∫

dZi
kdZ

j
k

(
p(Zi

k ,Z
j
k |Z

j
1:k−1 , θ)p(Z

i
k ,Z

j
k |Zi

1:k−1 , θ)
)1/2

≤
(∫

dZi
kdZ

j
k p(Z

i
k ,Z

j
k |Z

j
1:k−1 , θ)

)1/2

×
(∫

dZi
kdZ

j
k p(Z

i
k ,Z

j
k |Zi

1:k−1 , θ)
)1/2

= 1. (70)

The inequality (70) follows from Hölder’s Inequality. Conse-
quently, the last term in (69) is non-positive, and, (31) is ob-
tained. �

C. Proof of Corollary 4.2

Proof: We apply the chain rule of information to the MI
terms on the RHS of (31) leading to

I(Z ik ,Zjk ;Z i1:k−1 |Zj1:k−1 ,Θ)

= I(Zjk ;Z i1:k−1 |Zj1:k−1 ,Θ) + I(Z ik ;Z i1:k−1 |Zj1:k ,Θ),
(71)

and,

I(Z ik ,Zjk ;Z
j
1:k−1 |Z i1:k−1 ,Θ)

= I(Z ik ;Zj1:k−1 |Z i1:k−1 ,Θ) + I(Zj
k ;Z

j
1:k−1 |Zi

1:k ,Θ).
(72)

The MI terms on the RHSs of the equations above are for random
variables which form Markov chains with the current the state
variable Xk . Consider the (conditional) chains Zjk ↔ Xk ↔
Z i1:k−1 |Z

j
1:k−1 ,Θ and Z ik ↔ Xk ↔ Z i1:k−1 |Z

j
1:k−1 ,Θ for the

RHS of (71). The Data Processing Inequality [31] applied to
these terms lead to

I(Z ik ,Zjk ;Z i1:k−1 |Zj1:k−1 ,Θ)

≤ I(Xk ;Z i1:k−1 |Zj1:k−1 ,Θ)+I(X i
k ;Z i1:k−1 |Zjk ,Z

j
1:k−1 ,Θ)

= H(Xk |Zj1:k−1 ,Θ)−H(Xk |Z i1:k−1,Zj1:k−1 ,Θ)

+H(Xk |Zjk ,Z
j
1:k−1 ,Θ)−H(Xk |Zjk ,Z

j
1:k−1 ,Z i1:k−1 ,Θ).

(73)

A similar break down of (72) results with

I(Z ik ,Zjk ;Z
j
1:k−1 |Z i1:k−1 ,Θ)

≤ H(Xk |Z i1:k−1 ,Θ)−H(Xk |Z i1:k−1 ,Zj1:k−1 ,Θ)

+H(Xk |Z ik ,Z i1:k−1 ,Θ)−H(Xk |Z ik ,Z i1:k−1 ,Zj1:k−1 ,Θ).
(74)

Substituting from (73) and (74) into (31) results with (32). �

D. Comparison of the Quad-Term and Dual-Term Updates

Let us compare the KLDs of the quad-term and dual-term
updates. The KLD of the dual-term in (36) is given by [26]

D(p(Zi
k ,Z

j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ)||u(Zi

k ,Z
j
k |Zi

1:k−1 ,Z
j
1:k−1 , θ))

= I(Zjk ;Z
j
1:k−1 |Z i1:k−1 ,Θ) + I(Z ik ;Z i1:k−1 |Zj1:k−1 ,Θ)

+ I(Z ik ;Zjk |Z i1:k−1 ,Zj1:k−1 ,Θ). (75)

The MI terms on the RHS of the above equation can be expanded
using that I(A;B|C) = H(A|C)−H(A|C,B) [31]. The third
term can be expanded in alternative ways as follows:

I(Z ik ;Zjk |Z i1:k−1 ,Zj1:k−1 ,Θ)

(a)= H(Z ik |Z i1:k−1 ,Zj1:k−1 ,Θ)−H(Z ik |Z i1:k−1 ,Zj1:k ,Θ)
(76)

(b)= H(Zjk |Z i1:k−1 ,Zj1:k−1 ,Θ)−H(Zjk |Z i1:k−1 ,Z i1:k ,Θ)
(77)

After decomposing the first two terms on the RHS of (75) sim-
ilarly and adding to the average of (76) and (77) (which equals
to the third term), we obtain

D(p||u)=Δu+ −Δu− (78)

Δu+ �H(Zjk |Z i1:k−1 ,Θ) +H(Z ik |Zj1:k−1 ,Θ)

Δu−�− 1
2

[
H(Z ik |Z i1:k−1 ,Zj1:k−1 ,Θ)

+H(Zjk |Z i1:k−1 ,Zj1:k−1 ,Θ)

+H(Z ik |Z i1:k−1 ,Zj1:k ,Θ)+H(Zjk |Z i1:k ,Zj1:k−1 ,Θ)
]

Now, let us consider (31). After substituting (71) and (72) in
the RHS and expanding the MI terms as above, one obtains

D(p||q) ≤ Δq + −Δu− (79)

Δq + � 1
2

[
H(Zjk |Z

j
1:k−1 ,Θ) +H(Z ik |Z i1:k−1 ,Θ)

+H(Zjk |Z i1:k ,Θ)+H(Z ik |Zj1:k ,Θ)
]

Now, let us compare (79) and (78): The negative weighted
terms are equal, so, the difference of the positive weighted terms
are considered:

Δu+ −Δq+ = H(Zjk |Z i1:k−1 ,Θ)−H(Zjk |Z
j
1:k−1 ,Θ)

+H(Z ik |Zj1:k−1 ,Θ)−H(Z ik |Z i1:k−1 ,Θ)+ε

ε � H(Zjk |Z i1:k−1 ,Θ)−H(Zjk |Z i1:k ,Θ)

+H(Z ik |Zj1:k−1 ,Θ)−H(Z ik |Zj1:k ,Θ) (80)

Properties of differential entropy [31] suggest that ε ≥ 0
regardless of the problem setting (as conditioning reduces
entropy). Under normal sensing conditions it is reasonable to
expect that ε > 0 holds as sensor measurements are highly in-
formative on all the variables at time k. For sensors with similar
sensing capabilities, it is also reasonable to expect that their
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measurement history are interchangeable. In other words,

H(Z ik |Zj1:k−1 ,Θ) +H(Zjk |Z i1:k−1 ,Θ)

= H(Zjk |Z
j
1:k−1 ,Θ) +H(Z ik |Z i1:k−1 ,Θ) (81)

holds in which case (80) is nonzero and D(p||u) > D(p||q).
This condition can be relaxed for a difference of ε between the
RHS and LHS of (81).

Comparison in terms of entropy upper bounds is more
straightforward. Let us consider (32) and Corollary 4.2 in [26]
which we repeat here for convenience:

D(p||u) ≤ H+
u −H−u , (82)

H+
u = H(Xk |Zj1:k−1 ,Θ) +H(Xk |Z i1:k−1 ,Θ),

H−u = H(Xk |Z i1:k−1 ,Zj1:k−1 ,Θ)

+ max{H(Xk |Z i1:k−1 ,Zj1:k ,Θ),

H(Xk |Zj1:k−1 ,Z i1:k ,Θ)}.

For sensors of identical capabilities, both terms in the maximi-
sation should be identical as the accuracy of the state estimate
should not differ for using either of the sensors’ current mea-
surement in addition to the histories of both. As a result, we can
replace H−u with

H−u =H(Xk |Z i1:k−1 ,Zj1:k−1 ,Θ)

+
1
2

(
H(Xk |Z i1:k−1 ,Zj1:k ,Θ)+H(Xk |Zj1:k−1 ,Z i1:k ,Θ)

)
.

Now, note that the sum of the positive weighted terms in the
RHS of (32) (let us denote byH+

q ) is smaller thanH+
u owing to

that conditioning reduces entropy [31]. The sum of the negative
weighted terms (let us denote by H−q ), for the case ,equals to
H−u , leading to

H+
u −H−u − (H+

q −H−q ) > 0,

which indicates that the entropy bound of the quad-term update
is smaller than that for the dual-term update.

E. Local ML Estimate of Object Correspondances

The semantic of the object correspondance γk is slightly dif-
ferent from that of the random permutation variables used in
identity management [45] in a way closer to data association
because local (track) identities are synonymous with the mea-
surements they are associated with instead of signal features
etc. Therefore, in our model, γk is uniquely defined when given
τ ik and τ jk , and, γ1 , . . . , γk are mutually independent. The ML
estimate of γk using the likelihood for data set (Zi

k ,Z
j
1:k ) is also

conditioned on the association configuration (τ̂ ik , τ̂
i
k ) and θ is

given by

γ̂k = arg max
γk ∈SM

log l(Zi
k ,Z

j
1:k |γk , τ ik = τ̂ ik , τ

j
k = τ̂ jk , θ) (83)

where SM is the set of M -permutations. This likelihood can be
decomposed using the chain rule of probability as

l(Zi
k ,Z

j
1:k |γk , τ ik , τ

j
k , θ)

= p(Zi
k ,Z

j
k |Z

j
1:k−1 , γk , τ

i
k , τ

j
k , θ)p(Z

j
1:k−1 |γk , τ ik , τ

j
k , θ),

= p(Zi
k ,Z

j
k |Z

j
1:k−1 , γk , τ

i
k , τ

j
k , θ)p(Z

j
1:k−1 |θ), (84)

where the second equality follows from the independence of
sensor j’s measurements up to time k − 1 from the association
variables at time k. The first term on the RHS is easily identified
as (43) evaluated for γk whenm′ = γk (τ ik (o)). This term, when
substituted in (83), leads to a 2-D assignment problem given by

γ̂k = arg max
γk ∈SM

M∑
o=1

d
(
o,m′ = γk

(
τ̂ ik (o)

))

d(o,m′) � log rkij,o(z
i
k,o , θ),

for o,m′ = 1, . . . ,M , where rkij,o is given in (43).
After finding theM 2 costs above, this problem can be solved

using the auction algorithm [48] in polynomial time with M .
This algorithm finds the M pairs corresponding to the best per-
mutation γ̂k . We use a similar approach for the data association
problem in Bayesian filtering in Section VI-A.
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